Источники энергии – Солнце. Использование энергии, излучаемой Солнцем. Солнца мощность. Солнца мощность


Источники энергии – Солнце. Использование энергии, излучаемой Солнцем. Солнца мощность

Мощность излучения Солнца и использование энергии на Земле

Солнце вид с космического аппарата SOHO

Почти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 4912

spacegid.com

34. Какую мощность излучения р имеет Солнце? Излучение Солнца считать близким к излучению абсолютно черного тела. Эффективная температура Солнца 5800 к. Радиус Солнца считать равным 7108 м.

Решение

Энергетическая светимость Солнца (как абсолютно черного тела) по закону Стефана-Больцмана равна: . С другой стороны по определению, гдеE- излучаемая энергия, S- площадь излучающей поверхности, t-время, в течении которого происходит излучение, N- мощность излучения.

Т.о.,  (Считаем Солнце шаром с радиусом 7108 м). Получаем, что мощность излучения Солнца составляет 3,91026 Вт

35. Найти солнечную постоянную К, т.е. количество лучистой энергии, посылаемой Солнцем в единицу времени через единичную площадку, перпендикулярную к солнечным лучам и находящуюся на таком же расстоянии от него, как и Земля. Температура поверхности Солнца 5800 К. Излучение Солнца считать близким к излучению абсолютно черного тела.

Решение.

Энергетическая светимость Солнца (как абсолютно черного тела) по закону Стефана-Больцмана равна: . А мощность солнечного излучения, гдеr- радиус Солнца. Т.к. солнечная энергия не теряется, то на расстоянии орбиты Земли .

Получаем .Откуда,Е=1389 Вт/м2.

36. Известно, что атмосфера Земли поглощает 10% лучистой энергии, посылаемой Солнцем. Определите максимальную и минимальную мощность излучения L, получаемую от Солнца горизонтальным участком Земли, на котором расположен город Калуга. Площадь города принять равной 50 км2. Излучение Солнца считать близким к излучению абсолютно черного тела.

Решение

Максимальная мощность излучения Lmax, получаемая от Солнца горизонтальным участком Земли, будет в тот день, когда высота Солнца над горизонтом наибольшая (это день летнего солнцестояния). Определим в этот день высоту Солнца в Калуге.

Широта Калуги =54 31, а склонение Солнца =23,5, тогда hmax=90- 54,5+ 23,5=59 (по формуле h = 90-  + ).

Мощность излучения, получаемая от Солнца горизонтальным участком, равна , гдеЕ – солнечная постоянная для Земли, S - площадь участка, перпендикулярного к солнечным лучам, равная (S – площадь данного участка (города Калуги)), n- коэффициент поглощения земной атмосферы.

Т.о.,,Lmax=51010 Вт.

Минимальная мощность излучения Lmin, получаемая от Солнца горизонтальным участком Земли, будет в тот день, когда высота Солнца над горизонтом наименьшая (это день зимнего солнцестояния). Определим в этот день высоту Солнца в Калуге. Склонение Солнца в этот день =-23,5, тогда hmin=90- 54,5- 23,5=12. Минимальная же мощность излучения Lmin будет равна ,

Lmin= 1,21010 Вт.

37. В 1947 г в западных отрогах Сихотэ-Алиня (Приморский край) упал огромный железо-никелевый метеорит. Во время движения в атмосфере он разбился на многочисленные осколки и рассеялся металлическим дождем на площади 35 км2. Масса метеорита оценивается в 60 т, общий вес собранных осколков достиг 27 т. В Калужском государственном музее истории космонавтики им. К.Э. Циолковского хранится осколок сихоте-алиньского метеорита массой 7,7 кг. Оцените массу никеля в этом метеорите, если процентное содержание железа в нем 93,3%, а никеля – 6%.

Дано:

Решение:

Рассчитаем массу никеля в метеорите по формуле:

Ответ: 0,46 кг никеля.

38. Видеокамеры лунного зонда «Клементина» запечатлели поверхность Луны на 11 частотах видимого и инфракрасного диапазона спектра. Съемка на волнах 750 и 950 нм позволила составить карту распределения железа в поверхностных лунных грунтах. Наибольшая концентрация этого металла (до 16% оксида железа (II)) отмечена в морях видимой стороны, наименьшая - в центральных областях обратной стороны. В будущем, для нужд лунного производства, предполагается наладить получение железа на Луне. На Земле одной из наиболее богатых железом горных пород является магнитный железняк, содержащий до 70% железа. Сравните массу лунного грунта, богатого железом, и магнитного железняка, которые необходимо переработать для получения металлического железа массой 1,0 т.

Дано:

Решение:

1. Рассчитаем массу магнитного железняка, содержащую 1,0 т железа:

2. Найдем массовую долю железа в лунном грунте.

Рассчитаем массовую долю железа в оксиде железа (II), как отношение относительной атомной массы железа к относительной молекулярной массе оксида железа (II):

Массу железа в лунном грунте можно вычислить по формуле:

Рассчитаем массовую долю железа в лунном грунте:

3. Рассчитаем массу лунного грунта, содержащую 1,0 т железа:

Ответ: 1,4 т магнитного железняка; 7,7 т лунного грунта.

30. В Калужском Государственном музеи истории космонавтики среди образцов минералов, доставленных с поверхности Луны автоматической станцией «Луна-24», представлен оливин. На Земле оливин распространенный силикатный минерал состав которого плавно меняется от Mg2SiO4 (фостерит) до Fe2SiO4 (фаялит). Рассчитайте массовые доли кислорода в фостерите и фаялите.

szemp.ru

Энергия солнца Википедия

Карта солнечного излучения

Солнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемые источники энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой или солью для последующего использования нагретой воды для отопления, горячего водоснабжения или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP — Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света. Этот луч используется как источник тепловой энергии для нагрева рабочей жидкости.

Земные условия[ | код]

Карта солнечного излучения — Европа

Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в π раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.

Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.

Достоинства и недостатки[ |

ru-wiki.ru

Энергия Солнца.

Момент количества движения приводит в затруднение, когда мы пытаемся объяснить далекое прошлое Солнечной системы, но в настоящее время нет никаких доказательств, что момент количества движения Солнечно! системы не сохраняется. Однако, когда открыли закон сохранения энергии, он опирался на еще более шаткий фундамент. Па Земле справедливость закона была, в самом деле, очевидной, но Солнце являлось постоянным i убедительным свидетельством против него.

Рассмотрим Солнце.

Самая очевидная характеристика этого тела — количество излучаемого света и тепла. Несмотря па то что Солнце находится на расстоянии 150 ООО ООО км от Земли, оно освещает и согревает всю ее постоянно в течение всей истории. Один квадратный сантиметр поверхности Земли каждую минуту получает от полуденного Солнца 1,97 кал энергии в виде света и тепла. Эта величина, т. е. 1,97 кал/(см2*мин )называется солнечной постоянной.

Площадь поперечного сечения Земли в ПЛОСКОСТИ перпендикулярной идущей от Солнца радиации, равна приблизительно 1280 000 000 000 000 000, или 1.28* 1018 см2*( Очень большие числа и очень малые дроби, которые часто используют ученые, удобно записывать в виде степени. Так [1] 280 000 000 000 000 000 можно записать как 1,28*108, где 18 —показатель степени). Следовательно, полное излучение, попадающее каждую минуту на Землю, составляет приблизитель­но 2,51 • 1018 кал. Но даже это число никоим образом не выражает всю радиацию Солнца. Солнце излучает энергию во всех направлениях, и только очень малая часть ее попадает на крошечную Землю.

Вообразите огромную полую сферу с радиусом 150 000 000 км и с Солнцем в центре. Солнце освещало бы и нагревало каждую часть сферы, как Землю, а поверхность огромной сферы в два миллиарда раз превос­ходила бы поперечное сечение Земли. Это означает, что Солнце излучает в два миллиарда раз больше энергии, чем получает Земля. Полная энергия, излучаемая Солн­цем, равна 5,6-1027 кал/мин. Сколько же энергии излучи­ло Солнце за всю историю своего существования, если каждую минуту оно излучает в среднем 5,6* 1027 кал!

Тогда возникает критический вопрос: откуда берется вся эта энергия? Если закон сохранения энергии верен и для Солнца, невероятно огромные запасы энергии, из­вергаемые Солнцем в пространство, не могут возникать из ничего. Энергия только переходит из одной формы в другую, следовательно, солнечная радиация должна воз­никать за счет другой формы энергии. Но какой именно?

На первый взгляд кажется, что такой формой являет­ся химическая энергия. Горящий уголь, например, как и Солнце, выделяет свет и тепло, когда углерод угля и ки­слород воздуха, соединяясь, образуют двуокись углерода. Тогда, может быть, Солнце — огромный горящий кусок угля, и излучаемая им энергия получается за счет хими­ческой энергии?

Такое предположение легко опровергнуть. Химики решают совершенно точно, сколько энергии получается при сгорании данного количества угля. Предположим, что вся огромная масса Солнца (которая в 333 500 раз боль­ше массы Земли) состоит из угля и кислорода и излуча­ет каждую минуту 5,6*1027 кал. Солнце тогда было бы действительно горящим углем, освещающим и обогрева­ющим Солнечную систему. Какое время горел бы этот уголь, прежде чем на Солнце осталась только двуокись углерода? Ответ звучит довольно легкомысленно — в те­чение полутора тысяч лет!

Это очень маленький период времени. Он может охва­ти, лишь часть истории цивилизованного человечества (о целых эрах до нее и говорить нечего). Так как Солнце сияло с такой же силой во времена расцвета Римской империи, с какой оно светит и сейчас, без дальнейших ис­следований мы утверждаем, что оно не может быть горя­щим углем, иначе к настоящему времени оно погасло бы. Действительно, пока неизвестна химическая реакция, ко­торая снабдила бы Солнце необходимой энергией даже на короткий период существования цивилизованного че­ловечества.

Рассмотрим некоторые альтернативы химической энергии. Одной из них является кинетическая энергия.

На Земле проявление такой энергии случается каж­дый раз, когда в верхние слои атмосферы влетает метео­рит. Его кинетическая энергия в результате сопротивле­ния воздуха превращается в тепло. Даже крошечный ме­теорит размером с булавочную головку раскаляется до такой степени, что сияет на расстоянии в несколько кило­метров. Метеорит, весящий 1 г и движущийся с обычной для метеоритов скоростью (скажем, 30 км/сек), имеет ки­нетическую энергию более чем 5*1012 эрг, или около 120 ООО кал. Такой же метеорит, падающий на Солнце, разгонялся бы гораздо большей гравитационной силой Солнца до гораздо большей скорости, чем па Земле. По­этому он передавал бы Солнцу значительно большую энергию. Подсчитано, что один грамм вещества, падаю­щего на Солнце с большого расстояния, возместил бы 44 ООО ООО кал, потерянных Солнцем. Следовательно, ес­ли учесть всю энергию, излучаемую Солнцем, то дли полной ее компенсации на него ежеминутно должно па­дать 1,2*1020 г метеоритного вещества, т. е. более чем сто триллионов тонн вещества!

Расчет хорошо выглядел на бумаге, по астрономы отнеслись к этой ситуации с глубочайшим подозрением Во-первых, нет никаких доказательств, что Солнечная система настолько богата метеоритным материалом, ЧТО бы каждую минуту снабжать Солнце сотней гриллИ0Н0| тонн вещества на протяжении многих исторических   эр.

Во-вторых, если бы метеоритное вещество накапливалось на Солнце с такой скоростью, его масса увеличилась' бы на один процент за 300 000 лет. Такое увеличение сильно повлияло бы па гравитационное притяжение Солнца, зависящее от его массы. Если бы даже масса Солнца возрастала столь медленно, Земля постепенно приближалась бы к нему и наш год все время укорачи­вался бы. Каждый год становился бы фактически на дне секунды короче предыдущего, и астрономы немедленно зафиксировали бы этот факт. Но подобных изменений в Мине года не наблюдали. Поэтому предположение о том, что метеориты служат источником солнечной радиации, отвергли.

К более приемлемой альтернативе пришел в 1853 го­ду Гельмгольц— один из создателей закона сохранения 1Нергии. Зачем рассматривать метеориты, падающие на I плице, если может падать вещество самого Солнца? По­верхность Солнца отстоит от его центра на 696 000 км. Предположим, что поверхность медленно опускается, причем кинетическая энергия этого падения может пре­вратиться в излучение. Естественно, если бы с небольшого расстояния упал маленький кусочек солнечной поверх­ности, выделилось бы очень мало энергии. Однако если бы упала вся солнечная поверхность, т. е. если бы Солн­це сжалось, энергия излучения была бы огромной.

Гельмгольц показал, что скорость сжатия Солнца 0,01 1 см/мин достаточна для объяснения его радиации. Предположение было весьма заманчивым, ибо оно не требовало изменения солнечной массы и, следовательно, его гравитационного притяжения. Более того, изменение его диаметра в результате сжатия было бы небольшим. За все шесть тысяч лет существования человеческой ци­вилизации диаметр Солнца уменьшился бы только на 8OO км, т. е. весьма незначительно по сравнению с диа­метром Солнца 1 400 000 км. За 250 лет, прошедшие со Времени изобретения телескопа до работ Гельмгольца, диаметр Солнца сократился бы только на 37 км. Естественно, астрономы не заметили бы такого уменьшения.

 

Проблема солнечной радиации казалась решенной, если  бы не одно серьезное упущение: Солнце излучало энергию не только в период существования человеческой Цивилизации, но и в течение всего времени до того, как Человек вообще появился на Земле. Во времена Гельмгольца никто точно не знал, как долго длился этот промежуток времени. Сам Гельмгольц чувствовал, что в исследуемом  вопросе не все продумано до конца.

Если бы солнечное вещество падало внутрь с большо­го расстояния, скажем, с земной орбиты, выделялось бы достаточно энергии, чтобы Солнце излучало ее с той же скоростью, что и сейчас, в течение 18000000 лет. Однако [ТО означало бы, что возраст Земли не больше 18 000 000 лет, ибо она вряд ли существовала в своем теперешнем виде, когда вещество Солнца простиралось до областей, через которые теперь движется Земля. Геологи, изучав­шие медленные изменения земной коры, казалось, неоп­ровержимо доказали, что Земля существует не десятки, а сотни миллионов лет, возможно, даже миллиарды лет, причем все это время Солнце сияло с той же силой, с ка­кой оно светит сейчас. В 1859 году английским натура­листом Чарльзом Робертом Дарвином была создана «те­ория эволюции путем естественного отбора». Если эволю­ция действительно происходила, а, по мнению биологов, она должна была происходить, то Земля существует по крайней мере сотни миллионов лет, все это время так же, как сегодня!

Следовательно, в течение второй половины XIX века применение закона сохранения энергии по отношению к Солнцу казалось спорным. Была предложена правдопо­добная теория, которую астрономы не прочь были бы принять, но против которой энергично возражали геоло­ги и биологи. Таким образом, было три альтернативы:

Закон сохранения энергии выполняется не везде во Вселенной, в частности не выполняется па Солнце.

Закон сохранения выполняется на Солнце, а геологи и биологи каким-то образом неправильно интерпрети­руют факты, которые они собрали, И Земля существует всего несколько миллионов лег.

Закон сохранения справедлив и для Солнца, но су­ществует еще неизвестный науке источник энергии, который позволяет Солнцу излучать энергию с постоянной ин­тенсивностью в течение миллиардов лет. Таким образом, физическая теория примиряется с точкой зрения геологов и биологов.

В течение пятидесяти лет, после того как Гельмгольц предложил свою теорию, правильного пути для выбора одной из этих трех гипотез не было найдено. Вопрос был решен благодаря открытиям в области предельно малых, а не предельно больших тел. Они принадлежат к микро­миру, к рассмотрению которого мы  теперь переходим.

smalltalks.ru

Энергия солнечного света

Солнце освещает и обогревает нашу планету, иначе на ней была бы невозможна жизнь не только человека, но даже микроорганизмов. Солнце – основной (хоть и не единственный) двигатель процессов, происходящих на Земле. Земля получает от Солнца не только тепло и свет. Разные виды энергии солнечного света и потоки частиц постоянно влияют на ее жизнь.

Солнце отправляет на Землю различные электромагнитные волны: от многокилометровых до гамма-лучей. К границам Земли долетают заряженные частицы различных энергий – высоких (космические солнечные лучи), низких и средних (выбросы от вспышек, потоки солнечного ветра). Солнце, наконец, испускает сильный поток элементарных частиц – нейтрино. Но воздействие последних на жизненные процессы на нашей планете ничтожно мало: земной шар для этих частиц является прозрачным, и они сквозь него свободно пролетают.

Только малейшая часть заряженных частиц из межзвездного пространства оказывается в атмосфере Земли (все остальные задерживает или отклоняет геомагнитное поле). Но этой энергии солнечного света достаточно, чтобы вызывать полярные сияния и возмущения в магнитном поле планеты.

Электромагнитное излучение в земной атмосфере подвергается строгому отбору. Она прозрачна только для ближних инфракрасного и ультрафиолетового излучений, видимого света и радиоволн в относительно низком диапазоне (от метровых до сантиметровых). Остальная часть излучения отражается атмосферой или поглощается ей, нагревая ее верхние слои и ионизуя их.

Поглощение жестких ультрафиолетовых и рентгеновских лучей начинается на высотах 300-350 км; здесь же отражаются самые длинные радиоволны, поступающие из космоса. Рентгеновские кванты, образующиеся от хромосферных вспышек при сильных всплесках рентгеновского солнечного излучения, могут проникать до высот 80-100 кмот поверхности Земли, они ионизируют атмосферу и приводят к нарушению связи на коротких волнах.

Длинноволновое (мягкое) излучение ультрафиолета может проникать еще глубже, его поглощение происходит на высоте 30-35 км. Ультрафиолетовые кванты здесь разбивают на атомы молекулы кислорода (О2) с дальнейшим преобразованием озона (О3). Так появляется «озонный экран», непрозрачный для ультрафиолета, который предохраняет жизнь на Земле от губительных лучей. Часть самого длинноволнового ультрафиолетового излучения, которая не поглотилась, достигает до земной поверхности. Именно этот вид энергии солнечного света вызывает у людей загар, а в некоторых случаях даже ожоги кожи, если человек долго находится на солнце.

В видимом диапазоне излучение слабо поглощается. Но атмосфера его рассеивает даже, если нет облаков, и часть его возвращается в межзвездное пространство. Облака, состоящие из твердых частиц и капелек воды, в значительной мере усиливают отражение солнечного излучения. В итоге до поверхности планеты доходит примерно половина энергии солнечного света, падающей на границу земной атмосферы.

Количество энергии Солнца, имеющееся на поверхности площадью 1 м2, расположенной перпендикулярно солнечным лучам на границе атмосферы Земли, называется солнечной постоянной. С Земли ее очень сложно измерять, поэтому значения, которые были найдены до начала современных космических исследований, были только приблизительными. Небольшие колебания (если они существовали реально) заведомо «исчезали» в неточности измерений. Только осуществление специальной космической программы по вычислению солнечной постоянной дало возможность найти ее достоверное значение. По последним данным, оно равняется 1370 Вт/м2 с точностью до 0,5%. В процессе измерений не было зафиксировано колебаний, превышающих 0,2%.

На Земле энергия солнечного света поглощается океаном и сушей. Земная поверхность в нагретом состоянии в свою очередь излучает в длинноволновой инфракрасной области.

Для данного излучения кислород и азот атмосферы являются прозрачными. Зато оно жадно поглощается углекислым газом и водяным паром. Благодаря этим небольшим составляющим воздушная оболочка может удерживать тепло. В этом и состоит парниковый эффект атмосферы. Между поступлением энергии солнца на Землю и потерями ее на планете существует равновесие: сколько энергии поступает, столько ее и расходуется. Иначе температура поверхности Земли вместе с атмосферой или бы постоянно повышалась, или понижалась.

Всего за три дня Солнце отправляет столько энергии на Землю, сколько ее содержится во всех существующих запасах ископаемых топлив, а за одну секунду – 170 млрд. Дж. Основная часть данной энергии рассеивается и поглощается атмосферой, особенно облаками, и лишь ее треть достигает поверхности планеты. Вся энергия, которую Солнце испускает, превышает ту ее часть, которую Земля получает, в 5 млрд. раз. Но даже такая малая величина в 1600 раз превышает энергию, которую могут дать другие источники взятые вместе. Энергия солнечного света, падающая на поверхность одного озера, приравнивается к мощности достаточно крупной электростанции.

Солнечная энергия – самый грандиозный, недорогой, но и, наверное, менее используемый человечеством источник энергии.

В последние годы резко повысился интерес к использованию энергии солнечного света. Возможности энергетики, основанные на применении непосредственного излучения Солнца, невероятно велики.

Использование 0,0125% солнечной энергии могло бы покрыть все сегодняшние потребности энергетики мира, а 0,5% могли бы покрыть потребности на перспективу. Но практически может быть использована только очень малая часть данной энергии. Одна из основных причин такой ситуации – слабая плотность энергии Солнца. Мощность, снимаемая с 1 м2 поверхности освещенной солнцем в среднем составляет 160 В. Чтобы сгенерировать 100 тыс. кВт нужно снять энергию с площади в 1,6 км2. Ни один из методов преобразования энергии, известных в настоящее время, не обеспечивает экономическую эффективность такой трансформации.

Солнечная энергетика является материалоемким видом производства энергии. Получение энергии солнечного света в крупных масштабах влечет за собой огромное увеличение потребностей в трудовых ресурсах и материалах для добычи сырья, получения материалов, изготовления коллекторов, гелиостатов, иной аппаратуры, их перевозки. Электрическая энергия, рожденная лучами Солнца, пока еще обходится намного дороже, чем энергия, получаемая обычными методами. Ученые надеются, что опыты и эксперименты, которые проводятся в настоящее время на станциях и опытных установках, помогут решить существующие экономические и технические проблемы.

Не смотря ни на что, станции, преобразующие солнечную энергию, возводятся, и они работают.

При помощи гелиоустановок энергия солнечного света преобразуется в электрическую или тепловую энергию, удобную для практического использования. В южных областях нашей страны существует множество солнечных систем и установок. С их помощью осуществляется горячее водоснабжение, отопление и кондиционирование воздуха в общественных и жилых помещениях, отопление животноводческих теплиц и ферм, сушка сельскохозяйственной продукции, подъем и опреснение минерализованной воды, термообработка строительных конструкций.

В нашей стране с начала 50-х годов космические летательные аппараты в качестве главного источника энергопитания используют солнечные батареи, преобразующие энергию солнечной радиации непосредственно в электроэнергию. Они являются незаменимым источником электричества в ракетах, спутниках и межпланетных автоматических станциях.

Освоение пространства космоса дает возможность разрабатывать проекты солнечно-космических электростанций для обеспечения энергией Земли. В отличие от земных станций, эти станции будут не только получать максимально плотный поток теплового излучения Солнца, но и не зависеть от смены дня и ночи, погодных условий. Ведь в космосе Солнце светит с постоянной интенсивностью.

Продолжается исследование возможностей более широкого применения гелиоустановок: «солнечные» крыши на домах для тепло- и энергоснабжения, установка "солнечных" крыш на автомобилях позволит подзаряжать аккумуляторы, «солнечные» фермы в сельской местности и т.д.

Энергетики и ученые продолжают искать новые более дешевые возможности применения энергии солнечного света. Появляются новые идеи и проекты.

zeleneet.com

Энергия солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос. И хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас отдельно рассмотреть возможности использования солнечной энергии.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0, 0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0, 5 % - полностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130000 км2!

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам, изготовление коллекторов солнечного излучения площадью 1 км2 требует примерно 104 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1, 17?109 тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется «собирать» солнечную энергию на площади от 1?106 до 3?106 км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13?106 км2.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт?год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Солнечная энергия

Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемых топлив, а за 1 сек. – 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд. раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Солнечная энергия - наиболее грандиозный, дешевый, но и, пожалуй, наименее используемый человеком источник энергии.

В последнее время интерес к проблеме использования солнечной энергии резко возрос. Потенциальные возможности энергетики, основанные на использовании непосредственного солнечного излучения, чрезвычайно велики.

Использование всего лишь 0,0125% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти громадные потенциальные ресурсы удастся реализовать в больших масштабах. Только очень небольшая часть этой энергии может быть практически использована. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии. Простой расчет показывает, что если снимаемая с 1 м 2 освещенной солнцем поверхности мощность в среднем составляет 160 Вт, то для генерирования 100 тыс. кВт нужно снимать энергию с площади в 1,6 км 2. Ни один из известных в настоящее время способов преобразования энергии не может обеспечить экономическую эффективность такой трансформации.

Выше говорилось о средних величинах. Доказано, что в высоких широтах плотность солнечной энергии составляет 80 – 130 Вт/м2, в умеренном поясе – 130 – 210, а в пустынях тропического пояса 210 – 250 Вт /м 2. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах Африки, Южной Америки, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн. человек, в том числе 60 млн. в сельской местности.

Однако даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт /м 2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км 2. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты, Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2, требует примерно 10000 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1170000 000 тонн.

Из вышеизложенного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики.

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Но, тем не менее, станции-преобразователи солнечной энергии строят, и они работают.

Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем. Они осуществляют горячее водоснабжение, отопление и кондиционирование воздуха жилых и общественных зданий, животноводческих ферм и теплиц, сушку сельскохозяйственной продукции, термообработку строительных конструкций, подъем и опреснение минерализованной воды и др.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Она невелика – мощность всего 5 МВт. Она работает без каких-либо выбросов в окружающую среду, что особо важно в курортной зоне, и без использования органического топлива. Работая 2000 часов в год, станция вырабатывает 6 млн. кВт электроэнергии.

С начала 50-х годов в нашей стране космические летательные аппараты используют в качестве основного источника энергопитания солнечные батареи, которые непосредственно преобразуют энергию солнечной радиации в электрическую. Они являются практически незаменимым источником электрического тока в ракетах, спутниках и автоматических межпланетных станциях.

Освоение космического пространства позволяет разрабатывать проекты солнечно-космических электростанций для энергоснабжения Земли. Эти станции, в отличие от земных, не только смогут получать более плотный поток теплового солнечного излучения, но и не зависят от погодных условий и смены дня и ночи. Ведь в космосе Солнце сияет с неизменной интенсивностью.

Продолжается изучение возможностей более широкого использования гелиоустановок: «солнечные» крыши на домах для энергои теплоснабжения, «солнечные» крыши на автомобилях для подзарядки аккумуляторов, «солнечные» фермы в сельских районах и т.д.

Ученые и энергетики продолжают вести работу по поиску новых более дешевых возможностей использования солнечной энергии. Возникают новые идеи, новые проекты.

www.apxu.ru

Примеры использования энергии Солнца на Земле. Солнечные электростанции. Солнечная энергетика :: SYL.ru

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

При получении электрической энергии используются специальные фотоэлементы. Они принимают лучи света на свою поверхность. Далее солнечные установки производят из них электричество.

Практическое применение

Существуют многочисленные примеры использования энергии Солнца на Земле. Потребность человека в электроэнергии удовлетворяется благодаря применению новейших технологий. Где же используется этот природный источник?

1. За счет солнечной энергии работают специальные устройства для подогрева воды. В некоторых регионах, где столбик термометра достигает высоких отметок, лучи небесного светила помогают людям отапливать здания.

2. Энергия Солнца находит свое применение в дымоходах и пассивных системах вентиляции, где происходит конвекция нагретого световыми волнами воздуха.

3. При помощи Солнца человек научился опреснять морскую воду. Испарителем при этом выступает небесное светило. Опресненная вода идет на нужды промышленности, сельского хозяйства, находит свое применение в быту.

4. Солнечная энергия помогает людям сушить и пастеризовать пищу.

5. Используется этот источник и в космосе. Благодаря энергии Солнца обеспечивается работоспособность спутников и межпланетных станций.

6. Самые простые и маломощные источники электрического тока, действие которых основано на использовании энергии солнечных лучей, – современные калькуляторы.

Эта вычислительная техника используется практически повсеместно.

Новое направление энергетического комплекса

На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.

Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли. Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца – долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

- странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;- жителям Аравийского полуострова;- восточному побережью Африки;- северо-западной Австралии и некоторым островам Индонезии;- западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

По мнению некоторых исследователей, уже в ближайшем будущем человечество может отказаться от существующих ныне традиционных путей получения электроэнергии. Потребности людей полностью удовлетворит небесное светило.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них – частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

- башенные;- установки с фотоэлементами;- тарельчатые;- параболические;- солнечно-вакуумные;- смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Если вы увидите целый ряд огромных по своему размеру спутниковых антенн, на внутренней стороне которых установлены зеркальные пластины, то знайте, что это параболические электростанции, работающие на излучении Солнца. Принцип их действия схож с такими же системами башенного типа. Они ловят пучок света и нагревают приемник с жидкостью. Далее вырабатывается пар, который и идет на производство электроэнергии.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

- экологичность, ведь она не загрязняет окружающую среду;- доступность основных составляющих – фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;- неисчерпаемость и самовосстанавливаемость источника;- постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

- влияние времени суток и погодных условий на производительность электростанций;- необходимость в аккумулировании энергии;- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;- большой нагрев воздуха, который имеет место на самой электростанции;- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых – многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Ученые произвели интересный расчет. Если на суше планеты Земля установить фотоэлементы, которые бы расположились на семи сотых ее территории, то они, даже имея КПД 10%, обеспечили бы все человечество необходимым ему теплом и светом. И это не столь уж далекая перспектива. Ведь фотоэлементы, которые используются на сегодняшний день, имеют КПД, равный 30%. При этом ученые надеются довести это значение до 85%.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

www.syl.ru

Персональный сайт - Энергия солнца

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество. СОЛНЕЧНАЯ РАДИАЦИЯСолнечная радиация - это электромагнитное излучение, сосредоточенное в основном в диапазоне волн длиной 0,28…3,0 мкм. Солнечный спектр состоит из: - ультрафиолетовых волн длиной 0,28…0,38 мкм, невидимых для наших глаз и составляющих приблизительно 2 % солнечного спектра; - световых волн в диапазоне 0,38 … 0,78 мкм, составляющих приблизительно 49 % спектра; - инфракрасных волн длиной 0,78…3,0 мкм, на долю которых приходится большая часть оставшихся 49 % солнечного спектра. Остальные части спектра играют незначительную роль в тепловом балансе Земли. 

СКОЛЬКО СОЛНЕЧНОЙ ЭНЕРГИИ ПОПАДАЕТ НА ЗЕМЛЮ? Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли.Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение. Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов: широты, местного климата, сезона года, угла наклона поверхности по отношению к СолнцуВРЕМЯ И МЕСТО Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит больше достигает поверхности. 

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт·ч/м2 в день на Севере Европы и более чем на 4 кВт·ч /м2 в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору. Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт·ч/м2; в Средиземноморье - приблизительно 1700 кВт·ч /м2; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт·ч/м2. Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения (см. таблицу). Этот фактор необходимо учитывать при использовании солнечной энергии. Количество солнечной радиации в Европе и странах Карибского бассейна, кВт·ч/м2 в день. 

 

 Южная Европа

 Центральная Европа

 Северная Европа

 Карибский регион

 Январь

 2,6

1,7

0,8

5,1

 Февраль

 3,9

 3,2

 1,5

 5,6

 Март

 4,6

 3,6

 2,6

 6,0

 Апрель

 5,9

 4,7

 3,4

 6,2

 Май

 6,3

 5,3

 4,2

 6,1

 Июнь

 6,9

 5,9

 5,0

 5,9

 Июль

 7,5

6,0 

 4,4

 6,

 Август

 6,6

5,3

 4,0

 6,1

 Сентябрь

 5,5

4,4

 3,3

 5,7

 Октябрь

 4,5

3,3 

 2,1

5,3 

 Ноябрь

 3,0

2,1

 1,2

5,1 

 Декабрь

 2,7

1,7 

 0,8 

4,8

ГОД 

5,0 

3,9 

2,8 

 5,7

 

ПОТЕНЦИАЛ Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период. В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед. Количество солнечной энергии, попадающей на поверхность Земли, во много раз превышает ее расход даже в таких странах как США, где энергопотребление огромно. Если бы только 1% территории страны был использован для установки солнечного оборудования (фотоэлектрические батареи или солнечные системы для горячего водоснабжения), работающего с КПД 10%, то США были бы полностью обеспечены энергией. То же самое можно сказать и в отношении всех других развитых стран. Однако, в определенном смысле, это нереально - во-первых, из-за высокой стоимости фотоэлектрических систем, во-вторых, невозможно охватить такие большие территории солнечным оборудованием, не нанося вред экосистеме. Но сам принцип является верным. Можно охватить ту же самую территорию, рассредоточив установки на крышах зданий, на домах, по обочинам, на заранее определенных участках земли и т.д. К тому же, во многих странах уже более 1% земли отведено под добычу, преобразование, производство и транспортировку энергии. И, поскольку большая часть этой энергии является не возобновляемой в масштабе существования человечества, этот вид производства энергии намного более вреден для окружающей среды, чем солнечные системы. 

solnechnayaenergia.narod.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.