27.09.2024

Скорость магнитной индукции: Глава 23. Закон электромагнитной индукции

Содержание

Глава 23. Закон электромагнитной индукции

Если в магнитном поле находится замкнутый проводящий контур, не содержащий источников тока, то при изменении магнитного поля в контуре возникает электрический ток. Это явление называется электромагнитной индукцией. Появление тока свидетельствует о возникновении в контуре электрического поля, которое может обеспечить замкнутое движение электрических зарядов или, другими словами, о возникновении ЭДС. Электрическое поле, которое возникает при изменении поля магнитного и работа которого при перемещении зарядов по замкнутому контуру не равна нулю, имеет замкнутые силовые линии и называется вихревым.

Для количественного описания электромагнитной индукции вводится понятие магнитного потока (или потока вектора магнитной индукции) через замкнутый контур. Для плоского контура, расположенного в однородном магнитном поле (а только такие ситуации и могут встретиться школьникам на едином государственном экзамене), магнитный поток определяется как


(23. 1)

где — индукция поля, — площадь контура, — угол между вектором индукции и нормалью (перпендикуляром) к плоскости контура (см. рисунок; перпендикуляр к плоскости контура показан пунктиром). Единицей магнитного потока в международной системе единиц измерений СИ является Вебер (Вб), который определяется как магнитный поток через контур площади 1 м2 однородного магнитного поля с индукцией 1 Тл, перпендикулярной плоскости контура.

Величина ЭДС индукции , возникающая в контуре при изменении магнитного потока через этот контур, равна скорости изменения магнитного потока


(23.2)

Здесь — изменение магнитного потока через контур за малый интервал времени . Важным свойством закона электромагнитной индукции (23.2) является его универсальность по отношению к причинам изменения магнитного потока: магнитный поток через контур может меняться из-за изменения индукции магнитного поля, изменения площади контура или изменения угла между вектором индукции и нормалью, что происходит при вращении контура в поле. Во всех этих случаях по закону (23.2) в контуре будет возникать ЭДС индукции и индукционный ток.

Знак минус в формуле (23.2) «отвечает» за направление тока, возникающего в результате электромагнитной индукции (правило Ленца). Однако понять на языке закона (23.2), к какому направлению индукционного тока приведет этот знак при том или ином изменении магнитного потока через контур, не так-то просто. Но достаточно легко запомнить результат: индукционный ток будет направлен таким образом, что созданное им магнитное поле будет «стремиться» компенсировать то изменение внешнего магнитного поля, которое этот ток и породило. Например, при увеличении потока внешнего магнитного поля через контур в нем возникнет индукционный ток, магнитное поле которого будет направлено противоположно внешнему магнитному полю так, чтобы уменьшить внешнее поле и сохранить, таким образом, первоначальную величину магнитного поля. При уменьшении потока поля через контур поле индукционного тока будет направлено так же, как и внешнее магнитное поле.

Если в контуре с током ток в силу каких-то причин изменяется, то изменяется и магнитный поток через контур того магнитного поля, которое создано самим этим током. Тогда по закону (23.2) в контуре должна возникать ЭДС индукции. Явление возникновения ЭДС индукции в некоторой электрической цепи в результате изменения тока в самой этой цепи называется самоиндукцией. Для нахождения ЭДС самоиндукции в некоторой электрической цепи необходимо вычислить поток магнитного поля, создаваемого этой цепью через нее саму. Такое вычисление представляет собой сложную проблему из-за неоднородности магнитного поля. Однако одно свойство этого потока является очевидным. Поскольку магнитное поле, создаваемого током в цепи, пропорционально величине тока, то и магнитный поток собственного поля через цепь пропорционален току в этой цепи


(23.3)

где — сила тока в цепи, — коэффициент пропорциональности, который характеризует «геометрию» цепи, но не зависит от тока в ней и называется индуктивностью этой цепи. Единицей индуктивности в международной системе единиц СИ является Генри (Гн). 1 Гн определяется как индуктивность такого контура, поток индукции собственного магнитного поля через который равен 1 Вб при силе тока в нем 1 А. С учетом определения индуктивности (23.3) из закона электромагнитной индукции (23.2) получаем для ЭДС самоиндукции


(23.4)

Благодаря явлению самоиндукции ток в любой электрической цепи обладает определенной «инерционностью» и, следовательно, энергией. Действительно, для создания тока в контуре необходимо совершить работу по преодолению ЭДС самоиндукции. Энергия контура с током и равна этой работе. Необходимо запомнить формулу для энергии контура с током


(23.5)

где — индуктивность контура, — сила тока в нем.

Явление электромагнитной индукции широко применяется в технике. На нем основано создание электрического тока в электрических генераторах и электростанциях. Благодаря закону электромагнитной индукции происходит преобразование механических колебаний в электрические в микрофонах. На основе закона электромагнитной индукции работает, в частности, электрическая цепь, которая называется колебательным контуром (см. следующую главу), и которая является основой любой радиопередающей или радиопринимающей техники.

Рассмотрим теперь задачи.

Из перечисленных в задаче 23.1.1 явлений только одно есть следствие закона электромагнитной индукции — появление тока в кольце при проведении сквозь него постоянного магнита (ответ 3). Все остальное — результат магнитного взаимодействия токов.

Как указывалось во введении к настоящей главе, явление электромагнитной индукции лежит в основе работы генератора переменного тока (задача 23.1.2), т.е. прибора, создающего переменный ток, заданной частоты (ответ 2).

Индукция магнитного поля, создаваемого постоянным магнитом, уменьшается с увеличением расстояния до него. Поэтому при приближении магнита к кольцу (задача 23.1.3) поток индукции магнитного поля магнита через кольцо изменяется, и в кольце возникает индукционный ток. Очевидно, это будет происходить при приближении магнита к кольцу и северным, и южным полюсом. А вот направление индукционного тока в этих случаях будет различным. Это связано с тем, что при приближении магнита к кольцу разными полюсами, поле в плоскости кольца в одном случае будет направлено противоположно полю в другом. Поэтому для компенсации этих изменений внешнего поля магнитное поле индукционного тока должно быть в этих случаях направлено по-разному. Поэтому и направления индукционных токов в кольце будут противоположными (ответ 4).

Для возникновения ЭДС индукции в кольце необходимо, чтобы менялся магнитный поток через кольцо. А поскольку магнитная индукция поля магнита зависит от расстояния до него, то в рассматриваемом в задаче 23. 1.4 случае поток через кольцо будет меняться, в кольце возникнет индукционный ток (ответ 1).

При вращении рамки 1 (задача 23.1.5) угол между линиями магнитной индукции (а, значит, и вектором индукции) и плоскостью рамки в любой момент времени равен нулю. Следовательно, магнитный поток через рамку 1 не изменяется (см. формулу (23.1)), и индукционный ток в ней не возникает. В рамке 2 индукционный ток возникнет: в положении показанном на рисунке, магнитный поток через нее равен нулю, когда рамка повернется на четверть оборота — будет равен , где — индукция, — площадь рамки. Еще через четверть оборота поток снова будет равен нулю и т.д. Поэтому поток магнитной индукции через рамку 2 изменяется в процессе ее вращения, следовательно, в ней возникает индукционный ток (ответ 2).

В задаче 23.1.6 индукционный ток возникает только в случае 2 (ответ 2). Действительно, в случае 1 рамка при движении остается на одном и том же расстоянии от проводника, и, следовательно, магнитное поле, созданное этим проводником в плоскости рамки, не изменяется. При удалении рамки от проводника магнитная индукция поля проводника в области рамки изменяется, меняется магнитный поток через рамку, и возникает индукционный ток

В законе электромагнитной индукции утверждается, что индукционный ток в кольце будет течь в такие моменты времени, когда изменяется магнитный поток через это кольцо. Поэтому пока магнит покоится около кольца (задача 23.1.7) индукционный ток в кольце течь не будет. Поэтому правильный ответ в этой задаче — 2.

Согласно закону электромагнитной индукции (23.2) ЭДС индукции в рамке определяется скоростью изменения магнитного потока через нее. А поскольку по условию задачи 23.1.8 индукция магнитного поля в области рамки изменяется равномерно, скорость ее изменения постоянна, величина ЭДС индукции не изменяется в процессе проведения опыта (ответ 3).

В задаче 23.1.9 ЭДС индукции, возникающая в рамке во втором случае, вчетверо больше ЭДС индукции, возникающей в первом (ответ 4). Это связано с четырехкратным увеличением площади рамки и, соответственно, магнитного потока через нее во втором случае.

В задаче 23.1.10 во втором случае в два раза увеличивается скорость изменения магнитного потока (индукция поля меняется на ту же величину, но за вдвое меньшее время). Поэтому ЭДС электромагнитной индукции, возникающая в рамке во втором случае, в два раза больше, чем в первом (ответ 1).

При увеличении тока в замкнутом проводнике в два раза (задача 23.2.1), величина индукции магнитного поля возрастет в каждой точке пространства в два раза, не изменившись по направлению. Поэтому ровно в два раза изменится магнитный поток через любую малую площадку и, соответственно, и весь проводник (ответ 1). А вот отношение магнитного потока через проводник к току в этом проводнике, которое и представляет собой индуктивность проводника , при этом не изменится (задача 23.2.2 — ответ 3).

Используя формулу (23. 3) находим в задаче 32.2.3 Гн (ответ 4).

Связь между единицами измерений магнитного потока, магнитной индукции и индуктивности (задача 23.2.4) следует из определения индуктивности (23.3): единица магнитного потока (Вб) равна произведению единицы тока (А) на единицу индуктивности (Гн) — ответ 3.

Согласно формуле (23.5) при двукратном увеличении индуктивности катушки и двукратном уменьшении тока в ней (задача 23.2.5) энергия магнитного поля катушки уменьшится в 2 раза (ответ 2).

Когда рамка вращается в однородном магнитном поле, магнитный поток через рамку меняется из-за изменения угла между перпендикуляром к плоскости рамки и вектором индукции магнитного поля. А поскольку и в первом и втором случае в задаче 23.2.6 этот угол меняется по одному и тому же закону (по условию частота вращения рамок одинакова), то ЭДС индукции меняются по одному и тому же закону, и, следовательно, отношение амплитудных значений ЭДС индукции в рамках равно единице (ответ 2).

Магнитное поле, создаваемое проводником с током в области рамки (задача 23.2.7), направлено «от нас» (см. решение задач главы 22). Величина индукции поля провода в области рамки при ее удалении от провода будет уменьшаться. Поэтому индукционный ток в рамке должен создать магнитное поле, направленное внутри рамки «от нас». Используя теперь правило буравчика для нахождения направления магнитной индукции, заключаем, что индукционный ток в рамке будет направлен по часовой стрелке (ответ 1).

При увеличении тока в проводе будет возрастать созданное им магнитное поле и в рамке возникнет индукционный ток (задача 23.2.8). В результате возникнет взаимодействие индукционного тока в рамке и тока в проводнике. Чтобы найти направление этого взаимодействия (притяжение или отталкивание) можно найти направление индукционного тока, а затем по формуле Ампера силу взаимодействия рамки с проводом. Но можно поступить и по-другому, используя правило Ленца. Все индукционные явления должны иметь такое направление, чтобы компенсировать вызывающую их причину. А поскольку причина — увеличение тока в рамке, сила взаимодействия индукционного тока и провода должна стремиться уменьшить магнитный поток поля провода через рамку. А поскольку магнитная индукция поля провода убывает с увеличением расстояния до него, то эта сила будет отталкивать рамку от провода (ответ 2). Если бы ток в проводе убывал, то рамка притягивалась бы к проводу.

Задача 23.2.9 также связана с направлением индукционных явлений и правилом Ленца. При приближении магнита к проводящему кольцу в нем возникнет индукционный ток, причем направление его будет таким, чтобы компенсировать вызывающую его причину. А поскольку эта причина — приближение магнита, кольцо будет отталкиваться от него (ответ 2). Если магнит отодвигать от кольца, то по тем же причинам возникло бы притяжение кольца к магниту.

Задача 23.2.10 — единственная вычислительная задача в этой главе. Для нахождения ЭДС индукции нужно найти изменение магнитного потока через контур . Это можно сделать так. Пусть в некоторый момент времени перемычка находилась в положении, показанном на рисунке, и пусть прошел малый интервал времени . За этот интервал времени перемычка переместится на величину . Это приведет к увеличению площади контура на величину . Поэтому изменение магнитного потока через контур будет равно , а величина ЭДС индукции (ответ 4).

Формула силы Лоренца в физике

Содержание:

Определение и формула силы Лоренца

Определение

Сила $\bar{F}$ , действующая на движущуюся заряженную частицу в магнитном поле, равная:

$$\bar{F}=q[\bar{v} \times \bar{B}](1)$$

называется силой Лоренца (магнитной силой).

Исходя из определения (1) модуль рассматриваемой силы:

$$F=q v B \sin \alpha(2)$$

где $\bar{v}$ – вектор скорости частицы, q – заряд частицы,
$\bar{B}$ – вектор магнитной индукции поля в точке нахождения заряда,
$\alpha$ – угол между векторами
$\bar{v}$ и
$\bar{B}$. Из выражения (2) следует, что если заряд движется параллельно
силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:
$\bar{F}_L$

Направление силы Лоренца

Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости
$\bar{v}$ и вектору
$\bar{B}$ (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной
индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом,
тонаправление силы Лоренца противоположно результату векторного произведения
(рис.1(b)).

вектор $\bar{B}$ направлен перпендикулярно плоскости рисунков на нас.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается,
что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию. {2}}}}$ – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и
электрическое), то сила, которая действует на нее, равна:

$$\bar{F}=q \bar{E}+q[\bar{v} \times \bar{B}](4)$$

где $\bar{E}$ – вектор напряженности электрического поля в точке, в которой находится заряд.
Выражение (4) было эмпирически получено Лоренцем. Сила
$\bar{F}$, которая входит в формулу (4) так же называется силой Лоренца
(лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую
$(\bar{F} = q \bar{E})$ и магнитную
$(\bar{F}=q[\bar{v} \times \bar{B}])$ относительно, так как связано с выбором инерциальной системы отсчета.
Так, если система отсчета будет двигаться с такой же скоростью
$\bar{v}$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю. {2}}{R}(1.4)$$

Из выражения (1.3) получим скорость:

$$v=\frac{q B R}{m}(1.5)$$

Период обращения электрона по окружности можно найти как:

$$T=\frac{2 \pi R}{v}=\frac{2 \pi m}{q B}(1.6)$$

Зная период, можно найти угловую скорость как:

$$\omega=\frac{2 \pi}{T}=\frac{q_{e} B}{m}$$

Ответ. $\omega=\frac{q_{e} B}{m}$

Слишком сложно?

Формула силы Лоренца не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле
напряженностью E и магнитное поле с индукцией B. Векторы $\bar{E}$ и
$\bar{B}$ совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если
$\bar{v} \uparrow \bar{B} \uparrow \bar{E}$?

Решение. Сделаем рисунок.

На заряженную частицу действует сила Лоренца:

$$\bar{F}=q \bar{E}+q[\bar{v} \times \bar{B}](2. 1)$$

Магнитная составляющая имеет направление перпендикулярное вектору скорости ($\bar{v}$) и вектору
магнитной индукции ($\bar{B}$).
Электрическая составляющая сонаправлена с вектором напряжённости ($\bar{E}$) электрического поля.
В соответствии со вторым законом Ньютона имеем:

$$\bar{F}=q \bar{E}+q[\bar{v} \times \bar{B}]=m \bar{a}(2.2)$$

Получаем, что ускорение равно:

$$\frac{q \bar{E}+q[\bar{v} \times \bar{B}]}{m}=\bar{a}(2.3)$$

Если скорость заряда параллельна векторам $\bar{E}$ и
$\bar{B}$, тогда $[\bar{v} \times \bar{B}]=0$, получим:

$$\bar{a}=\frac{q \bar{E}}{m}$$

Ответ. $\bar{a}=\frac{q \bar{E}}{m}$

Читать дальше: Формула силы натяжения нити.

Формула ЭДС индукции, E

Закон Фарадея – Максвелла для электромагнитной индукции

Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:

   

где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.

В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:

   

Частные случаи формул ЭДС индукции

Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:

   

где – потокосцепление.

При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:

   

где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .

При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:

   

где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .

Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:

   

В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:

   

Примеры решения задач по теме «ЭДС индукции»



Если через замкнутый проводник или контур будет изменяться магнитный поток Ф, а значит магнитное поле, то в нем будет возникать ЭДС индукции и электрический ток.
Источниками переменного магнитного поля являются:

а) движущийся постоянный магнит;
б)движущийся проводник с постоянным током;
в) неподвижный проводник с переменным током.
Причем, чем быстрее изменяется магнитный поток магнитного поля через контур, тем большая ЭДС индукции, а значит и сила тока возникает в нем, таким образом, величина ЭДС индукции зависит от скорости изменения магнитного потока через контур, т.е.


– это и будет законом электромагнитной индукции, для замкнутого проводника или контура:

“ЭДС индукции ?инд, возникающая в контуре прямо пропорциональна скорости изменения магнитного потока через него”.

Электромагнитная индукция – это создание ЭДС индукции в проводнике, а если он замкнут, то и электрического тока в нем, под действием переменного магнитного поля.

Закон электромагнитной индукции для катушки:

“ЭДС индукции возникающая в катушке прямо пропорциональна числу витков катушки и скорости изменения магнитного потока через нее”.

Если прямолинейный проводник будет двигаться в однородном магнитном поле равномерно, то в нем будет возникать ЭДС индукции, величина которой будет определяться по формуле:

где l – длина проводника, – скорость его движения, – угол между направлением и .

“ЭДС индукции возникающая в прямолинейном проводнике равномерно движущимся в однородном магнитном поле с индукцией , прямо пропорциональна длине проводника, скорости его движения, синусу угла между направлениями магнитной индукции магнитного поля и скорости движения проводника в магнитном поле ”.

Знак «-» в законе электромагнитной индукции указывает на направление индукционного тока в замкнутом проводнике, определяемое по правилу Ленца: “Индукционный ток всегда имеет такое направление, что своим магнитным полем препятствует изменению магнитного поля, которое вызвало индукционный ток”.
Если магнитное поле, вызвавшее индукционный ток нарастает или увеличивается через замкнутый проводник, то магнитное поле индукционного тока направлено ему противоположно и не будет давать ему нарастать, если же магнитное поле, вызвавшее индукционный ток убывает, то магнитное поле индукционного тока направленно также, как и убывающее магнитное поле и препятствует убыванию магнитного поля вызывающего индукционный ток.
Величина индукционного поля определяется по закону Ома: “Сила индукционного тока прямо пропорциональна ЭДС индукции возникающей в замкнутом проводнике и обратно пропорциональна сопротивлению замкнутого проводника”.

Индукционным током называется ток, полученный в замкнутом проводнике под действием переменного магнитного поля, т.е. благодаря электромагнитной индукции.

Проводник с переменным током в пространстве вокруг себя образует переменное магнитное поле, в котором будет находиться сам проводник с переменным током, поэтому в нем будет возникать ЭДС индукции, которую называют ЭДС самоиндукции, а явление электромагнитной индукции в проводнике с переменным током называют самоиндукцией.

Таким образом, самоиндукция – это частный случай электромагнитной индукции, который имеет место в проводнике с переменным током. Величина ЭДС самоиндукции, возникающая в проводнике с переменным током определяется по закону самоиндукции: “ЭДС самоиндукции, возникающая в проводнике с переменным током прямо пропорциональна скорости изменения силы тока, текущего в проводнике”.

где – скорость изменения силы тока в проводнике, характеризует быстроту изменения тока в проводнике, и показывает на сколько изменяется ток за единицу времени;
L — индуктивность проводника – это характеристика проводника по которому течет переменный ток зависит от размеров и формы проводника, и не зависит от его материала.


L показывает какая ЭДС самоиндукции возникает в проводнике при скорости изменения тока в нем равной единице или какая ?сам возникает в проводнике, если ток в нем изменяется на единицу за единицу времени.

СИ: – это индуктивность такого проводника, в котором возникает ЭДС самоиндукции равная 1 В при изменении тока на 1 А за 1 секунду.

Знак «-» в законе самоиндукции указывает на направление тока самоиндукции, определяемого по правилу Ленца. Например, при замыкании цепи ток увеличивается, возникает ЭДС самоиндукции, которая препятствует нарастанию тока; если же ток уменьшается, что происходит при размыкании цепи, то ЭДС самоиндукции будет поддерживать убывающий ток, не давая ему убывать, поэтому при размыкании цепи большой индуктивности искрит рубильник из-за большого тока самоиндукции, определяемого по закону Ома для тока самоиндукции:
.
Вариант №1

1. В каком случае в катушке замкнутой на гальванометр возникает электрический ток?

2. Что определяет закон электромагнитной индукции?

3. От чего зависит ЭДС индукции, возникающая в катушке?

4. В замкнутую катушку вдвигают постоянный магнит: один раз быстро, второй медленно. В каком случае в ней возникнет больший индукционный ток?

5. Что определяют по правилу Ленца? по правилу левой руки? правого винта?

6. Из формул
а)силы Ампера выразить силу тока;
б)силы Лоренца выразить скорость движения частиц;
в) закона индукции электромагнитной индукции выразить изменение магнитного потока.

7. Что такое самоиндукция? Где она имеет место?

8. В каких единицах измеряются
а)магнитная индукция;

б)магнитный поток;
в)ЭДС индукции;
г)индуктивность проводника.

Вариант №2

1. В чем заключается явление электромагнитной индукции?

2. Какое поле создает ЭДС индукции в замкнутом проводнике? Разве может магнитное поле заставить двигаться неподвижные электрические заряды?

3. В каком случае может возникать, а в каком не возникать, ЭДС индукции в прямолинейном проводнике, движущимся в однородном магнитном поле?

4. Почему в проводнике с постоянным током не возникает ЭДС индукции, а в проводнике с переменным возникает?

5. За 3 секунды магнитный поток, пронизывающий проволочную рамку, равномерно увеличивается с 6 Вб до 9 Вб. Чему равно при этом значение ЭДС индукции в рамке?

6. Чему равна ЭДС самоиндукции в катушке индуктивностью L = 3 Гн, при равномерном уменьшении силы тока от 5 А до 1 А за 2 секунды?

Вариант №3

1. Как направлена сила Лоренца, действующая на движущуюся заряженную частицу в магнитном поле?

2. Как направлена магнитная индукция внешнего магнитного поля, в котором против часовой стрелки движется отрицательно заряженная частица?

3. Электрон влетел в магнитное поле со скоростью V перпендикулярно линиям магнитной индукции и стал двигаться по окружности радиуса R. Определите величину вектора магнитной индукции магнитного поля. (заряд электрона e, m – масса электрона)

4. Под каким углом расположен проводник с током 3 А длиной 0,1 м в однородном магнитном поле с индукцией 4 Тл, если на него действует сила Ампера равная 0,6 Н?

5. Что происходит с индукционным током в кольце, плоскость которого перпендикулярна линиям магнитной индукции, если ее величина равномерно увеличивается?

6. Чему равна индуктивность проволочной рамки, если при силе тока I = 3 А в рамке возникает магнитный поток Ф = 6 Вб?

7. Катушка сопротивлением 100 Ом, состоящая из 1000 витков площадью 5 см2, внесена в однородное магнитное поле. В течение некоторого времени индукция магнитного поля уменьшилась от 0,8 Тл до 0,3 Тл. Какой заряд будет индуцирован в проводнике за это время?


Конвертер магнитной индукции • Магнитостатика, магнетизм и электродинамика • Полный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Обмотка, якорь, ярмо и контакты электромеханического реле

Общие сведения

Удивительным образом идеи одного человека могут повлиять на последующее развитие человеческого общества в целом. Таким человеком был Майкл Фарадей, не слишком разбирающийся в хитросплетениях современной ему математики, но прекрасно понимающий физический смысл известных к тому времени сведений о природе электричества и магнетизма благодаря выдвинутой им концепции полевых взаимодействий.

Слева направо: Андре-Мари Ампер, Карл Фридрих Гаусс, Хендрик Антон Лоренц, Ханс Кристиан Э́рстед, Ипполит Пикси; источник: Wikimedia.org

Существованию современного общества, основанного на использовании электричества, магнетизма и электродинамики, мы обязаны целой плеяде замечательных учёных. Среди них надо отметить Ампера, Эрстеда, Генри, Гаусса, Вебера, Лоренца и, безусловно, Максвелла. В конечном итоге они свели науку об электричестве и магнетизме в единую картину, которая послужила основой целой когорте изобретателей, создавших своими творениями предпосылки для появления современного информационного общества.

В аккумуляторных дрелях обычно используется универсальный двигатель, который может работать как на постоянном, так и на переменном токе

Мы живём в окружении электродвигателей и генераторов: они наши первые помощники на производстве, на транспорте и в быту. Любой уважающий себя человек не мыслит существования без холодильника, пылесоса и стиральной машины. В приоритете также микроволновая печь, фен, кофемолка, миксер, блендер и — предел мечтаний — электромясорубка и хлебопечка. Безусловно, кондиционер тоже страшно полезная штука, но если нет средств для его приобретения, то сойдёт и простой вентилятор.

У некоторых мужчин запросы несколько скромнее: пределом мечтаний самого неумелого мужчины является электродрель. Некоторые из нас, безуспешно пытаясь завести автомобиль в сорокаградусный мороз и безнадежно терзая стартер (тоже электродвигатель), втайне мечтают о приобретении машины производства Tesla Motors на электродвигателях и аккумуляторах, чтобы забыть навсегда о проблемах бензиновых и дизельных моторов.

Электродвигатели повсюду: они поднимают нас в лифте, они перевозят нас в метро, электричках, трамваях, троллейбусах и скоростных поездах. Они доставляют нам воду на этажи небоскрёбов, приводят в действие фонтаны, откачивают воду из шахт и колодцев, прокатывают сталь, поднимают тяжести, работая в различных кранах. И делают очень много других полезных дел, приводя в движение станки, инструменты и механизмы.

Даже экзоскелеты для людей с ограниченными возможностями и для военных выполнены с использованием электродвигателей, не говоря уже о целой армии промышленных и исследовательских роботов.

Сегодня электродвигатели трудятся в космосе — достаточно вспомнить марсоход Curiosity. Они трудятся на земле, под землёй, на воде, под водой и даже в воздухе — не сегодня, так завтра (статья написана в ноябре 2015 г.) самолёт Solar Impulse 2 наконец-то закончит своё кругосветное путешествие, а беспилотным летательным аппаратам на электродвигателях уж просто несть числа. Недаром вполне серьёзные корпорации сейчас трудятся над сервисами доставки почтовых отправлений с помощью беспилотных летательных аппаратов.

Историческая справка

Этот дизель-генератор мощностью 12,5 кВт из экспозиции Военного музея связи и электроники в г. Кингстоне, Онтарио, использовался на радиостанциях при освоении канадского севера

Построенная в 1800 году итальянским физиком Алессандро Вольта химическая батарея, названная впоследствии по имени изобретателя «вольтов столб», воистину оказалась «рогом изобилия» для учёных. Она позволяла приводить в движение электрические заряды в проводниках, то есть создавать электрический ток. Новые открытия с использованием вольтова столба непрерывно следовали одно за другим в различных областях физики и химии.

Например, английский учёный сэр Гемфри Дэви в 1807 году, изучая электролиз расплавов гидроксидов натрия и калия, получил металлический натрий и калий. Ранее, в 1801году, он же открыл электрическую дугу, хотя русские считают её первооткрывателем Василия Владимировича Петрова. Петров в 1802 году описал не только саму дугу, но и возможности её практического применения для целей плавки, сварки металлов и восстановления их из руд, а также освещения.

Слева направо: Майкл Фарадей, Вильгельм Эдуард Вебер, Петер Барлоу, Джозеф Генри, Джеймс Кларк Максвелл

Но самое важное открытие совершил датский физик Ханс Кристиан Эрстед: 21 апреля 1820 года во время демонстрации опытов на лекции он заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки. Так впервые была подтверждена взаимосвязь между электричеством и магнетизмом.

Следующий шаг сделал французский физик Андре Мари Ампер несколько месяцев спустя после знакомства с опытом Эрстеда. Любопытен ход рассуждений этого учёного, изложенных в сообщениях, направленных им одно за другим во Французскую академию наук. Сначала, наблюдая поворот стрелки компаса у проводника с током, Ампер предположил, что магнетизм Земли тоже вызван токами, обтекающими Землю в направлении с запада на восток. Отсюда им был сделан вывод, что магнитные свойства тела могут быть объяснены циркуляцией внутри него тока. Далее Ампер довольно смело заключил, что магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него, а магнитное взаимодействие обусловлено не особыми магнитными зарядами, а просто движением электрических зарядов, т. е. током.

Ампер тут же занялся экспериментальным исследованием этого взаимодействия и установил, что проводники с током, текущим в одном направлении притягиваются, а в противоположном — отталкиваются. Взаимно перпендикулярные проводники не взаимодействуют друг с другом.

Трудно удержаться, чтобы не привести открытый Ампером закон в его собственной формулировке:

«Сила взаимодействия движущихся зарядов пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между ними, как и в законе Кулона, но, сверх того, ещё зависит от скоростей этих зарядов и направления их движения».

Очень простой электродвигатель из куска проволоки и сильного магнита, извлеченного из старого жесткого диска

Так в физике были открыты фундаментальные силы, зависящие от скоростей.

Но настоящим прорывом в науке об электричестве и магнетизме стало открытие Майклом Фарадеем явления электромагнитной индукции — возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Независимо от Фарадея явление электромагнитной индукции было также открыто Джозефом Генри в 1832 году, попутно открывшим явление самоиндукции.

Публичная демонстрация Фарадеем 29 августа 1831 года была выполнена на изобретённой им установке, состоящей из вольтова столба, выключателя, железного кольца, на котором были намотаны на противоположных сторонах две одинаковые катушки из медного провода. Одна из катушек через выключатель подключалась к батарее, к концам другой был подключён гальванометр. При включении и отключении тока гальванометр фиксировал появление тока разного направления во второй катушке.

В опытах Фарадея электрический ток, названный индукционным током, появлялся и при внесении магнита внутрь катушки или его выдвижения из катушки, нагруженной на измерительную цепь. Аналогично, ток появлялся и при внесении/выдвижении меньшей катушки с током внутрь/из большой катушки из предыдущего опыта. Причём направление индукционного тока менялось на противоположное при внесении/выдвижении магнита или малой катушки с током в соответствии с правилом, сформулированным русским учёным Эмилем Христиановичем Ленцем. в 1833 году.

На основании произведённых опытов Фарадей вывел закон для электродвижущей силы, впоследствии названный его именем.

Идеи и результаты экспериментов Фарадея были переосмыслены и обобщены другим великим соотечественником — гениальным английским физиком и математиком Джеймсом Клерком Максвеллом — в его четырёх дифференциальных уравнениях электродинамики, названных позднее уравнениями Максвелла.

Надо отметить, что в трёх из четырёх уравнений Максвелла фигурирует магнитная индукция в виде вектора магнитного поля.

Магнитная индукция. Определение

Биполярный шаговый двигатель состоит из ротора в форме постоянного магнита и статора, в котором находятся две обмотки с сердечниками, образующие электромагниты

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Она определяет, с какой силой F магнитное поле действует на заряд q, движущийся со скоростью v. Обозначается латинской буквой В (произносится как вектор Б) и сила рассчитывается по формуле:

F = q [vB]

где F —сила Лоренца, действующая со стороны магнитного поля на заряд q; v — скорость движения заряда; B — индукция магнитного поля; [v × B] — векторное произведение векторов v и B.

Алгебраически выражение может быть записано в виде:

F = qvB∙sin α

где α — угол между векторами скорости и магнитной индукции. Направление вектора F перпендикулярно им обоим и направлено по правилу левой руки.

Магнитная индукция является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В Международной системе единиц СИ магнитная индукция поля измеряется в теслах (Тл), в системе СГС — в гауссах (Гс)

1 Тл = 10⁴ Гс

С другими величинами измерения магнитной индукции, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины магнитной индукции называются тесламетрами или гауссметрами.

Магнитная индукция поля. Физика явлений

В зависимости от реакции на внешнее магнитное поле, все вещества делятся на три группы:

Динамический громкоговоритель, используемый в системных блоках настольных компьютеров; звук создается за счет перемещения звуковой катушки с током в магнитном поле постоянного магнита; катушка соединена с диффузором, который преобразует ее колебания в звуковые колебания воздуха

  • Диамагнетики
  • Парамагнетики
  • Ферромагнетики

Термины диамагнетизм и парамагнетизм были введены Фарадеем в 1845 году. Для количественной оценки этих реакций введено понятие магнитной проницаемости. В системе СИ введена абсолютная магнитная проницаемость, измеряемая в Гн/м, и относительная безразмерная магнитная проницаемость, равная отношению проницаемости данной среды к проницаемости вакуума. У диамагнетиков относительная магнитная проницаемость несколько меньше единицы, у парамагнетиков — несколько больше единицы. У ферромагнетиков магнитная проницаемость значительно больше единицы и носит нелинейный характер.

Явление диамагнетизма заключается в способности вещества противодействовать воздействию внешнего магнитного поля за счёт намагничивания против его направления. То есть, диамагнетики отталкиваются магнитным полем. При этом атомы, молекулы или ионы диамагнетика приобретают магнитный момент, направленный против внешнего поля.

Явление парамагнетизма заключается в способности вещества намагничиваться при воздействии внешнего магнитного поля. В отличие от диамагнетиков, парамагнетики втягиваются магнитным полем. При этом атомы, молекулы или ионы парамагнетика приобретают магнитный момент в направлении, совпадающем с направлением внешнего магнитного поля. При снятии поля парамагнетики не сохраняют намагниченность.

Визуализация информации на карте с магнитной полосой с помощью магнитной пленки-визуализатора и магнитного тонера для лазерного принтера

Явление ферромагнетизма заключается в способности вещества спонтанно намагничиваться при отсутствии внешнего магнитного поля или намагничиваться под воздействием внешнего магнитного поля и сохранять намагниченность при снятии поля. При этом большинство магнитных моментов атомов, молекул или ионов параллельны друг другу. Такой порядок сохраняется до температур, ниже определённой критической, называемой точкой Кюри. При температурах выше точки Кюри для данного вещества, ферромагнетики превращаются в парамагнетики.

Магнитная проницаемость сверхпроводников равна нулю.

Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π• 10 ⁻⁷ Гн/м

Особенности поведения магнитного поля в диамагнетиках

Как указывалось выше, диамагнитные материалы создают индуцированное магнитное поле, направленное против внешнего магнитного поля. Диамагнетизм является квантово-механическим эффектом, присущим всем веществам. В парамагнетиках и ферромагнетиках он нивелируется за счёт иных, более сильных, эффектов.

Левитация пиролитического углерода в магнитном поле неодимовых магнитов

К диамагнетикам относятся, например, такие вещества, как инертные газы, азот, водород, кремний, фосфор и пиролитический углерод; некоторые металлы — висмут, цинк, медь, золото, серебро. Многие другие неорганические и органические соединения также являются диамагнетиками, в том числе и вода.

В неоднородном магнитном поле диамагнетики смещаются в область более слабого поля. Магнитные силовые линии как бы выталкиваются диамагнитными материалами за пределы тела. На этом свойстве построено явление диамагнитной левитации. В достаточно сильном магнитном поле, создаваемом современными магнитами, возможна левитация не только различных диамагнетиков, но и мелких живых существ, состоящих в основном из воды.

Магнит падает в алюминиевом желобе очень медленно в связи с тем, что в алюминии образуется тормозящее магнитное поле

Учёным из Университета Нимингена, Нидерланды, удался опыт по подвешиванию в воздухе лягушки в поле с магнитной индукцией порядка 16 Тл, а исследователям из лаборатории НАСА, использовавшим магнит на сверхпроводниках — левитация мыши, которая, как биологический объект, гораздо ближе к человеку, чем лягушка.

Все проводники проявляют диамагнетизм под действием переменного магнитного поля.

Суть явления состоит в том, что под действием переменного магнитного поля в проводниках индуцируются вихревые токи — токи Фуко — направленные против действия внешнего магнитного поля.

Особенности поведения магнитного поля в парамагнетиках

Колебания магнитного маятника полностью затухают после одного качка над алюминиевой поверхностью из-за тормозящего эффекта

Совершенно иным является взаимодействие магнитного поля с парамагнетиками. Поскольку атомы, молекулы или ионы парамагнетиков обладают собственным магнитным моментом, они выстраиваются в направлении внешнего магнитного поля. Тем самым создаётся результирующее магнитное поле, превышающее исходное поле.

К парамагнетикам относятся алюминий, платина, щелочные и щелочноземельные металлы литий, цезий, натрий, магний, вольфрам, а также сплавы этих металлов. Парамагнетиками также являются кислород, оксид азота, оксид марганца, хлорное железо и многие другие химические соединения.

Парамагнетики относятся к слабомагнитным веществам, их магнитная проницаемость чуть больше единицы. В неоднородном магнитном поле парамагнетики втягиваются в область более сильного поля. В отсутствие магнитного поля парамагнетики не сохраняют намагниченность, поскольку из-за теплового движения собственные магнитные моменты их атомов, молекул или ионов направлены хаотично.

Особенности поведения магнитного поля в ферромагнетиках

Ферромагнитная жидкость в магнитном поле; ферромагнитная жидкость представляет собой коллоидную систему, состоящую из ферромагнитных или ферримагнитных частицы в органическом растворителе

Благодаря присущему им свойству самопроизвольно намагничиваться, ферромагнетики образуют природные магниты, которые известные человечеству с глубокой древности. Магнитам приписывались магические свойства, их использовали в различных религиозных ритуалах и даже при постройке зданий. Первый прообраз компаса, изобретённый китайцами во втором–первом веках до нашей эры, пытливые пращуры-первооткрыватели использовали для возведения домов согласно правилам фэн-шуй. Использование компаса как средства навигации началось уже в 11 веке для путешествий через пустыни по Великому Шёлковому пути. Позднее применение компаса в морском деле сыграло значительную роль в развитии мореплавания, открытия новых земель и освоения новых морских торговых путей.

Ферромагнитная жидкость

Ферромагнетизм является проявлением квантово-механических свойств электронов, обладающих спином, т.е. собственным дипольным магнитным моментом. Проще говоря, электроны ведут себя подобно крошечным магнитикам. На каждой заполненной электронной оболочке атома может находиться только парное число электронов с противоположными спинами, т.е. магнитное поле таких электронов направлено в противоположные стороны. Из-за этого у атомов, имеющих парное число электронов, общий магнитный момент равен нулю, поэтому ферромагнетиками являются только атомы с незаполненной внешней оболочкой, имеющие непарное число электронов.

К ферромагнетикам относятся металлы переходных групп (железо, медь, никель) и редкоземельные металлы (гадолиний, тербий, диспрозий, гольмий и эрбий), а также сплавы этих металлов. Ферромагнетиками являются и сплавы вышеперечисленных элементов с неферромагнитными материалами; сплавы и соединения хрома и марганца с неферромагнитными элементами, а также некоторые из металлов группы актиноидов.

В накопителях на жестких магнитных дисках поверхность дисков покрыта тонким слоем ферромагнитного материала

Ферромагнетики имеют значение магнитной проницаемости намного больше единицы; зависимость их намагничивания под действием внешнего магнитного поля носит нелинейный характер и для них характерно проявление гистерезиса — если снять действие магнитного поля, ферромагнетики остаются намагниченными. Чтобы убрать эту остаточную намагниченность, необходимо приложить поле обратного направления.

График зависимости магнитной проницаемости μ от напряженности магнитного поля H в ферромагнетике, называемый кривой Столетова, показывает, что при нулевой напряженности магнитного поля H = 0 магнитная проницаемость имеет небольшое значение μ₀; затем, по мере роста напряженности, магнитная проницаемость быстро растет до максимума μmax, затем медленно падает до нуля.

Пионером исследования свойств ферромагнетиков был русский физик и химик Александр Столетов. Ныне кривая зависимости магнитной проницаемости от напряжённости магнитного поля носит его имя.

Современные ферромагнитные материалы находят широкое применение в науке и технике: многие технологии и приборы основаны на их использовании и на использовании явления магнитной индукции. Например, в вычислительной технике: первые поколения ЭВМ имели память на ферритовых сердечниках, информация хранилась на магнитных лентах, гибких дискетах и жёстких дисках. Впрочем, последние используются в компьютерах до сих пор и выпускаются сотнями миллионов штук в год.

Применение магнитной индукции в электротехнике и электронике

Память на ферритовых сердечниках диаметром около 1 мм использовалась в компьютерах до середины семидесятых годов прошлого века; одно кольцо использовалось для запоминания одного бита информации; объем этой части матрицы памяти размером около 8×8 см — 1024 (32×32) ферритовых кольца, в которых может храниться 1024 бита, или 1 Кбит информации

В современном мире существует множество примеров использования магнитной индукции поля, в первую очередь в силовой электротехнике: в генераторах электричества, трансформаторах напряжения, в разнообразных электромагнитных приводах различных устройств, инструментов и механизмов, в измерительной технике и в науке, в различных физических установках для проведения экспериментов, а также в средствах электрической защиты и аварийного отключения.

Электродвигатели, генераторы и трансформаторы

Английским физиком и математиком Питером Барлоу в 1824 году был описан изобретённый им униполярный двигатель, ставший прообразом современных электродвигателей постоянного тока. Изобретение ценно также тем, что было сделано задолго до открытия явления электромагнитной индукции.

Ныне практически во всех электродвигателях используется сила Ампера, которая действует на контур с током в магнитном поле, заставляя его двигаться.

Ещё Фарадеем для демонстрации явления магнитной индукции в 1831 году была создана экспериментальная установка, важной частью которой было устройство, ныне известное как тороидальный трансформатор. Принцип действия трансформатора Фарадея и сейчас используется во всех современных трансформаторах напряжения и тока вне зависимости от мощности, конструкции и сферы применения.

Мощные электродвигатели насосной станции в Торонто, Онтарио

Помимо этого Фарадей научно обосновал и доказал экспериментально возможность преобразования механического движения в электричество с помощью изобретённого им униполярного генератора постоянного тока, ставшего прототипом всех генераторов постоянного тока.

Этот мотор-генератор из экспозиции Канадского музея науки и техники в Оттаве использовался на электростанции в Ниагара-Фоллз, шт. Нью-Йорк

Первый генератор переменного тока был создан французским изобретателем Ипполитом Пикси в 1832 году. Позднее, по предложению Ампера, он был дополнен коммутационным устройством, которое позволяло получать пульсирующий постоянный ток.

В основе практически всех генераторов электроэнергии, использующих принцип магнитной индукции, лежит возникновение электродвижущей силы в замкнутом контуре, который находится в изменяющемся магнитном поле. При этом либо магнитный ротор вращается относительно неподвижных катушек статора в генераторах переменного тока, либо обмотки ротора вращаются относительно неподвижных магнитов статора (ярма) в генераторах постоянного тока.

Самый мощный генератор в мире, построенный в 2013 году для АЭС «Тайшань» китайской компанией DongFang Electric, может вырабатывать мощность 1750 МВт.

Помимо генераторов и электродвигателей традиционного типа, связанных с преобразованием механической энергии в электрическую энергию и обратно, существуют так называемые магнитогидродинамические генераторы и двигатели, работающие на ином принципе.

Реле и электромагниты

При подаче напряжения на обмотку реле его якорь притягивается к сердечнику и контакты замыкаются (2)

Изобретённый американским учёным Дж. Генри электромагнит стал первым исполнительным механизмом на электричестве и предшественником всем знакомого электрического звонка. Позднее на его основе Генри создал электромагнитное реле, которое стало первым автоматическим коммутационным устройством, имеющим бинарное состояние.

Работа реле

Это реле Морзе из экспозиции Военного музея связи и электроники в Кингстоне, Онтарио, использовалось в ранних телеграфных станциях, где сигналы воспринимались на слух и записывались телеграфистом на бумагу

Слаботочное реле Генри стало также предпосылкой создания телеграфа, использовавшего простую в технической реализации кодировку Морзе: для передачи точки применялось короткое замыкание контактов ключа на передающей стороне, а для передачи тире — более длительное замыкание. Реле на приёмной стороне под действием протекающего тока, в свою очередь, замыкало контакты более мощного электромагнита, который опускал графитовый стержень на движущуюся бумажную ленту, записывая таким образом передаваемый сигнал. Подъём грифеля над лентой осуществлялся автоматически за счёт механической пружины. В более ранних конструкциях ленты не было и сигналы воспринимались на слух и записывались на бумагу вручную.

Динамический микрофон Shure, используемый в видеостудии TranslatorsCafe.com

При передаче телеграфного сигнала на большие расстояния реле использовались в качестве усилителей постоянного тока, коммутируя подключение внешних батарей промежуточных станций для дальнейшей передачи сигнала.

Динамические головки и микрофоны

В современной аудиотехнике широко применяются электромагнитные динамики, звук в которых появляется из-за взаимодействия подвижной катушки, прикрепленной к диффузору, через которую протекает ток звуковой частоты, с магнитным полем в зазоре неподвижного постоянного магнита. В результате катушка вместе с диффузором движутся и создают звуковые волны.

В динамических микрофонах используется та же конструкция, что и в динамической головке, однако в микрофоне, наоборот, колеблющаяся под воздействием акустического сигнала подвижная катушка с мини-диффузором в зазоре неподвижного постоянного магнита генерирует электрический сигнал звуковой частоты.

Измерительные приборы и датчики

Несмотря на обилие современных цифровых измерительных приборов, в технике измерений до сих пор используются приборы магнитоэлектрического, электромагнитного, электродинамического, ферродинамического и индукционного типов.

Во всех системах вышеперечисленных типов используется принцип взаимодействия магнитных полей либо постоянного магнита с полем катушки с током, либо ферромагнитного сердечника с полями катушек с током, либо магнитных полей катушек с током.

За счёт относительной инерционности таких систем измерений, они применимы для измерений средних значений переменных величин.

Автор статьи: Сергей Акишкин

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Электромагнитная индукция — тригонометрия и генерация однофазного переменного тока для электриков

Электромагнитная индукция — это когда напряжение создается путем пропускания проводника через магнитное поле.

Рисунок 45. Магнитные полюса и индукция

Величину напряжения можно изменять тремя факторами:

  1. Размер магнитного поля. Чем больше линий магнитного потока, тем больше линий магнитного потока необходимо для разрезания проводника.Сила потока прямо пропорциональна индуцированному напряжению.
  2. Активная длина проводника. Активная длина означает часть проводника, которая фактически проходит через поле. Активная длина прямо пропорциональна наведенному напряжению.
  3. Скорость, с которой проводник проходит через поле. Чем быстрее проводник проходит через поле, тем больше индуцируемое напряжение. Скорость прямо пропорциональна индуцированному напряжению.

Эти отношения к напряжению можно разбить по следующей формуле: e = βlv.

Где:

e = пиковое напряжение, индуцированное в катушке индуктивности (вольт)

B = напряженность поля между полюсами (тесла)

l = активная длина жилы (метры)

v = скорость проводника через поле (м / сек)

Вот пример.

Проводник с активной длиной 4 метра проходит через поле 5 тесла со скоростью 15 метров в секунду. Определите пиковое напряжение, наведенное на этом проводе.

(4 м) (5 Тл) (15 м / сек) = 300 В пиковое значение

Это безумие! Кто это открыл?

Открытие электромагнитной индукции приписывается Майклу Фарадею, который обнаружил, что когда он пропускает магнитное поле через проводник, течет ток.

Пока существует движение между полем и проводником, может индуцироваться напряжение. Это может означать, что проводник проходит через поле или поле проходит через проводник.

Далее: Генератор

Магнитное поле набирает обороты

& bullet; Physics 13, 37

Моделирование показывает, что относительно простой лазерный метод может производить фемтосекундные импульсы магнитного поля, которые в настоящее время доступны только в нескольких крупных лабораториях.

theasis / Getty Images

Поле мечты. Исследователям нужны импульсы сильного магнитного поля фемтосекундной длительности, не дойдя до крупного объекта, но получить их с помощью катушки с проволокой невозможно. Моделирование показывает, что новая лазерная техника может помочь с использованием самых разнообразных лазеров. Поле мечты. Исследователям нужны импульсы сильного магнитного поля фемтосекундной длительности, не дойдя до крупного объекта, но получить их с помощью катушки с проволокой невозможно.Моделирование показывает, что новая лазерная техника может сделать три … Показать больше

theasis / Getty Images

Поле мечты. Исследователям нужны импульсы сильного магнитного поля фемтосекундной длительности, не дойдя до крупного объекта, но получить их с помощью катушки с проволокой невозможно. Моделирование показывает, что новая лазерная техника может помочь с использованием самых разнообразных лазеров. ×

Источники магнитного поля практически не менялись в течение десятилетий, но их использование в фундаментальных физических исследованиях и повседневных технологиях резко возросло. Обычная катушка с проводом или соленоид не может нарастить поле достаточно быстро, чтобы изучить самые быстрые магнитные процессы, поэтому исследователи должны обращаться в специализированные учреждения. Но теперь команда предложила лабораторную технику, которая могла бы создать поле более 8 тесла, которое включается за 50 фемтосекунд. Идея состоит в том, чтобы использовать пару лазерных импульсов, чтобы заставить электроны в плазме вращаться по орбите, как будто в мотке проволоки, но без проволоки. Новый метод может быть полезен в широком спектре научных областей, включая квантовые технологии, атомную и молекулярную физику и хранение данных.

Магнитные хранилища данных десятилетиями преобладали в устройствах, от магнитных лент до ноутбуков. Оптическая обработка информации, при которой световые сигналы заменяют электрические токи в традиционной электронике, представляет собой разрабатываемую технологию, которая также основана на быстром переключении магнитных полей (для управления быстрыми оптическими сигналами). Понимание фемтосекундной реакции материалов на магнитные поля поможет исследователям раздвинуть границы этих и других технологий.

Чтобы изучить быстрый магнитный отклик материала, вам нужно быстро меняющееся поле.Обычный соленоид генерирует поле, когда ток проходит через его проволочную катушку, но поле может быть изменено только в микросекундном масштабе времени, слишком медленном для измерения фемтосекундных процессов. Вы могли бы создавать более сильные поля быстрее, отключив провод и используя лазер, чтобы напрямую толкать электроны в плазме вокруг петли. Предыдущие исследования, основанные на этом подходе, требовали лазерной интенсивности, которая возможна только в крупных центрах, таких как National Ignition Facility в Калифорнии.

Теперь Пол Коркум и его коллеги из Оттавского университета и Национального исследовательского совета Канады теоретически показали, как повысить эффективность передачи энергии от лазера к электрону. Эта более высокая эффективность должна позволить производить большие и быстрые изменения магнитного поля, используя гораздо меньшую интенсивность лазера, доступную в стандартных университетских исследовательских лабораториях.

Чтобы отправить электроны по круговой траектории, предыдущие экспериментаторы направляли интенсивный лазерный луч «оптического вихря» в газ.Каждый фотон в таком пучке несет орбитальный угловой момент, который может быть доставлен электронам, оторванным от атомов в газе сильным электрическим полем лазера. Исследователи из Оттавы теоретически показывают, что эффективность значительно повышается за счет использования так называемого азимутального векторного лазерного луча. В моделируемом ими пучке силовые линии электрического поля образуют круги вокруг оси пучка, причем поле наиболее интенсивно в кольцевой области. Этот луч отправляет электроны по орбите вокруг кольца, поэтому они создают магнитное поле в направлении луча.

Этот метод включает еще один важный компонент: второй лазерный луч, имеющий в два раза частоту первого, что необходимо для решения проблемы с одним лучом. Электрон, извлекаемый из атома осциллирующим лазерным полем, действует как масса, тянущая назад и вперед пружиной. Максимальное усилие пружины возникает в моменты, когда масса меняет направление и имеет нулевую скорость. Точно так же, когда электрическое поле находится на пике и, скорее всего, ионизирует атом, электрон имеет нулевую скорость и не может вносить вклад в круговой ток.Второе лазерное поле, добавленное к первому с соответствующей фазовой задержкой, изменяет синхронизацию и позволяет электрону двигаться.

Моделирование, проведенное командой, показывает, что комбинация основного лазерного импульса длительностью 11,3 микроджоулей и импульса с удвоенной частотой 1,9 микроджоулей может включить поле 8 тесла за 50 фемтосекунд. Хотя эти энергии лазера достаточно умеренные, чтобы их можно было производить в типичных лазерных лабораториях, они могут разрушить образец, магнитные свойства которого измерялись. Самые сильные магнитные поля будут генерироваться в центре орбиты циркулирующих электронов, которая находится на линии распространения лазерных импульсов.Но исследователи отмечают в своей статье, что образец не обязательно должен быть так близко, потому что сильное поле будет распространяться на некоторое расстояние от плазмы.

«Это развитие немного похоже на переход от обычных электромагнитов», который произошел, когда в экспериментах по ядерному магнитному резонансу (ЯМР) начали использовать сверхпроводящие соленоиды, — говорит Марк Фриман из Университета Альберты в Канаде, который изучает сверхбыстрые магнитные явления в нанометровом масштабе. Он предполагает, что так же, как сверхпроводящие магниты позволили МРТ развиваться из ЯМР, метод, предложенный Коркумом и его коллегами, может предложить аналогичный прогресс для понимания сверхбыстрых процессов.

Это исследование опубликовано в журнале Physical Review X .

–Анна Демминг

Анна Демминг — внештатный писатель из Бристоля, Великобритания.


Тематические области

Статьи по теме

Магнетизм

Раскрытие спинового смешения в ферромагнетиках

Эксперименты с тонкими магнитными пленками показывают, что смешивание спиновых состояний оказывает большее, чем ожидалось, влияние на спектроскопические измерения, используемые для исследования магнитных взаимодействий в материалах. Подробнее »

Другие статьи

23.2: Индукция в движущемся проводнике

Если мы определим проволочную петлю, есть два способа изменения магнитного потока через эту петлю:

  1. Магнитное поле может изменять величину или направление, как мы видели в примере , пример 23.1.1 .
  2. Петля может изменять размер или ориентацию относительно магнитного поля.

В этом разделе мы исследуем последний случай, иногда называемый «двигательной ЭДС», поскольку индуцированное напряжение является результатом движения от контура, в котором индуцируется напряжение.

Движение штанги по двум параллельным рельсам

Рассмотрим U-образную направляющую в однородном магнитном поле, по которой стержень может скользить без трения, как показано на рисунке \ (\ PageIndex {1} \). Полоса длины \ (L \) движется вправо с постоянной скоростью \ (v \).

Рисунок \ (\ PageIndex {1} \): U-образная направляющая, по которой может скользить полоса длиной \ (L \). Система погружена в магнитное поле, указывающее за пределы страницы. Полоса движется вправо с постоянной скоростью \ (v \).

Штанга и рельсы образуют замкнутый контур площадью:

\ [\ begin {выровнено} A (t) = Lw (t) = Lvt \ end {выровнено} \]

, который со временем увеличивается. Величина потока через контур будет увеличиваться со временем, что приведет к возникновению индуцированного тока (по часовой стрелке, согласно закону Ленца). В какой-то момент \ (t \) поток через петлю определяется выражением:

\ [\ begin {выравнивается} \ Phi_B (t) & = \ vec B \ cdot \ vec A = BA = BLvt \ end {выравнивается} \]

, где мы выбрали \ (\ vec A \) параллельным вектору магнитного поля.

Поскольку мы уже использовали закон Ленца, чтобы доказать, что ток должен идти по часовой стрелке, мы можем использовать закон Фарадея для определения величины индуцированного напряжения и игнорировать отрицательный знак:

\ [\ begin {align} \ Delta V = \ frac {d \ Phi_B} {dt} = \ frac {d} {dt} BLvt = BLv \ end {align} \]

Предположим, что рельсы сверхпроводящие (не имеют сопротивления), а стержень имеет сопротивление \ (R \). 2} {R} \ end {align} \]

Таким образом, стержень не может двигаться с постоянной скоростью сам по себе, иначе энергия будет производиться из ничего.К штанге должна прилагаться сила, чтобы она двигалась с постоянной скоростью.

Напомним, что на провод с током в магнитном поле действует сила магнитного поля. В этом случае стержень длиной \ (L \) переносит ток \ (I \) в магнитном поле \ (\ vec B \) (перпендикулярно току), так что сила, действующая на стержень выдает:

\ [\ начало {выровнено} \ vec F_B = I \ vec L \ times \ vec B \ end {выровнено} \]

и указывает налево (правило правой руки).2} {R} \ end {align} \]

, где мы предположили, что полоса движется в положительном направлении \ (x \). Это именно та скорость, с которой электрическая энергия рассеивается в баре! Другими словами, выполняя механическую работу со штангой, мы можем создать индуцированный ток, который будет рассеивать эту энергию с той же скоростью, с которой мы работаем. Мы можем преобразовывать механическую работу в электрическую энергию!

Наконец, также обратите внимание, что эта ситуация тесно связана с эффектом Холла, который представляет собой просто другой способ взглянуть на эту проблему.Рассмотрим электроны, которые находятся в стержне, поскольку стержень движется с постоянной скоростью вправо через магнитное поле (не обращайте внимания на наличие U-образной направляющей). Электроны будут испытывать магнитную силу, направленную вверх (в соответствии с направлением индуцированного тока, о котором говорилось выше). В конце концов, электроны накапливаются в верхней части стержня и начинают препятствовать накоплению там большего количества электронов, создавая электрическое поле \ (\ vec E \) в стержне. Условие равновесия состоит в том, что магнитная сила и электрическая сила имеют одинаковую величину (и противоположные направления):

\ [\ begin {Выровнено} qvB & = qE \\ E & = vB \ end {Выровнено} \]

(Холловская) разность потенциалов на стержне длиной \ (L \) с электрическим полем \ (E \) определяется выражением:

\ [\ begin {выравнивается} \ Delta V_ {Hall} = EL = vBL \ end {выравнивается} \]

, где мы предположили, что электрическое поле в стержне однородно. Эта разность потенциалов идентична той, которую мы вычислили по закону Фарадея. Рассмотрение этого примера как другого проявления эффекта Холла дает некоторое представление о том, что на самом деле происходит на микроскопическом уровне, когда индуцируется ток.

Генератор

Электрический генератор используется для создания переменного индуцированного напряжения / тока путем вращения катушки внутри постоянного и однородного магнитного поля. В этом случае ток индуцируется, потому что угол между магнитным полем и вектором элемента поверхности \ (d \ vec A \) изменяется со временем.

Рассмотрим одиночный виток провода с площадью \ (A \), который может вращаться в однородном и постоянном магнитном поле, \ (\ vec B \), как показано на рисунке \ (\ PageIndex {2} \).

Рисунок \ (\ PageIndex {2} \): петля из проволоки вращается в постоянном и однородном магнитном поле. В момент времени \ (t = 0 \) (левая панель) петля лежит в плоскости \ (yz \). Петля вращается вокруг оси \ (y \) с постоянной угловой скоростью \ (\ vec ω \). Через некоторое время t петля повернулась на угол \ (θ = ωt \) (правая панель, если смотреть сверху, если смотреть вниз на плоскость \ (xz \)).

В системе координат, показанной на рисунке \ (\ PageIndex {2} \), контур имеет постоянную угловую скорость \ (\ vec \ omega \) в положительном направлении \ (y \) и вращается вокруг ось \ (y \) (с началом в центре катушки). В момент времени \ (t = 0 \) (левая панель) петля лежит в плоскости \ (yz \), и мы выбираем вектор \ (\ vec A \) (используемый для вычисления потока), чтобы он находился в положительное направление \ (x \) в момент времени \ (t = 0 \). По мере вращения катушки будет вращаться вектор \ (\ vec A \), который легче визуализировать, чем катушку.В какой-то момент \ (t \) вектор \ (\ vec A \) составит угол \ (\ theta = \ omega t \) с осью \ (x \) (правая панель). Магнитное поле постоянно и в положительном направлении \ (x \), \ (\ vec B = B \ hat x \). То есть угол между вектором \ (\ vec A \) и магнитным полем \ (\ vec B \) будет равен \ (\ theta = \ omega t \).

В какой-то момент \ (t \) вектор \ (\ vec A \) задается следующим образом: \ [\ begin {align} \ vec A (t) = A (\ cos \ theta \ hat x — \ sin \ theta \ hat z) = A (\ cos (\ omega t) \ hat x — \ sin (\ omega t) \ hat z) \ конец {выровнено} \]

Мы можем вычислить поток магнитного поля через петлю в какой-то момент времени \ (t \): \ [\ begin {align} \ Phi_B (t) = \ vec B \ cdot \ vec A = (B \ hat x) \ cdot (\ cos (\ omega t) \ hat x — \ sin (\ omega t) \ hat z) = AB \ cos (\ omega t) \ end {align} \], где мы не использовали интеграл для потока, так как магнитное поле постоянно по площади контура.Индуцированное напряжение определяется законом Фарадея: \ [\ begin {align} \ Delta V = — \ frac {d \ Phi_B} {dt} = — \ frac {d} {dt} AB \ cos (\ omega t) = AB \ omega \ sin (\ omega t) \ end {align} \] Если генератор включает \ (N \) петель в катушке, то индуцированное напряжение определяется следующим образом: \ [\ begin {align} \ Delta V = NAB \ omega \ sin (\ omega t) \ end {align} \] Как вы можете видеть, напряжение колеблется со временем между \ (\ pm NAB \ omega \), что соответствует переменному напряжению. Кроме того, поскольку знак \ (\ Delta V \) меняется со временем (из-за синусоидальной функции), относительная ориентация между \ (\ vec A \) и магнитным дипольным моментом индуцированного тока также изменяется со временем. , показывая, что индуцированный ток в катушке меняет направление каждые пол-оборота (переменный ток).

Генераторы, вырабатывающие переменное напряжение, которое мы находим в наших розетках, работают по тому же принципу. Например, в гидроэлектрической плотине давление воды с высоты плотины используется для проталкивания воды через турбину (по сути пропеллер), которая вращает набор катушек внутри сильного постоянного магнита. Различные элементы управления позволяют регулировать частоту вращения турбины для выработки переменного тока желаемой частоты (\ (50 \ text {Hz} \) в большинстве стран мира, \ (60 \ text {Hz} \) в Северная Америка и несколько других стран).

Поскольку генератор вырабатывает ток, который может рассеивать электрическую энергию, необходимо выполнять работу, чтобы катушка в генераторе оставалась вращающейся. 2 (\ омега т) \)).Таким образом, крутящий момент, прилагаемый магнитным полем к катушке, всегда направлен в противоположном направлении вращения (напомним, что катушка имеет угловую скорость в положительном направлении \ (y \)). Иногда это называют «противодействующим моментом». Если мы хотим, чтобы катушка поддерживала постоянную угловую скорость, мы должны приложить крутящий момент в положительном направлении \ (y \), чтобы противодействовать крутящему моменту от магнитного поля. Обратите внимание, что крутящий момент, который мы должны приложить, чтобы катушка вращалась с постоянной угловой скоростью, не является постоянным во времени (но всегда в одном и том же направлении).

Вы можете легко проверить, что работа, которую вы должны выполнить, приложив крутящий момент, такая же, как электрическая мощность, рассеиваемая током в резисторе \ (R \). Таким образом, генератор представляет собой устройство для преобразования механической работы в электрическую энергию (в частности, с переменным током).

Вращающееся магнитное поле — обзор

6.6.2 Генератор самовозбуждающейся индукции

В предыдущих разделах мы подчеркивали, что вращающееся магнитное поле или возбуждение обеспечивается током намагничивания, потребляемым от источника питания, поэтому казалось бы очевидным, что двигатель не мог генерировать, если не был обеспечен источник питания для обеспечения тока намагничивания.Тем не менее, можно заставить машину «самовозбуждаться», если условия подходящие, и, учитывая надежность двигателя с кожухом, это может сделать его привлекательным предложением, особенно для небольших изолированных установок.

В главе 5 мы видели, что когда асинхронный двигатель работает с нормальной скоростью, вращающееся магнитное поле, которое создает токи и крутящий момент на роторе, также индуцирует сбалансированные трехфазные наведенные ЭДС в обмотках статора, величина ЭДС ненамного меньше напряжения электросети.Итак, чтобы действовать как независимый генератор, мы хотим создать вращающееся магнитное поле без необходимости подключения к активному источнику напряжения.

Мы обсуждали аналогичный вопрос в главе 3 в связи с самовозбуждением шунта постоянного тока. машина. Мы видели, что если после выключения машины в полюсах поля остается достаточно остаточного магнитного потока, то э.д.с. возникающий при вращении вала мог начать подавать ток на обмотку возбуждения, тем самым увеличивая магнитный поток, дополнительно повышая e.м.ф. и инициирование процесса положительной обратной связи (или начальной загрузки), который в конечном итоге стабилизировался характеристикой насыщения железа в магнитной цепи.

К счастью, то же самое может быть достигнуто с помощью изолированного асинхронного двигателя. Мы стремимся извлечь выгоду из остаточного магнетизма в железе ротора и, поворачивая ротор, генерировать начальное напряжение в статоре, чтобы запустить процесс. Э.д.с. индуцированный должен затем управлять током, чтобы усилить остаточное поле и способствовать положительной обратной связи для создания бегущего поля магнитного потока.В отличие от постоянного тока Однако асинхронный двигатель имеет только одну обмотку, которая обеспечивает функции возбуждения и преобразования энергии, поэтому, учитывая, что мы хотим довести напряжение на клеммах до его номинального уровня, прежде чем подключать любую электрическую нагрузку, которую мы планируем подавать, очевидно, что необходимо обеспечить замкнутый путь для потенциального тока возбуждения. Этот путь должен способствовать нарастанию тока намагничивания и, следовательно, напряжения на клеммах.

«Поощрение» тока означает обеспечение пути с очень низким импедансом, так что небольшое напряжение вызывает большой ток, а поскольку мы имеем дело с a.c. величин, мы, естественно, стремимся использовать явление резонанса, размещая набор конденсаторов параллельно (индуктивным) обмоткам машины, как показано на рис. 6.17.

Рис. 6.17. Самовозбуждающийся индукционный генератор. Нагрузка подключается только после того, как на статоре нарастает напряжение.

Реактивное сопротивление параллельной цепи, состоящей из чистой индуктивности ( L ) и емкости ( C ) на угловой частоте ω, определяется как X = ωL − 1ωC, поэтому на низких и высоких частотах реактивное сопротивление очень велико, но на так называемой резонансной частоте (ω0 = 1LC) реактивное сопротивление становится равным нулю.Здесь индуктивность — это намагничивающая индуктивность каждой фазы индукционной машины, а C — добавленная емкость, значение выбирается так, чтобы обеспечить резонанс на желаемой частоте генерации. Конечно, схема не идеальна из-за сопротивления обмоток, но, тем не менее, индуктивное реактивное сопротивление можно «отрегулировать» путем выбора емкости, оставляя контур циркуляции с очень низким сопротивлением. Следовательно, вращая ротор со скоростью, при которой желаемая частота создается остаточным магнетизмом (например,г. 1800 об / мин для 4-полюсного двигателя с частотой 60 Гц), начальная скромная ЭДС. производит непропорционально высокий ток, и поток увеличивается до тех пор, пока не будет ограничен нелинейной характеристикой насыщения железной магнитной цепи. Затем мы получаем сбалансированные трехфазные напряжения на клеммах, и нагрузка может быть приложена путем включения переключателя S (рис. 6.17).

Приведенное выше описание дает только общую схему механизма самовозбуждения. Такая схема была бы удовлетворительной только для очень ограниченного диапазона приводимых скоростей и нагрузок, и на практике требуются дополнительные функции управления для изменения эффективной емкости (обычно с использованием управления симистором), чтобы поддерживать постоянным напряжение при нагрузке и / или скорость варьируется в широких пределах.

МАГНИТНЫЙ ИНДУКЦИОННЫЙ ПЕРЕМЕШИТЕЛЬ

Детали

Магнитно-индукционная мешалка
Прочная, без двигателя и не требует обслуживания

Превосходный функциональный дизайн

  • Усовершенствованная технология магнитной катушки обеспечивает вращение стержня мешалки, поддерживая постоянную постоянную скорость для воспроизводимых результатов
  • Магнитная связь оптимизирована за счет использования переменного тока в качестве движущей силы, достаточно сильной для перемешивания вязких растворов.
  • Работа без двигателя генерирует минимальное тепло, идеально подходит для перемешивания чувствительных к температуре образцов и окружающей среды в течение длительного времени
  • Отсутствие движущихся частей, меньшая вибрация и более тихая работа по сравнению с традиционными магнитными мешалками.

Интуитивное управление

  • Простота программирования нескольких режимов перемешивания
  • Яркий цифровой дисплей точно контролирует время и скорость
  • Быстро достигает скорости перемешивания с быстрым ускорением и торможением (менее 10 секунд)

Технические характеристики:

Диапазон скоростей: Переменная от 10 до 2000 об / мин, с шагом 1 об / мин
Диапазон времени работы: От 30 секунд до 60 минут, переменная, с шагом 1 секунда или непрерывно
Режим перемешивания: Одинарный по часовой стрелке, одиночный c. По часовой стрелке, автореверсивное вращение (от 1 до 99 циклов при нагрузке 50%)
Вместимость: 3 литра плюс
Поверхность смешивания: Диаметр 165 мм, силиконовый мат 160 мм Диаметр
Вес: 1,13 кг (2,50 фунта)
Сертификаты: CE, SGS (США, Калифорния), ROHS3 и WEEE
Пятилетняя гарантия

В комплект входит:

  • Магнитно-индукционная мешалка
  • 2 стержня для перемешивания 35 мм x 12 мм, цилиндрическая форма
  • 1 Силиконовая крышка противоскольжения
  • 1 низковольтный адаптер питания с двойной изоляцией (110–240 В переменного тока, 50/60 Гц) с 4 сменными вилками

Закон Фарадея

Концепция закона Фарадея состоит в том, что любое изменение магнитной среды катушки с проволокой вызывает «индуцирование» в катушке напряжения (ЭДС).Независимо от того, как производится изменение, напряжение будет генерироваться. Изменение может быть произведено изменением напряженности магнитного поля, перемещением магнита к катушке или от нее, перемещением катушки в магнитное поле или из него, вращением катушки относительно магнита и т. Д.

Слева вверху на иллюстрации две катушки пронизаны изменяющимся магнитным полем. Магнитный поток F определяется как F = BA, где B — магнитное поле или среднее магнитное поле, а A — площадь, перпендикулярная магнитному полю.Обратите внимание, что для данной скорости изменения потока через катушку генерируемое напряжение пропорционально количеству витков N, через которые проходит поток. Этот пример относится к работе трансформаторов, где магнитный поток обычно следует за железным сердечником от первичной катушки ко вторичной катушке и генерирует вторичное напряжение, пропорциональное количеству витков во вторичной катушке.

По часовой стрелке второй пример показывает напряжение, генерируемое при перемещении катушки в магнитное поле.Иногда это называют «ЭДС движения», и она пропорциональна скорости, с которой катушка перемещается в магнитное поле. Эта скорость может быть выражена через скорость изменения области, находящейся в магнитном поле.

Следующий пример — это стандартная геометрия генератора переменного тока, в которой катушка с проволокой вращается в магнитном поле. Вращение изменяет перпендикулярную площадь катушки по отношению к магнитному полю и генерирует напряжение, пропорциональное мгновенной скорости изменения магнитного потока.При постоянной скорости вращения генерируемое напряжение является синусоидальным.

Последний пример показывает, что напряжение можно генерировать, перемещая магнит по направлению к катушке с проволокой или от нее. При постоянной площади изменяющееся магнитное поле вызывает генерируемое напряжение. Направление или «чувство» генерируемого напряжения таково, что любой результирующий ток создает магнитное поле, противодействующее изменению магнитного поля, которое его создало. Это значение знака минус в законе Фарадея, и это называется законом Ленца.

Игрушки, уловки и дразнилки с физикой

МЕДЛЕННАЯ ПАДЕНИЕ

[Новый текст пурпурным. ]

Рис. 1. Падение магнита в трубку.

Аристотель писал, что падающие тела спускались на землю с постоянной скоростью. Галилей показал, что на самом деле они падают с постоянным ускорением, то есть непрерывно ускоряются. Тела без опоры, как камни, падают вниз с ускорением около 9.8 м / с 2 (32 фут / с 2 ), если сопротивление воздуха незначительно. Некоторые тела, например падающие листья или листы бумаги, действительно падают медленнее, но обычно не падают вниз по прямой линии. Итак, тело, медленно падающее вниз по прямому пути с постоянной скоростью, — это то, что мы не привыкли видеть. Один из способов добиться этого — бросить твердое тело в емкость из прозрачного вязкого материала, такого как глицерин или кукурузный сироп. Гораздо менее беспорядочно использовать электромагнитную индукцию.

Очень прочные редкоземельные магниты из неодима, железа и бора (NdFeB) доступны во многих размерах и формах: клиндерные, дисковые и сферические. Стоят они относительно недорого. Такой магнит при падении на вертикальную трубку из цветного металла будет спускаться на удивление медленно. Полное оборудование для этого эксперимента можно приобрести в научных магазинах. Он состоит из алюминиевой трубки длиной 5 футов и сильного цилиндрического магнита, который свободно помещается внутри трубки. Некоторые коммерческие версии с более короткими трубками имеют отверстия сбоку трубки, чтобы вы могли наблюдать за медленным продвижением магнита.

Вы можете сделать свой собственный аппарат с меньшими затратами.Алюминиевые трубки диаметром один дюйм доступны в строительных магазинах и имеют длину 6 футов. Цилиндрический магнит диаметром 3/4 дюйма свободно помещается внутрь (рис. 1). Трубка может быть из любого цветного металла с хорошей проводимостью, например из меди или алюминия. Трубка с внешним диаметром 1/2 дюйма может использоваться с магнитом диаметром 7/16 дюйма. Могут использоваться более короткие трубки.

Бросьте небольшой резиновый мяч в вертикальную трубу, чтобы продемонстрировать, как быстро он падает. Затем опустите магнит в трубку. Люди ожидают, что он появится быстро, но на это нужно время.Некоторые полагают, что он застрял внутри трубки. Когда он наконец выходит из нижней части трубки, он ускоряется. Ловите магнит рукой, когда он выходит из трубки, или дайте ему упасть в мягкий ящик, чтобы он не ударился об пол и не разбился.

Если магнит достаточно мал, его можно опустить по трубке в любом направлении. Обратите внимание, что если небольшой магнит упасть в трубку на ребре, он повернется при падении и выйдет наружу, ориентируясь своими полюсами вдоль линии вверх / вниз.

Причина, по которой это работает.

Так почему же магнит падает так медленно? Движущееся поле магнита воздействует на свободные электроны в металлической трубке, создавая индуцированные электронные токи по окружности трубки. У движущихся электронов есть магнитное поле, сила которого пропорциональна их скорости. Магнитное поле всех этих движущихся электронов действует в направлении, противодействующем движению магнита.

Это пример закона Ленца: Изменяющееся магнитное поле индуцирует токи в проводниках.Эти индуцированные токи создают магнитное поле, которое противодействует вызвавшему его изменению. [Генрих Фридрих Эмиль Ленц (180465), 1834.] Закон Ленца является следствием третьего закона Ньютона, который гласит, что если тело A действует на тело B, то B оказывает на тело A силу равного размера, но противоположно направленную. Можно было бы вдаваться в беспорядочные подробности законов этих полей, токов и сил, но закон Ленца все это кратко говорит. Другими словами, «Индуцированный ток всегда имеет такое направление, чтобы противодействовать движению или изменению, вызывающему его».Это относится к магниту, падающему в трубку, а также ко всем вариантам этой демонстрации, описанным ниже. Если бы шнур был прикреплен к магниту и его протянули на вверх, на через трубку, индуцированные токи оказали бы на него силу , направленную вниз, , противодействуя движению магнита, как предсказывает закон Лена. Разве природа не извращена?

Таким образом, движению падающего магнита противодействуют восходящие силы из-за этих индуцированных токов. Величина наведенных токов очень быстро, , увеличивается до тех пор, пока сила, направленная вверх на магнит, не станет равной величине силы тяжести, направленной вниз.Но к тому времени, как это происходит, магнит уже движется вниз и продолжает двигаться вниз с постоянной скоростью, поскольку результирующая сила (сила тяжести плюс магнит) на нем теперь равна нулю, его ускорение равно нулю, а скорость постоянна.

Рис. 2. Физика.

Схема дает схематическое представление о том, что происходит на начальном уровне физики. Некоторые силовые линии падающего магнита показаны (черным цветом).Там, где они пересекаются со стенками металлической трубки, они воздействуют на свободные электроны, вызывая токи по всей длине трубки вблизи магнита. Показаны только две из этих токовых петель (красным). Эти токовые петли создают магнитные поля, как если бы они были магнитами, с полярностями, как показано (также красным). Как магнитные полюса отталкиваются, так и противоположные полюса притягиваются. Таким образом, эти токи действуют вверх как на северный, так и на южный полюса магнита. Конечно, это только описание, поскольку есть некоторые интересные детали, связанные с силой Лоренца на движущихся электронах, от которых мы не избавимся, поскольку объяснение геометрических соотношений было бы длинным.Интересно то, что другие демонстрации, описанные ниже, все зависят от одних и тех же законов физики, но геометрия сильно отличается.

Падающая сфера. Никелированные намагниченные сферы из редкоземельных элементов также доступны во многих интернет-источниках. Получите такой сферический магнит, который немного меньше внутреннего диаметра трубки. Сфера будет медленно падать по трубке, как и цилиндр. Отметьте «полюса» магнита маленькими цветными наклейками. Теперь наблюдайте за сферой сверху, когда она падает в трубу. Всегда ли сфера вращается и переориентируется так, чтобы один из полюсов был вверх, а другой — вниз? Или он переориентируется с горизонтальной магнитной осью? Почему?

Внимание! Эти магниты очень сильны по сравнению с их весом и могут воздействовать на объекты, находящиеся на расстоянии более фута. Не размещайте их рядом с кредитными картами, компьютерами, видеомагнитофонами, телевизорами, сотовыми телефонами, кардиостимуляторами, компьютерными дисками, магнитной лентой или любыми магнитными компьютерными носителями.Никелированное покрытие предотвращает появление царапин и сколов на магнитах, но они по-прежнему хрупкие, и нельзя допускать ударов друг друга или других предметов, так как небольшие острые сколы могут быть сбиты.

Обращайтесь с маленькими магнитами так же, как с лекарствами, отпускаемыми по рецепту: не кладите их туда, где их могут найти дети, потому что дети будут класть что-нибудь в рот. Проглоченный магнит пройдет, но если два магнита проглотить по отдельности или проглотить магнит и предмет из черного металла, они могут быть притянуты друг к другу с кишечной стенкой между ними, пробивая кишечник.

ВИДИМЫЙ МЕДЛЕННЫЙ ПАДЕНИЕ

Рис. 3. Узел магнита,
, как видно сверху.

Проблема с предыдущими демонстрациями заключается в том, что вы не можете наблюдать за магнитом во время его падения и не можете понять, что почти все падение происходит с постоянной скоростью. Итак, несколько лет назад я разработал улучшенную версию, которая имеет множество преимуществ.

Я использую алюминиевый стержень длиной 4 или 5 футов с поперечным сечением 1/10 на 3/4 дюйма. Это стоило всего несколько долларов. Я приобрел два цилиндрических гальванических магнита из редкоземельных металлов диаметром 11 мм и толщиной 5 мм. Стоят они около 1 доллара каждый. В пакете написано, что каждый поднимет 5 фунтов. Используя мягкий железный ремешок шириной около 3/4 дюйма, я сформировал прямоугольную рамку размером около 5/8 на 1 1/4 дюйма. Магниты (серые) держатся внутри рамки, оставляя открытые полюса на расстоянии около 5 мм. Магниты имеют противоположные полюса, обращенные друг к другу, и после сборки вся вещь действует как один магнит с небольшим зазором между противоположными полюсами.(См. Рис. 3.) Эта рамка свободно ложится на алюминиевую полосу. При падении он плавно скользит по алюминиевой полосе с медленной и постоянной скоростью.

Рис. 4. Узел магнита с использованием одинарной изогнутой ленты Meccano, деталь 102.

Еще проще сделать ту версию, которую я здесь сфотографировал (рис. 4 и 5). Я использовал U-образный стальной кронштейн из конструктора Meccano. (Деталь Meccano 102, полоса одинарная гнутая. ) Он немного тяжелее с одной стороны, поэтому вам нужно держать алюминиевый стержень под небольшим углом к ​​вертикали, чтобы падающие магниты не уходили в офсайд.

Рис. 5. Магниты падают.

У этих «открытых» версий есть еще одно преимущество. Вы можете держать рамку магнита в руке и перемещать ее вперед и назад по алюминиевой полосе, чувствуя противодействие сил движению магнита, в каком бы направлении вы ни двигались.

Обратите внимание, что в обеих этих демонстрациях магнит выравнивается, чтобы упасть, не касаясь алюминиевой трубки или полосы, поэтому трение незначительно.

Все проще и проще

Сильные магниты доступны в форме кольца или пончика. Найдите тот, который просто надевается на алюминиевый стержень. Я считаю, что эта версия не так сильно снижает скорость, как версия, описанная выше. Мне нравится класть на стержень цветную деревянную бусину и магнит-бублик так, чтобы бусинка находилась под магнитом. Отпустите оба сразу. Бусинка быстро падает; магнит занимает больше времени. Это гоночная игрушка зайца и черепахи. Переверните стержень, и шарик и магнит медленно упадут, при этом шарик будет наверху магнита.

Медленное качение.

Рис. 6. Магнит, катящийся по алюминиевой дорожке.

Кто-то однажды спросил меня, будет ли препятствовать вращению цилиндрического магнита по наклонному алюминиевому листу вихревые токи.Конечно, такие токи также должны создаваться катящимся магнитом, но геометрия ситуации делает их относительно неэффективными. Тем не менее, вот способ сделать дисковый магнит медленно катящимся, используя алюминиевый приклад с углом в 1 дюйм (стандартный предмет хозяйственного магазина длиной 6 или 8 футов). Дисковый магнит (намагниченный вдоль оси цилиндра) катится одной стороной рядом с одной стороной алюминиевой дорожки.
(Рис.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *