Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Материал | Удельное сопротивление, Ом*мм2/м |
Серебро | 0,016 |
Медь | 0,0175 |
Алюминий | 0,0295 |
Железо | 0,09-0,11 |
Сталь | 0,125-0,146 |
Свинец | 0,218-0,222 |
Константан | 0,4-0,51 |
Манганин | 0,4-0,52 |
Никелин | 0,43 |
Вольфрам | 0,503 |
Нихром | 1,02-1,12 |
Фехраль | 1,2 |
Уголь | 10-60 |
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм2/м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм2.
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π—постоянная величина, равная 3,14;
d—диаметр проводника.
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Сопротивление проводников | ВолАмпер
Зависимость сопротивления от физических условий.
Сопротивление проводников (или обратная величина — их проводимость) не есть величина постоянная, а может меняться в зависимости от физических условий, в которых находятся эти проводники, и прежде всего (для большинства проводников) — от температуры. Сопротивление некоторых тел изменяется от воздействия магнитного поля, от механических воздействий, от действия световых лучей и т. п.
Сопротивление металлов увеличивается с увеличением температуры; сопротивление угля, металлических земель и электролитов с повышением температуры уменьшается.
С достаточным приближением в каком-нибудь интервале температур сопротивление металлического проводника может быть выражено через
,
а в первом приближении в пределах небольших изменений температур от 0 до 100 градусов Цельсия через
Таблица проводимости материалов
Температурный коэфициент удельного сопротивления, а для всех чистых металлов имеет величину, приблизительно равную тепловому коэфициенту расширения идеальных газов:
Это обстоятельство можно было бы формулировать и таким образом, что сопротивление проводника пропорционально его абсолютной температуре (измеряемой в градусах Кельвина). Действительно,
Особый интерес представляют сплавы. Если металлы, входящие в сплав, не растворяются друг в друге, т. е. если сплавы состоят из обособленных кристаллов этих металлов, то проводимость и кеэфициент проводимости могут быть подсчитаны по правилу смешения (например, кадмий — цинк). Если же составные металлы растворяются друг в друге в любом соотношении, то сплавы имеют более высокие удельные сопротивления, чем их компоненты и очень низкий температурный коэфициент. Этим свойством пользуются при изготовлении материалов с высоким удельным сопротивлением, например, никелина, нихрома, манганина, константана и т. д. (см. таблицу проводимости материалов) для реостатов, эталонов сопротивления и т. п.
Пониженная проводимость получается также от прибавления к меди фосфора или силиция, что делается для достижения большей механической прочности меди, например, при изготовлении телеграфных и телефонных проводов для воздушных линий.
При переходе из одного агрегатного состояния в другое, например, при плавлении, удельное сопротивление почти всех металлов и их температурный коэфициент увеличиваются (для сурьмы и висмута имеет место обратное явление).
В металлах, подверженных внешнему давлению, сопротивление с повышением давления за весьма малыми исключениями уменьшается. То же, но в значительно большей степени, наблюдается для порошкообразных тел, например, для металлических или угольных порошков. Последним свойством пользуются в так называемых угольных микрофонах, где мембрана, колеблясь под действием звуков, давит на порошок и изменяет его сопротивление.
В отношении влияния магнитного поля на электрическое сопротивление металлов следует указать, что для так называемых ферромагнитных тел (железа, никеля, кобальта) наблюдается увеличение сопротивления, когда направление поля совпадает с направлением тока, и уменьшение сопротивления, когда магнитное поле перпендикулярно к направлению тока. Для диамагнитных тел, наиболее характерным из которых является висмут, при помещении их в магнитное поле имеет место весьма значительное повышение сопротивления (при увеличении напряженности поля) от 0 до 12500 А/см сопротивление висмута увеличивается на 75%. Этим свойством пользуются для измерения сильных магнитных полей
Проводимость в некоторых случаях зависит также от световых лучей, падающих на проводник. В этом отношении особенно выделяется так называемый серый селен, который может быть получен или в кристаллической модификации при медленном остывании (от 200 градусов Цельсия) или в металлической модификации при быстром охлаждении. Первая модификация наиболее светочувствительна. Чем сильнее освещать селен, тем больше падает его сопротивление. На этом влиянии световых лучей на селен, которое более всего проявляет в красной и жёлтой частях спектра, построены так называемые световые реле, которые, однако, обладают тем недостатком, что изменение проводимости наступает с некоторым запозданием и затем при длительном действии света, селен перестает реагировать на изменение силы света.
Сопротивление проводника
Сопротивление
проводника зависит от его размеров и
формы, а также от материала, из которого
проводник изготовлен.
Для однородного
линейного проводника сопротивление R
прямо пропорционально его длине ℓ и
обратно пропорционально площади его
поперечного сечения S:
(13.22)
где ρ — удельное
электрическое сопротивление,
характеризующее материал проводника.
§ 13.4 Параллельное и последовательное соединение проводников
При последовательном
соединении проводников
выполняются следующие три закона:
а)
сила тока на всех участках цепи одинакова,
т.е.
б) общее напряжение
в цепи равно сумме напряжений на отдельных
её участках:
в) общее сопротивление
цепи равно сумме сопротивлений отдельных
проводников:
или
(13.23)
При параллельном
соединении проводников
выполняются следующие три закона:
а) общая сила тока
в цепи равно сумме сил токов в отдельных
проводниках:
б) напряжение на
всех параллельно соединённых участках
цепи одно и то же:
в) величина, обратная
общему сопротивлению цепи, равна сумме
величин, обратных сопротивлению каждого
из проводников в отдельности:
или
(13.24)
§ 13.5 Разветвленные электрические цепи. Правила Кирхгофа
При решении задач,
наряду с законом Ома, удобно использовать
два правила Кирхгофа. При сборке сложных
электрических цепей в некоторых точках
сходятся несколько проводников. Такие
точки называют узлами.
Первое
правило Кирхгофа основано на следующих
соображениях. Токи, втекающие в данный
узел, приносят в него заряд. Токи,
вытекающие из узла, уносят заряд. Заряд
в узле накапливаться не может, поэтому
величина заряда, поступающего в данный
узел за некоторое время, в точности
равна величине уносимого из узла заряда
за то же самое время. Токи, втекающие в
данный узел, считаются положительными,
токи, вытекающие из узла, считаются
отрицательными.
Согласно
первому
правилу Кирхгофа,
алгебраическая
сумма сил токов в проводниках, соединяющихся
в узле, равна нулю.
(13.25)
I1+
I2
+
I3
+….+
In=0
I1+I2=I3+
I4
I1+
I2
—
I3
—
I4=0
Второе правило
Кирхгофа: алгебраическая
сумма произведений сопротивления
каждого из участков любого замкнутого
контура разветвленной цепи постоянного
тока на силу тока на этом участке равна
алгебраической сумме ЭДС вдоль этого
контура.
(13.26)
Это
правило особенно удобно применять в
том случае, когда проводящем контуре
содержится не один, а несколько источников
тока (рис.13.8).
При использовании
этого правила направления токов и обхода
выбираются произвольно. Токи, текущие
вдоль выбранного направления обхода
контура, считаются положительными, а
идущие против направления обхода
–отрицательными. Соответственно
положительными считаются ЭДС тех
источников, которые вызывают ток,
совпадающий по направлению с обходом
контура.
ε2
–ε1=Ir1+Ir2+IR
(13.27)
От чего зависит удельное сопротивление проводника: металлического проводника
Работая с электрооборудованием, люди задаются вопросом — от чего зависит сопротивление проводника? Физическая величина отображает проводимость электрического тока. При рассмотрении вопроса учитывается длина проводника и его тип.
Что это такое
Препятствование прохождению тока по проводнику называют сопротивлением. Показатель высчитывается, исходя из разности электрических потенциалов. Дополнительно учитывается сила тока на проводнике. Основоположником теории принято считать Георга Ома. Ещё в 1826 году, проведены исследования электрического тока.
Сопротивление проводника
Важно! Василий Петров подтвердил закон электрической цепи и провел собственные исследования в жидкости.
Условия, определяющие сопротивление проводников
При определении сопротивления учитывается ряд характеристик:
- сечение элемента;
- длина проводника;
- удельное сопротивление;
- тип материала.
Предметы с высоким сопротивлением практически не проводят ток. Также есть обратная зависимость, которая прописана в законе Ома. Для расчета показателя учитывается электрическая проводимость. Она показывает возможность проводника принимать электрический ток.
Проводимость электрического тока
Изменения проводника при увеличении длины
Во время испытаний замечено, что при увеличении длины проводника его электрическое сопротивление увеличивается. Для проведения эксперимента, необходимо выбрать заготовки из одинакового материала. К примеру, это может быть проволока из никелина. Для считывания параметров используется амперметр, который подключен к зажимам.
Устанавливая заготовки меньшей длины, отмечено, что ток в цепи увеличивается. Даже на одном изделии можно поиграться с амперметром. Поставив щуп на середину заготовки, к примеру, может отображаться значение 50 ампер.
Показатель амперметра
Интересно! Если отводить его в сторону, к краю, чтобы увеличить дальность держателя, показатель тока будет снижаться. Тоже самое, касается проводников из других материалов.
Виды
Проводником называют среду или предмет, который способен проводить электрический ток. Внутри него, при подключении к источнику энергии, начинает активно двигаться заряженная частица. Амперметр показывает возрастание электрического напряжения в цепи. Рассматривая проводники разных типов, учитывается удельная электропроводность и тип материала:
- медь;
- алюминий;
- метал;
- золото;
- сплав никеля и хрома.
В научной среде есть понятие сверхпроводника, который считается идеальным. Он обладает значительным углом диэлектрической потери. Когда ток идёт от цепи, учитывается процент смещения. У сверхпроводника данный параметр минимален.
Из меди
Медь относится к компонентам 11 группы из таблицы химических элементов. По классификации он является пластинчатым, встречается в разных видах. Зачастую вещество имеет розовый оттенок. В электротехнике медь отличается низким удельным сопротивлением и лежит на одной нише с серебром, золотом.
Серебро и золото
Материал применим при изготовлении проводки, а также печатных плат. Ещё вещество востребовано при изготовлении электроприводов. Рассматривая сложные управляемые, электромеханические системы, заметно, что у них используются обмотки с низким удельным сопротивлением.
Если оценивать силовые трансформаторы, у них также применяется данный металл, однако он зачастую используется с примесями. Это необходимо, чтобы снизить показатель электропроводимости. В печатных платах медь используется на пару с алюминием. Рассматривая радиодетали, востребованными остаются сплавы на основе меди, которые также отличаются низким сопротивлением.
Разбирая персональные компьютеры, вещество встречается с бронзой либо латунью. Также используются добавки из цинка либо никеля. Чтобы повысить упругость проводника, применяются другие материалы, такие как олово, цинк. По таблице удельного сопротивления, веществу присвоен показатель 0,0157 Ом.
Свойства меди
Из алюминия
Среди элементов 13 группы в таблице выделяется алюминий. Он является отличным проводником в цепи, изготовлен из парамагнитного металла. По цвету наблюдается серебристый оттенок. Проводник хорошо поддается механической обработке. Помимо значительной электропроводимости, отмечается коррозийная стойкость.
При термической обработке образуется оксидная пленка, которая защищает поверхность. В природе предусмотрены различные соединения алюминия. Если рассматривать стандартную проволоку небольшого сечения, она востребована в электрических катушках. Вещество обладает низкой плотностью, а также массой, поэтому аналоги сложно подобрать. Используя алюминий в движущихся элементах, можно повысить их производительность.
Зачастую проводник встречается в жестких дисках, а также аудиосистемах. Востребованными остаются проволоки, покрытые слоем лака. Встречаются эмалированные аналоги, отличающиеся повышенной защищенностью. В качестве изоляции используется резина, берилл. Производители выпускают проводники с сечением от 0.003 мм.
Свойства алюминия
Помимо катушек индуктивности проволока может устанавливаться в индукторах, громкоговорителях, наушниках. Касательно соединений, встречаются варианты с алунитами. Дополнительная информация о физических свойствах:
- низкая температура плавления;
- высокая теплоемкость;
- значительная твёрдость;
- слабый парамагнетик;
- широкий температурный диапазон.
Алюминий встречается в печатных платах, поскольку поддается в штамповке. Коррозионная стойкость — дополнительное преимущество. Алюминиевые проводники являются популярными и востребованными в промышленности. Удельное сопротивление — 0,028 Ом. Также необходимо рассмотреть недостаток — значительное содержание примесей.
Из металла
Среди металлов, распространенными типами проводников считаются следующие:
- свинец;
- олово;
- платина;
- никель;
- вольфрам.
Свинец — это элемент из 14 группы, который может использоваться в качестве проводника. У него предельная плотность 11.35 грамм на кубический метр. Область применения ограничена, поскольку материал токсичен и относится к тяжелым металлам. История происхождения формулы неясна, есть лишь догадки.
Группы металлов
Если говорить о проводниковых элементах, то зачастую применяется нитрат свинца. В источниках тока, резервных блоках встречается версия с хлоридом. Рассматривая неорганические соединения, выделяется материал теллурид. Он подходит в качестве термоэлектрического проводника, поэтому используется в электростанциях разной мощности. Ещё металлический элемент востребован в холодильниках.
Если детально рассматривать теллурид, к числу особенности стоит приписать значительную диэлектрическую проницаемость. В составе помимо свинца имеется олово и теллур. По отдельности вещества встречаются в фоторезисторах и диодах. Если разбирать полупроводниковые приборы, элементы содержатся в стабилизаторах и указывают направление тока.
Важно! Олово — это проводник из 14 группы химических элементов. Материал безопасен, не содержит токсичных веществ.
Наравне с золотом, олово обладает отличными антикоррозионными свойствами. Зачастую в технике применяется дисульфид. Наиболее высокий показатель сопротивления показывает двуокись олова. В аккумуляторах он используется в чистом виде. Рассматривая гальванические элементы, стоит упомянуть про марганцево-оловянный диоксид.
Платина — это проводника с десятой группы химических элементов. Представленный металл имеет электросопротивление 0,098 Ом, и отличается повышенной плотностью. Если рассматривать сферу применения, то зачастую вещество встречается в лазерной технике. Речь идет о принтерах, а также измерительных приборах.
Свойства платины
Дополнительно платина используется в электромагнитных реле. В представленных автоматических устройствах он выступает проводником. Речь идет о механических, тепловых либо оптических реле. В электронных датчиках платина содержится в меньшем количестве, однако используется за счёт широкого диапазона температур. В частности, можно рассмотреть электронный термометр сопротивления. Резистивный элемент по большей части состоит из платины.
Из золота
Удельное сопротивление золота 0,023 Ом. Материал относится к первой группе металлов и по физическим свойствам является мягким. Золото встречается с примесями и в чистом виде. Плотность составляет 19,32 г/см³, сфера применения широка. В промышленности проводник востребован в качестве припоя.
Припой золото
Его разрешается наносить на различные поверхности, он служит отличным материалом для соединения заготовок, поскольку наблюдается низкая температура плавления. Также золото востребовано для защиты от коррозии.
Недостатки:
- мягкость материала;
- подвержен точечной коррозии.
Если использовать материал с добавками, то снижается температура плавления. Также это оказывает воздействие на механические свойства вещества.
Золото с добавками
Из сплавов никеля и хрома
Никель обладает удельным сопротивлением 0,087 Ом. Это элемент из 8 группы, который является пластинчатым. При термической обработке элемент покрывается пленкой оксида.
Особенности:
- высокое электрическое сопротивление;
- значительное линейное расширение;
- упругость.
Никель активно используется в качестве проводника в аккумуляторах.
Различные добавки:
- нихром;
- пермаллои;
- золото.
По сопротивлению элемент схож с константином, никелином. Хром является элементом шестой группы, проводник внешне имеет голубоватый оттенок. В качестве проводника он встречается в бытовой технике. Наиболее часто хром используется на пару с легированными сталями.
Свойства хрома
При соединении с нержавейкой образуется отличный проводник. Он демонстрирует антикоррозионные свойства, плюс повышенную твердость. На печатной плате элемент не боится износа. Устройства из хрома востребованы в авиакосмической промышленности.
Выше рассмотрены факторы, от чего зависит сопротивление проводника. Элементы изготавливаются из различных материалов, необходимо учитывать их свойства.
Закон Ома. Сопротивление проводников — Студопедия
Немецкий физик Г.Ом (1787-1854) экспериментально установил, что сила тока , текущая по однородному металлическому проводнику ( то есть проводнику в котором не действуют сторонние силы), пропорциональна напряжению на концах проводника
, (1)
— электрическое сопротивление проводника.
1). Закон Ома для однородного участка цепи.
Цепь не содержит эдс. В этом случае напряжение совпадает с разностью потенциалов и
(1) | |
Рис.3. |
2). Закон Ома для неоднородного участка цепи.
Цепь содержит эдс. В этом случае | |
Рис. 4. |
3). Закон Ома для замкнутой цепи.
В этом случае и поэтому
. Формула (1) позволяет установить единицу сопротивления Ом (Ом). 1Ом – сопротивление такого проводника, в котором при напряжении 1В течет постоянный ток 1А. | |
Рис.5. |
Величина
называется электрической проводимостью проводника. Единица проводимости – сименс (См). 1См – проводимость участка электрической цепи сопротивлением 1Ом.
Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для цилиндрического проводника сопротивление прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения
, (2)
где -коэффициент пропорциональности, характеризующий материал проводника. Он называется удельным электрическим сопротивлением. Единица удельного электрического сопротивления Ом м. Наименьшим удельным сопротивлением обладают серебро (1,6 10 -8 Ом м) и медь (1,7 10-8 Ом м). На практике наряду с медными применяются алюминиевые провода, хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6 10 -8 Ом м), но зато обладает меньшей плотностью по с равнению с медью
Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (2) в закон Ома (1) получим
, (3)
где величина
,
обратная удельному сопротивлению, называется удельной проводимостью вещества проводника. Ее единица – См/м (сименс на метр). Учитывая, что — напряженность электрического поля в проводнике, — плотность тока, формулу (3) можно переписать в виде
. (4)
Так как носители заряда в каждой точке движутся в направлении вектора напряженности то направления и совпадают, и (4) можно записать в виде
. (5)
Выражение (5) – закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
При последовательном соединении проводников их сопротивления складываются,
,
а при параллельном соединении – суммируются обратные значения сопротивлений,
.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а следовательно, и сопротивление с температурой описывается линейным законом
,
,
где и — соответственно удельные сопротивления и сопротивления проводника при и 0 0С, — температурный коэффициент сопротивления, для чистых металлов ( при не очень низких температурах) близкий к 1/273 град -1. Поэтому температурная зависимость сопротивления металла может быть представлена в виде
,
где — термодинамическая температура.
Качественная температурная зависимость сопротивления металла представлена на рис. 6 (кривая 1).
В последствии было обнаружено, что сопротивление многих металлов ( например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах = 0,14 – 20 К, называемых
критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), то есть металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено Г. Камерлинг – Оннесом для ртути. | |
Рис. 6. |
Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов затруднено из-за низких температур. Поэтому в настоящее время ведется интенсивный поиск высокотемпературных сверхпроводящих соединений.
На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют измерять температуру с точностью до 0,003 К. Использование же в качестве рабочего вещества термометров сопротивления полупроводников, приготовленных по специальной технологии – термисторов – позволяет отмечать изменение температуры в миллионные доли кельвина и использовать термисторы для измерения температур очень малых объемов (ввиду малых габаритов полупроводников).
myCableEngineering.com> Сопротивление проводника
Сопротивление постоянному току
CENELEC CLC / TR 50480
Постоянный ток. сопротивление кабелей можно оценить в соответствии с техническим отчетом CENELC CLC / TR 50480 «Определение площади поперечного сечения проводов и выбор защитных устройств» от февраля 2011 г.
Для кондуктора:
R = ρ20S
, где R = d.c. сопротивление кабеля Ом · м -1
ρ 20 = удельное электрическое сопротивление материала проводника при 20 ° C, Ом.м
S = площадь поперечного сечения жилы, м 2 [или 1e -6 мм 2 ]
Альтернатива расчету постоянного тока. сопротивление определяется стандартом IEC 60228 «Жила изолированного кабеля». В стандарте есть таблицы максимально допустимого сопротивления для различных медных и алюминиевых кабелей. Для получения дополнительной информации см. IEC 60228 DC Resistance
.
Типичные значения удельного сопротивления можно найти в разделе «Полезные таблицы» базы знаний.
МЭК 60228 и МЭК 60909-2
Стандарт IEC 60228 «Проводники изолированных кабелей» определяет максимально допустимое сопротивление проводов.Значения, приведенные в стандарте IEC 60228, используются на сайте myCableEngineering.com. Для ситуаций и кабелей, не охваченных IEC 60228, значения сопротивления рассчитываются по формулам CENELEC.
Вычисленное выше сопротивление действительно для неэкранированных кабелей. Для экранированных (или любого типа магнитного экрана) кабелей с металлическим экраном, заземленным на обоих концах, сопротивление увеличивается, как указано в IEC 60909-9 «Токи короткого замыкания в трехфазном переменном токе. системы — Часть 2: Данные электрооборудования для расчета тока короткого замыкания »таблица 7.Подробнее см. Импеданс.
Сопротивление переменного тока
Сопротивление проводника переменному току всегда больше, чем сопротивление постоянному току. Основными причинами этого являются «скин-эффект» и «эффект близости», которые более подробно рассматриваются ниже. Расчет переменного тока. сопротивление определяется по формулам, приведенным в IEC 60287 «Электрические кабели — Расчет номинального тока».
Эффекты скин-эффекта и близости учитываются по следующим формулам:
Rac = R [1 + γs + γp]
, где
R ac = сопротивление проводника переменному току
R = сопротивление проводника постоянному току
y s = коэффициент скин-эффекта
y p = эффект близости фактор
Хотя приведенные выше формулы довольно просты, вычисление факторов кожи и эффекта близости немного сложнее, но все же не слишком сложно.
Скин-эффект
По мере увеличения частоты тока поток электричества имеет тенденцию становиться более концентрированным вокруг внешней стороны проводника. На очень высоких частотах часто используются полые проводники в первую очередь по этой причине. На частотах мощности (обычно 50 или 60 Гц), хотя и менее выражено, изменение сопротивления из-за скин-эффекта все же заметно.
Коэффициент скин-эффекта y s определяется по формуле:
γs = XS4192 + 0.8XS4 с Xs2 = 8πfR10−7ks
где:
f = частота питания, Гц
k s = коэффициент скин-эффекта из таблицы ниже
R = сопротивление проводника постоянному току
Эффект близости
Эффект близости связан с магнитными полями проводников, находящихся близко друг к другу.Распределение магнитного поля неравномерное, но зависит от физического расположения проводников. Поскольку флюс, разрезающий проводники, не является равномерным, это приводит к неравномерному распределению тока по трубопроводу и изменению сопротивления.
Формулы для фактора эффекта близости различаются в зависимости от того, говорим мы о двух или трех ядрах.
γp = Xp4192 + 0,8Xp4dcS2 × 2,9
— двухжильный кабель или два одножильных кабеля
γp = Xp4192 + 0.8Xp4dcs2 × 0,312dcs2 + 1,18Xp4192 + 0,8Xp4 + 0,27
— для трехжильных кабелей или трех одножильных кабелей
где (для обоих случаев):
Xp2 = 8πfR10−7kp
d c = диаметр проводника (мм)
s = расстояние между осями проводника (мм)
k p = коэффициент эффекта близости из таблицы ниже
Примечание:
1. для трех одножильных жил с неравномерным интервалом s = √ (s 1 x s 2 )
2.для фасонных проводников y p составляет две трети значения, рассчитанного выше, с
d c = d x = диаметр эквивалентного круглого проводника той же площади поперечного сечения (мм)
s = (d x + t), где t — толщина изоляции между проводниками (мм)
* для s , мы можем получить некоторое преимущество, используя геометрический интервал. См .: Среднее геометрическое расстояние.
Коэффициент k s и k p
к с | к п | ||
---|---|---|---|
Медь | Круглый многопроволочный или цельный | 1 | 1 |
Круглый сегментный | 0.435 | 0,37 | |
Секторная | 1 | 1 | |
Алюминий | Круглый многопроволочный или цельный | 1 | 1 |
Круглый 4 сегмента | 0,28 | 0,37 | |
Круглый 5 сегментов | 0,19 | 0,37 | |
Круглый 6 сегментный | 0.12 | 0,37 |
Регулировка температуры
Постоянный ток. сопротивление проводника зависит от температуры:
Rt = R20 [1 + α20 (t − 20)]
где R t = сопротивление проводника при t ° C
R 20 = сопротивление проводника при 20 ° C
t = температура проводника, ° C
.
Сопротивление проводов постоянному току
Это первый из двух постов по сопротивлению проводов. В следующем посте я рассмотрю сопротивление переменному току, включая скин-эффект, и покажу, как с этим справиться. Для начала, в этой статье мы рассмотрим более простой случай сопротивления постоянному току и способы его расчета.
Сопротивление постоянному току согласно IEC 60287
Международный стандарт для проводов — IEC 60287. Стандарт классифицирует проводники по четырем классам:
— Класс 1: одножильные проводники
— Класс 2: многожильные проводники
— Класс 5: гибкие проводники
— Класс 6: гибкие проводники (более гибкие, чем класс 5)
Для каждого класса проводника стандарт определяет максимально допустимое сопротивление при 20 o C:
Минимальное сопротивление проводников в мОм / м | |||||
---|---|---|---|---|---|
CSA мм² | Медь (гладкая) | Медь (луженая) | Алюминий | ||
класс 1 и 2 | класс 5 и 6 | класс 5 и 6 | класс 1 и 2 | ||
0.5 | 36,0 | 39,0 | 40,1 | — | |
0,75 | 24,5 | 26,0 | 26,7 | — | |
1 | 18,1 | 19,5 | 20,0 | — | |
1,5 | 12,1 | 13,3 | 13,7 | — | |
2.5 | 7,41 | 7,98 | 8,21 | — | |
4 | 4,61 | 4,95 | 5,09 | — | |
6 | 3,08 | 3,30 | 3,39 | — | |
10 | 1,83 | 1,91 | 1,95 | 3.08 | |
16 | 1,15 | 1,21 | 1,24 | 1,91 | |
25 | 0,272 | 0,78 | 0,795 | 1,20 | |
35 | 0,524 | 0,554 | 0,565 | 0,868 | |
50 | 0,387 | 0.386 | 0,393 | 0,641 | |
70 | 0,268 | 0,272 | 0,277 | 0,443 | |
95 | 0,193 | 0,206 | 0,210 | 0,320 | |
120 | 0,153 | 0,161 | 0,164 | 0,253 | |
150 | 0.124 | 0,129 | 0,132 | 0,206 | |
185 | 0,0991 | 0,106 | 0,108 | 0,164 | |
240 | 0,0754 | 0,0801 | 0,0817 | 0,125 | 0,0601 | 0,0641 | 0,0654 | 0.100 |
400 | 0,0470 | 0,0486 | 0,0495 | 0,0778 | |
500 | 0,0366 | 0,0384 | 0,0391 | 0,0605 | |
630 | 0,0283 | 0,0469 | |||
800 | — | — | — | 0.0367 | |
1000 | — | — | — | 0,0291 | |
1200 | — | — | — | 0,0247 |
Сопротивление постоянному току — расчет
Для одножильных проводников сопротивление (теоретически) можно также рассчитать по стандартной формуле:
Если длина (l) выражена в метрах, площадь поперечного сечения a в м 2 (мм 2 x10 -6 ) и удельное сопротивление ρ в Ом-м, тогда сопротивление будет в Ом.Удельное сопротивление в Ом-м (при 20 o C) для меди составляет 1,72×10 -8 , а для алюминия 2,82×10 -8 .
Приведенные выше формулы не учитывают производственные допуски, компактность многожильных проводников и т. Д. В результате расчетное сопротивление будет отличаться от любого фактического измеренного сопротивления. Для общего использования, вероятно, лучше использовать цифры из таблицы IEC 60287, чем вычислять по приведенной выше формуле.
Температурная зависимость
Указанные выше значения сопротивления основаны на температуре 20 o C.Сопротивление проводника будет изменяться в зависимости от температуры, причем сопротивление увеличивается с увеличением температуры. Это изменение можно упростить до линейной функции для разумного диапазона температур следующим образом:
- R = сопротивление проводника при температуре T
- R 20 = сопротивление проводника при 20 o C
- T = рабочая температура проводника
- α = температурный коэффициент удельного сопротивления
Фактические значения α зависят не только от температуры, но и от состава материала.Как для меди, так и для алюминия значение α, равное 0,0039, дает достаточную точность для большинства расчетов проводников.
Сопротивление проводов переменному току ->
.