подключение, управление, примеры работы [Амперка / Вики]
Познакомимся поближе с сервоприводами. Рассмотрим их разновидности, предназначение, подсказки по подключению и управлению.
Что такое сервопривод?
Сервопривод — это мотор с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервомотором является любой тип механического привода, имеющий в составе датчик положения и плату управления.
Простыми словами, сервопривод — это механизм с электромотором, который может поворачиваться в заданный угол и удерживать текущее положение.
Элементы сервопривода
Рассмотрим составные части сервопривода.
Электромотор с редуктором
За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.
Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.
Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.
Позиционер
Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.
Плата управления
За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.
Выходной вал
Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками.
Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.
Выходной шлейф
Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:
Красный — питание сервомотора. Подключите к плюсовому контакту источнику питания. Значения напряжение смотрите в характеристиках конкретно вашего сервопривода.
Чёрный — земля. Подключите к минусовому контакту источника питания и земле микроконтроллера.
Жёлтый — управляющий сигнал. Подключите к цифровому пину микроконтроллера.
Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.
Управление сервоприводом
Алгоритм работы
Сервопривод получает на вход управляющие импульсы, которые содержат:
Для простых сервоприводов: значение угла поворота.
Для сервоприводов постоянного вращения: значения скорости и направления вращения.
Плата управления сравнивает это значение с показанием на датчике обратной связи.
На основе результата сравнения привод производит некоторое действие: например, поворот, ускорение или замедление так, чтобы значение с внутреннего датчика стало как можно ближе к значению внешнего управляющего параметра.
Интерфейс управления
Чтобы указать сервоприводу желаемое состояние, по сигнальному проводу необходимо посылать управляющий сигнал — импульсы постоянной частоты и переменной ширины.
То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал от микроконтроллера поступает в управляющую схему сервопривода, имеющийся в нём генератор импульсов производит свой импульс, длительность которого определяется через датчик обратной связи. Далее схема сравнивает длительность двух импульсов:
Если длительность разная, включается электромотор с направлением вращения определяется тем, какой из импульсов короче.
Если длины импульсов равны, электромотор останавливается.
Для управления хобби-сервоприводами подают импульсы с частотой 50 Гц, т.е. период равен 20 мс:
1540 мкс означает, что сервопривод должен занять среднее положение.
544 мкс — для 0°
2400 мкс — для 180°.
Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.
Это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.
Часто способ управления сервоприводами называют PWM (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин — PDM (Pulse Duration Modulation) в котором важна длина импульсов, а не частота.
Характеристики сервопривода
Рассмотрим основные характеристики сервоприводов.
Крутящий момент
Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.
Скорость поворота
Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.
Форм-фактор
Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.
Форм-фактор | Вес | Размеры |
---|---|---|
Микро | 8-25 г | 22×15×25 мм |
Стандартный | 40-80 г | 40×20×37 мм |
Большой | 50-90 г | 49×25×40 мм |
Внутренний интерфейс
Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?
Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.
Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.
Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.
Материалы шестерней
Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.
Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.
Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой — дороговизна.
Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.
Коллекторные и бесколлекторные моторы
Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.
Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.
Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.
Сервопривод постоянного вращения
Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°».
Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».
Сервопривод постоянного вращения можно управлять с помощью библиотек Servo
или Servo2
. Отличие заключается в том, что функция Servo.write(angle)
задаёт не угол, а скорость вращения привода:
Функция Arduino | Сервопривод 180° | Сервопривод 360° |
---|---|---|
Servo.write(0) | Крайне левое положение | Полный ход в одном направлении |
Servo.write(90) | Середнее положение | Остановка сервопривода |
Servo.write(180) | Крайне правое положение | Полный ход в обратном направлении |
Для иллюстрации работы с сервами постоянного вращения мы собрали двух мобильных ботов — на Arduino Uno и Iskra JS. Инструкции по сборке и примеры скетчей смотрите в статье собираем ИК-бота.
Примеры работы с Arduino
Схема подключения
Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:
красный — питание; подключается к контакту
5V
или напрямую к источнику питаниякоричневый или чёрный — земля
жёлтый или белый — сигнал; подключается к цифровому выходу Arduino.
Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.
Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo
.
Ограничение по питанию
Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.
Рассмотрим на примере подключения 12V сервопривода:
Ограничение по количеству подключаемых сервоприводов
На большинстве плат Arduino библиотека Servo
поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite()
на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite()
на 11 и 12 контактах.
Пример использования библиотеки Servo
- servo_example.ino
// подключаем библиотеку для работы с сервоприводами #include <Servo.h> // создаём объект для управления сервоприводом Servo myservo; void setup() { // подключаем сервопривод к 9 пину myservo.attach(9); } void loop() { // устанавливаем сервопривод в серединное положение myservo.write(90); delay(500); // устанавливаем сервопривод в крайнее левое положение myservo.write(0); delay(500); // устанавливаем сервопривод в крайнее правое положение myservo.write(180); delay(500); }
По аналогии подключим 2 сервопривода
- 2servo_example.ino
// подключаем библиотеку для работы с сервоприводами #include <Servo.h> // создаём объекты для управления сервоприводами Servo myservo1; Servo myservo2; void setup() { // подключаем сервоприводы к 11 и 12 пину myservo1.attach(11); myservo2.attach(12); } void loop() { // устанавливаем сервопривод в серединное положение myservo1.write(90); myservo2.write(90); delay(500); // устанавливаем сервопривод в крайнее левое положение myservo1.write(0); myservo2.write(0); delay(500); // устанавливаем сервопривод в крайнее правое положение myservo1.write(180); myservo2.write(180); delay(500); }
Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.
Альтернативная библиотека Servo2
Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками/ передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.
Все методы библиотеки Servo2 совпадают с методами Servo.
Пример использования библиотеки Servo
- servo2_example.ino
// подключаем библиотеку для работы с сервоприводами // данная библиотека совместима с библиотекой «VirtualWire» // для работы с приёмником и передатчиком на 433 МГц #include <Servo2.h> // создаём объект для управления сервоприводом Servo2 myservo; void setup() { // подключаем сервопривод к 9 пину myservo.attach(9); } void loop() { // устанавливаем сервопривод в серединное положение myservo.write(90); delay(500); // устанавливаем сервопривод в крайнее левое положение myservo.write(0); delay(500); // устанавливаем сервопривод в крайнее правое положение myservo.write(180); delay(500); }
Примеры работы с Espruino
Примеры работы с Raspberry Pi
Вывод
Сервоприводы бывают разные, одни получше — другие подешевле, одни надёжнее — другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!
Ресурсы
Принцип работы сервопривода, что такое сервопривод
Сервопривод – это привод, предназначенный для осуществления контроля (угол поворота вала, скорость вращения/движения и так далее) над различными объектами, находящимися в постоянном движении. Контроль производится в зависимости от заданных ему параметров извне.
Рисунок 1. Сервопривод
Данный механизм получил достаточно широкое применение в различных промышленных сферах. Например, чаще всего его можно увидеть в конструкциях станков/машин для создания таких материалов/предметов и их обработки как:
- Упаковки и бумага;
- Листовой металл;
- Обработка материалов;
- Транспортное оборудование;
- Стройматериалы.
Также они могут использоваться в управляющих элементах механических систем (заслонка/задвижка, багажник автомобиля и тому подобные механизмы). Сервопривод очень полезен, так как позволяет поддерживать необходимый вам параметр.
Устройство
Рисунок 2. Устройство сервопривода
Сервопривод включает в свой состав такие элементы как:
- Приводной механизм – к примеру, это может быть электромотор. Благодаря ему становится возможным управление скоростью нужного диапазона в определённый временной момент;
- Датчики – осуществляют контроль над необходимыми параметрами. Могут быть предназначены для отслеживания положения, усилия, поворота угла или скорости вращения объекта;
- Блок управления – немало важный элемент, так как именно благодаря ему происходит поддержание требуемых параметров в автоматическом режиме;
- Блок питания – питает данный механизм.
Интересно, что самый простой управляющий блок чаще всего создаётся с использованием схемы сравнений значений на датчике и необходимых значений при подаче напряжения определённой полярности на привод.
Виды
Сервоприводы могут быть произведены в самых различных комплектациях. Эти устройства разделяют по принципу движения:
Вращательное
Представлено двумя вариациями: синхронной и асинхронной. Синхронный вариант помогает задать высокоточные параметры скорости вращения, углов поворота и ускорения. По сравнению с асинхронным скорость набирают быстрее, поэтому и стоят больше;
Асинхронный привод отличается способностью поддержания с большой точностью необходимой скорости даже в условиях низких оборотов.
Линейное
Также делится на два варианта: плоские и круглые. Двигатели данного типа развивают достаточно высокое ускорение (70 метров в секунду).
Ещё их выделяют по способу действия:
- Электромеханические механизмы – формирование движений происходит за счёт электродвигателя с редуктором;
- Электрогидромеханические – у них любое движение создаётся с участием системы поршня-цилиндра. В сравнении с электромеханическим приводом они обладают отличительно высоким быстродействием.
Параметры
Абсолютно любой сервопривод классифицируется по следующим параметрам:
Поворотная скорость представляет собой конкретный временной промежуток, необходимый для изменения позиции вала и зависима от определённого напряжения.
Поворотный угол выходного вала. Обычно этот параметр равен 180, 360.
Крутящий момент является самым важным параметром работы механизма и регулируется в зависимости от напряжения.
Управление сервопривода зависит от его типа – цифровой он или аналоговый.
Питание. Чаще всего в моделях используют напряжение, варьирующееся от 4.8 до 7.2 вольт.
Материал. Для изготовления редуктора могут использовать различные материалы. Для шестерней используют металл, карбон, пластик. Металл отличается большой устойчивостью в условиях динамических нагрузок, но не долговечен. Пластик долговечен, но не устойчив в динамических нагрузках.
Размер. По этому параметру приводы делят на микро-, стандартные и большие (существуют и другие размеры, но эти самые распространенные).
Принцип работы сервопривода
Рисунок 3. Принцип работы сервопривода
Движение редукторного выходного вала, который связан сервоприводом с шестернями, происходит за счёт работы электродвигателя. Для регулирования оборотов предназначен редуктор. Для управления необходимыми механизмами вал соединяется непосредственно с ними.
Его положение контролирует специальный датчик (на них основано всё устройство), который преобразует угол поворота в электро-сигналы. Такой датчик носит название энкодера. Во время поворота бегунка сопротивление энкодера изменяется. Это изменение пропорционально зависимо от угла поворота датчика. Благодаря этому принципу работы механизм можно зафиксировать в нужной позиции.
Для поддержания отрицательной обратной связи используется электронная плата, которая обрабатывает сигналы, приходящие от энкодера. Она сравнивает параметры и определяет запускать или остановить электродвигатель.
Управление
Для того чтобы серводвигатель мог функционировать в нём используют специальную систему, основанную на G-кодах. Упомянутые коды представлены набором управляющих команд, которые заложены в программе.
Например, в системе ЧПУ сервопривод контактирует с инверторами, способными изменять напряжение, которое соответствует входному, в обмотке электромотора.
Вся система серводвигателя управляется/контролируется блоком управления, из которого поступают различные команды, например, передвижения по оси Х или У. После подачи команды в инверторе создаётся определённое напряжение, питающее привод. Затем серводвигатель начинает своё круговое движение, связанное с главным исполнительным элементом механизма и энкодером.
Энкодер создаёт множество импульсов, которые подсчитываются блоком, осуществляемыми управление устройством. Для каждой позиции исполнительного элемента в программе установлено определённое количество импульсов. Так под их влиянием либо подаётся напряжение на моторчик, либо прекращается.
Преимущества и недостатки
Приятной особенностью сервоприводов является их достаточно малый размер и вес, что позволяет устанавливать их в различные конструкции с лёгкостью. Также они отличаются своей почти полностью бесшумной работой, что очень важно при использовании данных устройств на определённых участках. Любой сервопривод можно настроить персонально под свои конкретные задачи.
Благодаря сервоприводу можно осуществлять управление с отличительной большой точностью и стабильностью.
Из недостатков выделяется только сложность в их настройке и стоимости.
Подключение
Рисунок 4. Подключение сервопривода к системе Arduino
Подключение сервопривода осуществляется за счёт проводников в количестве трёх штук. Два проводника используются для подачи питания на электромотор, а оставшийся необходим для передачи сигналов от блока управления, которые приводят вал в нужную позицию.
Стоит отметить, что для того чтобы снизить вероятность огромных динамических нагрузок, которым может подвергаться электромотор, необходимо осуществлять как плавный разгон мотора, так и его торможение. Для этой цели создаются и используются более высокие по сложности микроконтроллеры, которые обеспечивают высокую точность в контроле и управлении положением рабочей детали.
Шаговый сервопривод
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 6 чел.
Средний рейтинг: 4.3 из 5.
Принципы работы и виды сервоприводов
Отличительной особенностью сервопривода является возможность управления через отрицательную обратную связь с использованием заданных параметров. Все оборудование данного типа можно разделить на две группы – сервоприводы постоянного тока и трехфазные сервоприводы переменного тока.
Устройство сервоприводов постоянного тока
Как правило, сервоприводы постоянного тока используются в маломощных устройствах позиционирования. Классическая область их применения – робототехника.
Конструкция современных сервоприводов довольно проста, но при этом весьма эффективна, так как позволяет обеспечить максимально точное управление движением. Сервопривод состоит из:
- двигателя постоянного тока
- шестерни редуктора
- выходного вала
- потенциометра
- платы управления, на которую подается управляющий сигнал
Двигатель и редуктор образуют привод. Редуктор используется для снижения скорости вращения двигателя, которую необходимо адаптировать для практического применения. К выходному валу редуктора крепится необходимая нагрузка. Это может быть качалка, вращающийся вал, тянущие или толкающие механизмы.
Для того, чтобы угол поворота превратить в электрический сигнал, необходим датчик. Его функции в сервоприводе постоянного тока с успехом выполняет потенциометр. Он выдает аналоговый сигнал (как правило, от 0 до 10 В) с дискретностью, ограниченной АЦП (аналогово-цифровым преобразователем), на который поступает этот сигнал.
Самой важной деталью сервопривода, пожалуй, является электронная плата сервоусилителя, которая принимает и анализирует управляющие импульсы, соотносит их с данными потенциометра, отвечает за запуск и выключение двигателя.
Принцип работы
Принцип действия устройств основан на использовании импульсного сигнала, который имеет три важные характеристики – частоту повторения, минимальную и максимальную продолжительность. Именно продолжительность импульса определяет угол поворота двигателя.
Импульсные сигналы, получаемые сервоприводом, имеют стандартную частоту, а вот их продолжительность в зависимости от модели может составлять от 0,8 до 2,2 мс. Параллельно с поступлением управляющего импульса активируется работа генератора опорного импульса, который связан с потенциометром. Тот, в свою очередь, механически сопряжен с выходным валом и отвечает за корректирование его положения.
Электронная схема анализирует импульсы с учетом длительности и на основе разностной величины определяет разницу между ожидаемым (заданным) положением вала и реальным (измеренным при помощи потенциометра). Затем производится корректировка путем подачи напряжения на питание двигателя.
Основные положения устройства
Если продолжительность опорного и управляющего импульсов совпадает, наступает так называемый нулевой момент. В это время двигатель сервопривода не работает, вал привода находится в исходном (неподвижном) положении.
При увеличении длительности управляющего импульса плата фиксирует разбежку показателей, двигатель получает напряжение и приходит в движение. В свою очередь, редуктор начинает воздействовать на выходной вал, который поворачивается таким образом, чтобы достигнуть увеличения продолжительности опорного импульса. Как только он сравняется с управляющим импульсом, двигатель прекратит свою работу.
При уменьшении длительности управляющего импульса происходит все то же самое, только с точностью до наоборот, так как двигатель начинает вращаться в обратную сторону. Как только импульсы сравнялись, двигатель останавливается.
Сервопривод переменного тока
В сервоприводах переменного тока используется синхронный двигатель с мощными постоянными магнитами. В таких двигателях частота вращения ротора совпадает с частотой вращения магнитного поля, наводимого в обмотке статора.
Принцип работы сервопривода на основе трехфазного синхронного электродвигателя состоит в следующем. На обмотки статора поступает трехфазное напряжение, которое создает внутри него вращающееся магнитное поле. Это поле взаимодействует с постоянными магнитами, расположенными в роторе. В результате ротор вращается с частотой магнитного поля.
На валу ротора закреплен энкодер с высокой разрешающей способностью. Сигнал от него поступает по отдельному кабелю на специальный вход сервоусилителя. В то же время на управляющий вход сервоусилителя подается сигнал управления. В результате сравнения этих двух сигналов выделяется сигнал рассогласования, величина которого прямо пропорциональна разнице между целевыми и актуальными показателями вращения двигателя. На основании данного сигнала формируется трехфазное напряжение с такими параметрами, которые обеспечивают максимально быстрое уменьшение рассогласования до нуля.
Режимы управления
Существуют три основных режима работы сервопривода переменного тока.
Режим управления положением. Главное в этом режиме – контроль за углом поворота вала ротора. Управление производится последовательностью импульсов, которые могут приходить, например, с контроллера. Этот режим используется для точного позиционирования различных узлов технологического оборудования.
Комбинация импульсов для управления положением может передавать информацию не только по положению, но также по скорости и направлению вращения двигателя. Для этого могут использоваться три типа сигналов: 1) квадратурные импульсы (со сдвигом фаз на 90 градусов), 2) импульсы вращения по или против часовой стрелки, действующие поочередно и 3) импульсы скорости и потенциал направления, подающиеся на два входа.
Как правило, во всех сервоусилителях входы управления именуются как PULSE, SIGN.
Режим управления скоростью. В данном случае управление производится аналоговым сигналом. Значения скорости также могут переключаться на фиксированные величины подачей сигналов на соответствующие дискретные входы. В случае использования разнополярного аналогового управляющего сигнала возможна смена направления вращения серводвигателя.
Режим управления скоростью схож с работой асинхронного двигателя, управляемого преобразователем частоты. Задаются такие параметры, как время разгона и замедления, максимальная и минимальная скорости и другие.
Режим управления моментом.
В этом режиме двигатель может вращаться либо стоять на месте, но при этом момент на валу будет заданным. Управление может производиться дискретным либо аналоговым двухполярным сигналом. Этот режим может использоваться для машин, где необходимо менять усилие прижима, давление и т. п.
Оценка текущего момента двигателя, необходимого для управления, производится за счет встроенного датчика тока.
Процесс рекуперации
Рекуперация происходит при изменении направления (знака) момента нагрузки по отношению к вращающему моменту серводвигателя. Если энергия рекуперации невелика, она накапливается на конденсаторах звена постоянного тока, повышая напряжение на них.
Если разница абсолютных значений моментов нагрузки и серводвигателя составляет значительную величину, напряжение на конденсаторах шины постоянного тока может превысить пороговый уровень. В этом случае энергия рекуперации сбрасывается в тормозной резистор.
Другие полезные материалы:
Выбор оптимального типоразмера электродвигателя
Сервопривод или шаговый двигатель?
Принципы программирования ПЛК
что это такое, устройство, принцип работы, виды
Вряд ли сегодня кого-то можно удивить тем количеством электрических приборов, которые окружают человека в повседневной жизни. Многие из которых давно взяли на себя часть человеческого труда и обязанностей. Повсеместная автоматизация процессов охватила самые разнообразные отрасли, начиная автомобилестроением, и заканчивая устройствами в быту. Львиную долю нагрузки относительно автоматического управления параметрами работы умных машин берет на себя сервопривод.
Что такое сервопривод?
Под сервоприводом следует понимать такое устройство, которое обеспечивает возможность управления рабочим органом посредством обратной связи. Само название произошло от латинского servus, что в переводе означает помощник. Изначально сервопривод использовался в качестве вспомогательного оборудования для различных станков, машин и механизмов. Однако с развитием технологий и постоянно растущей необходимостью повышать точность электронных устройств им начали отводить куда более значимую роль.
Устройство и принцип работы
Рис. 1. Устройство сервопривода
Устройство и принцип работы каждого сервопривода может кардинально отличаться от других моделей. Однако в качестве примера мы рассмотрим наиболее актуальные варианты.
Конструктивно он может состоять из:
- Привода – устройства, приводящего в движение рабочий орган. Может выполняться посредством синхронного или асинхронного двигателя, пневмоцилиндра и т.д.
- Передаточный механизм – система шестеренчатой кривошипной или другой передачи, редуктор.
- Рабочий элемент – управляет перемещением в пространстве, непосредственно вал редуктора, передаточный механизм и т.д.
- Датчик – сигнализирует о достигнутом положении и передает информацию по каналу обратной связи.
- Блок питания – может применяться в случае прямого подключения сервопривода к сети, где требуется преобразование уровня и типа напряжения.
- Блок управления – осуществляет подачу управляющих сигналов на сервомотор для передвижения или корректировки места положения. Для этого применяются микропроцессоры, микроконтроллеры и т.д. К примеру, очень популярна плата Arduino.
Принцип действия заключается в подаче управляющего импульса на асинхронный или синхронный двигатель, который начинает вращаться, пока рабочий орган не окажется в нужной позиции. Как только будет достигнуто установленное положение, на датчике обратной связи появится нужный сигнал, который, перейдя на блок управления, прекратит питание электромеханического устройства. Движение сервопривода прекратится до появления новых электрических сигналов.
Далее начнется новый цикл работы устройства, число команд и последовательность их выполнения определяется заложенной программой.
Сравнение с шаговым двигателем
Рис. 2. Сравнение с сервопривода с шаговым двигателем
Вполне вероятно вы могли слышать, что та же функция часто выполняется шаговыми двигателями, однако между этими двумя устройствами имеется существенное отличие. Шаговый привод действительно осуществляет точное позиционирование объекта за счет четкого числа подаваемых на электрическую машину импульсов, они достаточно тихоходны и не создают лишнего шума. В остальном сервоприводы обладают рядом весомых преимуществ по сравнению с шаговыми электродвигателями:
- Могут использовать для привода любой тип электрической машины – синхронный, асинхронный, электродвигатель постоянного тока и т.д.
- Точность механического привода не зависит от износа деталей, появления люфтов, термических и механических изменений конструктивных элементов.
- Диагностирование неисправностей происходит моментально за счет обратной связи.
- Скорость вращения – любой обычный электродвигатель вращается быстрее шагового привода.
- Экономичность – вращение вала у шаговой электрической машины осуществляется при максимально допустимом напряжении питания, чтобы обеспечить максимальный момент.
Но кроме перечисленных преимуществ есть ряд позиций, по которым сервопривод уступает шаговому двигателю:
- Сложность системы управления и необходимость реализации ее работы – шаговый двигатель контролируется обычным счетчиком числа импульсов.
- Необходимость контролировать как частоту вращения, так и принимать меры для принудительного затормаживания в нужной точке – это приводит к дополнительным затратам энергии, программных и механических ресурсов.
- Обязательно используется дополнительный измерительный блок, контролирующий положение рабочего органа.
- Сервопривод обладает значительно большей стоимостью, поэтому применение шагового двигателя обходится дешевле.
Назначение
Рис. 3. Область применения
Сервопривод используется в самых различных направлениях науки и техники, где электрический привод, помимо функции вращения каких-либо элементов, должен выполнить и точное позиционирование. На практике они повсеместно используются в ЧПУ станках, автоматических задвижках, электронных клапанах, заводских станках с программным управлением, робототехнике.
В бытовых системах сервомоторы устанавливаются в системах отопления для регулировки подачи теплоносителя, топлива, управления нагревательным элементом, контроля переключения между центральными и автономными системами энергетических ресурсов и т.д. В автомобилях их используют для отпирания, запирания багажника, электронных блокировок.
Разновидности
За счет многолетнего развития сервоприводов сегодня можно встретить самые различные виды устройства. Поэтому мы рассмотрим наиболее распространенные критерии разделения.
По типу привода:
- асинхронные сервоприводы – получаются дешевле,
чем с синхронным электродвигателем,
могут обеспечить точность даже при низких оборотах выходного вала; - синхронные – более дорогой вариант, но быстрее
разгоняется, что повышает скорость выполнения операций; - линейные – не используют классических
электрических моторов, но способны развивать большое ускорение.
По принципу действия выделяют:
- электромеханический сервопривод – движение
обеспечивается электрической машиной и шестеренчатым редуктором; - гидромеханический серводвигатель –
движение осуществляется при помощи поршневого цилиндра, обладают значительно
большей скоростью перемещения;
По материалу передаточного механизма:
- полимерные – износоустойчивые и
легкие, но плохо переносят большие механические нагрузки; - металлические – наиболее тяжелый
вариант, относительно быстро изнашиваются, но могут выдерживать любые нагрузки; - карбоновые – имеют средние
характеристики по прочности и износоустойчивости, в сравнении с двумя
предыдущими, но имеют более высокую стоимость.
Рис. 4. По материалу шестерней
По типу вала двигателя:
- с монолитным ротором – тяжелые сервоприводы, создают вибрацию при вращении;
- с полым ротором – самые легкие модели, быстро реагируют на команды и набирают обороты, их легче контролировать;
- с бесколлекторным ротором – не имеют подвижных контактов, которые создают дополнительное сопротивление вращению, наиболее дорогой вариант.
Рис. 5. По типу вала
Технические характеристики
При выборе конкретной модели сервопривода необходимо руководствоваться основными техническими параметрами, которые изготовитель указывает в паспорте устройства.
Наиболее значимыми характеристиками сервомотора являются:
- Усилие на валу серводвигателя – определяет механический момент и способность перемещать определенный вес, создавать усилие при резке, фрезеровке и т.д.
Рис. 6. Усилие на валу
- Скорость вращения – показывает, сколько поворотов вала может совершить устройство за единицу времени.
- Величина питающего напряжения – чаще всего электроснабжение сервопривода выполняется постоянным током, хотя встречаются модели и с переменным током выходного напряжения. Подключение питания к сервоприводу осуществляется тремя проводами: питающим, управляющим и общим.
- Угол вращения сервопривода – поворот выходного элемента, как правило, выпускается на 180° и 360°.
- Скорость поворота – подразделяется на сервоприводы с постоянным вращением и с переменной частотой.
Способы управления
Рис. 7. Способ управления сервоприводом
По способу управления могут быть аналоговые или цифровые сервоприводы, первый из них подает сигналы с разной частотой, которая задается специальной микросхемой, контролирующей работу устройства. Цифровые сервоприводы, в свою очередь, отличаются наличием процессора, который принимает команды и реализует их в качестве различных режимов работы на приводе.
Их практическое отличие заключается в наличии мертвых зон у аналоговых способов, цифровые лишены этого недостатка, к тому же они быстрее реагируют на изменения и обладают большей точностью. Однако цифровой способ управления имеет большую себестоимость и на свою работу он расходует больше электроэнергии.
На рисунке 8 приведен пример управления сервоприводом с помощью подаваемых импульсов:
Рис. 8. Схема управления сервоприводом
Как видите на рисунке, сигнал поступает к генератору опорных импульсов (ГОП), подключенному к потенциометру. Далее сигнал поступает на компаратор (К), сравнивающий величины на выходе схемы и поступающие от датчика на рабочем органе. После этого прибор управления мостом (УМ) открывает нужную пару транзисторов моста для вращения вала мотора (М) по часовой или против часовой стрелки, также может задавать усилие за счет полного или частичного открытия перехода.
Преимущества и недостатки
К преимуществам сервопривода следует отнести:
- Универсальность
устройства – может с легкостью устанавливаться в самые различные приборы, так
как технические особенности редко влияют на конечный результат. - Может
реализовать широкий спектр крутящего момента за счет использования редуктора и
изменения передаточного числа. - Обладает
большим ускорением, что значительно повышает продуктивность и сокращает сроки
выполнения работы. - Точное
выставление позиции благодаря проверке места положения на датчике. - Не боится
перегрузок, что увеличивает срок службы, позволяет работать и в аварийных
ситуациях.
К недостаткам следует отнести:
- Относительно большую стоимость – наличие обратной связи, датчиков и прочего вспомогательного оборудования обуславливает повышение себестоимости сервопривода.
- Износ передаточного механизма – в значительной мере ухудшает точность и эффективность, требует замены.
- Более сложная настройка работы – требует изменения параметров программного обеспечения или полной замены сервопривода.
что это такое, принцип работы, виды, для чего используется
Принцип действия
Работа устройства происходит по принципу обратного взаимодействия с системными сигналами. Сервопривод в определенный момент времени получает входящие параметры регулирующего значения и поддерживает его на выходе производимого элемента.
Конструкция устройства
Механизм подобного типа обычно имеет следующие составляющие:
- Привод — электрический мотор с редуктором или похожие устройства. Необходим для уменьшения скорости движения, если она слишком большая.
- Датчик обратной связи или потенциометр, меняющий угол поворота вала.
- Блок, отвечающий за управление и питание.
- Вход или конвертер.
В принципе работы самого простого варианта лежит схема обрабатывания значений, исходящих от датчика обратной связи и настраиваемых входящих сигналов для подачи напряжения необходимой полярности на двигатель. Сложные устройства, работающие с использованием микросхем, учитывают инерцию, обеспечивая ровный период разгона или торможения, что помогает уменьшить уровень нагрузок и добиться точной синхронизации показателей.
Разновидности
Различают два вида сервоприводов:
- Синхронные – задают темп скорости вращения двигателя и другие параметры, быстрее достигая указанной скорости вращения.
- Асинхронные – способны сохранять работу двигателя даже при низких оборотах.
Также устройства разделяют на электромеханические и электрогидромеханические по особенностям конструкции и принципу работы.
Основные характеристики
Механизмы имеют ряд параметров, характеризующих их работу:
- Усиление на валу оказывает прямое влияние на крутящий момент. Это значение является одной из ключевых характеристик, в паспорте устройства может указываться несколько параметров для различных величин напряжения.
- Скорость поворота также имеет важное значение в работе механизма. Обычно указывается в параметре времени – необходимо, чтобы выходной вал изменил свое направление на 60 градусов.
- Указывается тип устройств — цифровой или аналоговый. Цифровые управляются при помощи кодовых команд, которые последовательно передаются через интерфейс. Аналоговые управляются через подачу разных частот, параметры которых задаются определенным образом.
- Питание может быть различным, но у большинства таких агрегатов оно находится в диапазоне 4,8-7,2 вольта.
- Угол поворота. Обычно это значение в 180 или 360 градусов.
- Сервопривод может быть переменного или постоянного вращения.
Имеет значение материал изготовления. Детали могут быть металлическими, пластиковыми, либо в комбинированном составе.
Управление серводвигателем
К устройству по присоединенному к нему проводу подается управляющий сигнал, представляющий собой импульсы постоянной частоты и переменной ширины. При подаче сигнала в проводимую схему генератор производит свой импульс, размер которого устанавливается с помощью потенциометра. Другая часть схемы проводит анализ всех поступаемых сигналов, и если он разный, то происходит включение сервопривода. Если размеры импульсов равнозначные, электромотор отключается.
Серводвигатели отличаются своим разнообразием по конструкции и принципу действия. Модели бывают со щетками и без щеток. Первая категория представлена двигателями постоянного тока. Устройства, имеющие щетки, более разнообразны – к ним относятся шаговые двигатели и работающие от переменного тока. Последняя группа делится еще на два вида — синхронные и асинхронные. Синхронные двигатели, в зависимости от особенностей работы, могут быть вращающимися или линейными.
В работе моторов также используется сервоусилитель – это элемент конструкции, который обеспечивает подачу питания и управление двигателем с постоянными магнитами. Может работать при необходимости и в автономном режиме, при помощи специальной программы, которая предварительно загружается в память устройства.
Агрегаты, гарантирующие высокую точность работы, являются весьма востребованными. Подобные двигатели широко применяются в различных сферах промышленности, всевозможных станках и оборудовании, автомобилестроении.
Область применения
В данный момент сервоприводы получили достаточно широкое распространение. Их можно встретить в точных приборах, автоматах, производящих различные платы, программируемых станках, промышленных роботах и других механизмах. Большую популярность приводы такого типа приобрели в авиамодельной сфере за счет эффективного расхода энергии и равномерного движения.
Сервоприводы меняются и развиваются. В самом начале появления они обладали коллекторными моторами с обмотками на роторе. Постепенно число обмоток выросло, также увеличилась и скорость вращения и разгона. Позже обмотки начали располагаться снаружи магнита, что также способствовало повышению эффективности работы. Дальнейшие усовершенствования позволили отказаться от коллектора, стали использоваться постоянные магниты ротора. Наиболее популярны сейчас сервоприводы, которые работают от программируемого контроллера. Это дает возможность создавать приборы высокой точности и современную технику.
Возможность достижения высокой точности часто становится решающим фактором для применения сервопривода. Кроме того, благодаря новым цифровым разработкам, позволяющим предусмотреть различные способы связи с объектами, система использует компьютер для управления и настройки, что значительно упрощает работу.
В различных сферах также используются серводвигатели. Они могут перемещать выходной вал в заданное положение и удерживать его автоматически. Также помогут придать движение какому-либо механизму, координируемому вращениями вала. Для мотора важными параметрами являются равномерность и тональность движения, эффективность затрачиваемой энергии.
что это такое? Устройство, установка и принцип работы сервопривода
Многие задают вопрос: сервопривод — что это такое? Классическая конструкция сервопривода включает в себя двигатель, датчик позиционирования и трехконтурную управляющую систему (регуляция позиции, скорости и тока).
Слово «серво» имеет латинское происхождение «servus», дословно переводится как «раб», «помощник», «прислужник».
В машиностроительной отрасли устройства выступали в роли вспомогательных компонентов (привод подачи в станке, роботе и т.д.). Однако сегодня ситуация поменялась, и главное назначение сервопривода заключено в реализации в области сервомеханизмов.
Установка сервопривода оправдана в том случае, когда обычные преобразователи частоты регулируют точность работы в недостаточной мере.
Применение приборов высокого качества необходимо в оборудовании, отличающемся высоким уровнем производительности.
В этой статье будет рассказано про сервопривод, что это такое и как он функционирует.
Области использования устройства
В современном мире, когда автоматизация заняла прочные позиции во всех областях машиностроения, конструкция всех механизмов заметно унифицировалась. При этом применяются современные индивидуальные приводы.
Для того, чтобы понять, сервопривод, что это такое, следует знать сферу применения устройства.
Устройства содержат прецизионные конструкции поддержания скорости в промышленных роботах и станках с высокой точностью. Они монтируются на сверлильных оборудованиях, в различных системах транспорта и механизмах вспомогательного характера.
Самое широкое применение приборы нашли в следующих сферах:
- изготовление бумаги и упаковок;
- изготовление листов из металла;
- обрабатывание материалов;
- производство транспортного оборудования;
- деревообрабатывающая промышленность;
- изготовление стройматериалов.
Сервоприводы на багажник автомобиля
Существует множество моделей сервоприводов для багажника машины от разных производителей. Рассмотрим функциональность такого устройства, как сервопривод багажника от отечественного производителя «Автозебра». Устройство рассчитано на российские автомобили, но не только. К примеру, оно может использоваться в автомобиле «Рено Логан».
По отзывам пользователей, эта конструкция отличается удобством. Она позволяет, не выходя из авто, осуществлять открывание и закрывание багажника.
Управление устройством осуществляет посредством кнопки, вмонтированной в салон автомобиля или же в брелок сигнализации.
Причина широкого использования прибора
Причиной частого применения сервоприводов стали:
- возможность получения управления, отличающегося высокой точностью и стабильным функционированием;
- широкий диапазон контроля скорости;
- высокий уровень устойчивости к помехам;
- маленький размер и вес устройства.
Принцип функционирования сервопривода
Как же работает устройство? Сервопривод, принцип работы которого основан на обратной связи с одним или более системными сигналами, регулирует объект. Выходной показатель устройства поступает на вход, где идет сравнение с задающим действием.
Особенности механизма
Устройство сервопривода обладает двумя основными особенностями:
- способностью повышать мощность;
- обеспечением обратной информационной связи.
Усиление требуется с той целью, что нужная на выходе энергия очень высока (поступает из внешнего источника), а на входе ее показатель незначителен.
Обратная связь — это не что иное, как контур с замкнутой схемой, в котором сигналы не согласованы на входе и выходе. Этот процесс применяется для управления.
Отсюда вытекает вывод: контур при прямом направлении служит передатчиком энергии, а при обратном направлении — передатчиком информации, которая нужна для точности управления.
Питание и цоколевка разъемов устройства
Сервопривод, принцип работы которого применим в радиоуправляемых конфигурациях, обычно обладает тремя проводами:
- Сигнализирующим. По нему осуществляется передача управляющего импульса. Как правило, провод окрашен в белый, желтый или же красный цвет.
- Питающим. Показатель его мощности составляет от 4,8 до 6 В. Зачастую, это красный провод.
- Заземляющим. Провод черный или коричневый.
Размеры приводов
По размерам агрегаты подразделяются на три категории:
- микроприводы;
- стандартные модификации;
- крупные устройства.
Встречаются сервоприводы и с другими показателями размеров, однако вышеперечисленные виды составляют 95% от всех устройств.
Основные характеристик изделия
Работа сервопривода характеризуется двумя основными показателями: скоростью поворота и усилия на валу. Первая величина служит показателем времени, которое измеряется в секундах. Усилие мерится в кг/см, то есть, какой уровень усилия развивает механизм от центра вращения.
Вообще данный параметр находится в зависимости от основного назначения устройства, а уже потом от числа передач редуктора и используемых в устройстве узлов.
Как уже упоминалось, сейчас выпускают механизмы, функционирующие при показателе напряжения питания от 4,8 до 6 В. Чаще этот показатель равен 6 В. Однако не все модели рассчитаны на широкий диапазон напряжений. Иногда двигатель сервопривода работает лишь при 4,8 В или же только при 6 В (последние конфигурации производятся крайне редко).
Аналоговые и цифровые модификации
Несколько лет тому назад все сервосхемы были аналоговыми. Сейчас появились и цифровые конструкции. В чем же разница их работы? Давайте обратимся к информации официального характера.
Из отчета фирмы Futaba следует, что за последнее десятилетие сервоприводы стали отличаться более хорошими техническими показателями, чем раньше, а также малыми размерами, высоким уровнем скорости вращения и показателем элементов кручения.
Последний виток развития — появление устройства на цифровой основе. Эти агрегаты обладают существенными преимуществами даже перед моторами коллекторного типа. Хотя имеются и некоторые минусы.
Внешне аналоговые и цифровые устройства неразличимы. Отличия фиксируются лишь на платах устройств. Вместо микросхемы на цифровом агрегате можно увидеть микропроцессор, анализирующий сигнал приемника. Он и управляет двигателем.
Совершенно неправильно говорить о том, что аналоговая и цифровая модификация в корне различаются при функционировании. Они могут обладать одинаковыми двигателями, механизмами и потенциометрами (переменными резисторами).
Основным отличием является способ переработки поступающего сигнала приемника и управление двигателем. В оба сервопривода поступает одинаковый по мощности сигнал радиоприемника.
Таким образом, становится понятно, сервопривод, что это такое?
Принцип работы аналоговой модификации
В аналоговой модификации полученный сигнал сравним с текущим положением сервомотора, а затем на двигатель поступает сигнал усилителя, вызывающий перемещение двигателя в заданную позицию Показатель частоты процесса составляет 50 раз за одну секунду. Это минимальный показатель времени реагирования. Если же вы отклоните ручку на передатчике, то на сервопривод начнут поступать короткие импульсы, промежуток между которыми станет равняться 20 м/сек. Между импульсами на мотор ничего не поступает, и воздействие извне может изменить функционирование устройства в любую сторону. Этот временной промежуток называется «мертвая зона».
Принцип работы цифровой конструкции
Цифровыми устройствами используется специальный процессор, функционирующий на высоких частотах. Он обрабатывает сигнал приемника и посылает импульсы управления в двигатель с показателем частоты в 300 раз в секунду. Так как показатель частоты значительно выше, то и реакция заметно быстрее и держит позицию лучше. Это вызывает оптимальное центрирование и высокий уровень кручения. Но такой метод требует больших затрат энергии, поэтому батарея, используемая в аналоговом механизме, в этой конструкции будет разряжаться намного быстрее.
Однако все пользователи, которые хоть однажды столкнулись с цифровой моделью, говорят о том, что ее различие с аналоговой конструкцией настолько значительно, что они никогда бы больше не употребляли последнюю.
Заключение
Вашим выбором станут цифровые аналоги, если вам требуются:
- высокий уровень разрешающей способности;
- минимальное количество «мертвых зон»;
- точный уровень позиционирования;
- быстрая реакция на команду;
- беспеременное усилие на валу при повороте;
- высокий уровень мощности.
Теперь вы знаете, что такое сервопривод и как его использовать.
Принцип работы сервопривода для системы отопления
Среди многочисленного оборудования, которое участвует в работе систем отопления «теплый пол» можно обнаружить небольшой приборчик, играющий важнейшую роль в управлении и в регулировке отопительной системы. Это сервопривод, электромеханическое устройство, без которого автоматическая регулировка температурного режима для теплого водяного пола не возможна.
В основе прибора лежит электротермическая реакция на изменение температуры нагрева теплоносителя в основной подающей трубе и последующее механическое действие, обеспечивающие в комплексе открытие или закрытие поступление горячей воды в отопительные контуры. Сервоприводы или сервомоторы, официально на языке профессионалов устройство называется сервопривод электротермический, сегодня присутствуют практически во всех автономных системах отопления. Новые загородные жилые постройки, коттеджи и дачи, оборудованные теплыми полами, имеют на оснащении теплый пол, который управляется сервоприводами. Именно сервопривод, устанавливаемый для теплого пола на коллектор, выполняет задачу по регулировке потока теплоносителя в системе отопления водных полов.
Существующие виды сервоприводов на сегодняшний день
Среди существующих на сегодняшний день регуляторов, получивших распространение в быту, встречаются следующие сервоприводы. Все приборы можно разделить на несколько видов. Каждая разновидность отличается принципом действия и функционалом. По типу конструкции устройства бывают двух видов:
По названиям можно судить о принципе действия. Для закрытых сервоприводов характерным является открытое положение при отсутствии питания. Поступающие сигнал приводит в действие механическую часть, перекрывая доступ воды в систему. Для устройств открытого вида, принцип действия в обратном порядке. В обычном состоянии сервопривод закрыт, только с поступлением сигнала механическая часть приводится в действие, открывая поступление воды в трубопровод. О том, какой вид лучше подходит для бытового использования, судить вам, оценивая возможности собственной системы обогрева и климатические условия за окном. Чаще всего используются у нас в стране нормально открытые сервоприводы.
На заметку: при выходе из строя прибора, теплоноситель в трубопроводе продолжает циркулировать, оставляя пол теплым на определенное время. Такая особенность особенно актуальная для загородных домов, расположенных в холодной климатической зоне.
По способу питания сервомоторы делятся на приборы, питающиеся постоянным поток напряжением 24В и устройства, подключаемые к обычной электросети переменного тока напряжением 220В. Сервоприводы с питанием в 24В оснащаются инверторами.
Нередко потребители используют еще один, достаточно редкий вид устройств. Речь идет о приборах, которые выставляются в нормальное положение в зависимости от технологических требований отопительной системы. Такие сервоприводы называются универсальными и могут менять функциональность с нормально открытого состояния на нормально закрытое состояние, и наоборот.
Подключить к коллектору можно все три вида сервомоторов. Единственное условие, правильная настройка, балансировка и условия эксплуатации отопительной системы.
Критерии выбора вида сервопривода
В данном разделе постараемся ответить на вопрос. На чем основывается выбор приборов того или иного вида.
Если вырешили оснастить свою отопительную систему «теплый водяной пол» сервоприводами, учитывайте параметры эксплуатации вашего отопления. В каком положении большую часть времени должен находиться клапан. В той ситуации, когда для вас теплый пол является основным вариантом обогрева жилых помещений, когда горячий теплоноситель постоянно поступает в трубопровод, делайте ставку на сервомотор нормально открытый. Такой вид является идеальным в условиях длительного отопительного сезона.
На заметку: при перебоях с электрическим снабжением, выход прибора из строя не остановит циркуляцию теплой воды в отопительных водяных контурах. Теплый пол будет продолжаться снабжаться теплоносителем подготовленной водой.
Для регионов с теплым климатом подойдет сервомотор нормальный закрытый. Если вам не страшна размораживание отопительного контура, и вы периодически включаете напольный обогрев, этот прибор будет вполне справляться со своими функциями.
Важно! Сервопривод для теплого пола с плавной настройкой имеют регулятор электронного типа. Такие устройства более точно реагируют на изменения температуры потока теплоносителя, плавно переводя шток в необходимое положение. Сервомоторы с плавной настройкой рассчитаны на теплые полы, в которых часто приходится выполнять дозировку объема поступающего потока.
В большинстве случае подобные устройства в домашних системах отопления с греющими полами не используются. Поэтому при покупке, обратите внимание, требуется или нет к прибору монтаж электронного регулятора. Если в инструкции написано что такое оснащение необходимо, значит, вы имеете дело с электронным сервоприводом. Скажем сразу, такой прибор использовать в домашних условиях нецелесообразно и нерентабельно.
Обязательно прочтите: как сделать водяной пол от газового котла?
Устройство и принцип работы сервомоторов
Основным рабочим элементом сервопривода является сильфон. Т.е. такая же деталь, как и в трехходовом клапане. Небольшой по размерам, герметичный цилиндр с эластичным корпусом заполнен веществом, чутко реагирующим на температуру. В зависимости от того, происходит повышение или понижение температуры, происходит соответственно изменение объема вещества. Рисунок – схема наглядно демонстрирует устройство сервомотора, где основным местом занимает сильфон.
Сильфон находится в тесном контакте с электрическим нагревательным элементом. Получая сигнал с термостата, нагревательный элемент включается от сети и включается в работу. Внутри сильфона вещество подогревается и увеличивается в объеме. Таким образом, увеличившийся в размерах цилиндр начинает давить на шток, меняя его положение и перекрывая путь потоку теплоносителя. Оценивая работу сервопривода можно сделать вывод – прибор не оснащен никакими моторами, в нем нет никаких шестерней и передаточных звеньев. Обычная рабочая связь «тепловая энергия и электричество». Отсюда и распространенное название приборов, термоэлектрические регуляторы.
Для того, что бы клапан снова стал открытым, весь процесс повторяется только в обратном направлении. Отсутствие электропитания приводит к тому, что нагревательный элемент перестает работать. Следовательно, вещество внутри цилиндра остывает, уменьшаясь в объеме. Давление на шток уменьшается, он подымается, действуя на клапан, а, следовательно, открывается доступ горячей воды в систему.
На заметку: вещество, помещенное внутрь цилиндра – толуол, обладающее высокими термодинамическими характеристиками. Электрическим нагревательным элементом выступает нихромовая нить.
Ознакомившись с принципом работы устройства, важно помнить, что для механического действия клапана необходимо определенное время. Несмотря на то, что при поступлении сигнала с термостата, нагревательный элемент начинает нагревать вещество внутри цилиндра. Время, необходимое на изменения физического состояния жидкости, составляет 2-3 минуты, поэтому клапан приводится в действие не сразу.
Для справки: при выборе модели сервопривода обратите внимание на параметры нагревательного элемента и время нагрева жидкости, указанные в паспорте прибора.
В отличие от нагрева, остывание жидкости проходит медленнее. На обратный процесс, т.е. на закрытие клапана потребуется уже не 2-3 минуты, а 10-15 минут. При перегреве каждый сервомотор должен автоматически отключаться. Для этого в конструкции предусмотрен механизм аварийного отключения.
Для примера: используемые в работе коллекторной группы сервоприводы не все оснащаются цилиндрами и баллонами с веществом. Ест модели, в которых эту роль играют термоэлементы, напоминающие собой пружину или пластину, которые под действием все того же нагревательного элемента нагреваются. Расширяясь, эти детали воздействуют опять же, на шток, приводя в конечном итоге в рабочее состояние клапан. Определить в каком положении находится клапан, можно по изменению внешнего вида сервопривода. Выдвигающийся элемент сигнализирует о работе прибора. Если этого не происходит, значит, ваш прибор неправильно подключен или система отопления работает с перебоями.
Для справки: горячий на ощупь сервомотор означает, что в данном случае прибор закрыт и отключен. Если прибор на ощупь прохладный, следовательно, клапан открыт, теплоноситель нормально циркулирует по водяным контурам теплого пола.
Установка сервопривода. Особенности и нюансы
Перед монтажом сервопривода определитесь, с каким типом термостата прибору придется взаимодействовать. В случаях, когда термостат контролирует работу одного водяного контура, оба прибора напрямую связываются между собой проводами. Когда речь идет об использовании мультизонального термостата, прибора, обслуживающего сразу несколько трубопроводов, подключение сервомоторов осуществляется следующим образом.
Что бы правильно присоединить все провода и клеммы, используются коммутатор теплого пола. В функции этого устройства входит подключение и соединение устройств различного назначения в единую цепь. Помимо распределительной и связующей функции, коммутатор играет еще роль и предохранителя. В ситуациях, когда закрыты все отсекающие клапаны водяных контуров, коммутатор отключает питание циркуляционного насоса.
Коммутатор очень удобен в тех случаях, когда теплые полы работают от автоматизированного автономного газового котла. Рисунок показывает, каким образом подключаются термостаты и сервоприводы к единой системе управления.
Место установки сервопривода, термостатический клапан, устанавливаемый на коллектор.
Важно! При работе системы отопления теплые полы от твердотопливного котла, такая функция коммутатора, как отключение насоса, чревата остановкой самого нагревательного прибора. Установка байпаса и перепускного клапана позволит вам избежать остановки насоса и работы нагревательного прибора в холостую.
Выводы
Следует отметить, что благодаря появлению современных устройств и приспособлений, управление и регулировка теплых полов стала обыденным и простым процессом. Конструкция многих приборов, используемых для работы отопительных контуров, особой сложностью не отличается. Понятен и принцип работы многих узлов и агрегатов. Это можно с уверенностью сказать и о сервоприводах. Приборы в большинстве своем надежны, практичны и удобны в эксплуатации. Благодаря сервомоторам стало возможным полностью автоматизировать систему управления теплыми полами, сделать условия использования отопительного оборудования простым и понятным.
Выбирая вариант попроще, можно обойтись установкой обычных регулирующих кранов. Автоматические регуляторы, термодатчики и сервоприводы, категория устройств, работающих на ваш комфорт и безопасность. Установка дополнительных приборов, таких как коммутатор и перепускной клапан, сделают вашу систему отопления максимально эффективной и безопасной.
Серводвигатель
: основы, принцип работы и теория
Что такое серводвигатель?
Серводвигатель — это электрическое устройство, которое может толкать или вращать объект с большой точностью. Если вы хотите вращать объект под определенными углами или на определенном расстоянии, вы используете серводвигатель. Он просто состоит из простого двигателя, который работает через сервомеханизм . Если используется двигатель с питанием от постоянного тока, он называется серводвигателем постоянного тока, а если двигатель с питанием от переменного тока, то он называется серводвигателем переменного тока.Мы можем получить серводвигатель с очень высоким крутящим моментом в небольшом и легком корпусе. Благодаря этим функциям они используются во многих приложениях, таких как игрушечные автомобили, вертолеты и самолеты с дистанционным управлением, робототехника, машины и т. Д.
Серводвигатели
рассчитаны на кг / см (килограмм на сантиметр), большинство серводвигателей для любительских автомобилей рассчитаны на 3 кг / см, 6 кг / см или 12 кг / см. Этот кг / см показывает, какой вес ваш серводвигатель может поднять на определенное расстояние. Например: Серводвигатель 6 кг / см должен быть в состоянии поднять 6 кг, если груз подвешен на расстоянии 1 см от вала двигателя. Чем больше расстояние, тем меньше грузоподъемность.
Положение серводвигателя определяется электрическим импульсом, а его электрическая схема размещается рядом с двигателем.
Сервомеханизм
Состоит из трех частей:
- Управляемое устройство
- Выходной датчик
- Система обратной связи
Это замкнутая система, в которой используется система положительной обратной связи для управления движением и конечным положением вала. При этом устройство управляется посредством сигнала обратной связи, генерируемого посредством сравнения выходного сигнала и опорного входного сигнала.
Здесь опорный входной сигнал сравнивается с опорным выходным сигналом, а третий сигнал вырабатывается системой обратной связи. И этот третий сигнал действует как входной сигнал для устройства управления. Этот сигнал присутствует до тех пор, пока генерируется сигнал обратной связи или существует разница между опорным входным сигналом и опорным выходным сигналом. Таким образом, основная задача сервомеханизма — поддерживать выход системы на желаемом уровне при наличии помех.
Принцип работы серводвигателей
Сервопривод состоит из двигателя (постоянного или переменного тока), потенциометра, редуктора и схемы управления.В первую очередь мы используем редуктор для уменьшения оборотов и увеличения крутящего момента двигателя. Скажем, в исходном положении вала серводвигателя положение ручки потенциометра таково, что на выходном порте потенциометра не генерируется электрический сигнал. Теперь электрический сигнал подается на другой вход усилителя детектора ошибок. Теперь разница между этими двумя сигналами, один исходит от потенциометра, а другой исходит от другого источника, будет обработана в механизме обратной связи, и будет предоставлен выходной сигнал в виде сигнала ошибки.Этот сигнал ошибки действует как вход для двигателя, и двигатель начинает вращаться. Теперь вал двигателя соединен с потенциометром, и когда двигатель вращается, потенциометр и он будут генерировать сигнал. Таким образом, при изменении углового положения потенциометра изменяется его выходной сигнал обратной связи. Через некоторое время положение потенциометра достигнет положения, при котором выходной сигнал потенциометра будет таким же, как и внешний сигнал. В этом состоянии выходной сигнал от усилителя на вход двигателя не поступает, так как нет разницы между приложенным внешним сигналом и сигналом, генерируемым на потенциометре, и в этой ситуации двигатель перестает вращаться.
Управляющий серводвигатель:
У всех двигателей три выходящих провода. Два из них будут использоваться для питания (положительный и отрицательный), а один будет использоваться для сигнала, который должен быть отправлен от MCU.
Сервомотор
управляется ШИМ (импульс с модуляцией), который обеспечивается управляющими проводами. Есть минимальный импульс, максимальный пульс и частота повторения. Серводвигатель может поворачиваться на 90 градусов в любом направлении из нейтрального положения.Серводвигатель ожидает увидеть импульс каждые 20 миллисекунд (мс), и длина импульса будет определять, насколько далеко двигатель вращается. Например, импульс 1,5 мс заставит двигатель повернуться в положение 90 °, например, если импульс короче 1,5 мс, вал перемещается на 0 °, а если он длиннее 1,5 мс, то сервопривод повернется на 180 °.
Серводвигатель
работает по принципу PWM (широтно-импульсная модуляция). означает, что его угол поворота контролируется длительностью импульса, подаваемого на его контрольный PIN.В основном серводвигатель состоит из двигателя постоянного тока , который управляется переменным резистором (потенциометром) и некоторыми шестернями . Сила высокой скорости двигателя постоянного тока преобразуется в крутящий момент с помощью шестерен. Мы знаем, что РАБОТА = СИЛА X РАССТОЯНИЕ, в двигателе постоянного тока сила меньше, а расстояние (скорость) высокое, а в сервоприводе сила высокая, а расстояние меньше. Потенциометр подключен к выходному валу сервопривода, чтобы рассчитать угол и остановить двигатель постоянного тока на требуемом угле.
Серводвигатель
можно вращать от 0 до 180 градусов, но он может вращаться до 210 градусов, в зависимости от производства.Этой степенью вращения можно управлять, применяя Electrical Pulse соответствующей ширины к его контрольному выводу. Сервопривод проверяет пульс каждые 20 миллисекунд. Импульс шириной 1 мс (1 миллисекунда) может повернуть сервопривод на 0 градусов, 1,5 мс может повернуть на 90 градусов (нейтральное положение), а импульс 2 мс может повернуть его на 180 градусов.
Все серводвигатели работают напрямую с вашими шинами питания +5 В, но мы должны быть осторожны с величиной тока, потребляемого двигателем. Если вы планируете использовать более двух серводвигателей, необходимо спроектировать соответствующий серво щит.
Чтобы узнать больше о принципе работы серводвигателя и его практическом использовании, ознакомьтесь с приведенными ниже приложениями, в которых управление серводвигателем объясняется на примерах:
.Сервомоторы
— Принцип работы, управление и применение
Сервомоторы
подразумевают управление с обратной связью с обнаружением ошибок, которое используется для корректировки производительности системы. Также требуется обычно сложный контроллер, часто специальный модуль, специально разработанный для использования с серводвигателями. Серводвигатели — это двигатели постоянного тока, которые позволяют точно контролировать угловое положение. Это двигатели постоянного тока, скорость которых медленно снижается шестернями. Серводвигатели обычно имеют отсечку оборотов от 90 ° до 180 °.Некоторые серводвигатели также имеют отсечку оборотов на 360 ° или более. Но серводвигатели не вращаются постоянно. Их вращение ограничено фиксированными углами.
Серводвигатель представляет собой сборку из четырех частей: обычного двигателя постоянного тока, редуктора, устройства определения положения и цепи управления. Двигатель постоянного тока соединен с зубчатым механизмом, который обеспечивает обратную связь с датчиком положения, который в основном представляет собой потенциометр. От коробки передач мощность двигателя через шлицевую часть сервопривода подается на рычаг сервопривода.Для стандартных серводвигателей шестерня обычно сделана из пластика, тогда как для сервоприводов большой мощности шестерня сделана из металла.
Серводвигатель состоит из трех проводов — черного провода, подключенного к земле, бело-желтого провода, подключенного к блоку управления, и красного провода, подключенного к источнику питания.
Функция серводвигателя заключается в получении управляющего сигнала, который представляет желаемое выходное положение вала сервомотора, и подача энергии на его двигатель постоянного тока до тех пор, пока его вал не повернется в это положение.
Он использует устройство определения положения для определения положения вращения вала, поэтому он знает, в какую сторону должен вращаться двигатель, чтобы переместить вал в заданное положение. Вал обычно не вращается свободно, как двигатель постоянного тока, а может просто повернуться на 200 градусов.
Серводвигатель
Из положения ротора создается вращающееся магнитное поле для эффективного генерирования крутящего момента. В обмотке течет ток, создавая вращающееся магнитное поле.Вал передает выходную мощность двигателя. Нагрузка перемещается через передаточный механизм. Высокоэффективный редкоземельный или другой постоянный магнит расположен снаружи вала. Оптический энкодер всегда отслеживает количество оборотов и положение вала.
Работа серводвигателя
Серводвигатель состоит из двигателя постоянного тока, зубчатой передачи, датчика положения и цепи управления. Двигатели постоянного тока питаются от батареи и работают с высокой скоростью и низким крутящим моментом. Узел шестерни и вала, соединенный с двигателями постоянного тока, снижает эту скорость до достаточной скорости и более высокого крутящего момента.Датчик положения определяет положение вала из его определенного положения и передает информацию в схему управления. Схема управления соответственно декодирует сигналы от датчика положения и сравнивает фактическое положение двигателей с желаемым положением и, соответственно, управляет направлением вращения двигателя постоянного тока, чтобы получить требуемое положение. Серводвигатель обычно требует питания постоянного тока от 4,8 В до 6 В.
Управление серводвигателем
Серводвигатель управляется путем управления его положением с помощью метода широтно-импульсной модуляции.Ширина импульса, подаваемого на двигатель, варьируется и отправляется в течение фиксированного периода времени.
Ширина импульса определяет угловое положение серводвигателя. Например, ширина импульса 1 мс приводит к угловому положению 0 градусов, тогда как ширина импульса 2 мс вызывает угловую ширину 180 градусов.
Преимущества:
- Если на двигатель оказывается большая нагрузка, драйвер увеличивает ток, подаваемый на катушку двигателя, когда он пытается вращать двигатель.Нет никаких отклонений от шага.
- Возможна высокоскоростная работа.
Недостатки:
- Поскольку серводвигатель пытается вращаться в соответствии с командными импульсами, но с запаздыванием, он не подходит для точного управления вращением.
- Более высокая стоимость.
- При остановке ротор двигателя продолжает двигаться вперед и назад на один импульс, поэтому это не подходит, если вам нужно предотвратить вибрацию
7 Применения серводвигателей
Серводвигатели используются в приложениях, требующих быстрых изменений скорости без перегрева двигателя.
- В промышленности они используются в станках, упаковке, автоматизации производства, погрузочно-разгрузочных работах, преобразовании печати, сборочных линиях и многих других сложных приложениях в робототехнике, станках с ЧПУ или автоматизированном производстве.
- Они также используются в радиоуправляемых самолетах для управления позиционированием и движением лифтов.
- Они используются в роботах из-за плавного включения и выключения и точного позиционирования.
- Они также используются в аэрокосмической промышленности для поддержания гидравлической жидкости в гидравлических системах.
- Они используются во многих радиоуправляемых игрушках.
- Они используются в электронных устройствах, таких как DVD или проигрыватели Blue-ray Disc, для расширения или воспроизведения лотков для дисков.
- Они также используются в автомобилях для поддержания скорости транспортных средств.
Прикладная схема серводвигателя
Из приведенной ниже прикладной схемы: Каждый двигатель имеет три входа: VCC, заземление и периодический прямоугольный сигнал. Ширина импульса прямоугольной волны определяет скорость и направление серводвигателей.В нашем случае нам просто нужно изменить направление, чтобы устройство могло двигаться вперед, назад и поворачиваться влево и вправо. Если длительность импульса меньше определенного периода времени, двигатель будет вращаться по часовой стрелке. Если ширина импульса превышает этот временной интервал, двигатель будет вращаться против часовой стрелки. Среднюю временную шкалу можно регулировать с помощью встроенного потенциометра внутри двигателя.
3 Различия между шаговым двигателем и серводвигателем:
- Шаговые двигатели имеют большое количество полюсов, магнитных пар, генерируемых постоянным магнитом или электрическим током.У серводвигателей очень мало полюсов; каждый полюс обеспечивает естественную точку остановки вала двигателя.
- Крутящий момент шагового двигателя на низких скоростях больше, чем у серводвигателя того же размера.
- Работа шагового двигателя синхронизируется сигналами командных импульсов, выдаваемыми генератором импульсов. Напротив, работа серводвигателя отстает от командных импульсов.
Теперь у вас есть представление о работе сервометра, если у вас есть какие-либо вопросы по этой теме или проекты по электротехнике и электронике, оставьте комментарии ниже.
Фото:
.Принцип действия серво-уровнемера
— Инструментальные средства
Принцип серво уровнемера
Очень тонкая измерительная проволока B наматывается на измерительный барабан C, имеющий определенную длину точно обработанной спиральной канавки.
Измерительный барабан C соединен с приводным валом F через магнитную муфту D, E и вращается вперед и назад в соответствии с движением редуктора J, K и шагового двигателя N. Червячная передача J, расположенная на той же оси, что и Приводной вал F соединен с приводным валом F через пружину I.
При таком расположении натяжение на измерительном проводе B может быть точно определено путем измерения деформации пружины I с помощью балансира G. Буйковый уровнемер A, плотность которого выше, чем у измеряемой жидкости, подсоединен к одному концу измерительного провода B. Вес буйка A всегда создает прижимную силу для приводного вала F. В нормальных условиях измерения шаговый двигатель N управляется сигналом балансира G, чтобы измерительный провод B имел немного меньшее и постоянное натяжение, чем вес буйка A.Таким образом, вытеснитель A всегда следует за поверхностью жидкости со стабильной линией тяги.
Таким образом, угол поворота измерительного барабана C, соответствующий длине размотанной измерительной проволоки B, представляет собой высоту жидкости в резервуаре.
Регулируя контрольный уровень натяжения T на измерительном проводе B, можно также измерить границу раздела двух жидкостей с разной плотностью. Кроме того, путем погружения буйка в жидкость и измерения натяжения T на измерительном проводе B можно определить и измерить плотность жидкости.
Сигнал балансира G полностью оцифрован или является выходным сигналом 4–20 мА. Шаговый двигатель N, имеющий высокое разрешение, управляется микропроцессорным блоком H. Эта оцифрованная сервосистема обеспечивает высокую способность отслеживания жидкости и стабильность в работе по сравнению с существующим аналоговым методом управления.
Угол вращения измерительного барабана определяется количеством шагов шагового двигателя N. Это значительно улучшает разрешение измерения уровня жидкости, равное 0.1 мм.
Источник: tokyokeiso.co.jp
.Сервопривод
: основы и принцип работы
Основы сервопривода
Что такое сервопривод? Сервопривод — это своего рода контроллер для управления сервосистемой. Его функция аналогична влиянию частоты на обычный двигатель переменного тока, который является частью сервосистемы и в основном применяется в системах высокоточного позиционирования. Как правило, серводвигатель управляется тремя способами: местоположением, скоростью и крутящим моментом, чтобы реализовать высокоточное позиционирование системы передачи.
Принцип работы сервопривода
Как работает сервопривод? Сервопривод использует цифровой сигнальный процессор (DSP) в качестве ядра управления, чтобы реализовать сложный алгоритм управления, оцифровку, создание сетей и интеллектуализацию. В силовом устройстве обычно используется интеллектуальный силовой модуль (IPM) в качестве схемы управления основной конструкции. Интегрированная схема привода IPM со схемой обнаружения перенапряжения и перегрузки по току, перегрева, пониженного напряжения и защиты.Цепь плавного пуска также добавляется в основной контур, чтобы уменьшить влияние на привод в процессе пуска.
Сначала силовой привод выпрямляется трехфазной полной мостовой схемой выпрямителя для ввода трехфазной электрической или муниципальной энергии, и получается соответствующая мощность постоянного тока. Трехфазная мощность или электропитание после выпрямления может управлять серводвигателем переменного тока через преобразование частоты инвертора источника трехфазного синусоидального напряжения PWM. Весь процесс силового привода можно просто описать как процесс AC-DC-AC.Основная топология выпрямительного блока (AC-DC) представляет собой трехфазную полную мостовую неуправляемую схему выпрямителя.
Методы управления сервоприводом
Сервопривод обычно имеет три метода управления: режим управления положением, режим управления крутящим моментом и метод управления скоростью.
- Режим управления положением может определять скорость вращения, как правило, через частоту внешних входных импульсов и угол поворота по количеству импульсов. Некоторые сервосистемы могут назначать скорость и смещение напрямую посредством связи.Поскольку режим позиционирования может строго контролировать скорость и положение, он обычно используется в устройстве позиционирования.
- Режим управления крутящим моментом назначается внешним аналоговым входом или прямым адресом для установки внешнего выходного крутящего момента вала двигателя. Крутящий момент можно изменить, немедленно изменив настройку аналога, и соответствующее значение адреса может быть реализовано путем изменения режима связи. Основное применение предъявляет строгие требования к материалу, касающемуся напряжений в намоточном и разматывающем устройствах, таких как намоточное устройство или волоконно-оптическое оборудование.Установка крутящего момента должна быть изменена в любое время в соответствии с радиусом намотки, чтобы гарантировать, что сила материала не изменится при изменении радиуса намотки.
- Режим скорости может иметь управление скоростью вращения посредством ввода аналоговой величины или частоты импульсов. ПИД-регулятор внешнего контура с верхним регулирующим устройством может быть размещен. Но сигнал положения двигателя или сигнал положения прямой нагрузки следует отправлять в верхнюю обратную связь для расчета.Режим положения также поддерживает прямой сигнал положения обнаружения контура нагрузки. В этот момент кодер на конце вала двигателя может определять только скорость двигателя, а сигнал положения выдается устройством обнаружения непосредственно на конце конечной нагрузки. Преимущество этого метода заключается в том, что он может уменьшить ошибку в процессе промежуточной передачи и повысить точность позиционирования во всей системе.
ATO.com предоставляет серводвигатель переменного тока, однофазный или трехфазный вход 220 В, трехфазный вход 380 В, отлично подходит для приложений, требующих методов управления положением, скоростью и крутящим моментом.Весь диапазон номинальной мощности наших бесщеточных серводвигателей переменного тока ATO от 50 до 7,5 кВт будет идеально работать с этим типом сервопривода.
.