Сопротивление внешнее (среды) — Энциклопедия по машиностроению XXL
Аэро- и гидродинамическое сопротивления среды (внещние сопротивления) имеют в достаточно большом диапазоне скоростей вязкий характер — они пропорциональны скорости перемещения при колебаниях. Только такие сопротивления, т. е. сопротивления, линейно зависящие от скорости, не вызывают нелинейностей в дифференциальных уравнениях колебаний. Однако это справедливо лишь при сравнительно небольших скоростях. При больших скоростях сила сопротивления внешней среды зависит от скорости в степени выше первой, и дифференциальные уравнения колебаний получаются нелинейными.
[c.68]
Отметим, что природа сил сопротивления может быть результатом сопротивления внешней среды или внутреннего трения, воз-
[c.159]
Сила вязкого трения — это сила, приближенно учитывающая все потери энергии при колебаниях, зависящие от сопротивления внешней среды, гистерезиса и т. д.
[c.311]
Таким образом, декремент затухания нагруженной пластинки целиком определяется отношением удельных волновых сопротивлений внешней среды и материала пластинки. Не будем, однако, забывать, что наша упрощенная схема относится с самого начала к такому случаю, когда на гранях пластинки располагается пучность смещений и скоростей, а это, согласно анализу, приведенному в 2 гл. VII, относится к условию рс >- p i, что соответствует, например, колебаниям твердой пластинки в жидкой или газообразной среде. В противном случае эквивалентные параметры системы будут другими, поскольку сама система будет иной. [c.189]
Многоступенчатый компрессор представляет собой машину, проточная часть которой имеет сечения, подобранные для определенного закона изменения плотности перекачиваемого газа. По этим расчетным условиям вычисляются треугольники скоростей, служащие для нахождения геометрической формы рабочих и направляющих лопаток. При изменении сопротивления внешней среды или числа оборотов вала компрессора треугольники скоростей изменяются неподобно, вследствие несоответствия между жесткими геометрическими размерами сечений и изменившейся степенью сжатия в отдельных ступенях. Это расстройство режимов носит нарастающий характер вдоль проточной части и может быть качественно проанализировано с помощью простейших выражений.
[c.147]
На поршни действуют силы сила выталкивания p F , сила сопротивления внешней среды p F. . [c.259]
Пусть при истечении 1 кг вещества поршень с площадью сечения Fj переместился па величину h M, а поршень с площадью сечения Fi — па величину h M. При этом будет произведена работа выталкивания, работа расширения и затрачена работа на преодоление сил сопротивления внешней среды. [c.259]
Если прибор снабдить успокоителем, развивающим силу или момент сопротивления, то подвижная часть прибора вместо свободных колебаний начнет совершать затухающие колебания с непрерывно уменьшающимися амплитудой и периодом. В результате этого, колебания прекратятся и подвижная часть прибора окажется неподвижной (успокоится). Установлено, что при незатухающих колебаниях даже небольшие сопротивления внешней среды быстро гасят колебания.
[c.393]
Первичные кристаллы растут в жидкой среде при относительно (по сравнению со вторичными кристаллами) малом сопротивлении внешней среды и больших скоростях роста, поэтому они вырастают крупными. Выделение из жидкого сплава кристаллов В ведет к обогащению оставшегося жидкого сплава компонентом А. По достижении температуры, соответствующей точке 2, жидкий сплав получит эвтектическую концентрацию и затвердеет с образованием эвтектики, состоящей из кр. Л(В)г и кр. В.
[c.63]
Прохождение звука через тонкую цилиндрическую оболочку. Будем рассматривать структуру звукового поля во внутренней области оболочки, полагая, что плоская звуковая волна падает на цилиндрическую оболочку, внутренняя полость которой заполнена средой с волновым сопротивлением, вообще говоря, отличным от волнового сопротивления внешней среды. При этом будем считать, что фронт волны параллелен оси цилиндра. [c.304]
Пусть Z = 0. При этом влияние оболочки исчезает. Тогда (41.11) определяет коэффициенты разложения ряда, характеризующего излучение цилиндра через кольцевой слой с волновым сопротивлением, отличным от волнового сопротивления внешней среды. Если теперь считать среды внутри и вне цилиндра одинаковыми, т. е. полагать
[c.322]
Распространение пылевого факела в значительной мере зависит от места расположения очага пылеобразования по отношению к действующему направлению ветра. Это хорошо видно на примере разгрузки думпкаров (склад окатышей, станция Железорудная, г. Рудный). Скорость ветра была равна 2 м/с. Время разгрузки одного думпкара грузоподъемностью 85 т равно 45 с. Учитывая кратковременность процесса разгрузки думпкара, этот источник можно отнести к мгновенным. В этом случае на пылевое облако действует эжекционное давление и сопротивление внешней среды. При разгрузке на наветренной стороне в начальный период горизонтальная составляющая скорости движения фронта пылевого облака падает до нуля под действием встречного ветрового потока (табл. 5.27).
[c.344]
Кроме того, поскольку предполагается, что сопротивление массопереносу сосредоточено в основном во внешней среде, можно положить О/ВВ соответствии с этим получаем следующее соотношение для плотности потока целевого компонента [c.253]
Сплошная среда при выборе расчетной схемы наделяется свойствами, отвечающими основным свойствам реального материала. Так, например, под действием внешних сил реальное тело меняет свои геометрические размеры. После снятия внешних сил геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры называется упругостью. При решении большей части задач в сопротивлении материалов среда считается совершенно упругой. В действительности реальное тело в какой-то малой степени обнаруживает отступление от свойств совершенной упругости. При больших нагрузках это отступление становится настолько существенным, что в расчетной схеме сплошная среда наделяется уже другими свойствами, соответствующими новому характеру деформирования реального тела.
[c.12]
Во всякой реальной колебательной системе всегда происходит расход энергии на преодоление сил сопротивления н на излучение, т. е. на передачу энергии во внешнюю среду, которую возмущает колеблющееся тело. [c.182]
Полученные в 2 результаты справедливы, однако, только в том случае, когда приведенная скорость на входе в трубу поддерживается постоянной, что требует создания вполне определенного перепада давлений в потоке для каждого режима и каждого значения приведенной длины трубы. В действительности чаще всего бывает наоборот заданной величиной является перепад давлении между входным и выходным сечениями трубы, а величины скорости, расхода и других параметров течения определяются действующим перепадом давлений и сопротивлением на рассматриваемом участке трубы. Для потока во входном сечении трубы наиболее характерной величиной, которая обычно известна или может быть легко определена, является полное давление Рх, для характеристики потока на выходе из трубы важно знать статическое давление во внешней среде или резервуаре, куда вытекает газ из трубы р . Если скорость потока в выходном сечении меньше скорости звука, то статическое давление потока, как известно, равно внешнему давлению, то есть Р2 = Ри. Если А,2 = 1, то в выходном сечении трубы р2 Ри- Наконец, при > 1 возможны также режимы, когда рг [c.260]
Полный напор в любом сечении струйки вязкой жидкости определяется теми же составляющими, что и для невязкой жидкости. Однако значение полного напора в сечениях будет разное, так как часть энергии в вязкой жидкости расходуется на преодоление гидравлических сопротивлений (трение частиц друг о друга, о стенки). При этом часть гидравлической энергии преобразуется в тепловую или механическую (колебание трубопровода) и рассеивается во внешнюю среду. Следовательно, напор в сечении II—II (рис. 4.4) будет меньше, чем в сечении I—I на величину потерь напора. Последние определяются как разность полных напоров в соответствующих сечениях
[c.54]
При сжатии подобных цилиндрических заготовок из одного и того же металла, но разных по размеру сопротивление деформации тем больше, чем меньше размер образца. С. И. Губкин объясняет этот эффект тем, что для меньшего по размерам образца создаются в большей степени условия для всестороннего объемного сжатия за счет относительно более сильного развития контактной поверхности и возникновения относительно больших напряжений сжатия от сил контактного трения. Однако эффект увеличения напряжения — незначительный, и, видимо, более существенное значение фактора FjV обусловлено большей относительной развитостью поверхности и за счет этого более существенным воздействием внешней среды на пластичность и сопротивление деформации меньших по объему образцов. При этом на изменение пластичности и сопротивление деформации оказывают влияние 1) окружающая среда 2) состояние поверхности слоев, сформировавшихся по структуре и свойствам в результате обработки резанием 3) контактное трение и поверхностное натяжение.
[c.480]
Допустим для простоты, что сопротивление трения и теплообмен с внешней средой отсутствуют, а сечение канала постоянно. Тогда в соответствии с 4.4 уравнение течения газа в канале будет иметь вид
[c.586]
Из металлов чаще всего применяются платина и медь. Тот или иной металл выбирают, исходя из его химической стабильности при повышенной температуре а данной среде. Медь применяют при температуре от —50 до +180 С в сухой атмосфере, свободной от агрессивных газов. Платиновые термометры сопротивления используют для измерения температур от —200 до +650 °С в окислительной и инертной среде. Медные термометры сопротивления изготовляются из проволоки круглого сечения, изолированной тонкослойной и теплостойкой изоляцией (эмаль или шелк) проволока наматывается на каркас из пластмассы. Платиновую проволоку применяют без изоляции и наматывают на каркас из слюдяных пластин. Сопротивление обмотки берут равным 50—100 Ом. Для защиты от воздействия внешней среды (влажность, агрессивные газы и т. п.) термометры сопротивления снабжаются защитной [c.136]
В ряде работ, появившихся в последние годы, показано, что защитное покрытие и металлическая подложка (основа) оказывают совместное сопротивление коррозионной среде, которое зависит от состава и структуры не только материала покрытия, но и металла. Когда внешняя среда или отдельные ее компоненты благодаря явлению диффузионного переноса достигнут подложки, на-сту-пает период взаимодействия среды с поверхностью металла и адгезионными связями полимера. Поскольку дальнейшее поведение системы зависит от преобладания тех или иных связей на границе металл —полимер, данное явление называют иногда конкурентной адсорбцией. Следует помнить, что на границе металл — полимер соотношение компонентов среды может существенно изменяться по сравнению с соотношением их в глубине раствора в связи с селективностью свойств покрытия и неодинаковыми скоростями диффузии компонентов.
[c.47]
Получаемую термодинамическую работу часто называют абсолютной или полной работой. Такая работа могла быть получена только Б том случае, если бы с внешней стороны был установлен полный вакуум (рд = 0). Но в некоторых случаях оказывается необходимым знать ту часть термодинамической работы, которая может быть полезно использована в реальных условиях действия машины. В этом случае часть работы расширения затрачивается на преодоление сопротивления окружающей среды давлением р на pv — диаграмме (рис. 3.3) она выражается площадью прямоугольника, высота которого равна Рд. Остальная часть площади изображает полезную работу. Полезная работа расширения изображается, следовательно, площадью между кривой процесса и линией давления окружающей среды Ро.
[c.29]
Следует подчеркнуть, что для одного и того же материала сопротивление усталости зависит от типа напряженного состояния (растяжение, кручение, изгиб и т. д.) и от характера изменения напряжений во времени, т. е. от вида цикла я частоты колебаний. Кроме того, сопротивление усталости зависит от температуры (особенно для полимерных материалов), от свойств внешней среды, в частности влажности воздуха, а также от размеров образца и наличия в нем различных концентраторов напряжений, например надрезов. [c.420]
Механические характеристики. Перейдем теперь к определению закона движения. Машинный агрегат — это комплекс, состоящий из машины-двигателя, передаточного механизма и рабочей машины. В двигателе создается движущий момент (или движущая сила). В рабочей машине образуется момент (или сила) полезных сопротивлений. Двигатель и рабочая машина имеют собственные кинематические цепи, но при изучении движения агрегата удобно рассматривать его общую кинематическую цепь, не разделяя ее на составные части, т. е. на цепь двигателя, передаточного механизма и рабочей машины. При этом действие внешней среды на механизм изображается внешними моментами (или силами), движущим моментом (силой) и моментом (силой) полезных сопротивлений, приложенными соответственно к ведущему и ведомому звеньям.
[c.58]
Медные образцы начиная с 200 °С окисляются толщина оксидной пленки увеличивается с повышением температуры и длительности испытания. При повышенной скорости деформации время действия атмосферного воздуха меньше, поэтому свойства меди лучше. Уменьшение скорости испытания увеличивает длительность коррозионного воздействия внешней среды. Активное влияние последней особенно заметно в том случае, если медь одновременно подвергается растягивающим усилиям, тогда как увеличение времени выдержки образцов перед испытанием более чем в 150 раз лишь немного уменьшает временное сопротивление и практически не оказывает влияния на пластичность, так как происходит поверхностное окисление образцов.
[c.32]
При замене воздуха высоким вакуумом (10″ Па) в процессе испытания технического никеля на малоцикловую усталость при 550 °С результаты существенно изменяются вместо межкристаллитного разрушения в атмосфере воздуха происходит транскристаллитное разрушение при значительной деформации зерен с образованием линий сдвига. Сопротивление усталости никеля при испытании в вакууме существенно повышается [1]. Все это свидетельствует о важной роли внешней среды, которая изменяет не только механические свойства металла, но и характер разрушения.
[c.163]
Коррозионное растрескивание высокопрочных сталей. В настоящее время широкое применение нашли стали с высокими прочностными характеристиками (Ов = 2000 МПа и более). Однако они обладают высокой чувствительностью к концентраторам напряжений и к воздействию внешней среды. Одной из важнейших проблем для этих сталей является повышение сопротивления КР, поскольку они склонны к КР при растягивающих напряжениях гора,здо ниже их предела текучести. Тем самым в значительной степени обесцениваются высокие прочностные характеристики таких сталей. [c.73]
Сопротивление при колебаниях. Колебания системы встречают сопротивление. Различают силы внешнего сопротивления (трение в опорах, аэро- и гидродинамическое сопротивление, оказываемое колеблющейся системе внешней средой) и силы [c.66]
Коррозионное воздействие, например со стороны окислительной газовой среды в турбогенераторе или установке для газификации угля, в сочетании с высокой температурой может приводить к преждевременному разрушению конструкций даже при сравнительно низких механических напряжениях. В принципе можно предусмотреть меры против пластической деформации при высоких температурах еще на стадии проектирования, повысив сопротивление ползучести, длительную прочность (время до разрушения) и вязкость разрушения материалов. Однако, к сожалению, современные знания о ползучести и разрушении материалов под напряжением, даже в отсутствие осложняющих факторов, связанных с воздействием внешней среды, являются в лучшем случае качественными [I—7], Известные проявления влияния среды на ползучесть и разрушение материалов под напряжением еще требуют анализа, обобщения и систематизации.
[c.9]
Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9].
[c.9]
Как известно, трение возникает между телами при их относительном перемещении. Трение, возникающее между подвижной частью — валом и внешней средой — неподвижным пространством, назовем внешним трением. Это трение может возникнуть в опорах, а также при наличии специального неподвижного демпфера, соединенного с валом. Оно будет зависеть от абсолютных перемещений точек вала (или скоростей). Другой вид трения — трение, возникающее внутри самой вращающейся части, т. е. между частицами материала вала или между валом и напрессованными на него деталями при колебаниях вала и неизбежно возникающих деформациях и скольжениях по поверхностям сопряжения. При таком трении возникает система сил сопротивления, целиком вращающаяся вместе с валом. Эти силы зависят от относительных перемещений точек вала.
[c.121]
Реальные проточные элементы (дроссели) существенно отличаются друг от друга формой проточной части, ее длиной, особенностями конструкции, способом отбора давления (разрежения) и расхода газа, характером взаимодействия струй основного и эжектируемого потоков газа, особенностями теплообмена с внешней средой, зависящими от назначения устройства и условий его эксплуатации. Отмеченные многочисленные особенности реальных проточных элементов оказывают влияние не только на величину расхода газа, но, что важно подчеркнуть, существенно деформируют газодинамические зависимости потока газа (например, критические отношения давлений, плотностей и др.). Очевидно, это не только исключает возможность учета в форме постоянного коэффициента всего набора изменяющихся физических свойств потока газа при наличии сопротивлений, но часто значительно затрудняет и корректирование самой величины расхода газа.
[c.186]
Вначале исследуется пропускная способность дросселя при наличии местных сопротивлений входа и выхода, но без учета теплообмена потока газа с внешней средой и сил трения в его [c.186]
Критическая частота колебаний определяется при приближенных расчетах по энергетическому методу Рэлея [55], где вывод уравнений для определения частоты собственных колебаний системы основан на следующих предположениях энергия, затраченная на деформацию вала, равна кинетической энергии, возбуждаемой при колебан1ях опоры жесткие, силы трения и сопротивления внешней среды отсутствуют. В этом случае вал можно представить как колеб лющуюся балку, нагруженную несколькими силами Д (рис. VII.6, а), вы- [c.201]
В энергетической гипотезе для объяснения явления оптимизации шероховатости поверхностей используется диссипатив-ность процесса трения [78, 79]. Так как интенсивность разрушения фрикционных связей, свойства поверхностей и генерируемое тепло при трении взаимосвязаны, то предполагается [79], что естественное течение процесса трения обусловливается принципами минимизации энергии и направлено, в частности, на достижение максимальной энтропии и минимального теплового сопротивления внешней среды.
[c.49]
Возможно, что в самом начале кристаллизации включ,ения графита не имеют такой оболочки, но в процессе пульсирующего роста возникает давление, преодолевающее сопротивление внешней среды, и вокруг графита образуется уплотненный корковый слой.
[c.163]
Средство механической системы гасить (демпфировать) ее колебания называют демпфирующей способностью, демпфирующими или диссипативными свойствами. Демпфирование колебаний осуществляется за счет различных внутренних и внешних механизмов сопротивления, вызывающих потери энергии колебаний конструкций. К внутренним механизмам относят неупругое сопротивление материала основы и П01фыгия деформируемых элементов конструкций, а также трение в сочленениях элементов (конструкционное демпфирование), а к внешним — сопротивление внешней среды. [c.314]
Рупорные громкоговорители делают и широкогорлыми, без предрупорной камеры, Тогда размеры диффузорной диафрагмы увеличиваются. Рупор связывает механическую колебательную систему с внешней средой, обеспечивая нужную осевую концентрацию звуковой энергии, а также согласование нагрузки выходного сопротивления внешней среды в плоскости 5] с входным сопротивлением, приведенным к входному отверстию 5о (рис. 3.26,6). Наиболее распространены рупоры, площадь сечения которых изменяется в направлении рабочей оси по
[c.103]
При этих условиях коэфициент поглощения зависит от того, каково будет распределение звуковой энергии на поверхности материала,или какая часть энергии вступит в толщу мате-риала и в ней поглотится без ро48гц остатка. В конечном счете результат определяется соотношением, иначе говоря, согласованием волновых сопротивлений внешней среды и абсорбента. Кроме того, напомним сделанное выше допущение, что внутри материала только воздух, заключенный в порах, приходит в колебание, частицы же твердой материи жестки и не вибрируют. [c.208]
Армироваиие металлов высокопрочными волокнами позволяет получать материалы с чрезвычайно высокой прочностью и жесткостью. В таких материала. волокно является главным компоненто.м, несущим нагрузку. Матрица передает внешнюю нагрузку волокнам, связывает волокна вместе, защищает их от повреждения и воздействия внешней среды и придает материалу другие требуемые физико-химические свойства, например сопротивление окислению пли коррозии, электро- и теплопроводность и т. д.
[c.637]
Все реальные системы материальных объектов не свободны от сил сопротивления различных сред. Материальным объектам нашей галактики оказывает сопротивление межгалактическая среда, являясь для нее внешней. Для Солнца к этому добавится сопротивление внутренней среды нагпей галактики, а для искусственного спутника Земли — еще и сопротивление атмосферы. Кажется, что при переходе ог небольших систем материальных объектов к более крупным системам, например от искусственного спутника Земли, к самой Земле, Солнцу, [c.598]
Принцип работы датчиков температуры
Принцип работы
Термометры сопротивления (терморезисторы, термосопротивления)
Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого
основан на зависимости электрического сопротивления от температуры.
Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.
Для большинства металлов температурный коэффициент сопротивления положителен — их сопротивление растёт с ростом температуры.
Для полупроводников без примесей он отрицателен — их сопротивление с ростом температуры падает.
Термисторы
Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.
- PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко
увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей - NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко
уменьшать свое сопротивление при достижении заданной температуры
PT100, PT1000
Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к
окислению и большой точностью измерения.
KTY
Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики,
высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.
Схемы включения термосопротивления в измерительную цепь
- 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных
проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности - 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить
сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления - 4-х проводная схема — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов
Сравнение термометров сопротивления с термопарами
Преимущества:
- выше точность и стабильность
- можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или
4-х проводной схемы измерений - практически линейная характеристика
- не требуется компенсация холодного спая
Недостатки:
- малый диапазон измерений
- не могут измерять высокую температуру.
Термопары
Термопара (Thermocouple) — это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения
температуры называется — рабочий спай. Свободные концы называются холодным спаем.
Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС),
пропорциональное разности температур.
Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения,
свободные концы у холодного спая должны содержаться при известной неизменной температуре.
Подключение к ПЛК
Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из
тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного
контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке
измерения.
При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара.
При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного
термометра сопротивления, который подключается к специальному входу контроллера.
Типы термопар
- K: хромель-алюмель
- J: железо-константан
- S, R: платина-платина/родий и др.
Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.
Преимущества термопар
- Большой температурный диапазон измерения
- Измерение высоких температур.
Недостатки
- Невысокая точность
- Необходимость вносить поправку на температуру холодного конца.
Термостаты
Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в
системах отопления, кондиционирования и охлаждения.
Измерение сопротивления изоляции: полное руководство
Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.
Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.
Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.
Проверка: испытание или измерение?
На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.
Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.
При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).
Типовые причины неисправности изоляция
Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.
Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.
1. Электрические нагрузки
В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.
2. Механические нагрузки
Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.
3. Химические воздействия
Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.
4. Напряжения, связанные с колебаниями температуры:
В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.
5. Загрязнение окружающей среды
Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.
В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.
Внешние загрязнения:
В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.
Принцип измерения сопротивления изоляции и влияющие на него факторы
Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.
На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.
Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:
- Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
- Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
- Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.
На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.
Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.
Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.
Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.
Влияние температуры
Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.
Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.
Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)
Методы тестирования и интерпретация результатов
Кратковременное или точечное измерение
Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.
Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.
На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.
В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.
Резкое падение в точке B указывает на повреждение изоляции.
В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.
Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)
Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.
Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.
Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.
Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.
Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.
Показатель поляризации (PI)
При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.
Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.
Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.
PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение PI (нормы)
|
Состояние изоляции
|
<2
|
Проблемное
|
От 2 до 4
|
Хорошее
|
> 4
|
Отличное
|
Коэффициент диэлектрической абсорбции (DAR)
Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:
DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение DAR (нормы)
|
Состояние изоляции
|
<1,25
|
Неудовлетворительное
|
<1,6
|
Нормальное
|
>1,6
|
Отличное
|
Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)
Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.
Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.
Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.
Метод испытания рассеиванием в диэлектрике (DD)
Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.
Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.
Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:
DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)
Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.
DD (нормы)
|
Состояние
|
> 7
|
Очень плохое
|
От 4 до 7
|
Плохое
|
От 2 до 4
|
Сомнительное
|
<2
|
Нормальное
|
Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.
Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре
При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).
При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.
Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.
Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.
Нормы испытательного напряжения для кабелей/оборудования
Рабочее напряжение кабеля/оборудования
|
Нормы испытательного напряжения постоянного тока
|
От 24 до 50 В
|
От 50 до 100 В постоянного тока
|
От 50 до 100 В
|
От 100 до 250 В постоянного тока
|
От 100 до 240 В
|
От 250 до 500 В постоянного тока
|
От 440 до 550 В
|
От 500 до 1000 В постоянного тока
|
2400 В
|
От 1000 до 2500 В постоянного тока
|
4100 В
|
От 1000 до 5000 В постоянного тока
|
От 5000 до 12 000 В
|
От 2500 до 5000 В постоянного тока
|
> 12 000 В
|
От 5000 до 10 000 В постоянного тока
|
В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).
Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).
Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).
Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.
Безопасность при тестировании изоляции
Перед тестированием
A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.
B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).
C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.
D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.
E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.
После тестирования
К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.
Часто задаваемые вопросы
Результат моих измерений – x МОм. Это нормально?
Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.
Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?
Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.
Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?
При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.
- Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
- Используйте чистые, сухие провода.
- Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
- Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
- Для стабилизации измерения выждите необходимое время.
Почему два последовательных измерения не всегда дают одинаковый результат?
Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.
Как протестировать изоляцию, если я не могу отключить установку?
Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.
Как выбрать измеритель сопротивления изоляции (мегомметр)?
При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:
- Какое максимальное испытательное напряжение необходимо?
- Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
- Какое максимальное значение сопротивления изоляции будет измеряться?
- Как будет подаваться питание на мегомметр?
- Каковы возможности хранения результатов измерений?
Примеры измерений сопротивления изоляции
Измерение изоляции на электрической установке, электрооборудовании
Измерение изоляции на вращающейся машине (электродвигатель)
Измерение изоляции на электроинструменте
Измерение изоляции на трансформаторе
Измерение сопротивления изоляции трансформатора производят следующим образом:
a. Между высоковольтной обмоткой и низковольтной обмоткой и землей
b. Между низковольтной обмоткой и высоковольтной обмоткой и землей
c. Между высоковольтной обмоткой и низковольтной обмоткой
d. Между высоковольтной обмоткой и землей
e. Между низковольтной обмоткой и землей
Выбираем приборы
Посмотреть приборы для проверки изоляции высоковольтных кабелей.
Грунт
| Удельное сопротивление, среднее значение (Ом*м) | Сопротивление заземления для комплекта ZZ-000-015, Ом | Сопротивление заземления для комплекта ZZ-000-030, Ом | Сопротивление заземления для комплекта ZZ-100-102, Ом |
Асфальт | 200 — 3 200 | 17 — 277 | 9,4 — 151 | 8,3 — 132 |
Базальт | 2 000 | Требуются специальные мероприятия (замена грунта) | ||
Бентонит (сорт глины) | 2 — 10 | 0,17 — 0,87 | 0,09 — 0,47 | 0,08 — 0,41 |
Бетон | 40 — 1 000 | 3,5 — 87 | 2 — 47 | 1,5 — 41 |
Вода | ||||
Вода морская | 0,2 | 0 | 0 | 0 |
Вода прудовая | 40 | 3,5 | 2 | 1,7 |
Вода равнинной реки | 50 | 4 | 2,5 | 2 |
Вода грунтовая | 20 — 60 | 1,7 — 5 | 1 — 3 | 1 — 2,5 |
Вечномёрзлый грунт (многолетнемёрзлый грунт) | ||||
Вечномёрзлый грунт — талый слой (у поверхности летом) | 500 — 1000 | — | — | 20 — 41 |
Вечномёрзлый грунт (суглинок) | 20 000 | Требуются специальные мероприятия (замена грунта) | ||
Вечномёрзлый грунт (песок) | 50 000 | Требуются специальные мероприятия (замена грунта) | ||
Глина | ||||
Глина влажная | 20 | 1,7 | 1 | 0,8 |
Глина полутвёрдая | 60 | 5 | 3 | 2,5 |
Гнейс разложившийся | 275 | 24 | 12 | 11,5 |
Гравий | ||||
Гравий глинистый, неоднородный | 300 | 26 | 14 | 12,5 |
Гравий однородный | 800 | 69 | 38 | 33 |
Гранит | 1 100 — 22 000 | Требуются специальные мероприятия (замена грунта) | ||
Гранитный гравий | 14 500 | Требуются специальные мероприятия (замена грунта) | ||
Графитовая крошка | 0,1 — 2 | 0 | 0 | 0 |
Дресва (мелкий щебень/крупный песок) | 5 500 | 477 | 260 | 228 |
Зола, пепел | 40 | 3,5 | 2 | 1,7 |
Известняк (поверхность) | 100 — 10 000 | 8,7 — 868 | 4,7 — 472 | 4,1 — 414 |
Известняк (внутри) | 5 — 4 000 | 0,43 — 347 | 0,24 — 189 | 0,21 — 166 |
Ил | 30 | 2,6 | 1,5 | 1 |
Каменный уголь | 150 | 13 | 7 | 6 |
Кварц | 15 000 | Требуются специальные мероприятия (замена грунта) | ||
Кокс | 2,5 | 0,2 | 0,1 | 0,1 |
Лёсс (желтозем) | 250 | 22 | 12 | 10 |
Мел | 60 | 5 | 3 | 2,5 |
Мергель | ||||
Мергель обычный | 150 | 14 | 7 | 6 |
Мергель глинистый (50 — 75% глинистых частиц) | 50 | 4 | 2 | 2 |
Песок | ||||
Песок, сильно увлажненный грунтовыми водами | 10 — 60 | 0,9 — 5 | 0,5 — 3 | 0,4 — 2,5 |
Песок, умеренно увлажненный | 60 — 130 | 5 — 11 | 3 — 6 | 2,5 — 5,5 |
Песок влажный | 130 — 400 | 10 — 35 | 6 — 19 | 5 — 17 |
Песок слегка влажный | 400 — 1 500 | 35 — 130 | 19 — 71 | 17 — 62 |
Песок сухой | 1 500 — 4 200 | 130 — 364 | 71 — 198 | 62 — 174 |
Супесь (супесок) | 150 | 13 | 7 | 6 |
Песчаник | 1 000 | 87 | 47 | 41 |
Садовая земля | 40 | 3,5 | 2 | 1,7 |
Солончак | 20 | 1,7 | 1 | 0,8 |
Суглинок | ||||
Суглинок, сильно увлажненный грунтовыми водами | 10 — 60 | 0,9 — 5 | 0,5 — 3 | 0,4 — 2,5 |
Суглинок полутвердый, лесовидный | 100 | 9 | 5 | 4 |
Суглинок при температуре минус 5 С° | 150 | — | — | 6 |
Супесь (супесок) | 150 | 13 | 7 | 6 |
Сланец | 10 — 100 | |||
Сланец графитовый | 55 | 5 | 2,5 | 2,3 |
Супесь (супесок) | 150 | 13 | 7 | 6 |
Торф | ||||
Торф при температуре 10° | 25 | 2 | 1 | 1 |
Торф при температуре 0 С° | 50 | 4 | 2,5 | 2 |
Чернозём | 60 | 5 | 3 | 2,5 |
Щебень | ||||
Щебень мокрый | 3 000 | 260 | 142 | 124 |
Щебень сухой | 5 000 | 434 | 236 | 207 |
Фотодиоды и фотопроводники
Фотодиоды. Принцип действия
Фотодиод работает подобно обыкновенному сигнальному диоду. Отличие заключается в том, что фотодиод генерирует фототок, когда свет поглощается в области переходного слоя полупроводника. Это устройство обладает высокой квантовой эффективностью, а потому находит применение в решении многих задач.
При работе с фотодиодами необходимо точно определить значения выходного тока и учесть чувствительность к падающему свету. На рисунке 1 показана схема фотодиода, состоящая из основных компонентов.
Рисунок 1. Простейшая модель фотодиода. Photodetector — фотодетектор. Junction capacitance — емкость перехода. Series resistance – последовательное сопротивление. Shunt resistance – шунтирующее сопротивление. Load resistance – сопротивление нагрузки
Терминология
Чувствительность
Чувствительность фотодиода может быть определена как отношение генерируемого фототока (IPD) к мощности падающего света (P) на заданной длине волны:
Режим работы
Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя). Выбор режима зависит от требований к скорости работы и количества допустимого темнового тока (тока утечки).
Режим фотопреобразователя
В режиме фотопреобразователя применяется внешнее обратное смещение, которое заложено в основе детекторов серии DET. Ток в контуре определяет освещенность устройства; выходной ток линейно пропорционален входной оптической мощности. Применение обратного смещения увеличивает ширину обедненного перехода, создавая повышенную чувствительность и уменьшая емкость перехода. Таким образом возникают линейные зависимости некоторых величин. Работа в этих условиях, как правило, приводит к увеличению темнового тока; но на это влияет и сам материал фотодиода. (Примечание: детекторы DET работают в режиме обратного направления)
Режим фотогенератора
В фотогальваническом режиме смещение равняется нулю. Ток от устройства ограничен, напряжение в цепи возрастает. В основе этого режима заложен фотогальванический эффект — на нем же работают солнечные батареи. Количество темнового тока при работе в фотогальваническом режиме минимально.
Темновой ток
Темновым током называют ток утечки, который возникает при приложении напряжения смещения к фотодиоду. При работе в режиме фотопреобразователя наблюдается увеличение темнового тока, и его зависимость от температуры. Теоретически темновой ток удваивается при каждом повышении температуры на 10°C, а сопротивление шунта удваивается при повышении на 6°C. Конечно, большее смещение может уменьшить емкость перехода, но количество присутствующего тока утечки при этом увеличится.
На темновой ток также влияет материал фотодиода и размер активной области. Обычно кремниевые фотодиоды создают низкий темновой ток по сравнению с устройствами из германия. В приведенной ниже таблице перечислены некоторые материалы, используемые в производстве фотодиодов и их относительные темновые токи, скорость, чувствительность и стоимость.
Материал | Темновой ток | Скорость | Спектральный диапазон | Стоимость |
---|---|---|---|---|
Силикон (Si) | Низкий | Высокая | От видимого диапазона до ближней ИК | Низкая |
Германий (Ge) | Высокий | Низкая | Ближняя ИК область | Низкая |
Фосфид галлия (GaP) | Низкий | Высокая | От УФ до видимой области | Варьируется |
Арсенид галлия (InGaAs) | Низкий | Высокая | Ближняя ИК область | Варьируется |
Антимонид арсенида индия (InAsSb) | Высокий | Низкая | От ближней до средней ИК области | Высокая |
Энзимы арсенида галлия (InGaAs) | Высокий | Высокая | Ближняя ИК область | Высокая |
Теллурид кадмия ртути (MCT, HgCdTe) | Высокий | Низкий | От ближней до средней ИК области | Высокая |
Емкость перехода
Емкость перехода (Cj) является важной характеристикой фотодиода, так как от этого зависит ширина полосы пропускания и чувствительность фотодиода. Следует отметить, что большие площади полупроводников охватывают большую часть соединения и увеличивают зарядную емкость. При применении метода обратного смещения ширина полосы обеднения увеличивается, из-за чего снижается емкость заряда и увеличивается скорость работы.
Ширина полосы пропускания и отклик
Сопротивление нагрузки будет взаимодействовать с емкостью перехода фотоприемника, ограничивая таким образом полосу пропускания. Для наилучшего частотного отклика необходимо использовать ограничитель в 50 Ом в сочетании с коаксиальным кабелем на 50 Ом. Полоса пропускания (fBW) и время нарастания (tr) теоретически вычисляются через значения емкости перехода (Cj) и сопротивления нагрузки (RLOAD):
Эквивалентная мощность шумов
Эквивалентная мощность шумов (NEP) создается напряжением RMS-сигнала, когда отношение сигнал-шум равно (или близко) к единице. Это свойство необходимо, поскольку эквивалентная мощность шумов определяет способность детектора обнаруживать слабое излучение. Эквивалентная мощность шумов прямо пропорциональна активной площади детектора и определяется следующим уравнением:
Где S/N – отношение сигнал-шум, Δf – ширина полосы шума, и энергия возбуждения измеряется в Вт/см2.
Термическое сопротивление
Сопротивление нагрузки используется для преобразования генерируемого фототока в выходное напряжение (VOUT) для отображения на осциллографе:
В зависимости от типа фотодиода сопротивление нагрузки может влиять на скорость срабатывания. Для максимальной пропускной способности рекомендуется использовать коаксиальный кабель на 50 Ом с подходящим резистором на 50 Ом, расположенном на противоположном конце кабеля. Сопоставляя кабель с его характеристическим импедансом можно свести к минимуму вызывной сигнал. Если пропускная способность не важна, можно увеличить напряжение для данного уровня освещенности, увеличив сопротивление нагрузки (RLOAD). При неверном расчете длина коаксиального кабеля может повлиять на итог эксперимента, поэтому рекомендуется выбирать кабель как можно более короткий.
Шунтирующее сопротивление
Сопротивление шунта представляет собой сопротивление нулевого смещения фотодиодного перехода. Идеальный фотодиод имеет бесконечное сопротивление шунта, но реальные значения могут варьироваться от десятка Ω до тысяч MΩ, а кроме того, шунтирующее сопротивление зависит от материала фотодиода. Например, детектор на основе арсенида галлия имеет шунтирующее сопротивление порядка 10 МОм, а германиевый детектор — в диапазоне до килоОм. Таким образом можно регулировать шумовой ток на фотодиоде. Тем не менее, для большинства задач высокая сопротивляемость оказывает малое влияние и обычно игнорируется.
Последовательное сопротивление
Последовательное сопротивление — это сопротивление полупроводникового материала, обычно им пренебрегают Последовательное сопротивление возникает из-за химических связей внутри фотодиода и используется в основном для определения линейности зависимостей некоторых характеристик фотодиода в условиях нулевого смещения.
Общие принципы работы
Рисунок 2. Схема обратного смещения (DET детекторы). Protection diode – защитный диод. Photodetector — фотоприемник. Voltage regulator – регулятор напряжения. C filter – RC-фильтр. V Bias – V-смещение
Детекторы серии DET основаны на схеме, изображенной выше. Детектор работает в режиме обратного направления, таким образом обеспечивается линейная зависимость чувствительности от приложенного света. Количество создаваемого фототока также зависит от падающего свете и длины волны. Эти данные можно вывести на осциллограф путем присоединения сопротивления нагрузки на выходе. Функция RC-фильтра состоит в том, чтобы с помощью него отделить любой высокочастотный шум, исходящий от сигнала источника питания.
Рисунок 3. Схема фотоприемника с усилителем. Transimpedance Amp – управляемый током усилитель напряжения. Feedback – обратная связь
Можно также использовать фотоприемник с усилителем, чтобы достичь высокого коэффициента усиления. Пользователь может выбрать режим работы. У каждого режима есть ряд преимуществ:
Влияние на частоту модуляции
Сигнал фотокондуктора будет оставаться постоянным до предельного времени отклика. Многие детекторы, включая устройства на PbS, PbSe, HgCdTe (MCT) и InAsSb, имеют спектр шума 1 / f (т. е. шум уменьшается с увеличением частоты модуляции), что существенно влияет на время отклика на более низких частотах.
Детектор будет проявлять меньшую чувствительность на более низких частотах модуляции.
Частота и обнаружение максимальны при:
PbS — и PbSe – фотокондуктивные детекторы
Широко используются фотопроводящие детекторы свинцового сульфида (PbS) и селенида свинца (PbSe) для обнаружения инфракрасного излучения от 1000 до 4800 нм. В отличие от стандартных фотодиодов, которые создают ток при воздействии света, электрическое сопротивление фотопроводящего материала уменьшается при освещении светом. Хотя PbS и PbSe-детекторы могут использоваться при комнатной температуре, температурные колебания будут влиять на темновое сопротивление, чувствительность и частоту отклика.
Рисунок 4. Базовая схема фотокондуктора. Active Area – рабочая площадь. Dark Resistance – темновое сопротивление. Ground — заземление. Bias Voltage – напряжение смещения. Output signal – выходной сигнал
Принцип действия
У фотопроводящих материалов падающий свет приводит к увеличению числа заряженных частиц в активной области, что уменьшает сопротивление детектора. Изменение сопротивления влечет к изменению регистрируемого напряжения, поэтому фоточувствительность принято выражать в единицах В / Вт. Пример рабочей схемы показан далее. Обратите внимание, что данная схема не предназначается для практических целей, так как в ней присутствует низкочастотный шум.
Механизм обнаружения основан на проводимости тонкой пленки активной области. Выходной сигнал детектора без падающего света определяется следующим уравнением:
В случае, когда свет попадает на активную область, изменение выходного напряжения определяется таким соотношением:
Частотный отклик
Для получения сигналов переменного тока фотопреобразователи должны подключаться в цепь, где присутствует импульсный сигнал. То есть при использовании этих детекторов в схемах с CW-источниками следует подключать оптический прерыватель. Чувствительность детектора (Rf) при использовании прерывателя рассчитывается уравнением:
Здесь fc — частота модуляции, R0 — отклик при нулевой частоте, τr — время нарастания импульса детектора.
Влияние на частоту модуляции
Сигнал фотокондуктора будет оставаться постоянным до предельного времени отклика. Многие детекторы, включая устройства на PbS, PbSe, HgCdTe (MCT) и InAsSb, имеют спектр шума 1 / f (т. е. шум уменьшается с увеличением частоты модуляции), что существенно влияет на время отклика на более низких частотах.
Детектор будет проявлять меньшую чувствительность на более низких частотах модуляции.
Частота и обнаружительная способность максимальны при:
Температурная устойчивость
Обнаружители состоят из тонкой пленки на стеклянной подложке. Эффективная форма и рабочая площадь фотопроводящей поверхности могут значительно варьироваться в зависимости от условий эксплуатации. При этом рабочие характеристики прибора также меняются, в частности — чувствительность детектора изменяется в зависимости от рабочей температуры.
Температурные характеристики запрещенных полос в соединениях PbS и PbSe отрицательны, поэтому охлаждение детектора сдвигает диапазон спектрального отклика на область более длинных волн. Для достижения наилучших результатов рекомендуется использовать фотодиоды в стабильной среде.
Схема фотопроводника с усилителем
Из-за шума, характерного для фотопроводниковых материалов, эти устройства подключают в цепи переменного тока. Шум постоянного тока, возникающий при смещении, слишком высок что негативно отражается на работе детектора.
ИК-детекторы обычно подключаются в сети переменного тока для снижения шумов. Предусилитель необходим для поддержания стабильности и лучшей регистрации генерируемого сигнала.
На схеме видно, что операционный усилитель установлен в участке цепи обратной связи между точками А и В. Разность между двумя входными потенциалами увеличивается и сохраняется на выходе. Также важно обратить внимание на фильтр верхних частот, блокирующий любой сигнал постоянного тока. Кроме того, сопротивление нагрузочного резистора (RLOAD) должно равняться темновому сопротивлению детектора, чтобы обеспечить получение максимального сигнала. Напряжение блока питания (+ V) должно соответствовать величине напряжения, когда отношение сигнал-шум близко к единице. Некоторые задачи требуют большего напряжения, что провоцирует возрастание шумов.
Выходное напряжение вычисляется следующим образом:
Рисунок 5. Feedback resistor – резистор обратной связи
Отношение сигнал/шум
Так как шум от детектора обратно пропорционален частоте модуляции, на низких частотах шум достигает наибольшего значения. Выходной сигнал детектора линейно зависит от возрастающего напряжения смещения, но влиянием шума на небольшие смещения можно пренебречь. При достижении напряжение смещения, шум детектора будет линейно увеличиваться пропорционально напряжению. Если напряжение слишком высоко, шум будет увеличиваться экспоненциально, тем самым ухудшая отношение сигнал / шум. Чтобы получить наилучшее отношение, частоту модуляции и напряжение смещения необходимо регулировать.
Эквивалентная мощность шумов
Эквивалентная мощность шумов (NEP) создается напряжением RMS-сигнала, когда отношение сигнал-шум равно единице. Это необходимо, поскольку эквивалентная мощность шумов определяет способность детектора обнаруживать малое излучение. Мощность шумов прямо пропорциональна активной площади детектора и определяется следующим уравнением:
Где S/N – отношение сигнал-шум, Δf – ширина полосы шума, и энергия возбуждения измеряется в Вт/см2.
Темновое сопротивление
Темновое сопротивление — это сопротивление детектора без падающего света. Важно отметить, что темное сопротивление имеет тенденцию увеличиваться или уменьшаться с температурой. Охлаждение устройства увеличивает темное сопротивление.
Обнаружение (D) и удельная обнаружительная способность(D*)
Обнаружительная способность (D) — еще один критерий оценки работы фотоприемника. Это мера чувствительности, связанная обратной зависимостью с эквивалентной мощностью шума.
Высокие значения обнаружительной способности указывают на высокую чувствительность, что особенно важно для обнаружения сигналов слабого излучения. Обнаружительная способность зависит от длины волны падающего света.
Эквивалентная мощность шумов детектора зависит от активной области детектора, что также влияет на чувствительность. Это затрудняет определение внутренних свойств пары детекторов. Чтобы проигнорировать ненужные зависимости, для оценки работы фотоприемника используется такое понятие как удельная способность к обнаружению (D *), которая не зависит от рабочей области детектора.
© Thorlabs Inc.
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ
Урок 10. силы трения — Физика — 10 класс
Физика, 10 класс
Урок 10. Силы трения
Перечень вопросов, рассматриваемых на уроке:
- Сухое и жидкое (вязкое) трение.
- Максимальная сила трения покоя.
- Формула для вычисления силы трения скольжения.
- Особенности сил сопротивления при движении твердых тел в жидкостях и газах.
- Формулы вычисления сил сопротивления при движении твердых тел в жидкостях и газах.
Глоссарий по теме:
Сухое трение — трение, возникающее при соприкосновении двух твёрдых тел при отсутствии между ними жидкой или газообразной прослойки.
Сила трения покоя — сила трения, действующая между двумя телами, неподвижными относительно друг друга.
Максимальная сила трения покоя — наибольшее значение силы трения, при котором скольжение еще не наступает.
Сила трения скольжения — сила, возникающая между соприкасающимися телами при их относительном движении.
Трение качения — сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого
Основная и дополнительная литература по теме урока:
- Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 113 – 122.
- Парфентьева Н. А. Сборник задач по физике. 10-11 классы. Базовый уровень.
Открытые электронные ресурсы:
http://kvant.mccme.ru/1978/05/kuda_napravlena_sila_treniya.htm
http://kvant.mccme.ru/1985/10/trenie_vrednoe_poleznoe_intere.htm
Теоретический материал для самостоятельного изучения
Трение – физическое явление, сопровождающее всякое движение на Земле. При любом механическом движении тела соприкасаются либо друг с другом, либо с окружающей их сплошной жидкой или газообразной средой. В результате соприкосновения возникает сила трения, которая препятствует движению. Трение может быть полезно, и тогда мы стремимся его увеличить. В случаях, когда трение вредно, принимаются меры для его уменьшения.
История открытия. Свой вклад в попытки объяснить природу трения внесли многие ученые, начиная с Аристотеля, Леонардо да Винчи, Амонтона, Леонарда Эйлера, Кулона. Дальнейший вклад в теорию трения сделали Майер, Джоуль, Гельмгольц, Кузнецов, Дерягин, Томлинсон, Рейнольдс, Штрибек, Боуден и другие.
Различают следующие виды трения:
- сухое;
- жидкое (вязкое).
Сухое трение бывает трех видов:
- трение покоя;
- трение скольжения;
- трение качения.
Причины возникновения силы трения:
- шероховатость поверхностей соприкасающихся тел.
- взаимное притяжение молекул соприкасающихся тел.
Сухое трение − трение, возникающее при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Силы сухого трения всегда направлены по касательной к соприкасающимся поверхностям.
Сухое трение, возникающее при относительном покое тел, называют трением покоя.
Сухое трение, возникающее при относительном движении тел, называют трением скольжения.
Трение качения возникает, когда одно тело катится по поверхности другого тела.
Закон, выражающий зависимость максимального значения модуля силы трения покоя от модуля силы нормальной реакции опоры впервые экспериментально установил французский военный инженер и учёный-физик Шарль Огюстен де Кулон. Согласно этому закону, максимальное значение модуля силы трения покоя прямо пропорционально модулю силы нормальной реакции опоры
Fтр.макс = µN,
где Fтр.макс — модуль максимальной силы трения покоя, µ- коэффициент пропорциональности, называемый коэффициентом трения покоя.
Коэффициент трения µ характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки. Коэффициент трения определяется экспериментально.
Трение скольжения. Сила трения скольжения также направлена вдоль поверхности соприкосновения тел, но в отличие от силы трения покоя, которая противоположна внешней силе, стремящейся сдвинуть тело, сила трения скольжения всегда направлена противоположно относительной скорости. Модуль силы трения скольжения, как и максимальной силы трения покоя, тоже пропорционален прижимающей силе, а значит, нормальной силе реакции опоры:
При не слишком больших относительных скоростях движения сила трения скольжения мало отличается от максимальной силы трения покоя. Поэтому приближенно можно считать ее постоянной и равной максимальной силе трения покоя:
Fтр ≈ Fтр.макс = µN.
Важно! Сила трения зависит от относительной скорости движения тел. В этом ее главное отличие от сил тяготения и упругости, зависящих только от расстояний.
При движении твердого тела в жидкости или газе возникает силa жидкого (вязкого) трения. Сила жидкого трения значительно меньше силы сухого трения. Эта сила направлена против скорости тела относительно среды и тормозит движение.
Главная особенность силы сопротивления состоит в том, что она появляется только при наличии относительного движения тела и окружающей среды. Сила трения покоя в жидкостях и газах полностью отсутствует. Поэтому усилием рук можно сдвинуть тяжелую баржу в воде, а сдвинуть поезд усилием рук невозможно.
Модуль силы сопротивления Fc зависит от размеров, формы и состояния поверхности тела, свойств среды (жидкости или газа), в которой тело движется, и, наконец, от относительной скорости движения тела и среды.
Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела показан на рисунке
При относительной скорости, равной нулю, сила сопротивления не действует на тело (Fc=0). С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем все быстрее и быстрее. При малых скоростях движения силу сопротивления можно считать прямо пропорциональной скорости движения тела относительно среды:
Fc = k1v, (1)
где k1— коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды — ее вязкости.
Вычислить коэффициент k1 теоретически для тел сколько-нибудь сложной формы не представляется возможным, его определяют опытным путем.
При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:
Fc = k2v2, (2)
где k2 — коэффициент сопротивления, отличный от k1.
Только опытным путём можно определить, какая из формул — (1) или (2) — подходит для использования в конкретной практической задаче.
Итак, основными особенностями силы сопротивления, действующей на тело, являются:
1) отсутствие силы трения покоя; 2) зависимость от относительной скорости движения.
Примеры и разбор решения заданий
1. Какая сила не позволяет человеку сдвинуть с места дом?
- Силы трения скольжения;
- сила трения покоя;
- сила тяжести.
Ответ: 2) Сила трения покоя.
2. Деревянный ящик равномерно движется по поверхности длинного стола. Сила давления ящика на поверхность равна 30 Н, сила трения 6 Н. Найдите коэффициент трения скольжения.
Решение.
Воспользуемся формулой, которая связывает силу давления на плоскость, силу трения и коэффициент трения Fтр = µP. Из этой формулы легко получить формулу для расчёта коэффициента трения µ = Fтр / P. Подставляя в неё численные значения, получаем:
µ = Fтр / P = 6Н/30Н = 0,2.
Ответ: 0,2.
3. Кубик из детского конструктора покоится на наклонной плоскости, образующей угол α = 40° с горизонтом. Сила трения покоя равна 0,32 Н. Определите значение силы тяжести, которая действует на кубик.
Решение.
По условию задачи кубик покоится. Следовательно, сумма всех действующих на него сил равна нулю. В проекции на ось, идущей вдоль склона плоскости, получаем соотношение: mg sin α – Fтр = 0. Из него выражаем формулу для расчета силы тяжести, действующей на кубик
Ответ: 0,5 Н.5. Для числа Рейнольдса справедлива следующая формула:
где D — диаметр цилиндра, U — скорость потока, p — плотность, m— динамическая вязкость.
Коэффициент сопротивления цилиндра определяется следующим образом:
где FD — сила сопротивления, D диаметр цилиндра, L — длина цилиндра.
Цель данного моделирования — определить коэффициент сопротивления цилиндра с помощью FloEFD и сравнить полученное значение с экспериментальным.
Открытие модели
Скопируйте папку B2 — Drag Coefficient в свою рабочую директорию и убедитесь, что с файлов снят атрибут «только для чтения», так как FloEFD будет сохранять в них входные данные. Кликните Кнопка приложения > Открыть. В диалоговом окне Открыть файл перейдите к сборке Cylinder 0.01m.asm, расположенной в папке B2— Drag Coefficient\cylinder 0.01m, и кликните Открыть.
Вы можете пропустить создание проекта и запустить на расчет готовый проект FloEFD, созданный в соответствии с этим примером. Для этого Вам необходимо открыть сборку Cylinder 0.01m.asm, расположенную в папке B2 —Drag Coefficient\cylinder 0.01m\Ready To Run, или сборку Cylinder 0.01m.asm, расположенную в папке B2 — Drag Coefficient\cylinder 1m\Ready To Run, и запустить на расчет нужные проекты.
Рассматриваемая в данном примере задача является внешней задачей FloEFD.
Внешняя задача — это задача обтекания каких-либо тел (самолетов, автомобилей, зданий и т.д). В таких задачах границами расчетной области являются внешние границы — плоскости расчетной сетки, параллельные координатным плоскостям и полностью лежащие в области текучей среды. Внешние границы могут пересекать стенки модели. FloEFD позволяет также решать задачи, в которых одновременно присутствует как внешнее, так и внутреннее течение (например, обтекание здания потоком воздуха и воздухообмен внутри него). В этом случае следует задавать Внешний тип течения.
Сначала необходимо создать проект FloEFD.
1. Кликните Flow Analysis > Проект > Мастер проекта. Мастер проекта поможет Вам пошагово создать новый проект FloEFD. В первом случае примем число Рейнольдса равным 1.
2. В диалоговом окне Имя проекта введите имя нового проекта: Re 1. Кликните Далее.
3. В диалоговом окне Система единиц измерения необходимо выбрать систему единиц, которая будет использоваться как для входных, так и для выходных данных (результатов). В данном проекте удобно использовать заданную по умолчанию Международную систему единиц SI. Кликните Далее.
4. В диалоговом окне Тип задачи выберите Внешняя. Также здесь можно указать физические модели, которые будут включены в проект. В данном случае физические модели задавать не будем.
Чтобы пренебречь отдельными замкнутыми областями внутри тела, следует включить опцию Исключить внутреннее пространство. Однако в рассматриваемом цилиндре такие области отсутствуют. Базовая ось глобальной системы координат (X, Y или Z) используется для того, чтобы данные можно было задать в виде таблиц или формул в цилиндрической системе координат с указанной осью вращения.
При числе Рейнольдса Re < 40 обтекание цилиндра является стационарным, при Re > 40 — нестационарным. В рассматриваемом случае при Re=1 задача считается стационарной.
Кликните Далее.
5. В данной задаче исследуется течение воды, поэтому в качестве текучей среды из списка Жидкости выберите Water. Кликните Далее.
6. Тепловое условие, задаваемое в диалоговом окне Условия на стенках по умолчанию, будет относиться ко всем стенкам модели, контактирующим с текучей средой.5) в диалоговом окне Начальные и внешние условия необходимо задать параметры невозмущенного потока. Таким образом будут определены начальные условия внутри Расчетной области и условия на границах Расчетной области. Внешними условиями являются термодинамические параметры (статическое давление и температура), скорость и параметры турбулентности. В данном проекте используем термодинамические параметры, заданные по умолчанию (давление 101325 Pa и температура 293,2 K). Необходимо только задать скорость входящего потока (в данном случае X-компоненту) в соответствии с числом Рейнольдса:
Чтобы задать скорость потока в этом случае, необходимо открыть диалоговое окно Зависимость.
7. Кликните в поле Скорость в направлении X. Кнопка Зависимость станет активной.
8. Нажмите кнопку Зависимость. Появится диалоговое окно Зависимость.
В диалоговом окне Зависимость данные можно задавать различными способами: в виде констант, формул или функций от x, y, z, q, ф, радиуса r и времени t (только для нестационарных задач). Радиусом r является расстояние от какой-либо точки до Базовой оси, выбранной в соответствии с системой координат (в Мастере проекта и в диалоговом окне Общие настройки это Глобальная система координат). Q и ф — полярный и азимутальный углы сферической системы координат. Таким образом, с помощью координат r, q, и ф данные можно задавать как в цилиндрической, так и в сферической системах.
9. Из списка Тип зависимости выберите Задание формулой.
10. В поле Формула введите выражение для скорости потока при определенном числе Рейнольдса: 1*(0.0010115/0.01/998.19). Здесь: 1 – число Рейнольдса (Re) 0.0010115 (Pa*s) — динамическая вязкость (m) при заданной температуре 293.2 K 0.01 (m) — диаметр цилиндра (D) 998.19 (kg/m3)- плотность воды () при заданной температуре 293.2 K.
11. Кликните OK. Вы вернетесь в диалоговое окно Начальные и внешние условия. В большинстве случаев сложно заранее оценить интенсивность турбулентности течения. Поэтому рекомендуется использовать параметры турбулентности, заданные по умолчанию. Для внешних задач интенсивность турбулентности по умолчанию задана равной 0.1%, для внутренних — 2%. Как правило, эти значения являются подходящими. В данном проекте примем значение 0.1%. Кликните Завершить.
Чтобы уменьшить процессорное время и необходимую для расчета память, решим двумерную задачу (без учета трехмерных эффектов).
Задание 2D моделирования
1. В дереве анализа FloEFD раскройте группу Входные данные.
2. Правой кнопкой мыши кликните по элементу Расчетная область и из контекстного меню выберите Изменить.
3. В группе Тип нажмите кнопку 2D и выберите плоскость XY плоскость (т.к. ось цилиндра — Z).
4. В группе Размеры и условия для границ Расчетной области Z min и Z max автоматически будет задано условие Симметрия.
Границы Z min и Z max устанавливаются автоматически в зависимости от размеров модели. Таким образом, длина цилиндра L, необходимая для расчета коэффициента сопротивления (CD), равна L = Z max-Z min = 0.002 m.
В большинстве случаев, для того, чтобы исследовать обтекание тела и определить, как на этот процесс влияют конструктивные изменения, рекомендуется использовать Расчетную область, сгенерированную FloEFD автоматически. Однако в данном случае результаты, полученные с помощью FloEFD, будут сравниваться с точными экспериментальными данными. Границы Расчетной области расположены близко к цилиндру, из-за чего могут возникать возмущения входящего потока. Это может повлиять на получаемые результаты. Поэтому границы расчетной области необходимо установить на более отдаленном расстоянии от цилиндра. Увеличение размеров Расчетной области позволит снизить требуемые для расчета ресурсы компьютера.
5. В группе Размеры и условия задайте координаты X и Y границ Расчетной области так, как показано на рисунке справа.
6. Кликните OK .
Так как входящий поток направлен вдоль оси X, коэффициент сопротивления цилиндра рассчитывается, исходя из X-компоненты силы сопротивления.
X-компонента силы сопротивления может быть рассчитана с помощью соответствующей цели FloEFD. В данном примере в качестве Глобальной цели необходимо задать параметр Сила (X). Это гарантирует, что расчет не завершится до тех пор, пока не будет достигнута полная сходимость цели по параметру Сила (X) во всей расчетной.
Задание глобальной цели
1. Кликните Flow Analysis > Добавить > глобальные цели.
2. В таблице Параметр поставьте галочку напротив параметра Сила (X).
3. Не снимайте галочку Исп. для сход., чтобы эта цель использовалась для контроля сходимости.
При выборе x, y, z-компонент силы (или момента) Вы можете выбрать Координатную систему, в которой будут рассчитываться эти цели. В данной задаче удобно использовать заданную по умолчанию Глобальную систему координат.
4. Кликните OK . В дереве анализа FloEFD появится элемент ГЦ Сила (X) 1.
Задание цели-выражения
Когда расчет завершится, Вы сможете вручную рассчитать коэффициент сопротивления цилиндра исходя из полученного значения силы. Если же Вы зададите Цель-выражение, это значение будет автоматически рассчитано FloEFD.5 будет использоваться модель Cylinder 0.01m.asm.
Задание настроек глобальной сетки
1. В дереве анализа FloEFD дважды кликните правой кнопкой мыши по элементу Cетка > Глобальная сетка.
2. По умолчанию выбран Автоматический режим.
3. В группе Настройки задайте Уровень начальной сетки равным 5 и оставьте заданные по умолчанию Минимальный зазор и Коэффициент разбега до границ расчетной области.
4. Кликните OK.
Задание настроек локальной сетки
Для того, чтобы подробно разрешить локальную область вблизи цилиндра, зададим настройки Локальной сетки.
1. Кликните правой кнопкой мыши по элементу Сетка и из контекстного меню выберите Добавить локальную сетку.
2. В графической области выберите боковую поверхность цилиндра.
Поставьте галочку Равноудаленное дробление и в этой группе задайте Число оболочек = 1, Максимальный уровень равноудаленного дробления = 1 и Отступ 1 = 0.004 m.
Адаптирование сетки в процессе расчета
Уровень начальной сетки был задан равным 5, но этого значения недостаточно для точного разрешения вихревой дорожки позади цилиндра. Для того, чтобы улучшить качество решения в этой области, следует произвести адаптирование сетки в процессе расчета.
1. Кликните Flow Analysis > Опции управления расчетом.
2. Перейдите на вкладку Адаптация сетки.
3. В группе Глобальная область выберите уровень = 1.
4. Раскройте группу Настройки адаптации сетки и убедитесь, что в качестве Стратегии адаптации сетки выбрано Таблично.
5. Перед тем, как отредактировать таблицу адаптаций сетки, убедитесь, что в качестве Единиц измерения выбраны Продувки. Затем нажмите кнопку в поле Таблица адаптаций сетки.
6. В появившемся окне кликните Добавить строку. Появится пустая строка.
7. Введите в эту строку значение 2. Это означает, что дробление сетки в процессе расчета произойдет, когда число продувок достигнет 2.
8. Кликните OK. Перейдите на вкладку Завершение.
9. Убедитесь, что в группе Условия завершения включено условие Адаптации сетки.
10. Выключите условие Продувки.
11. Кликните OK.
Клонирование проекта
1. В дереве анализа FloEFD правой кнопкой мыши кликните по элементу Re 1 и из контекстного меню выберите Клонировать проект.
2. В поле Имя проекта введите Re 1000.
3. Кликните OK. Будет создан новый проект FloEFD с прикрепленными к нему данными FloEFD.
Так как новый проект является копией FloEFD проекта Re 1, необходимо изменить только значение скорости течения в соответствии в с числом Рейнольдса 1000. Чтобы изменить данные, определенные в Мастере проекта, воспользуйтесь диалоговым окном Общие настройки. Настройки Единиц измерения и настройки разрешения геометрии не требуют изменений.
В окне Общие настройки представлены текущие настройки проекта. Здесь Вы можете внести изменения в соответствии с требованиями проекта. Таким образом можно менять настройки, заданные в Мастере проекта, или проект, созданный с помощью Шаблона FloEFD.
Изменение настроек проекта
1. Кликните Flow Analysis > Общие настройки. Появится диалоговое окно Общие настройки.
2. Как уже было сказано ранее, при Re > 40 обтекание цилиндра является нестационарным. Поэтому в проекте необходимо включить опцию Нестационарность.
3. В Навигаторе кликните по вкладке Начальные и внешние условия.
4. Кликните в поле Скорость в направлении X и нажмите кнопку Зависимость
5. В поле Формула введите формулу с новым числом Рейнольдса: 1e3*(0.0010115/0.01/998.19).
6. Кликните OK, чтобы вернуться в диалоговое окно Общие настройки.
7. Кликните OK, чтобы сохранить изменения и выйти из диалогового окна Общие настройки.
Изменение цели-выражение
1. В группе Цели кликните правой кнопкой мыши по элементу Коэффициент сопротивления и из контекстного меню выберите.5, необходимо увеличить диаметр цилиндра до 1 м.
Если необходимо создать подобный проект для одной и той же модели, предпочтительнее использовать клонирование проекта. Для того, чтобы общие настройки проекта применить к другой модели, следует воспользоваться Шаблоном FloEFD.
Шаблон включает в себя основные настройки проекта, которые могут служить основой для нового проекта. Это тип задачи, физические модели, текучие среды, материалы, начальные и внешние параметры течения, тепловое условие на стенке, настройки разрешения геометрии, а также система единиц измерения. Обратите внимание, что Граничные условия, Вентиляторы, Начальные условия, Цели и другие элементы, доступные из группы Flow Analysis > Добавить, в шаблоне не хранятся. По умолчанию доступен только шаблон Internal Water, но Вы также можете создать свои собственные шаблоны.
Создание шаблона
1. Кликните Flow Analysis > Проект > Создать шаблон. Появится диалоговое окно Создать шаблон.
2. В поле Имя шаблона введите Сопротивление цилиндра.
3. Кликните Сохранить. Будет создан новый шаблон FloEFD.
Все шаблоны сохраняются в виде файлов .fwp в директории <install_dir>/Template. Вы можете с легкостью можете применить шаблон к любым ранее созданным моделям.
4. Сохраните модель.
Теперь на основе шаблона Сопротивление цилиндра необходимо создать новый проект.
Создание проекта на основе шаблона
Откройте файл Cylinder 1m.asm, расположенный в папке cylinder 1m.
1. Кликните Flow Analysis > Проект > Новый. Появится диалоговое окно Новый FloEFD проект.
2. В поле Имя конфигурации введите Re 1e5.
3. Из Списка шаблонов выберите Сопротивление цилиндра.
4. Кликните OK.
Новый проект содержит такие же настройки, как и проект Re 1000, поставленный в модели cylinder001m. Другими являются только Разрешение геометрии и размеры Расчетной области, который рассчитываются FloEFD, исходя из геометрических размеров модели. Обратите внимание, что настройки 2D моделирования и Глобальная цель сохранились. Поэтому Вы можете изменить эти настройки в соответствии с новой геометрией модели.
1. Кликните Flow Analysis > Расчетная область и измените размеры расчетной области, как показано на рисунке.
2. Кликните OK.
3. Откройте диалоговое окно Общие настройки, кликните по вкладке Начальные и внешние условия, затем кликните в поле Скорость в направлении X и нажмите кнопку Зависимость.2)*(2*998.19*1).
8. В качестве Размерности выберите Безразмерный.
9. В поле Имя цели введите Коэффициент сопротивления.
10. Кликните OK .
11. Откройте диалоговое окно Настройки локальной сетки.
12. В группе Равноудаленное дробление установите Отступ 1 = 0.4 m.
Теперь Вы можете рассчитать проекты, поставленные в двух различных конфигурациях.
Запуск серии расчетов
FloEFD позволяет автоматически рассчитать серию проектов, открытых в ткущей сессии.
1. Кликните Flow Analysis > Расчет > Серия расчетов.
2. Поставьте галочку Расчет в поле Все проекты. Таким образом, Расчет будет выбран для всех проектов (Re 1, Re 1000, Re 1e5). Также в поле Все проекты поставьте галочку Закрыть монитор. Когда поставлена галочка Закрыть монитор, после окончания расчета FloEFD автоматически закрывает Окно монитора.
3. Кликните Запустить.
Получение результатов
После того, как все расчеты завершатся, перейдите в модель cylinder 0.01m и активируйте проект Re 1000 в дереве проектов FloEFD. Чтобы получить значение Коэффициента сопротивления, создайте Цель:
1. В дереве анализа FloEFD правой кнопкой мыши кликните по элементу Результаты и из контекстного меню выберите Загрузить.
2. В дереве анализа FloEFD в группе Результаты кликните правой кнопкой мыши по элементу Цели и из контекстного меню выберите Добавить. Появится диалоговое окно Цель.
3. Выберите Все.
4. Кликните OK . Будет создан документ Excel Цели1. Перейдите в этот документ, чтобы получить нужное значение. Активируйте проект Re 1 и загрузите результаты.
5. Переключитесь в модель cylinder 1m, активируйте проект Re 1e5, загрузите результаты и выведите значения всех целей.
Для сравнения результатов, полученных с помощью FloEFD, с экспериментальной кривой, предпочтительнее выбирать средние значения коэффициента сопротивления. Как в стационарной, так и в нестационарной задаче для средних значений цели менее заметны отклонения.
Результаты сравнения представлены на рисунке ниже.
Измерение среднего сопротивления | Electricalvoice
Сопротивление подразделяется на три категории: низкое, среднее и высокое сопротивление. Среднее сопротивление составляет от 1 Ом до 0,1 МОм.
Для измерения сопротивления среды используются следующие различные методы:
- Вольтметр-амперметр метода
- Метод замещения
- Метод моста Уитстона
- Омметр Метод
Метод замещения
В этом разделе мы узнаем об измерении среднего сопротивления методом замещения.
В методе замещения сопротивление, значение которого необходимо измерить, сравнивается со стандартным сопротивлением. Схема подключения для метода замещения показана на рис.1.
Рис.1
Здесь
R — неизвестное сопротивление ,
S Стандартное переменное сопротивление,
А — амперметр
r — Регулирующее сопротивление.
Когда мы устанавливаем переключатель в положение 2, тогда R подключается к цепи.Регулирующее сопротивление r регулируется до тех пор, пока показание амперметра не окажется на выбранной отметке шкалы. Теперь переключатель переведен в положение 1, и в цепь будет включено стандартное переменное сопротивление S. Теперь переменный резистор S регулируется до тех пор, пока показания амперметра не будут такими же, как когда R был в цепи. Считывается установка циферблата S. Поскольку замена одного сопротивления на другое оставила ток неизменным и при условии, что ЭДС батареи и положение регулирующего сопротивления r остаются неизменными, два сопротивления R и S должны быть равны.Таким образом, значение неизвестного сопротивления R равно настройке шкалы стандартного сопротивления S.
Преимущества метода замещения
Этот метод измерения более точен по сравнению с методом амперметра вольтметра, поскольку в этом методе измерения не зависят от точности амперметра.
Примечание:
1. Однако на точность этого метода сильно влияет изменение ЭДС батареи в то время, когда снимаются показания в двух настройках.Поэтому, чтобы избежать ошибки из-за изменения ЭДС батареи, используется батарея достаточной емкости, чтобы она оставалась постоянной в течение всего периода тестирования.
2. Точность этого метода также зависит от сопротивления цепи, за исключением R и S, от чувствительности прибора и от точности, с которой известно стандартное сопротивление S.
3. Этот метод не получил широкого распространения для простого измерения сопротивления и используется в модифицированной форме для измерения высокого сопротивления.Однако метод замещения очень важен, поскольку он находит свое применение в применении мостового метода и в высокоточных измерениях переменного тока.
Метод моста Уитстона — Измерение среднего сопротивления
Мост Уитстона:
Мост Уитстона — очень важный прибор, используемый для измерения среднего сопротивления. Мост Уитстона используется дольше, чем любой другой электрический измерительный прибор. Это по-прежнему точный и надежный инструмент, который широко используется в промышленности. Мост Уитстона — это прибор для сравнительных измерений, работающий по принципу нулевой индикации.
Это означает, что показание не зависит от калибровки прибора для индикации нуля или каких-либо его характеристик. По этой причине очень высокая степень точности может быть достигнута с помощью моста Уитстона. Точность 0,1% довольно обычна для моста Уитстона , в отличие от точности от 3% до 5% для обычного омметра для измерения среднего сопротивления.
На рисунке ниже показана базовая схема моста Уитстона . Он имеет четыре резистивных плеча, состоящих из сопротивлений P, Q R и S вместе с источником ЭДС (батареей) и детектором нуля, обычно гальванометром G или другим чувствительным измерителем тока. Ток через гальванометр зависит от разности потенциалов между точками c и d.
Считается, что мост уравновешен, когда нет тока через гальванометр или когда разность потенциалов на гальванометре равна нулю.Это происходит, когда напряжение от точки b до точки a равно напряжению от точки d к точке b, или при обращении к другой клемме батареи, когда напряжение от точки d до точки c равно напряжению от точки b до точки c.
Должен прочитать:
Для сбалансированного состояния мы можем написать,
I1 P = I2 R
На рисунке ниже показана схема моста Уитстона для измерения среднего сопротивления.
Для того, чтобы ток гальванометра был равен нулю, также существуют следующие условия:
где E = ЭДС АКБ
Комбинируя приведенные выше три уравнения, получаем:
откуда
Q.R = P.S —> (4)
Уравнение-4 — это хорошо известное выражение баланса моста Уитстона . Если известны три сопротивления, четвертое можно определить из уравнения-4, и мы получим
R = S * (P / Q)
где R — неизвестное сопротивление, S называется «стандартным плечом» моста, а P и Q называются «плечом передаточного отношения».
В промышленном и лабораторном исполнении моста резисторы, составляющие P, Q и S, смонтированы вместе в коробке, а соответствующие значения выбираются с помощью дисковых переключателей. Выключатели батареи и гальванометра входят в состав переносных комплектов вместе с гальванометром и сухой батареей. P и Q обычно состоят из четырех резисторов каждый со значениями 10 100, 100 и 10 000 Ом соответственно в этой декадной конфигурации резисторов. На приведенном ниже рисунке показан коммерческий вариант моста Уитстона для измерения среднего сопротивления .
Чувствительность моста Уитстона:
Часто желательно знать реакцию гальванометра, которую следует ожидать от моста, который немного разбалансирован, так что ток течет в ветви гальванометра мостовой сети. Может использоваться для
(i) выбор гальванометра, с помощью которого можно наблюдать данный дисбаланс в заданной схеме моста,
(ii) определение минимального дисбаланса, который может наблюдаться с данным гальванометром в указанной схеме моста, и
(iii) определение ожидаемого прогиба при заданном дисбалансе.
Чувствительность к дисбалансу можно вычислить, решив мостовую схему для небольшого дисбаланса. Решение достигается путем преобразования моста Уитстона , показанного на рисунке выше, в его «эквивалентную схему Тевенина».
Предположим, что мост сбалансирован, когда сопротивления ответвлений равны P, Q, R, S, так что P / Q = R / S. Предположим, что сопротивление R изменяется на R + ΔR, создавая дисбаланс. Это вызовет появление ЭДС на ветви гальванометра.При открытом ответвлении гальванометра падение напряжения между точками a и b составляет:
Чувствительность моста определяется как отклонение гальванометра на единицу относительного изменения неизвестного сопротивления.
Чувствительность моста Уитстона,
Из приведенного выше уравнения ясно, что чувствительность моста Уитстона зависит от напряжения моста, параметров моста и чувствительности гальванометра по напряжению.Преобразование членов в выражение для чувствительности,
Из приведенного выше уравнения очевидно, что максимальная чувствительность достигается при R / S = 1. По мере того, как отношение становится больше или меньше, чувствительность уменьшается. Поскольку точность измерения зависит от чувствительности, можно увидеть предел полезности данной комбинации моста, батареи и гальванометра.
Для моста с равными плечами R = S = P = Q.
Чувствительность моста, SB = (SV.E) / 4
Как объяснялось выше, чувствительность моста Уитстона максимальна, когда отношение равно единице. Чувствительность с отношением P / Q = R / S = 1000 будет примерно 1/250 чувствительности для отношения единицы. Чувствительность с P / Q = R / S = 1000 аналогичным образом будет примерно 1/250 чувствительности для отношения единицы.
Таким образом, чувствительность значительно снижается, если отношение P / Q = R / S больше или меньше единицы. Это снижение чувствительности сопровождается снижением точности балансировки моста.
Ток гальванометра:
Ток через гальванометр можно узнать, найдя эквивалентную схему Тевенина. Напряжение тевенина или холостого хода, возникающее между выводами b и d при разомкнутой цепи гальванометра, составляет
.
Сопротивление эквивалентной схемы Тевенина определяется путем повторного изучения клемм c и d и замены батареи по ее внутреннему сопротивлению. Однако в большинстве случаев чрезвычайно низким сопротивлением батареи можно пренебречь, и это упрощает решение, поскольку мы можем предположить, что клеммы a и b закорочены.Эквивалентное сопротивление Thevenin можно рассчитать, обратившись к рисунку ниже.
Тевенинское эквивалентное сопротивление моста,
Для моста с равными плечами
P = Q = S = R
R0 = R
Таким образом, эквивалент Тевенина мостовой схемы сводится к генератору Тевенина с ЭДС E0 и внутренним сопротивлением R0.Ниже показана эквивалентная схема моста Уитстона.
Ток в цепи гальванометра,
Ig = E0 / (R0 + G)
Где G = сопротивление цепи гальванометра,
Вольтметр Амперметр Метод измерения сопротивления
Сопротивление классифицируется по трем категориям для измерения. Различные категории сопротивления измеряются разными методами.Вот почему они засекречены. Они классифицируются как
Низкое сопротивление: Сопротивление, имеющее значение 1 Ом или ниже, относится к этой категории.
Среднее сопротивление: Эта категория включает сопротивление от 1 Ом до 0,1 МОм.
Высокое сопротивление: Сопротивление порядка 0,1 МОм и выше классифицируется как высокое сопротивление.
В этом разделе мы обсудим метод измерения среднего сопротивления.Для определения среднего сопротивления используются следующие методы:
· Амперметр Метод вольтметра
· Метод замещения
· Метод моста Уитстона
· Омметр Метод
Амперметр Вольтметр Метод:
Существует два возможных соединения для измерения среднего сопротивления методом амперметра вольтметра, как показано на рисунке ниже:
В обоих случаях снимаются показания вольтметра и амперметра.Если показание вольтметра — V, а показание амперметра — I, тогда измеренное сопротивление будет
.
Rm = V / I
Это измеренное сопротивление Rm будет истинным значением сопротивления тогда и только тогда, когда сопротивление амперметра равно нулю, а сопротивление вольтметра бесконечно. Но на самом деле это невозможно достичь амперметром нулевого сопротивления и вольтметром бесконечного сопротивления. Следовательно, измеренное значение сопротивления Rm будет отклоняться от истинного значения R (Say).
Итак, мы обсудим обе схемы по отдельности и вычислим погрешность измерения в процентах.
Корпус1:
Мы рассматриваем первый тип подключения, как показано на рисунке 1 выше. Из рисунка видно, что вольтметр измеряет падение напряжения на амперметре, а также на резисторе. Итак, V = Va + Vr
Пусть ток, измеренный амперметром = I
Следовательно, измеренное сопротивление Rm = V / I
Итак, Rm = (Va + Vr) / I = (IRa + IR) / I = Ra + R
Следовательно, измеренное сопротивление представляет собой сумму сопротивления амперметра и истинного сопротивления.Следовательно, измеренное значение будет представлять истинное значение, только если сопротивление амперметра Ra равно нулю.
Истинное значение сопротивления R = Rm –Ra
= Rm (1-Ra / Rm)
Относительная погрешность = (Rm-R) / R = Ra / R
Следовательно, относительная погрешность будет меньше, если истинное значение измеряемого сопротивления будет большим по сравнению с внутренним сопротивлением амперметра. Вот почему этот метод следует использовать при измерении высокого сопротивления, но он должен относиться к категории среднего сопротивления.
Ящик2:
Мы рассмотрим второе соединение, к которому подключен вольтметр, в котором вольтметр подключен к сопротивлению R, значение которого необходимо измерить.
Из рисунка видно, что амперметр будет считывать ток, протекающий через вольтметр и сопротивление R. Следовательно, ток, измеренный амперметром Ia = Iv + Ir
Итак, Ia = Iv + Ir
= V / Rv + V / R, где Rv — сопротивление вольтметра, а V — показание вольтметра.
Измеренное сопротивление Rm = V / Ia
= В / (В / Rv + V / R)
= RvR / (R + Rv)
= R / (1 + R / Rv)…. Деление числителя и знаменателя на
Rv
Следовательно, истинное значение сопротивления R = RmRv / (Rv-Rm)
= Rm (1-Rm / Rv)
Следовательно, истинное значение сопротивления будет равно измеренному значению только в том случае, если значение сопротивления вольтметра Rv бесконечно.
Если предположить, что значение сопротивления вольтметра Rv велико по сравнению с измеряемым сопротивлением R, то Rv >>> Rm
Итак, истинное значение R = Rm (1 + Rm / Rv)
Таким образом, из приведенного выше уравнения ясно, что измеренное значение сопротивления меньше истинного значения.
Относительная погрешность = (Rm-R) / R
= -R / Rv
Следовательно, из выражения относительной погрешности ясно, что погрешность измерения будет низкой, если значение измеряемого сопротивления будет намного меньше по сравнению с внутренним сопротивлением вольтметра.
Это причина; этот метод используется для измерения сопротивления контактов . Поскольку значение сопротивления контакта составляет порядка 20 мкОм, значение очень мало по сравнению с внутренним сопротивлением вольтметра.
Метод вольтметра-амперметра для случаев 1 и 2 — простой, но неточный метод. Погрешность значения сопротивления зависит от точности амперметра, а также вольтметра. Если точность обоих приборов предполагается 0.5%, тогда, когда оба прибора показывают почти полную шкалу, ошибка измерения сопротивления может варьироваться от 0 до 1%, в то время как если оба прибора показывают около половины шкалы, ошибка может удвоиться и так далее.
Однако этот метод очень полезен там, где не требуется высокая точность. Пригодность Case1 или Case2 зависит от измеряемого значения сопротивления. Точка разделения между двумя методами находится на сопротивлении, для которого оба метода дают одинаковую относительную ошибку.
Итак, Ra / R = R / Rv
R =
Для сопротивления, большего, чем значение, указанное выше, используется случай 1, а для значения сопротивления ниже R, указанного выше, используется случай 2.
Проверьте эту книгу по электрическим измерениям и приборам. Это действительно потрясающе, и концепции реализованы очень хорошо.
▷ Измерение сопротивления омметром
Новая статья из серии руководств по измерительным приборам, которые Насир — один из самых плодовитых наших членов — написал. На этот раз он сосредоточился на омметре.
Вы тоже можете присылать нам статьи. Просто отправьте письмо команде!
Что такое омметр?
Омметр — еще один интересный измерительный прибор, который используется для измерения сопротивления между любыми двумя точками цепи.Это чрезвычайно важно и широко используется в настоящее время для анализа схем и отладки.
Поскольку мы знаем, что единицы сопротивления — омы, мы знаем, откуда взялось название этого устройства, поскольку оно измеряет омы между любыми двумя точками в цепи.
Как омметр измеряет сопротивление?
Для измерения сопротивления в цепи в первую очередь необходимо проверить наличие у омметра собственного встроенного источника напряжения.Это может быть небольшая батарея, обычно 1,5 В, используемая для обычных повседневных целей, но также доступны и другие номиналы.
Необходимость во встроенном источнике напряжения возникает из-за того, что для измерения сопротивления омметр пропускает ток через это место, а затем измеряет падение напряжения, которое является сопротивлением через выходное значение тока.
Для измерения неизвестного сопротивления сначала отключается питание цепи, а затем два щупа омметра подключаются к двум точкам, между которыми необходимо измерить значение сопротивления.
Красный зонд подключается к положительной стороне цепи, а черный зонд подключается к заземленной стороне цепи, как показано ниже:
Когда омметр включен, ток от батареи проходит через цепь, и измеряется падение напряжения или сопротивление, то есть противодействие потоку электронов.
Виды омметров
Омметры
доступны в двух формах: цифровой омметр и аналоговый омметр. Цифровой омметр отображает значение неизвестного сопротивления в цифровом виде в виде числовых цифр.А аналоговый омметр перемещает значение посредством перемещения, необходимого на отмеченной шкале. Когда ток, проходящий через цепь, является максимальным по отношению к входному напряжению, сопротивление считается минимальным в соответствии с законом Ома.
И наоборот, при минимальном токе сопротивление максимальное, и стрелка перемещается в крайний левый угол шкалы, чтобы указать максимальное значение в омах, как показано на рисунке ниже:
Омметр также можно использовать для измерения переменного сопротивления переменного резистора.
Калибровка омметра
Чтобы проверить, правильно ли работает ваше измерительное устройство, просто соедините два щупа омметра друг с другом.
Это должно показать минимальный уровень сопротивления, который в идеале равен нулю и может практически составлять несколько микро или миллиом.
Применение омметра
- В настоящее время они широко используются для проверки целостности цепи, то есть, если через цепь протекает достаточный ток или существует бесконечное сопротивление между двумя точками и цепь отключена.
- Они также используются в качестве лабораторного испытательного оборудования в различных экспериментах и в учебных целях.
- Они весьма полезны при отладке небольших микросхем, таких как печатные платы и прочего, что необходимо реализовать в чувствительном оборудовании.
Заключение
Пока что это все касалось омметров. Надеюсь, эта статья была полезной и помогла вам разобраться в работе омметра.
У меня есть для вас еще парочка измерительных приборов.Чтобы узнать больше об этих измерительных приборах, продолжайте посещать блог.
Спасибо за чтение моих статей,
Насир.
Что такое мост Уитстона? — Определение, конструкция, работа, ограничения и чувствительность
Определение : Устройство использует для измерения . из минимального сопротивления. с помощью метода сравнения — , известный как как мост Уитстона .Значение неизвестного сопротивления определяется путем сравнения с известного сопротивления . Мост Уитстона работает по принципу нулевого отклонения , то есть отношения их сопротивлений равны, и ток через гальванометр не течет. Мост очень надежный и дает точный результат .
В нормальном состоянии мост остается в неуравновешенном состоянии, т.е.е. ток через гальванометр. Когда через гальванометр проходит нулевой ток, мост считается сбалансированным. Это можно сделать, настроив известное сопротивление P, Q и переменное сопротивление S.
Работа моста аналогична работе потенциометра. Мост Уитстона используется только для определения среднего сопротивления. Для измерения высокого сопротивления в цепи используется чувствительный амперметр.
Строительство моста Уитстона
Базовая схема моста Уитстона показана на рисунке ниже.Мост имеет четыре плеча, которые состоят из двух неизвестных сопротивлений, одного переменного сопротивления и одного неизвестного сопротивления, а также источника ЭДС и гальванометра.
Источник ЭДС подключается между точками a и b, а гальванометр подключается между точками c и d. Ток через гальванометр зависит от разности потенциалов на нем.
Работа гальванометра
Мост находится в состоянии баланса, когда через катушку не течет ток или разность потенциалов на гальванометре равна нулю.Это состояние возникает, когда разность потенциалов на линиях от a до b и от a до d равны, а разность потенциалов на линиях от b до c и от c до d остается неизменной.
Ток, поступающий в гальванометр, делится на I 1 и I 2 , и их величина остается неизменной. Следующее условие существует, когда ток через гальванометр равен нулю.
Мост в сбалансированном состоянии выражается как
Где E — ЭДС аккумуляторной батареи.
Подставляя значения I 1 и 1 2 в уравнение (1), получаем.
Уравнение (2) показывает состояние баланса моста Уитстона.
Значение неизвестного сопротивления определяется с помощью уравнения (3). R — это неизвестное сопротивление, S — стандартное плечо моста, а P и Q — плечо передаточного числа моста.
Ошибки в мосте Уитстона
Ниже приведены ошибки моста Уитстона.
- Разница между истинным и номинальным значениями трех сопротивлений может вызвать ошибку измерения.
- Гальванометр менее чувствителен. Таким образом, возникает неточность в точке баланса.
- Сопротивление моста изменяется из-за самонагрева, что вызывает ошибку.
- Термическая ЭДС вызывает серьезные затруднения при измерении малых сопротивлений.
- Персональная ошибка возникает в гальванометре при снятии показаний или при нахождении нулевой точки.
Вышеупомянутую ошибку можно уменьшить, если использовать резистор и гальванометр лучшего качества. Погрешность из-за самонагрева сопротивления можно минимизировать, измерив сопротивление за короткое время. Тепловой эффект также можно уменьшить, подключив реверсивный переключатель между аккумулятором и мостом.
Ограничение моста из пшеничного камня
Мост Уитстона дает неточные показания, если он неуравновешен. Мост Уитстона измеряет сопротивление от нескольких Ом до МОм.Верхний диапазон перемычки может быть увеличен с помощью приложенной ЭДС, а нижний диапазон ограничен подключением провода к стойке привязки.
Чувствительность моста Уитстона
Мост Уитстона более чувствителен, когда все их сопротивления равны или их отношение равно единице. Их чувствительность уменьшается, когда их отношение меньше единицы. Снижение чувствительности снижает точность моста.
Что такое омметр? — Омметр определения, серии, шунтирующего и многодиапазонного типа
Определение: Измеритель , который измеряет , сопротивление и целостность электрической цепи и их компонентов , такой тип измерителя известен как омметр.Он измеряет сопротивление в Ом. Микроомметр используется для измерения сопротивления потока , а мегаомметр измеряет высокое сопротивление цепи. Омметром пользоваться очень удобно, но менее точный .
Виды омметров
Омметр дает приблизительное значение сопротивления. Он очень портативный и поэтому используется в лаборатории. Он бывает трех типов; это последовательный омметр, шунтирующий омметр и многодиапазонный омметр.Подробное объяснение их типов дано ниже.
Омметр серии
В последовательном омметре компонент или цепь измерения сопротивления соединены последовательно с измерителем. Значение сопротивления измеряется с помощью механизма Д’Арсонваля, подключенного параллельно шунтирующему резистору R 2 . Параллельное сопротивление R 2 соединено последовательно с сопротивлением R 1 и аккумулятором. Компонент, сопротивление которого используется для измерения, подключается последовательно к клеммам A и B.
Принципиальная схема последовательного омметра показана на рисунке ниже.
Когда значение неизвестного сопротивления равно нулю, через счетчик протекает большой ток. В этом состоянии сопротивление шунта регулируется до тех пор, пока измеритель не покажет полный ток нагрузки. Для тока полной нагрузки стрелка отклоняется в сторону нуля 0 Ом.
Когда неизвестное сопротивление R x удаляется из цепи, сопротивление цепи становится бесконечным, и ток через цепь не течет.Стрелка измерителя отклоняется в сторону ∞ (бесконечность). Измеритель показывает бесконечное сопротивление при нулевом токе и нулевое сопротивление, когда через него протекает ток полного диапазона.
Когда неизвестное сопротивление подключено последовательно к цепи и если их сопротивление велико, стрелка измерителя отклоняется влево. А если сопротивление низкое, стрелка отклоняется вправо.
Омметр шунтового типа
Измеритель, в котором измерительное сопротивление подключено параллельно батарее, известен как шунтирующий омметр.Он в основном используется для измерения сопротивления малых значений.
Принципиальная схема шунтирующего омметра показана на рисунке ниже.
Батарея (E), основной измеритель (R m ) и регулируемое сопротивление являются основными компонентами шунтирующего омметра. Неизвестное сопротивление подключено к клеммам A и B.
Когда значение неизвестного сопротивления равно нулю, ток измерителя становится равным нулю. И если сопротивление становится бесконечным (т.е. клеммы A и B разомкнуты), то ток проходит через батарею, и стрелка показывает полное отклонение влево.Омметр шунтирующего типа имеет нулевую отметку (отсутствие тока) слева от шкалы и отметку бесконечности на их правой стороне.
Омметр многодиапазонный
Диапазон действия омметра этого типа очень велик. У счетчика есть регулятор, который выбирает диапазон в соответствии с потребностями.
Например, предположим, что мы используем измеритель для измерения сопротивления менее 10 Ом. Для этого сначала мы должны установить диапазон 10 Ом. Сопротивление, значение которого используется для измерения, подключается параллельно измерителю.Величина сопротивления определяется по отклонению стрелки.
Измерение низкого сопротивления — электрические измерения: вопросы и ответы
Этот набор электрических измерений и измерительных приборов с множественным выбором вопросов и ответов (MCQ) посвящен «измерению низкого сопротивления».
1. Низкое сопротивление относится к _________
а) сопротивления порядка 1ῼ
б) сопротивления порядка 1 кО
в) сопротивления порядка 1 мῼ
г) сопротивления порядка 1 МОм
Посмотреть ответ
Ответ : a
Пояснение: Низкое сопротивление означает сопротивление порядка 1 Ом или меньше.Среднее сопротивление колеблется от более 1 Ом до нескольких кОм. Любое значение сопротивления, превышающее несколько кОм, называется высоким сопротивлением.
2. Каково значение измерения низких сопротивлений?
a) падение напряжения в цепи высокое
b) сопротивление контактов и выводов значительное
c) отсутствие потерь мощности
d) отсутствие тока через мостовую схему
Посмотреть ответ
Ответ: b
Пояснение: при измерении низкое сопротивление порядка 1 Ом или даже меньше, сопротивление выводов и контактов порядка даже 0.002 ῼ нельзя пренебрегать. Высокие токи протекают по цепям с низким сопротивлением.
3. Рис. 15.1 представляет?
a) конструкция со средним сопротивлением
b) конструкция с высоким сопротивлением
c) конструкция с низким сопротивлением
d) конструкция с очень низким сопротивлением
Посмотреть ответ
Ответ: c
Пояснение: Рис. 15.1 иллюстрирует конструкцию с низким сопротивлением . A — амперметр, используемый для измерения тока в цепи, а V — вольтметр, используемый для измерения напряжения.
4. Как падение напряжения на низком сопротивлении связано с сопротивлением выводов?
a) он содержит контактное сопротивление
b) это зависит от величины падения напряжения
c) зависит от типа используемого детектора нуля
d) не содержит никакого контактного сопротивления
Посмотреть ответ
Ответ: d
Пояснение : Падение напряжения, измеренное на низком сопротивлении, не учитывает сопротивления контактов и выводов компонентов и не зависит от него.
5. Что не является источником ошибок при измерении низкого сопротивления?
a) контактное сопротивление на выводах падает.
b) термоэдс
c) температурный эффект
d) рассеяние мощности через цепь
Просмотр ответа
Ответ: a
Объяснение: Поскольку ток, протекающий через цепь с низким сопротивлением, низкий, падение напряжения на клеммах из-за сопротивления контактов и проводов незначительно. Тепловая ЭДС возникает в цепи, когда ее температура увеличивается из-за протекания большого тока.
6. Какой метод измерения низкого сопротивления наиболее популярен?
a) метод амперметра-вольтметра
b) метод потенциометра
c) метод двойного моста Кельвина
d) метод дуктер-омметра
Посмотреть ответ
Ответ: c
Пояснение: Двойной мост Кельвина используется для измерения низких сопротивлений порядка 1ῼ или меньше. Метод амперметра вольтметра используется для измерения тока, протекающего через цепь, и напряжения в цепи.
7.Как контактное сопротивление связано с цепью при измерении низкого сопротивления?
a) независимо от типа сопротивления
b) незначительно
c) зависит от источника ЭДС
d) очень велико
Посмотреть ответ
Ответ: b
Пояснение: Сопротивления контактов и выводов являются частью цепь с очень высоким сопротивлением. В результате сопротивлениями контактов и выводов обычно пренебрегают по сравнению с высоким значением сопротивления.
8. На рис. 15.1, клеммы aa ‘используются для _________
a) измерения тока, протекающего через цепь
b) измерения рассеиваемой мощности цепи
c) измерения сопротивления цепи
d) измерения падения напряжения на сопротивлении
Посмотреть ответ
Ответ: d
Пояснение: Клеммы aa ‘используются для измерения падения напряжения на сопротивлении R. Вольтметр V подключен к клеммам aa’.
9. Каково значение I на следующем рисунке?
a) I = I V + I r
b) I = I V — I r
c) I = I V I r
d) I = I V ⁄ I r
Просмотреть ответ
Ответ: a
Объяснение: Применяя текущий закон Кирхгофа в узле N из рис., Мы получаем
I = I V + I r
где
I — полный последовательный ток, протекающий через цепь
Iv — ток, протекающий через вольтметр
Ir — ток, протекающий через сопротивление R.
Sanfoundry Global Education & Learning Series — Электрические измерения.
Чтобы практиковаться во всех областях электрических измерений, представляет собой полный набор из 1000+ вопросов и ответов с несколькими вариантами ответов .
Примите участие в конкурсе сертификации Sanfoundry, чтобы получить бесплатную Почетную грамоту.