20.01.2025

Схема соединения обмоток электродвигателя: Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Содержание

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut


Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.


В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».




Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».


Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».


Схема управления электродвигателем представлена на рисунке 3.



Рис. 3 Схема управления 


Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).



Рис. 4 Схема управления двигателем


На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.


После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.


Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.


При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.


Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».


Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».


Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.


Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.



Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.


Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».


Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

Соединение обмоток электродвигателя «треугольником» и «звездой»

На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

Как подключить электродвигатель правильно – знает опытный электрик.

Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

Определение типа способа соединения

Выбор того или иного подсоединения зависит от:

  • надежности энергосети;
  • номинальной мощности;
  • технических характеристик самого двигателя.

Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает  на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная  схема вызывает  скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом  постепенно входит в норму.

Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

Зависимость выбора от напряжения

Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

Так электромотор прослужит долго и проработает без сбоев.

Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

Как снизить пусковые токи электродвигателя?

Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит  временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

Соединение электродвигателя по схемам звезда

  

Разберем свойства соединения обмоток электродвигателя по схемам звезда — треугольник на конкретном примере.

Электродвигатель АИР250S4, 75 кВт, треугольник-звезда и соответствующие им U=380/660В и I=143/82,8А.

Подключаем треугольником на 380В. Полная мощность будет вычисляться по формуле S=U·I·√3.
S=380·143·1,73=94008 в·а.

Если мы подключим этот электродвигатель по схеме звезда к той же сети, то полная мощность будет вычисляться, конечно, по той же формуле S=U·I·√3. Но значения в нее нужно подставлять уже другие.
При переключении на звезду на каждую обмотку пришлось в √3 меньшее напряжение. Соответственно ток тоже уменьшился в √3 раза. И это еще не все. При схеме треугольник линейный ток был в √3 раза больше фазного, а при переключении стал равным фазному. Т.е. ток уменьшился в итоге в √3·√3=3 раза.

Полная мощность станет равна S=380·143/3·1,73=31336 в·а.

Такая ситуация возникает чаще всего (по нашему опыту) в двух случаях.
Во-первых, непонимание электриками вышеупомянутых расчетов.
Во-вторых, в случае когда в эксплуатации был аналогичный двигатель, но с напряжением 220/380В и соответственно схемой подключения треугольник-звезда. Такие двигатели даже большой мощности до сих пор производятся некоторыми заводами. При замене двигателя электрик «на автомате» подключает звездой и двигатель выходит из строя.

Вот цитата из письма одного из предприятий, после того как двигатель вышел из строя из-за неправильной схемы подключения.

 

Т.е. непонимание свойств соединений и того что указано на шильдике.

Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.

Наиболее полную защиту электродвигателя можно обеспечить с помощью термисторных реле. В наших электродвигателях начиная от 160 высоты оси вращения установлены РТС термисторы и контакты выведены в клеммную коробку.

Еще одна важная по нашему мнению информация. При пуске электродвигателя для уменьшения пусковых токов многие используют общеизвестную схему переключения со звезды на треугольник, т. е. запуск производится на звезде и после набора оборотов происходит переключение на треугольник с помощью реле времени (этот метод описан на множестве сайтов).
Такой метод работает, к сожалению, не всегда.
Если производится пуск, например центробежного насоса или вентилятора (имеется ввиду правильный пуск на закрытую задвижку), то такая схема успешно работает. Центробежный насос и вентилятор при пуске на закрытую задвижку потребляют минимальную мощность, которая увеличивается по мере открывания.
Но такую схему крайне нежелательно применять в условиях тяжелого пуска (т.е. таких механизмов которые при пуске уже потребляют мощность близкую к номинальной), например пресса, дробилки и др.
Также важно обратить внимание на время переключения, оно не должно быть большим. После того как двигатель набрал обороты нужно сразу производить переключение на треугольник. В большинстве случаев набор оборотов занимает до 5-10 сек., поэтому установка реле на 30-50 сек. грозит выходом из строя электродвигателя.

Если у вас есть замечания или мы в чем-то ошибаемся, пишите: [email protected]

 

Схемы соединения электродвигателя в звезду и треугольник: достоинства и недостатки

В промышленности и быту широко распространены асинхронные двигатели, которые питаются напрямую от трехфазной сети с переменным напряжением. В статоре подобного мотора расположены три обмотки, смещенные друг относительно друга на 120 градусов – это сделано для того, чтобы создавать одинаковое магнитное поле в любой точке окружности вокруг статора. Для подключения таких электродвигателей применяется две основные схемы: подключение звездой и треугольником. Давайте подробнее рассмотрим каждый из этих видов подключения. Для наглядности, обозначим начало каждой из трех обмоток U1 , V1 , W1, а их концы – U2 , V2 , W2 соответственно.

Чтобы реализовать подключение мотора по схеме «звезда», необходимо соединить все концы обмоток U2 , V2 , W2 в одной точке, а на входы каждой из обмоток подавать по одной фазе из трехфазной сети.

Для того чтобы подключить двигатель по схеме «треугольник», необходимо к началу первой обмотки U1 присоединить конец второй V2, к началу второй обмотки V1 – конец третьей обмотки W2, а начало третьей обмотки W1 к концу первой U2. К местам, где соединяются обмотки, подключаются фазы питающей сети.

Посмотрите видео о способах подключения электродвигателей:

Важно правильно выбрать схему подключения для конкретного двигателя, иначе можно не получить от него необходимой мощности, а в отдельных случаях — даже вывести мотор из строя.

Каждая из этих схем подключения асинхронного электродвигателя к сети имеет как свои плюсы, так и недостатки. К примеру, мотор, подключенный звездой, запускается очень плавно, и может работать с небольшой перегрузкой без вреда для самого двигателя.

Однако максимальная паспортная мощность электропривода в таком случае недостижима – двигатель будет выдавать до 70% от своей номинальной мощности.

Подключение треугольником позволяет достигать паспортной мощности, однако при такой схеме подключения пусковые токи достигают значительных величин. К тому же замечено, что при подключении треугольником электродвигатель греется при работе, что уменьшает срок его службы.

Чтобы минимизировать минусы и полностью реализовать плюсы каждой из схем, была придумана система автоматической смены схемы подключения. То есть, асинхронный электродвигатель запускается по схеме «звезда», а при выходе на свою номинальную частоту вращения, переключается на схему «треугольник», и выходит на свою паспортную мощность. Реализуется такая смена схем подключения при помощи магнитных пускателей или пусковых реле времени. Также это можно сделать при помощи пакетного переключателя, но в этом случае нужно внимательно следить за работой мотора, чтобы переключить его в нужный момент.

Ещё одно интересное видео, о способе подключения электродвигателя:

Схема соединения обмоток электродвигателя — Стройпортал Biokamin-Doma.ru

Выбор схемы соединения фаз электродвигателя

Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.

Чтобы электродвигатель включить в сеть по схеме «звезда», нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме «звезда» показано на рис. 1, а.

Для включения электродвигателя по схеме «треугольник» начало первой фазы соединяют с конном второй и начало второй — с концом третьей, а начало третьей — с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме «треугольник» показано рис. 1, б.

Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а — фазы соединены звездой, б — фазы соединены треугольником

Соединение фаз двигателя по схеме «звезда»

Соединение фаз двигателя по схеме «треугольник»

Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.

Таблица 1. Выбор схемы соединения обмоток

Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме «треугольник» нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.

Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети с линейным напряжением 660В и фазным 380 В. В этом случае обмотки двигателя могут соединяться по схеме, как «звезда», так и «треугольник».

Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме «звезда» (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему «треугольник» (верхнее положение ножей переключателя).

Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник

Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы «треугольник» (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.

Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть «треугольником».

Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.

Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.

Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Выводы обмоток электродвигателя — схемы соединения

Обозначение выводов обмоток статора

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т. е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Условно на схемах каждая обмотка изображается следующим образом:

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

Схема соединения обмоток электродвигателя по схеме «треугольник»

Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).

Условно на схеме это изображается следующим образом:

На выводы «A», «B» и «C» подается напряжение.

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

A, B, C — точки подключения питающего кабеля.

Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:

Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:

Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.

Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:

Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Справочник

Схема обмоток трехфазных электрических двигателей и их соединение на клеммных панелях 11. 07.2006 17:57

Начала и концы обмоток выведены в электрическую распределительную коробку клеммную панель и зафиксированы. К зажимам клеммной панели с внутренней стороны двигателей подводятся выводные провода статорных обмоток. Всего на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.

Клеммник, его еще называют «борно», — клеммная коробка- чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.

В клеммной коробке есть входы для подвода питающих кабелей, а сверху она закрыта крышкой, которую для проведения подключения снимают при помощи отвертки.

Внутри клеммной коробки — на клеммных панелях производятся необходимые соединения обмоток.

Фазы статорных обмоток при подключении к питающей сети электродвигателя соединяют по одной из электрических схем – «звезда» Y или «треугольник» Δ .

Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.

последовательное соединение обмоток в замкнутую ячейку

У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.

имеет больший пусковой ток, большее выделение тепла, нагрев в процессе работы, поэтому ему требуется надежное охлаждение для длительной работы

+ позволяет использовать всю паспортную мощность двигателя

соединение всех концов статорных обмоток в одной точке

— не позводяет использовать полную мощность

+ имеет меньший пусковой ток, более «мягкий» запуск и плавная работа

позволяет эксплуатировать электродвигатель длительно

Как узнать схему подключения электродвигателя ? Схема подключения конкретного электрического двигателя указывается на бирке и в прилагающейся документации

Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.

Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». То есть, к примеру, напряжение в 220 В подается на «треугольник», 380 В – на «звезду», в противном случае двигатель быстро перегорит. Подключение по комбинированной схеме обычно применяется для двигателей мощностью свыше 5 кВт.

! Более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».

В паспорте двигателя и на его бирке, обычно указывают все основные рабочие характеристики и величины, среди которых мощность, обороты, частота сети, коэффициент мощности, рабочее напряжение, а также приведены условными рисунками схема соединения обмоток и какая существует возможность ее изменения, для электродвигателей с комбинированной схемой.

фото бирки трехфазного асинхронного односкоростного электродвигателя

с подключением треугольник — звезда

Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.

Клеммные болты панелей и вывода статорных обмоток имеют маркировку в соответствии с ГОСТ. Контакты промаркированы литерой (букеным символом), каждому присвоено цифровое и буквенное обозначение.

Пример : старое обозначение С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Сейчас в основном применяется новая маркировка выводов по ГОСТу 26772-85 (26772 (МЭК 60034-8).) : U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.

ОБМОТКИ ЭЛЕКТРОДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА:

Так же электродвигателях малой мощности обозначают фазы обмоток разноцветными проводами.

При соединении звездой начало первой фазы имеет желтый провод, второй фазы — зеленый, третьей фазы — красный, нулевая точка — черный.

При шести выводах начала фаз обмоток имеют такую же расцветку, как и при соединении звездой, а конец первой фазы — желтый с черным провод, второй фазы — зеленый с черным, третьей фазы — красный с черным. У асинхронных однофазных электродвигателей начало вывода главной обмотки — красный провод, конец — красный с черным. У пусковой обмотки начало вывода — синий провод, конец — синий с черным.

Выводы секционированных обмоток многоскоростных асинхронных двигателей, позволяющих изменять число полюсов, имеют следующие обозначения:

Схемы обмоток трехфазных двигателей и их соединения на клеммных панелях приводятся на рисунках.

Схемы обмоток односкоростных трехфазных двигателей и их соединения на клеммных панелях с соединением в звезду Y или в треугольник Δ или переключаемых Δ/Y

Если требуется подключение ЗВЕЗДОЙ, тогда объединяют верхний ряд клемм, а к нижнему подводят провода сети ( см рис ). Можно объединять также нижние клеммы, а к верхним подводить провода сети. Соединяя обмотки электродвигателя в ЗВЕЗДУ объединяют Ul, VI, Wl (CI, С2, СЗ), а к остальным выводам подводят провода сети или, наоборот, объединяют U2, V2, W2 (С4, С5, С6), а к Ul, VI, Wl (CI, С2, СЗ) подводят провода сети.

Соединение в ТРЕУГОЛЬНИК получают, объединяя попарно клеммы верхнего и нижнего рядов и подводя к ним провода сети ( см рис) Соединение обмотоки электродвигателя в ТРЕУГОЛЬНИК получают, объединяя U1 и W2, VI и U2, W1 и V2 (С1 и С6, С2 и С4, СЗ и С5).

Как поменять направление вращения электродвигатели при подключении звездой или треугольником ?

! Если нужно поменять направление вращения вала электродвигателя на противоположное, то поменяйте местами две любые фазы сети.

При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также по отзывам, что при соединении треугольником двигатель больше нагревается.

Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток. Переключение режимов звезда-треугольник нельзя применять для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора. Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования.

Схемы обмоток односкоростных трехфазных двигателей и их соединения на клеммных панелях с последовательным или параллельным соединением параллельных ветвей фаз звезда — двойная звезда Y/YY

Схемы обмоток двухскоростных трехфазных двигателей и их соединения на клеммных панелях с полюсно-переключаемой по схеме Далендера обмоткой статора или с полюсно-переключаемой обмоткой по принципу амплитудно-фазовой модуляции треугольник — двойная звезда Δ /YY

Схемы обмоток двухскоростных трехфазных двигателей и их соединения на клеммных панелях с полюсно-переключаемой обмоткой по принципу амплитудно-фазовой модуляции тройная звезда-тройная звезда YYY /YYY

Схемы для трехскоростных двигателей с двумя независимыми обмотками с полюсно-переключаемой с соединением треугольник-звезда Δ / Y ; односкоростной с соединением в звезду Y

Для четырехскоростных двигателей с двумя обмотками, каждая из которых полюсно-переключаемая с соединением треугольнки-двойная звезда Δ /YY

Соединение обмоток электродвигателя «треугольником» и «звездой»

На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

Как подключить электродвигатель правильно – знает опытный электрик.

Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

Определение типа способа соединения

Выбор того или иного подсоединения зависит от:

  • надежности энергосети;
  • номинальной мощности;
  • технических характеристик самого двигателя.

Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.

Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

Зависимость выбора от напряжения

Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

Так электромотор прослужит долго и проработает без сбоев.

Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

Как снизить пусковые токи электродвигателя?

Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

Соединение звездой и треугольником обмоток электродвигателя

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнит ные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Схема подключения электродвигателя «звезда-треугольник»

      Существует два способа пуска асинхронного электродвигателя (схема подключения электродвигателя):

     1) Прямой пуск (на обмотки статора подается полное напряжение сети)

     2) Пуск при пониженном напряжении (на обмотки статора подается напряжение меньше полного сетевого напряжения)

      Прямой пуск проще реализовать, он мене затратен, но обладает большим недостатком: при прямом пуске пусковой ток асинхронного электродвигателя с короткозамкнутым ротором превышает в 5-7 раз номинальный рабочий ток двигателя.

Схема включения обмоток статора “звездой” и “треугольником”

   Поэтому на практике для уменьшения пусковых токов асинхронных двигателей различными способами стараются понизить подводимое к обмоткам статора питающее напряжение.  Одни из способов снижения напряжения на обмотке статора — переключение обмоток статора со “звезды” на “треугольник”.

       Что это дает?

   При подключении обмоток статора соединенных в “звезду” (схема подключения электродвигателя «звезда») к источнику с линейным напряжением 380 В фазное напряжение буде в √3 меньше, т.е. равно 220 В.. Зная сопротивление обмотки статора и приложенное напряжение нетрудно рассчитать по закону Ома:

       При соединении “звездой”:

  

   Если же обмотки статора соединены “треугольником” (схема подключения электродвигателя «треугольник»)  и подключены к линейному напряжению 380 В, то фазное напряжение будет 380 В, следовательно:

      В результате пуск асинхронного двигателя со схемой подключения обмоток статора “звезда” (схема подключения электродвигателя «звезда»)  с дальнейшим переходом на схему “треугольник” (схема подключения электродвигателя «треугольник»), позволяет уменьшить пусковой ток в 3 раза по сравнению с пусковым током при прямом пуске. Пуск асинхронных двигателей с короткозамкнутым ротором по схеме звезда-треугольник находит особо широкое распространение в тех случаях, когда нагрузка на валу двигателя изменяется после разгона.

      Но тут необходимо помнить, что схема пуска двигателя с переключением “звезда-треугольник” имеет и свой недостаток: уменьшение пускового момента приблизительно на 30 процентов.

Схема переключения обмоток статора

Обмотка двигателя: конструкция, обмотка катушки, соединения и применение

В наши дни человеческая жизнь полностью вращается вокруг машин и технологий. Развитие технологий показало изобретение для множества типов машин. И именно электрическая машина имеет решающее значение для преобразования одной формы энергии в другую. Таким образом, машина будет генерировать выходной сигнал, когда существует связь между электрическим током и магнитным полем, и эта связь происходит через обмотки катушки.Обмотки двигателя имеют первостепенное значение в работе двигателя, и также существуют различные типы обмоток, используемых в двигателях. Таким образом, эта статья полностью посвящена концепции теории обмоток двигателя, ее конструкции, расчету и четкому подходу к ее познанию.

Что такое обмотка двигателя?

Определение: Обмотки в электродвигателе называются катушками, где они обычно заключены вокруг покрытого гибкого железного магнитного сердечника для структурирования магнитных полюсов, хотя и усиливаются током.Эти обмотки используются в качестве компонентов в различных схемах и служат опорой для создания магнитного поля для нескольких генераторов, двигателей и трансформаторов. Обмотки реализуются в схемах исходя из их размеров и формы. Даже такие факторы, как прочность изоляции, емкость магнитного поля, добротность и индуктивность, влияют на форму обмоток катушки. Классификация обмоток катушек основана на геометрии и типе намотанной катушки.

типа обмотки двигателя

В машине с выступающей структурой полюса полюс магнитного поля может создаваться через обмотку, намотанную примерно под направлением полюса, и обмотка также может быть рассеяна внутри пазов направления полюсов. Двигатель с пятнистыми полюсами состоит из обмотки, расположенной вокруг полюсного компонента, который создает фазу магнитного поля. Некоторые типы двигателей состоят из проводников, имеющих более плотный металл, например, металлические листы или стержни, обычно сделанные из меди или алюминия. Как правило, обмотки являются компонентами, приводимыми в действие за счет электромагнитной индукции.

Конструкция

Существует множество подходов и методов, предложенных для изучения конструкции обмотки двигателя . В этой статье показаны условия симметрии для проектирования обмоток двигателя.Эти условия симметрии применимы как для общих, так и для неприведенных систем, где взаимное фазовое смещение рассматривается как

α ph = 2∏ / м = 2 × 180 0 / м

И в редуцированных системах взаимное смещение фаз рассматривается как

α ph = ∏ / m = 180 0 / м

Когда мы рассматриваем электрическую машину, которая имеет m фаз, p пар полюсов, N пазов и n слоев, конструкция обмотки этой машины известна благодаря знанию количества намотанных катушек в каждой фазе, вычислению того, какие катушки имеют различные фазы ‘g’, и она обозначается как

n wc = n (Nn es ) / 2 м

г = нН / 2 м для общих и нередуцированных систем и

г = Н / 2 м для сокращенных систем

Кроме того, конструкция обмотки основана на коэффициенте заполнения. Коэффициент заполнения определяется как отношение между расстоянием намотки и площадью электрических проводников. Повышенные коэффициенты заполнения достигаются, если обмотки изготовлены из плоских или прямоугольных проводов. Коэффициент заполнения измеряется как

F = d2. (∏ / 4). n / bh

Где d соответствует калибру провода вместе с изоляцией лака

n соответствует количеству обмоток

b.h площадь поперечного сечения корпуса катушки

Толстая упаковка проволока уменьшает воздушное пространство и увеличивает коэффициент заполнения.Это увеличивает КПД устройства и увеличивает теплопроводность обмотки.

Схема обмотки двигателя

На рисунке ниже показана схема обмотки двигателя.

обмотка

Справочник данных обмотки двигателя
  • Каждая обмотка двигателя имеет свой собственный справочник данных.
  • Например, у стиральной машины есть своя, где в справочнике четко указаны размеры проволоки, используемый материал, № обмоток, детали изоляции и всю другую дополнительную информацию о проводе.

Подключение обмотки двигателя

Нижеприведенный процесс четко описывает, как подключаются обмотки, чтобы узнать о вычислении обмотки двигателя и о том, как записываются значения. Через омметр производятся расчеты обмоток двигателя. Подключение может быть выполнено следующим образом:

  • Положительный конец мультиметра (красного цвета) подключается к положительному концу обмоток двигателя.
  • Таким же образом отрицательный конец клеммы (черного цвета) подключается к отрицательному концу обмотки.
  • Регистрируются показания обмотки двигателя, и эти показания отображаются на экране мультиметра и рассчитывается соответствующее сопротивление в ом.
  • Теперь с помощью омметра изолируйте источник питания и двигатель. Поместите измеритель в Ом, и обычно диапазон будет порядка 2–3 Ом. Когда показания нулевые, происходит короткое замыкание. А когда есть обрыв цепи, диапазон будет больше 2 кОм или бесконечен.

Теперь мы узнаем больше о том, как изготовлен провод обмотки двигателя и из чего они сделаны? В основном сырье, которое используется как для круглой, так и для прямоугольной проволоки, — это алюминий или медь. Чаще всего провод обмотки двигателя выполняется из меди. Проволока прямоугольной формы изготавливается методом экструзии, при котором катанка подвергается жесткому прессованию через матрицу для придания окончательной формы. А у круглых медных проволок они приобретают форму после нескольких этапов холодного волочения. Во многих электрических машинах, таких как индукторы, генераторы и трансформаторы, используются эмалированные медные обмотки. Эти провода отлично удовлетворяют свойствам удельного сопротивления, индуктивности, температурного режима и многим другим факторам.

Станки

Электромоторы Станки для намотки двигателей в наши дни пользуются большим спросом и стали частью нашей повседневной жизни.Эти намоточные машины делятся на несколько классификаций: автоматические, полуавтоматические, ручные, компьютеризированные и некомпьютерные. Обмотки необходимы для того, чтобы все эти машины работали и генерировали продукцию. Вот несколько примеров мотальных намоточных машин:

  • Холодильник
  • Стиральная машина
  • Генератор
  • Бумажные машины
  • Пленочные машины
  • Пленочные и катушечные машины

Часто задаваемые вопросы

1). Почему обмотки двигателя изолированы?

Обмотки должны быть должным образом изолированы лаком или смолой. Идеальная изоляция обмоток защищает их от любых искажений, перебоев в электроснабжении и делает их механически прочнее.

2). Какие бывают типы обмоток двигателя?

Основными классификациями обмоток двигателя являются открытые, закрытые, обмотки возбуждения и якоря.

3). Катушка и обмотки; в чем отличия?

Катушка — это один виток всего провода обмотки.В то время как обмотка соответствует массиву катушек.

4). Почему вышли из строя обмотки?

Основным фактором выхода из строя обмоток двигателя является низкое сопротивление. Низкое сопротивление происходит, когда изоляция обмотки ухудшается. Деградация происходит из-за коррозии, перегрева и других физических повреждений.

5). Что такое лакировка обмотки двигателя?

Для повышения эффективности двигателя выполняется лакировка, чтобы изолировать обмотки от любых загрязнений, чтобы они были такими плотными и жесткими.

Таким образом, это все об обзоре концепции обмотки двигателя. Эти обмотки более важны в каждой электрической машине, поэтому их необходимо правильно выбрать и внедрить. Чтобы определить наилучшее качество, принимается во внимание множество факторов, чтобы такие факторы, как удельное сопротивление, изоляция и проводимость, улучшали качество, срок службы и эффективность провода. Узнать больше о машинных обмотках и способах их изготовления?

Перемотка и обновление электродвигателя: 45 шагов (с изображениями)

Введение: перемотка и обновление электродвигателя

Здравствуйте, я Нико, член команды RoboSap.В этой инструкции я покажу вам, как перемотать и отремонтировать старый электрический однофазный электродвигатель.

Купил этот электродвигатель на гаражной распродаже. Это было дешево, и мы знали, что мотор перегорел. Решил купить мотор и попробовать его отремонтировать.

В следующих шагах я покажу вам, как разобрать электродвигатель, снять подшипники, сделать схему обмотки, перемотать электродвигатель, выбрать правильный конденсатор и собрать его с новыми подшипниками.

Перемотка — очень долгий процесс. На его перемотку, замену всех старых деталей и сборку потребовалось около двух дней.

Добавить TipAsk QuestionDownload

Шаг 1. Как узнать, есть ли у меня однофазный двигатель?

Однофазный двигатель обычно имеет две катушки, основная с большим сопротивлением (генерирующая пульсирующее магнитное поле) и вспомогательная с меньшим сопротивлением (задающая направление вращения двигателя). На моторе должен быть конденсатор. Его значение различается для разных электродвигателей (для электродвигателей меньшего размера около 20 мкФ). 2 конденсатора могут быть на двигателе, «рабочий» конденсатор (всегда подключен, конденсатор меньшего значения) и «пусковой» конденсатор (подключен к центробежному переключателю, конденсатор большего значения)

Рисунок 1: Схема однофазного электродвигателя

Рисунок 2: Конденсатор хода и звезды

Рисунок 3: Провода от статора (должно быть 4 провода от статора)

Добавить TipAsk QuestionDownload

Шаг 2: Инструменты

Перемотка и разборка двигателя — очень трудоемкая работа, если у вас ее нет профессиональное оборудование. Вам понадобятся следующие инструменты:

— Основные инструменты (отвертки, молотки, гаечные ключи …)

— Шкивы для подшипников

— Зубила для обрезки старой обмотки

— Бутановая горелка (или другое нагревательное устройство)

Специальный материал:

— Медная проволока

— Изолирующая бумага

— Резьба шнуровки статора

— Спрей-смазка (WD-40 или аналогичный)

— Моторный лак

Добавить вопрос TipAsk Скачать

Шаг разборки двигателя 3

Сделайте несколько снимков двигателя и снимите защитную крышку вентилятора.Обычно крышка не прикручивается винтами к корпусу, а просто вставляется в корпус.

Сложите все снятые детали мотора в одну коробку, чтобы не потерять их.

Добавить TipAsk QuestionDownload

Шаг 4: Разборка двигателя

Осторожно нагрейте вентилятор двигателя и снимите его. Будьте осторожны, не сломайте его, он должен идти очень гладко. Вы можете помочь себе снять его с помощью двух больших отверток.

Как вы видите на картинке, у нас сломался вентилятор, и нам нужен новый.

После снятия вентилятора мотора снимите зажим с оси.

Добавить TipAsk QuestionDownload

Шаг 5: Разборка двигателя

Отметьте положение отдельных крышек на стороне крышек (обычно мы помещаем цифры 1, 2, 3 на стороне крышек, чтобы мы знали, как их собрать).

Выкрутите винты крепления крышки (рисунок 2). Снимите крышку мотора и положите в коробку с остальными деталями.

Добавить TipAsk QuestionDownload

Шаг 6: Разборка двигателя

Когда я снял крышку, мои ожидания оправдались.Сгорела обмотка одного из двигателей (черный цвет, запах горелого лака).

Обнаружил, что подшипники тоже сломаны (при раскручивании издает громкий звук).

Добавить TipAsk QuestionDownload

Шаг 7: Разборка двигателя

Открутите винты, крепящие переднюю крышку (как вы делали 2 шага ранее). Осторожно снимите переднюю крышку с ротором из основного корпуса и положите в коробку с другими деталями.

Добавить TipAsk QuestionDownload

Шаг 8: Разборка двигателя

Открутите винты, крепящие верхнюю крышку.Снимите верхнюю крышку и уплотнитель и положите в коробку с другими деталями.

Сделайте несколько снимков электрического монтажа и снимите все провода и электрические зажимы. Снимите конденсатор, если он у вас есть на двигателе (наш был отключен).

Добавить TipAsk QuestionDownload

Шаг 9: Табло для надписей на двигателях

Попробуйте записать всю информацию с доски для надписей. Он расположен на корпусе двигателя. На нем есть полезная информация (напряжение, сила тока, количество оборотов в минуту, конденсатор…).

Добавить TipAsk QuestionDownload

Шаг 10: Схема обмотки

В следующих шагах мы сделаем схему обмотки. Если он у вас есть, вы не можете пропустить заголовок «Схема обмотки»

Что такое схема обмотки?

Схема намотки — это схема, которая помогает перемотать двигатель. Он показывает, как катушки статора связаны друг с другом.

Добавить TipAsk QuestionDownload

Шаг 11: Схема обмотки

Подсчитайте количество пазов (зазоры в статоре, смотрите рисунки).

Я насчитал 24 пробела.

Добавить TipAsk QuestionDownload

Шаг 12: Схема намотки

Откройте свою лучшую программу для рисования и нарисуйте 1 квадрат для каждого слота, соединяющего друг друга.

Добавить TipAsk QuestionDownload

Шаг 13: Схема намотки

Каждая катушка помещается в 2 слота. Нарисуйте катушки от статора до схемы обмоток.

Сделайте то же самое для всех катушек. В одном зазоре не может быть 2 катушек (если у вас однослойная обмотка). Все пробелы должны быть заполнены.

Добавить TipAsk QuestionDownload

Шаг 14: Схема намотки

Отметьте провода выходной катушки (провода, которые были подключены на электрических зажимах).

Добавить TipAsk QuestionDownload

Шаг 15: Схема обмотки

Нагрейте старую обмотку, чтобы выгореть старый лак, но будьте осторожны, вы не должны повредить медные провода.

Когда вы ясно увидите, что горячие катушки подключены, выберите один из выходных проводов и проведите его путь стрелками.

Добавить TipAsk QuestionDownload

Шаг 16: Схема обмотки

Сделайте то же самое для второй пары выходных проводов.

В книжке обнаружил такую ​​же обмотку (она просто повернута на 180 °).

Вы можете нарисовать зазоры по кругу и отметить x (провод внутри) и. (провод). Теперь вы можете нарисовать путь магнитного поля (рисунок 3).

Добавить TipAsk QuestionDownload

Шаг 17: Схема намотки

Отрежьте провода разных катушек, посчитайте их и измерьте их диаметр. Напишите количество проводов в каждой катушке на схеме обмотки.

Теперь ваша схема обмотки готова!

Добавить TipAsk QuestionDownload

Шаг 18: Схема намотки (пропустите это, если у вас есть однопроводная катушка)

Будьте осторожны.Если ваша катушка состоит из двух параллельных проводов, вы можете заменить их одним проводом. Измерьте диаметр 1 проволоки. Вычислите пластину из 1 проволоки и умножьте на 2. Теперь рассчитайте 1 проволоку из своей пластины. (Новый провод должен иметь ту же пластину, что и 2 старых провода вместе).

Добавить TipAsk QuestionDownload

Шаг 19: Обрезка обмотки

Используйте молоток и долото, чтобы отрезать старую обмотку. Старайтесь не повредить ламели статора. Можно продолжить, когда на одном участке нарежете старую обмотку (Рисунок 5).

Добавить TipAsk QuestionDownload

Шаг 20: Вытяните обмотку

Нагрейте другую сторону старой обмотки и вытяните ее ломом.Сделайте это для всех катушек.

Добавить TipAsk QuestionDownload

Шаг 21: Очистите зазоры

Пока статор не станет горячим, очистите зазоры отверткой или железной палкой, но не повреждайте ламели статоров.

Добавить TipAsk QuestionDownload

Шаг 22: Снимите шкив

Если он у вас есть, удалите винт или предохранительную металлическую палку, а затем снимите шкив с помощью съемника с оси. При необходимости нагрейте шкив (не ось !!!!) бутановой горелкой.

Добавить TipAsk QuestionDownload

Шаг 23: Снимите переднюю крышку

Положите крышку на дерево, чтобы ротор не касался дна.Положите кусок дерева на ось ротора и ударьте по нему молотком, пока ротор не отделится от крышки.

Добавить TipAsk QuestionDownload

Шаг 24: Снятие подшипников

Используйте съемник для снятия подшипников с обеих сторон. Нельзя повредить ось ротора.

Добавить TipAsk QuestionDownload

Шаг 25: Очистка корпуса двигателя

Двигатель был залит бетоном, поэтому мы решили его подвергнуть пескоструйной очистке.

Добавить TipAsk QuestionDownload

Шаг 26: После пескоструйной обработки

Не подвергайте пескоструйной очистке и не царапайте ламели статора слишком сильно, они сделаны из железа, которое может ржаветь.

Добавить TipAsk QuestionDownload

Шаг 27: Скрученные края изоляционной бумаги

Положите изолирующую бумагу на стол и поместите на нее линейку так, чтобы у вас получился зазор около 4 мм, когда вы вставляете изолирующую бумагу, а затем скручиваете ее.

Добавить TipAsk QuestionDownload

Шаг 28: Вставьте изолирующую бумагу в статор

Измерьте длину зазора и добавьте около 16 мм (зависит от того, как вы будете скручивать бумагу). Вырежьте и скрутите, как я делал на картинках. С помощью отвертки согните его и вставьте в щель.Он должен идеально подходить, чтобы вы не могли его вытащить. Рисунок 11, передняя сторона двигателя, и рисунок 12, задняя сторона двигателя.

Добавить TipAsk QuestionDownload

Шаг 29: Вставьте изолирующую бумагу в статор

Сделайте то же самое для всех зазоров

Добавьте TipAsk QuestionDownload

Шаг 30: Coil Winding

Сделайте модель катушки с одним проводом, оставляя немного больше места . Наденьте его на «Winder», чтобы получить расстояние. Снимите модель и установите намотку на нужное расстояние, затем начните наматывать катушку (вы написали номера проводов в катушках раньше).Вы можете использовать такое же расстояние для намотки для одинаковых катушек.

Заводку можно сделать дома. Я перерисовываю свой в Fusion 360, чтобы вы могли распечатать его и сделать себе.

Добавить TipAsk QuestionDownload

Шаг 31: Поместите катушки в статор

Осторожно разместите катушки в статоре. Это может занять много времени. Будьте осторожны, чтобы не повредить лак для проводов. Поверните катушки так, чтобы их концы проводов выходили сбоку, где находится отверстие от статора к электрическим зажимам.

Добавить TipAsk QuestionDownload

Шаг 32: Проволочные катушки со схемой намотки

Подключите катушки в соответствии со схемой намотки.Снимите изоляцию, затем припаяйте медные провода и изолируйте их термоусадками. Соедините обычные провода с концевыми проводами катушки и изолируйте их термоусадкой (рисунок 9). Подключите их к электрическим зажимам.

Добавить TipAsk QuestionDownload

Шаг 33: Свяжите катушки

Свяжите катушки с помощью нити шнуровки статора. Пришейте нитку для проточки статора вокруг катушек, как вы можете видеть на картинках.

Добавить TipAsk QuestionDownload

Шаг 34: Свяжите катушки

Проделайте то же самое с другой стороны двигателя.

Добавить TipAsk QuestionDownload

Шаг 35: Покрытие двигателя лаком

1. Нагрейте духовку до 100 ° C. Поставил в него мотор.
2. Когда двигатель нагревается, на обмотки двигателя проливается лак, как вы видите на рисунках

3. Поверните двигатель и сделайте то же самое.

4. Вы можете повторно использовать старый лак.

5. Поместите мотор в горячую духовку и готовьте около 4 часов.

6. Выньте мотор и очистите край (чтобы крышка подходила идеально).

Добавить TipAsk QuestionDownload

Шаг 36: Подшипники

Вы можете найти подходящий подшипник, измерив диаметры старых подшипников.Тогда вы сможете найти новые в этом каталоге.

Также на краю подшипников есть маленькие цифры, которые вы можете прочитать (например, 6302).

Добавить TipAsk QuestionDownload

Шаг 37: Сборка подшипников

Смажьте ось ротора смазкой и установите подшипники на ось.

Добавить TipAsk QuestionDownload

Шаг 38:

Смажьте станину подшипника смазкой на обеих крышках. Установите первую крышку на ротор (не забудьте пружинную шайбу).Затем наденьте статор на ротор первой крышки и прикрутите (не забудьте приклеить винты). После этого установите на статор вторую крышку и прикрутите (приклейте винты).

Добавить TipAsk QuestionDownload

Шаг 39: Вентилятор двигателя

Когда я почистил вентилятор, я понял, что он треснул. Я сделал алюминиевое кольцо на токарном станке и приклеил его на веер.

Надеть зажим на ось роторов. Установите вентилятор двигателей на ротор (его можно нагреть промышленным вентилятором, но не перегревайте, потому что он станет очень мягким и может изменить форму).Если у вас треснутый вентилятор, вы можете купить новый, они дешевые. Я просто хотел показать вам, что вы можете его отремонтировать.

Добавить TipAsk QuestionDownload

Шаг 40: Защитная крышка вентилятора

Я обработал ее пескоструйным аппаратом и отремонтировал трещины с помощью паяльника и железной сетки, которую я нагрел в пластике. Покрасил в черный цвет и установил на мотор (винты не нужны).

Добавить TipAsk QuestionDownload

Шаг 41: Конденсатор

Установите конденсатор на двигатель с помощью стяжек (просверлите отверстия в корпусе, как я сделал на фотографиях).Если у вас нет конденсатора, на моторной табличке на корпусе указано правильное значение (для моего мотора — 20 мкФ). Подвести провода к клеммной коробке двигателя.

Добавить TipAsk QuestionDownload

Шаг 42: Электрические зажимы

Вставьте силовой кабель в соединительную коробку и затяните его, чтобы его нельзя было вытащить. проволочные зажимы, как я рисую на рисунке 3.

Моя крышка была повреждена, поэтому я сделал новую из старой резиновой губки. Закрутите крышку двигателя.

Добавить TipAsk QuestionDownload

Шаг 43: Монтажный шкив

Смажьте ось роторов смазкой и установите на шкив.

Добавить TipAsk QuestionDownload

Шаг 44: Тест

Подключите двигатель и измерьте его ток (для моего двигателя он составляет около 1 А). Если все идет гладко, чем вы закончили.

Добавить TipAsk QuestionDownload

Шаг 45: Заключение

Перемотка электродвигателя занимает много времени, особенно если вы делаете это впервые. Но когда вы видите готовый продукт, потраченное время окупается.

Если у вас возникнут проблемы, напишите об этом в комментариях ниже, и я постараюсь их решить.

Добавить TipAsk QuestionDownload

Будьте первым, кто поделится

Вы сделали этот проект? Поделитесь с нами!

Я сделал это!

Рекомендации

Обмотка трехфазных двигателей переменного тока | Учебное ПО серии Generator

Обмотка трехфазного двигателя переменного тока
Основы обмоток электродвигателей переменного тока представлены в учебном курсе «Обмотка электродвигателей переменного тока», а также представлены обмотки однофазных электродвигателей. В этом учебном курсе представлены обмотки трехфазных двигателей переменного тока.
Базовая структура обмотки трехфазного двигателя переменного тока

Хорошо известно, что и электродвижущая сила, индуцированная в трехфазном двигателе переменного тока, создает и вращающееся магнитное поле, создаваемое в трехфазном генераторе переменного тока, исходит от важной части двигателя или генератора, то есть от обмоток.
Основное требование к обмоткам трехфазного двигателя переменного тока:
Форма волны потенциала, генерируемая трехфазным двигателем переменного тока, и магнитное поле трехфазного двигателя переменного тока должны быть близки к синусоиде и достигать требуемой амплитуды.
Потенциальное или магнитное поле, создаваемое трехфазными обмотками, должно быть симметричным, а сопротивление и реактивное сопротивление каждой обмотки должны быть сбалансированы.
Потери в меди обмотки невелики и соответствуют количеству меди.
Его изоляция должна быть надежной, иметь высокую механическую прочность, рассеивать тепло радиатора и простоту изготовления.
Конкретные обмотки в трехфазном двигателе переменного тока в основном основаны на следующих данных:

P Пары магнитных полюсов
Для двигателя с P парами магнитных полюсов количество магнитных полюсов равно 2p.Например, двигатели с одной парой магнитных полюсов создают вращающееся магнитное поле со скоростью 3000 об / мин при трехфазном переменном токе частотой 50 Гц, а двигатели с двумя парами магнитных полюсов создают вращающееся магнитное поле со скоростью 1500 об / мин.
Полюс τ
Ширина каждого полюса (измерение через количество прорезей)
τ = Z / 2p Z — общее количество пазов статора,
Диапазон фаз q
Ширина каждой фазы под каждым полюсом (измерение через количество прорезей)
q = Z / 2pm m — количество фаз
Например, для трехфазного двигателя с общим количеством пазов 24 и двумя парами магнитных полюсов шаг полюсов равен 6, а фазовый диапазон равен 2.
Применение разделения фазовых полос при проектировании обмоток — это простой и легкий метод. Основные шаги:
1. Сначала определите количество фаз двигателя, количество полюсов двигателя и форму обмотки
.
2. Нарисуйте круговую диаграмму со всеми прорезями
3. Рассчитайте количество пазов в каждом полюсе и фазе
4. Рассчитайте шаг полюсов и шаг
5.Подразделение фазы
6. Соедините концы, чтобы сформировать катушку
.
7. Соедините катушки, чтобы сформировать обмотку
.
Ведь для других сложных обмоток нужны другие методы. Ниже приведен пример анализа двух трехфазных двигателей методом разделения фаз.

Обмотки трехфазного двигателя переменного тока
2-полюсная 6-канальная однослойная трехфазная обмотка

Самым простым является трехфазная обмотка с 2 полюсами и 6 пазами, которая является основным режимом намотки в учебном программном обеспечении «Принципиальная модель трехфазного двигателя переменного тока». Шаг полюсов равен 3, а ширина полосы фаз — 1.

Установите прорези 1, 2 и 3 на N полюсов, и установите прорези 4, 5 и 6 на S полюсов (полюса здесь не являются северным и южным полюсами определенного магнитного поля), и есть 3 фазы полосы под каждым полюсом, прорези под каждой полосой фазы соединяются как одна катушка, а направления намотки каждой соседней полосы фазы меняются местами. См. Рисунок 1, голубая катушка — это обмотка одиночной фазы U, зеленая катушка — обмотка одиночной фазы V, а красная катушка — обмотка одной фазы W.

Рисунок 1 — 2-полюсная однослойная цепь с 6 пазами с расширяющейся обмоткой
2 полюса и 12 пазов однослойная цепь трехфазная обмотка

Использование ядра 6-слотового двигателя слишком мало и используется только для объяснения принципа. 12 пазов применимо как минимум для трехфазного двигателя … Далее описывается однослойная цепная обмотка с 2 полюсами и 12 пазами трехфазного двигателя.

Простой расчет показывает, что шаг полюсов равен 6, а ширина полосы фаз равна 2. На рисунке 2 представлена ​​круговая диаграмма двухполюсного трехфазного двигателя с 12 гнездами, 2 полюса и 12 пазов, при этом от 1 до 6 пазов установлены как N полюсов. и от 7 до 12 слотов в качестве S-полюсов.

Есть 3 фазовых диапазона U, V и W под полюсами N и S, соедините прорези в одной и той же фазовой зоне под каждым полюсом N и полюсом S в катушку. Гнезда 1 и 8 состоят из катушки, прорезь 1 — это первый конец, прорези 2 и 7 состоят из катушки, прорезь 2 — это первый конец, и две катушки соединены встык, образуя обмотку U-фазы, так что эффективная стороны одной обмотки имеют одинаковую полярность.Направления намотки одинаковы (направление тока одинаково), а направления намотки под противоположными магнитными полюсами противоположны. Такой же способ подключения к обмотке V-фазы и W-фазы. Я

Катушки соседних фазовых полос намотаны в противоположных направлениях, см. Рисунок 2.

Подводящие провода питания каждой фазной обмотки должны быть разделены электрическим углом 120 °. Для 2-полюсного двигателя электрический угол такой же, как и механический, оба они составляют 120 °.Выберите 2 слота как конец U1, выберите 10 слотов как конец V1 и выберите 6 слотов как конец W1; тогда 8 слотов предназначены для конца U2, 4 слота — для конца V2 и 12 слотов — для конца W2.

Рисунок 2 — Однослойная цепная обмотка с 2 полюсами и 12 пазами
На рисунке 3 показан чертеж расширения однослойной цепной обмотки с 2 полюсами и 12 пазами. На рисунке голубая катушка представляет собой обмотку U-фазы, зеленая катушка — обмотка V-фазы, а красная катушка — обмотка W-фазы.
Рисунок 3 — 2-полюсная 12-канальная однослойная цепная обмотка

В учебном курсе «Модель трехфазного двигателя переменного тока» есть стереограмма двухполюсных 12-слотовых однослойных цепных обмоток и схематическая диаграмма последовательного процесса намотки с анимацией.

Некоторые чертежи трехфазных обмоток будут представлены позже без анализа.

2-полюсная 12-контактная однослойная концентрическая трехфазная обмотка
Рисунок 4 — 2-полюсная 12-контактная однослойная концентрическая трехфазная обмотка
2-полюсная 18-канальная однослойная перекрестная трехфазная обмотка
Рисунок 5 — 2-полюсная 18-контактная однослойная перекрестная трехфазная обмотка
2-полюсная 18-канальная однослойная концентрическая поперечная обмотка
Рисунок 6 — 2-полюсная однослойная концентрическая поперечная обмотка с 18 пазами
2-полюсный 12-контактный двухслойный пакетная обмотка вокруг трехфазной обмотки
Для упрощения сложной графики катушки в двухслойной обмотке представлены в виде единой рамки.
Рисунок 7 — 2-полюсный 12-контактный двухслойный пакет, обмотка вокруг трехфазной обмотки
2-полюсный 18-контактный двухслойный пакетная обмотка вокруг трехфазной обмотки
Рисунок 8 — 2-полюсная двухслойная обмотка с 18 пазами вокруг трехфазной обмотки
4-полюсная двухслойная обмотка на 24 паза вокруг трехфазной обмотки

Рисунок 9 — 4-полюсная двухслойная обмотка на 24 паза вокруг трехфазной обмотки
Подключение обмоток трехфазного двигателя переменного тока
Трехфазный двигатель переменного тока обычно подводит шесть концов, включая первый и конечный вывод трех обмоток, в распределительную коробку корпуса и подключается к шести выводам. Они соединяются между собой в распределительной коробке и подключаются к внешнему трехфазному источнику питания. Тип соединения звезды и треугольника является основным.
Звезда
Соединение звездой также называется Y-соединением, а левая диаграмма на рисунке 10 представляет собой соединение звездой трех обмоток, причем спиральная катушка представляет собой обмотку. Рисунок справа — клеммная колодка в распределительной коробке.На плате 6 клемм, W2, U2, V2, U1, V1, W1, Подключите W2, U2 и V2 с перемычкой (точка подключения называется нейтральной линией N), U1, V1 и W1 соответственно подключены к трехфазное питание внешних A, B и C.
Рисунок 10 — Соединение звездой трехфазной обмотки
Треугольное соединение
Треугольное соединение также называется Δ-соединением. Левая диаграмма на рисунке 11 представляет собой треугольное соединение трех обмоток. На правой схеме изображена клеммная колодка в распределительной коробке. На плате шесть клемм: W2, U2, V2, U1, V1 и W1. Соедините W2 и U1 перемычками и используйте их как входную клемму питания фазы А. соедините U2 и V1 перемычками и используйте в качестве входной клеммы питания фазы B; используйте перемычки V2 и W1, подключенные и используемые в качестве внешнего источника питания фазы C.
Рисунок 11 — Треугольное соединение трехфазной обмотки

Конкретный метод подключения должен быть подключен в соответствии со способом подключения, указанным на паспортной табличке двигателя.

В большинстве трехфазных двигателей переменного тока используется соединение треугольником, но некоторые названия двигателей имеют пометки «напряжение 380 В / 220 В» и «соединение Y / Δ», что указывает на то, что соединение Y применяется для сетевого напряжения источника питания. 380В; при линейном напряжении источника питания 220В выбирается Δ-соединение.

Трехфазный асинхронный двигатель большой мощности имеет большой пусковой ток. Чтобы избежать чрезмерного воздействия на электросеть, используется пуск «Y-Δ», соединение Y при пуске, пусковой ток будет небольшим, так как скорость двигателя близка к номинальной.Затем перейдите на Δ-соединение.

Трехфазные двигатели переменного тока обычно выводятся из машины через соединение звездой.

Что такое обмотка двигателя: типы и ее расчет

Электродвигатель — это один из видов машин, которые используются для изменения энергии с электрической на механическую. Большинство двигателей работают по принципу взаимодействия электрического тока, а также магнитного поля внутри проволочной обмотки.Это может создать силу в виде вращения вала. Эти двигатели могут питаться от источников постоянного или переменного тока. Источниками постоянного тока являются батареи, а источниками переменного тока — инверторы, электрические сети, генераторы. Генератор механически похож на двигатель, но работает в обратном направлении, преобразовывая энергию из механической в ​​электрическую. Электродвигатель может быть построен с ротором, статором, воздушным зазором, обмотками, подшипниками и коммутатором. Классификация двигателей может быть сделана с учетом таких факторов, как тип источника питания, конструкция, тип выхода движения и приложения.В этой статье рассказывается, что такое обмотка двигателя, типы и ее расчет.

Что такое обмотка двигателя?

Обмотка электродвигателя определяется следующим образом: обмотки электродвигателей представляют собой провода, помещенные внутри катушек, обычно заключенные вокруг гибкого железного магнитного сердечника с покрытием для формирования магнитных полюсов, усиленных током. Электрические машины доступны в двух основных конфигурациях полюсов магнитного поля, а именно: явный полюс и невыпадающий полюс. Схема обмотки двигателя представлена ​​ниже.

мотор-обмотка

В машине с явнополюсной конфигурацией полюс магнитного поля может быть создан с помощью обмотки, намотанной приблизительно под лицевой стороной полюса. В конфигурации с невыявленным полюсом обмотка может быть рассредоточена внутри пазов на лицевой стороне полюса. Электродвигатель с экранированными полюсами включает обмотку, которая размещена вокруг полюсной части, которая поддерживает фазу магнитного поля. Некоторые типы двигателей включают в себя проводники с более толстым металлом, например металлические листы, в противном случае стержни обычно медные, в противном случае — алюминий.Как правило, они приводятся в действие с помощью электромагнитной индукции.

Типы обмоток двигателя

Типы обмоток двигателя — это два типа, которые включают следующие.

  • Обмотка статора
  • Обмотка ротора

На основе соединения обмотки двигателя обмотки якоря подразделяются на два типа, которые включают следующие.

Обмотка статора

Паз на сердечнике статора обмотки трехфазного двигателя несет обмотку статора.Эта обмотка может питаться трехфазным переменным током. Трехфазная обмотка двигателя, соединенная по схеме звезды или треугольника, в зависимости от используемого метода пуска.

статор-обмотка

Двигатель, подобный короткозамкнутому ротору, может часто перемещаться по схеме «звезда-треугольник», и, таким образом, статор двигателя может быть соединен треугольником. Трехфазный асинхронный двигатель с контактным кольцом работает с включением сопротивлений, таким образом, обмотка статора асинхронного двигателя с контактным кольцом может быть соединена звездой или треугольником.

Всякий раз, когда обмотка статора запитана от трехфазного источника переменного тока, она генерирует вращающееся магнитное поле (RMF).

Обмотка ротора

В двигателе вращающаяся часть известна как ротор. Ротор включает в себя обмотку ротора, а также сердечник ротора. Обмотка ротора питается от источника постоянного тока. Ротор можно разделить на два типа, а именно с фазовой намоткой и с короткозамкнутым ротором.

Сердечник ротора с короткозамкнутым ротором состоит из цилиндрического железного сердечника, имеющего изогнутую прорезь на внешней поверхности, на которой расположены алюминиевые или медные проводники.Они закорачиваются на концах с помощью медных или алюминиевых колец.

Электромагнитная индукция — это явление, при котором электромагнитная сила индуцируется внутри проводника, несущего проводник, из-за переменного магнитного поля. Когда ток стимулирует ротор, он заставляет ротор двигаться.

Круговая обмотка

Накладная обмотка — это один из видов намотки якоря. Соединение проводов может быть выполнено там, где полосы и полюса соединены аналогичным образом.Последняя часть каждой катушки якоря связана с коммутатором. Количество щеток в намотке такое же, как и количество параллельных полос. Они разделены поровну на две обмотки полярности, такие как положительная и отрицательная. Применения намотки внахлест в основном связаны с машинами высокого и низкого напряжения. Эти обмотки делятся на три типа: симплексные, дуплексные и триплексные.

Волновая обмотка

Волновая обмотка включает параллельные полосы из двух, очищенных щеткой, как положительный и отрицательный.Концевая часть первичной катушки якоря может быть связана с начальной частью следующей части коммутатора катушки якоря на некотором расстоянии. Проводники в обмотке этого типа могут быть соединены двумя параллельными дорожками на полюсе машины. Количество параллельных портов может быть одинаковым в направлении количества щеток, которое используется для высоковольтных и слаботочных машин. Пожалуйста, перейдите по ссылке, чтобы узнать больше о круговой намотке и волновой намотке.

Расчет обмотки двигателя

Расчет провода обмотки двигателя можно выполнить с помощью омметра.Подключите положительную клемму мультиметра красного цвета к положительной клемме обмоток двигателя. Точно так же подключите отрицательную клемму черного цвета к отрицательной клемме обмоток двигателя. Показания обмотки двигателя машины могут отображаться на экране мультиметра, т.е. сопротивление в омах.

С помощью омметра отсоедините блок питания от двигателя. Поместите измеритель в Ом, и, как правило, можно ожидать диапазона от 3 до 2 Ом.Если мы наблюдаем показание как ноль, происходит короткое замыкание между фазами. Как правило, если он открыт, он будет выше 2 кОм или бесконечно.

Итак, это все — обзор теории обмоток двигателя . Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что обмотки сделаны из медных проводов, которые намотаны вокруг сердечника для выработки или получения электромагнитной энергии. Провод, используемый в обмотках, должен быть защищен. Но в некоторых случаях мы можем видеть обмотки как голую медь, но она просто покрыта эмалью.Чаще всего для обмотки используется медь. Также можно использовать алюминий, но он должен быть толще, чтобы надежно удерживать подобный груз. Медная обмотка позволяет установить двигатель небольшого размера.

Эти обмотки двигателя являются очень важными компонентами электрической машины. Он включает в себя набор катушек в пазах, а также последовательно размещенных в области края обмотки. Вот вам вопрос, а что круче обмотки двигателя?

Схемы однофазных электродвигателей

Уважаемый г-н.Электрик: Где найти схемы подключения однофазного электродвигателя?

Ответ: Я собрал группу схем подключения однофазных электродвигателей и клеммных соединений ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока. ПРИМЕЧАНИЕ. Текстовые ссылки ниже ведут к соответствующим продуктам на Amazon и EBay.

Клеммы вращения двигателя — одно напряжение

ВРАЩЕНИЕ L1 L2
По часовой стрелке 1,5 4,8
Против часовой стрелки 1,8 4,5

Вращение двигателя — двойное напряжение, только основная обмотка

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая CCW 1 4, 5 2 и 3 и 8
Высокая CW 1 4, 8 2 и 3 и 5
Низкая CCW 1, 3, 8 2, 4, 5
Низкий CW 1, 3, 5 2, 4, 8

Вращение двигателя — двойное напряжение, основная и вспомогательная обмотки

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая CCW 1, 8 4, 5 2 и 3, 6 и 7
Высокая CW 1, 5 4, 8 2 и 3, 6 и 7
Низкая CCW 1, 3, 6, 8 2, 4, 5, 7
Низкий CW 1, 3, 5, 7 2, 4, 6, 8

Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.

СХЕМА ВНУТРЕННЕЙ ПРОВОДКИ ЭЛЕКТРОДВИГАТЕЛЯ

Электрические схемы электродвигателей малой и дробной мощности

Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск с разделенным фазным конденсатором
Работа с разделенным фазным конденсатором
Работа с другим разделенным фазным конденсатором
Индукция в режиме работы с разделенным фазным конденсатором (реверсивная)
Пусковое напряжение с разделением фаз
Однозначный конденсатор с разделением фаз 9085 Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный

Асинхронный электродвигатель с расщепленной фазой.

Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.

Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает приблизительно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.

Эти двигатели подходят для масляных горелок, воздуходувок, бизнес-машин, полировальных машин, шлифовальных машин , и т.д.

Amazon продает электродвигатели

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.

Электродвигатель с разделенной фазой и постоянно подключенным конденсатором также имеет короткозамкнутый ротор с основной и пусковой обмотками.Конденсатор постоянно включен последовательно со вспомогательной обмоткой. Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.

Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, в то время как вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрический фазовый сдвиг.

Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.

Электродвигатель запуска конденсатора с расщепленной фазой.

Электродвигатель с пусковым устройством с разделенным фазным конденсатором может быть определен как разновидность электродвигателя с расщепленной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.

Также известен как асинхронный двигатель с конденсаторным пуском.Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .

Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом, и т. Д.

Электродвигатель, работающий через конденсатор, разделенный фазой

Электродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор включен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.

После того, как двигатель достигает 70–80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы.Они могут варьироваться от 3 до 16 микрофарад.

Пусковой конденсатор обычно электролитического типа и может находиться в диапазоне от 80 до 300 мкФ для двигателей на 110 В, 60 Гц.

Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Amazon продает центробежные переключатели

Другой электродвигатель, работающий на конденсаторе с расщепленной фазой.

Другой тип электродвигателя типа «Split Phase Capacitor Run » использует блок конденсаторного трансформатора и относится к типу с короткозамкнутым ротором с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре. В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.

После того, как двигатель достигнет скорости от 70 до 80 процентов синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.

Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Асинхронный электродвигатель (реверсивный), работающий на разделенных фазах.

Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.

В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по сечению провода и количеству витков.

Используйте его, когда вам нужен реверсивный двигатель конденсаторного типа с переменным током и высоким крутящим моментом.

Электродвигатель с разделенной фазой и запуском реактора.

Асинхронный электродвигатель с разделенной фазой и пуском реактора. Этот двигатель оснащен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и подключенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.

При примерно 75% синхронной скорости пусковой переключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.

Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т. Д.

Amazon продает пусковые конденсаторы двигателя

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения).

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть подключены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется напряжение 120 В.

Вспомогательная пусковая обмотка смещена в пространстве от основной на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 В по сравнению с подключением на 240 В.

Электродвигатель отталкивания.

Электродвигатель отталкивания по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору. Щетки и коммутаторы закорочены и размещены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть другой набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.

Электродвигатель индукционный с пуском отталкивания (реверсивный).

Асинхронный электродвигатель с отталкиванием (реверсивный) Асинхронный электродвигатель с отталкивающим запуском — это однофазный двигатель, имеющий ту же обмотку, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена, чтобы дать эквивалент обмотка беличьей клетки.

Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью. Он имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.

Когда достигается почти синхронная скорость, в коммутаторе происходит короткое замыкание, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.

Электродвигатель с экранированными полюсами.

Электродвигатель с экранированными полюсами — это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.

Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента. Когда ток в основных катушках увеличивается, в затеняющих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.

Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того, как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.

Когда ток в основной катушке падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, которое заставляет двигатель самозапускаться.

Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , маленьких вентиляторах и т. Д.

Каркасный электродвигатель с экранированными полюсами

Каркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа разработан для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, таким же образом, как собираются сердечники небольших трансформаторов.

Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.

Двигатель с экранированными полюсами не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей природе высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.

Ebay продает ручные пускатели двигателей

Универсальный электродвигатель.

Универсальный электродвигатель предназначен для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.

Скорости при полной нагрузке обычно находятся в диапазоне от 5000 до 10 000 об / мин со скоростью холостого хода от 12 000 до 18 000 об / мин.Типичное применение — портативные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.

Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующей величины. Это делает его подходящим для таких применений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть компенсированными или некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.

Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора — для получения другого направления, причем в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.

РАЗМЕР РАМЫ ЭЛЕКТРОДВИГАТЕЛЯ

Ниже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.

Таблица размеров электродвигателя

Эту информацию о монтажных размерах двигателя я нашел в той же книге.

Таблица монтажных размеров электродвигателя NEMA C и J-Face.

НЕКОТОРЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА

Схема электрических соединений двигателя постоянного тока

Другие электрические схемы можно найти здесь .

Проверка обмоток двигателя шпинделя — как определить неисправные обмотки шпинделя

Как проверить неисправность обмоток в двигателе шпинделя

Чтобы проверить двигатель шпинделя на наличие плохих обмоток, вы можете использовать несколько различных методов.Как всегда, обязательно отключите все питание от машины, прежде чем делать что-либо . Мы настоятельно рекомендуем использовать квалифицированного, опытного поставщика, такого как TigerTek, для ремонта вашего шпиндельного двигателя. Наши специалисты по ремонту имеют многолетний опыт и неизменно обеспечивают лучшее в отрасли качество по очень конкурентоспособным ценам, при этом на все это распространяется комплексная 12-месячная гарантия. Чтобы ощутить разницу с TigerTek, позвоните нам по телефону 1. или свяжитесь с нами для получения бесплатного предложения.

Проверка на замыкание на массу

С помощью омметра:
Отключите все питание от машины. Проверьте все три провода по отдельности T1, T2, T3 (все три фазы) к проводу заземления. Показания должны быть бесконечными. Если его ноль или читается непрерывность
вообще, значит проблема либо с двигателем, либо с кабелем. Если это так, идите прямо к двигателю, отсоедините его от кабеля и проверьте двигатель и кабель отдельно. Убедитесь, что выводы на обоих концах ничего не касаются, включая другие выводы. Большинство коротких замыканий серводвигателей можно прочитать с помощью обычного измерителя качества. Убедитесь, что вы используете качественный измеритель с сопротивлением не менее 10 МОм. Используя мегомметр:
Отключите все питание от машины. Проверьте все три провода отдельно T1, T2, T3 (все три фазы) к проводу заземления. Показания обычно находятся в диапазоне 600-2000 МОм. Большинство шорт будет ниже 20 МОм. Будьте осторожны, не касайтесь выводов или проводов ни к чему при чтении. Это может дать ложные и неповторимые показания, заставляя вас преследовать свою историю. Вышеуказанное является средним значением для трехфазных двигателей 230 В переменного тока. Эмпирическое правило, с которым я сталкивался в других справочных материалах, — это сопротивление около 1000 Ом на каждый вольт входящей мощности.Хотя 230 мегабайт для цепи 230 В переменного тока, по моему опыту, кажется невысоким. Используйте это только как практическое правило. Только помните, что от 230 до 600 мегабайт часто наблюдается некоторое ухудшение изоляции кабелей или двигателя.

Контроль обрыва или короткого замыкания обмоток

С помощью омметра:
Отключите все питание от машины. Поставить измеритель на ом:
От Т1 до Т2
От Т2 до Т3
От Т1 до Т3
Обычно ожидаемый диапазон составляет от 0,3 до 2,0 Ом, хотя большинство из них составляет около 0,8 Ом. Если вы читаете ноль, значит существует короткое замыкание между фазами.Обычно, если он разомкнут, оно бесконечно или значительно превышает 2 кОм.

Примечания к кабелям и вилкам
Часто в разъем на кабеле двигателя попадает охлаждающая жидкость. Попробуйте просушить и повторить тест. Если он по-прежнему плохой, на самих вставках иногда появляются следы прожога, вызывающие небольшое короткое замыкание. В этом случае вставки следует заменить.

Также ищите области, в которых кабель движется через отслеживание. Провода со временем изнашиваются. Если это двигатель постоянного тока, проверьте щетки. Вокруг мотора должно быть 3-4 круглых заглушки.Под ними вы найдете пружину с квадратным блоком (щеткой). Посмотрите, сколько осталось, возможно, потребуется заменить. Также проверьте коммутатор, по которому движутся щетки, на износ; попробуйте протереть поверхность.

Поиск пусковых и рабочих обмоток

Обмотки однофазного двигателя

Пришло время пересмотреть принцип «что есть что», когда речь идет об обмотках однофазного двигателя.Часто вы найдете двигатель, у которого нет схемы подключения, только 3 провода, сидящие в соединительной коробке. Теперь вам нужно найти пусковую и пусковую обмотки, чтобы подключить этот двигатель.

Давайте проверим

Напоминаем перед началом тестирования:

Проведите полную проверку двигателя, прежде чем даже подумаете о подключении этого двигателя. Другими словами, проведите механические проверки, проверьте сопротивление изоляции и т. Д. Только если этот двигатель находится в хорошем состоянии, перейдите к поиску соответствующих обмоток и подключите его к источнику питания.

Тогда проверим обмотки. Для приведенной выше диаграммы я только что выбрал случайные цвета для проводов, которые вы найдете в клеммной коробке, но процедура проверки одинакова независимо от цвета.

Для нашей диаграммы:

Проверить сопротивление между коричневым и желтым. Допустим, у вас сопротивление 5 Ом

Тестовое сопротивление между коричневым и синим. На этот раз вы получите 8 Ом

Проверить сопротивление между желтым и синим. Вы получаете показание 3 Ом

Понимание чтений

Здесь мы торопимся и делаем ошибки.Мы знаем, что пусковая обмотка имеет самое высокое сопротивление, а ходовая — самое низкое. Не обманывайтесь здесь значениями 8 и 5 Ом!

Ваша пусковая обмотка — 5 Ом, а рабочая — 3 Ом. значение 8 Ом было тем, что вы проверили на обеих обмотках!

Подводя итог (не каламбур), сумма рабочего и пускового обмоток — это то, откуда берется 8 Ом.

Это означает, что желтый цвет является общим между ними, и именно к нему вы подключите нейтраль.Коричневый цвет — это начало, и он пойдет с одной стороны вашего конденсатора. Другая сторона конденсатора и синего цвета идет к вашему активному (живому). Работа сделана и готова к запуску.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *