Стабилизатор напряжения с регулировкой — выходное напряжение
Простому обывателю при вводе запроса по стабилизаторам в поисковике сразу бросятся в глаза хвалебные или ругательные отзывы о производителях, куча брендов зарубежных стран. А также то, как в активных обсуждениях на многочисленных форумах опытные сподвижники продукции, представляясь в образе обычного пользователя, пытаются давать доверчивым читателям «правильные» советы к приобретению дорогого и ненужного им товара.
Такой массовой неразберихе соответствует жестокая конкуренция, не терпящая в бизнесе просиживания штанов с ожиданием завальных заказов, и активный поиск мечущихся в выборе теоретически неподкованных клиентов. У последних сразу же возникает мысль, что все регуляторы однотипные, и лишь отличаются по стоимости, габаритам и внешнему дизайну устройства. Однако картина в корне обманчива.
Основными различиями в стабилизаторах являются:
- функциональная начинка;
- рабочий диапазон,
- качество,
- тип исполнения.
Об одной функциональной особенности и пойдёт речь в этой статье.
Что такое стабилизатор напряжения с регулировкой?
Полвека назад для регулировки напряжения использовались автотрансформаторы с ручным управлением. Нужно было неустанно отслеживать показатели на стрелочном циферблате либо светящейся линейке прибора, и, по мере необходимости, самостоятельно выставлять номинальное значение. Сегодня такую коррекцию стабилизаторы с плавной регулировкой осуществляют абсолютно автоматически. Мы к этому еще вернёмся, а пока вспомним о простейших аналогах и том, с чего всё начиналось.
ЛАТРы и последующая их эволюция
Помните, в советские времена широко использовались лабораторные стенды с автотрансформаторами – ЛАТРами с ручной регулировкой? Основным применением их было – лабораторные задания в рамках школьного курса по физике и вузовской телемеханики, где требовалось получить на выходе точную величину нестандартных параметров. Из категории экспериментальных ЛАТРы незаметно перекочевали в образ бытовой техники.
Одно время их можно было видеть при телевизорах, в настоящее же время их использование стало очень многообразным – от разных технологических процессов (в птицеводстве, ремонтных мастерских, стоматологии и т. п.) до устройств на 110 В. На ЛАТРе довольно просто устанавливается и не такой показатель сети.
Существуют ЛАТРы с рабочими пределами 0–250 В, и, более того, до 300 В. Чем больше порог, тем больше дополнительной мощности у прибора, позволяющей с низких значений подниматься до высоких нагрузок. Нужно понимать, что лабораторному автотрансформатору вручную задаётся такой режим, который нужен. Тем самым устанавливается дополнительный диапазон входного напряжения – так называемая дельта.
К примеру, до удалённой розетки из-за сетевого падения доходят только 200 В. При установке ЛАТРа, поворотом ручки управления можно получить на выходе 220 В. «Дельта» в этом случае будет равна 20 В. При дальнейшем падении напряжения до 180 В, ЛАТР добавит лишь выставленную «дельту» в 20 В, и на выходе можно будет получить не более, чем 180+20=200 В.
Для удобства и наблюдения аппараты позже стали выпускаться с жидкокристаллическим дисплеем, позволяющим регулировать технические показатели прибора уже с более высокой точностью. Теперь, если требуется плавная стабилизация напряжения в 220 В, рекомендуется применение таких устройств, как:
- стабилизатор с регулировкой выходного напряжения;
- стабилизатор с регулировкой выходного тока.
Приборы с такими названиями нередко встречаются в электрических схемах. Возникают вопросы: какая разница между ними и как они работают?
Экскурс в теорию
Напряжение сети, предназначенное для электропитания, может иметь значительные колебания, ухудшающие работу различной техники. В сетях переменного тока встречаются перепады двух видов: краткосрочные и многочасовые. И те и другие изменения негативно сказываются на работе техники. Есть устройства, которые вообще не способны работать без стабилизации параметров, к ним относятся лампы бегущей волны, электронные вольтметры, осциллографы и т. д.
Стабилизаторы с регулировкой напряжения – это аппараты с функцией поддерживания напряжения на нагрузке с нужной точностью при изменении сопротивления нагрузки и параметров сети в заданном диапазоне.
Стабилизаторы с регулировкой тока при тех же изменениях поддерживают в нагрузке с необходимой точностью величину заданного тока. Стабилизаторы одновременно с главными своими функциями осуществляют также сглаживание пульсаций.
Основные параметры
Качеством работы регуляторов в основном служат такие технические показатели, как:
- Стабилизирующий коэффициент, вытекающий из отношения изменений напряжения на входе и выходе
- Показатель нестабильности
- Внутреннее сопротивление
- Коэффициент выравнивания всплесков
Коэффициент полезного действия определяется для всех типов стабилизаторов по отношению входной и выходной активных мощностей равен
Функции приборов
Диапазон входного напряжения
Наряду с точностью стабилизации, является важнейшей его характеристикой. Этот диапазон делится на две категории:
- рабочий с обеспечением заявленной величины стабилизации, к примеру, 220±5%;
- предельный с сохранением работоспособности при напряжении на выходе, отличающемся от заявленного значения в большей или меньшей степени до 15-18%.
При выходе параметров за рамки предельного, устройство отключает питание, оставаясь в сети для контроля и возможности введения техники вновь в работу при возвращении сети электроснабжения в заданный диапазон.
Системный контроль параметров
В случае выхода корректора из строя или резкого подъёма входного напряжения такая система отключает приборы от нормализатора и предотвращает их выход из строя.
Регулировка выходного напряжения
Некоторые модели имеют возможность регулирования выходного напряжения в пределах 210–230 В, что помогает решить одновременно несколько задач:
- возможность установить на выходе стабилизатора западные стандарты напряжения 230 В для импортного электрооборудования. Без такой функции стабилизатор постоянно будет выходить за заданный для подобных приборов нижний диапазон напряжения, что может вызвать сбой в их работе;
- для ламп накаливания лучшим решением будет установка напряжения примерно 210 В, что существенно продлит срок их службы. На силу светового потока ламп это никак не повлияет – пределы останутся такими же, какие заявлены изготовителем.
Еще раз кратко об отличиях
Известны три вида стабилизаторов с регулировкой выходного напряжения: понижающие, повышающие и всеядные. Наиболее интересными являются последние. Независимо от входного, на выходе можно получить необходимое значение напряжения.
Всеядный импульсник как будто не замечает, какое напряжение на входе – ниже или выше требуемого. Аппарат автоматически переключает режимы с повышением или понижением напряжения и удерживает заданное значение на выходе. Помимо этого, такое устройство почти не нагревается.
Пока всё понятно. А как быть со стабилизатором с регулировкой выходного тока? Не станем открывать Америку, если скажем, что такой аппарат нормализует ток. Внешне это устройство напоминает импульсный стабилизатор. Если в паспорте прибора указано значение выходного тока, то именно такой ток и будет. Выходное же напряжение можно изменять в зависимости от нужного значения для потребителя.
Не углубляясь слишком в теорию, просто заметим, что напряжение не требуется регулировать, аппарат сам сделает все исходя из нужд потребителя. С отличиями вроде бы разобрались.
Часто при подключении нагрузки стоит задача, выполнить контроль именно значения тока. Стабилизатором с регулировкой тока, чтобы такая техника не сгорела, ограничивается ток. Следует понимать, что у регуляторов устанавливается пороговое значение тока. После определённого предела приборы начнут нагреваться, и придётся покупать более мощное устройство. Понятно, что при росте тепловыделения, КПД уменьшается.
А насколько это всё нужно-то?
Выбор между регуляторами определяется тем, какой требуется инструмент для облегчения работы или решения определенного круга задач.
Стабилизаторы с регулировкой тока, в отличие от устройств с регулировкой напряжения, нормализуют выходной ток, при этом корректируя напряжение на выходе так, чтобы ток для нагрузки в любой момент оставался одинаковый. Именно в этом заключается основное отличие аппаратов. Путать их между собой не следует, чтобы это не привело к выходу из строя техники.
Регулировка стабилизатора напряжения — выбор устройств и их параметров
Величина напряжения в сети является одним из важнейших параметров качества электроэнергии, который позволяет обеспечить надёжную и бесперебойную работу подключаемых потребителей. С использованием централизованных линий электропередач сегодня практически невозможно гарантировать точность соблюдения заявленных 220/380 В (или других уровней). Лучше всего с этой задачей будет справляться стабилизатор напряжения как устройство, которое позволит не допустить аварийных ситуаций
- при скачках сетевых параметров в момент коммутации,
- аварийных ситуациях в питающей линии,
- импульсных процессах.
Сфера использования устройств этого типа не ограничивается бытовыми моделями. В зависимости от особенностей использования и места их установки могут иметь место стационарные или портативные приборы. Для обеспечения достаточно высокой надёжности в работе подобных систем важно соблюдать не только правила выбора, должна быть обеспечена корректная регулировка стабилизатора напряжения.
Основы выбора устройств и их последующей подготовки к работе
В большинстве случаев используются модели стационарной установки, подключаемые непосредственно к проводке на входе, а на выходе – к электроприборам (насосам, холодильным установкам, кондиционерам, котлам отопления). В зависимости от особенностей сети это могут быть одно- или трёхфазные устройства, которые дополнительно классифицируются по своему устройству
- на релейные,
- симисторные,
- феррорезонансные,
- электромеханические.
Основные виды устройств стабилизации сетевых параметров
Для каждой из перечисленных модификаций характерны свои особенности.
- Релейный аппарат конструктивно состоит из управляемого электроникой силового реле и автотрансформатора. Предусмотрено автоматическое переключение обмоток, а также ступенчатая регулировка стабилизатора напряжения. За счёт этого при использовании данного вида устройств необходимо учитывать, что они не отличаются высокой точностью выходных параметров, поэтому рекомендуются к установке в основном для защиты бытовых приборов небольшой мощности.
- Электронные (симисторные) стабилизаторы благодаря отсутствию в составе конструкции механических составляющих выделяются своей бесшумной работой. Но в данном случае регулировка сетевых параметров выполняется по релейному принципу, что не позволяет обеспечить достаточно высокой точности в работе. При этом существенно более высокая стоимость в сравнении с аппаратами других типов стала причиной того, что симисторные стабилизаторы не пользуются широкой популярностью.
- Феррорезонансное оборудование работает строго в заданном пользователем диапазоне с потребителями мощностью 100 Вт – 8 кВт. При этом его коэффициент стабилизации может варьироваться в пределах 20-30. Среди преимуществ выделяют способность
- к длительной эксплуатации за счёт отсутствия в составе конструкции подвижных элементов,
- бесступенчато регулировать напряжение,
- быстро стабилизировать заданные параметры,
- работать с высокой точностью.
- Сервоприводные стабилизаторы отличаются возможностью выполнения плавной регулировки напряжения без искажения её синусоидальной формы, что обеспечивает стабильно корректную работу электроприёмников. Кроме того, они не вырабатывают помехи, обеспечивают высокую точность на выходе при большом рабочем ресурсе. Предлагается широкий модельный ряд по мощности для одно- и трёхфазных сетей в пределах 0,5 ВА÷30 кВА и 1,5 кВА÷2 МВА соответственно.
Установка и регулировка стабилизатора напряжения
Правильный выбор оборудования в данном случае – основа, но в любом случае для его корректной работы потребуется правильное подключение, установка, регулировка. Стоит изначально обратить внимание на то, что к монтажу допускаются только приборы без механических повреждений, выдержанные при нормальной температуре эксплуатации не менее 2 ч в том случае, если транспортировка выполнялась при минусовых температурах. Таким образом удастся избежать появления конденсата внутри стабилизатора.
Сама процедура монтажа выполняется по алгоритму, тонкости которого зависят от особенностей сферы использования. Но в целом местом установки может быть закрытое помещение, в котором аппарат не будет подвергаться воздействию строительной пыли, агрессивных сред, находиться вблизи легковоспламеняющихся материалов. Корпус стабилизатора напряжения должен быть обязательно заземлён, для подключения используются клеммы, которые расположены на задней корпусной панели.
Регулировка стабилизатора заключается в установке заданных выходных параметров по току и напряжению согласно требованиям защищаемого оборудования. После этого в процессе тестового периода возможны ситуации, когда потребуется корректировка работы аппарата. Наиболее частыми проблемой становится самопроизвольное отключение прибора. Причиной такой ситуации в основном становится превышение допустимой для стабилизатора нагрузки.
Стабилизаторы напряжения для дома и промышленные
Полезная информация
Стабилизатор напряжения применяется для преобразования сетевого электрического тока до нормальных показателей (220 или 380 В). Он защищает бытовую, офисную и производственную технику от скачков параметров тока. Там, где он установлен, аварий нет.
Когда он нужен?
Чтобы компьютер, телевизор и осветительные приборы были защищены и служили дольше, а также для обеспечения возможности бесперебойной работы кондиционера, компрессора, сварочного аппарата, электромоторов, водяных насосов и другой техники.
Как выбрать стабилизатор напряжения?
1. Подбор по типу сети
- Трехфазные — необходимы для устройств с подключением 380 В, рекомендуются при большой (от 12 КВт) суммарной нагрузке потребителей. Модели от 3 кВт.
- Однофазные — стабилизаторы напряжения для дома (бытовые) со схемой подключения 220 В. Модели от 0,5 до 30 кВт.
2. Подбор по характеристикам
- Мощность — складывается из суммарной мощности всех потребителей плюс 20%.
- Входное напряжение — определяется параметрами сети, к которой подключается техника, необходимы замеры.
- Выходное напряжение — в процентах указана точность.
3. Виды
- Качественный электромеханический стабилизатор плавно регулирует напряжение. Обеспечивает высокую точность на выходе — ± 3%, которая нужна для измерительных приборов, аудиоаппаратуры, освещения. Обладает высокой перегрузочной способностью.
- Устройства релейного типа выдают ток, регулируемый за счет автоматического механического переключателя. Применяются такие стабилизаторы напряжения для дома и на дачах.
- В цифровом нужную обмотку включает электронный ключ (тиристор, семистор). Режим регулировки импульсный, происходит очень быстро. Такой стабилизатор напряжения оснащен цифровым дисплеем, отличается небольшими размерами и весом. Применяется для защиты, как для одного, так и всех устройств в доме, может работать при низких температурах (до -20).
4. По способу установки:
Мы предлагаем купить стабилизаторы напряжения с доставкой и гарантией, у нас большой выбор оборудования для дома, дачи и производства. Не откладывайте покупку, ваша дорогая техника нуждается в защите!
их схемы, принцип работы, плюсы и минусы
Содержание
Какие бывают виды стабилизаторов напряжения?
Возрастающий спрос на стабилизаторы напряжения связан как с активным использованием этих электроприборов во всех сферах человеческой деятельности, так и с периодически возникающими в сетях проблемами с качеством электроэнергии.
Специализированные магазины и интернет-сайты предлагают большой выбор стабилизаторов отечественного и зарубежного производства, удовлетворяющих практически любые запросы покупателей.
Каждый стабилизатор, несмотря на его мощность и стоимость, построен по типовой схеме (топологии), в основе которой заложен определённый физический принцип стабилизации электрической энергии. Всего таких топологий пять:
- феррорезонансная;
- электромеханическая;
- релейная;
- полупроводниковая;
- инверторная.
Практически все виды стабилизаторов напряжения имеют свои преимущества и недостатки, которые в основном обусловлены схемой их построения. Основные параметры устройств каждого типа требуют пристального изучения, так как именно от их значений зависит эффективность работы выбранной модели стабилизатора с различной современной аппаратурой.
Феррорезонансные стабилизаторы
Это первые стабилизаторы, получившие широкое распространение в нашей стране. Начало их массового использования в 50-60-х годах ХХ века связано с появлением ламповых телевизоров и прочей бытовой техники, требующей защиты от сетевых колебаний.
Стабилизаторы такого типа отличаются от большинства более современных моделей простотой электронной схемой и отсутствием автотрансформатора. Они понижают или повышают значение напряжения за счёт эффекта феррорезонанса – электромагнитного взаимодействия между двумя дросселями один из которых имеет ненасыщенный сердечник (входной), а второй насыщенный (выходной).
Преимущества
Феррорезонансные стабилизаторы не имеют склонных к поломкам подвижных компонентов, что обеспечивает их надёжность и большой ресурс безотказной работы. Некоторые изделия советского производства до сих пор находятся в обиходе и исправно выполняют свою работу. Другие преимущества данной топологии:
- надёжность и большой ресурс безотказной работы благодаря отсутствию склонных к поломкам подвижных компонентов;
- высокая точность выходного напряжения за счёт плавного, безразрывного регулирования сетевого сигнала;
- устойчивость к неблагоприятным условиям окружающей среды;
- быстродействие.
Недостатки
Отвечающее современному уровню комфорта бытовое использование феррорезонансных стабилизаторов осложняется рядом свойственных им недостатков:
- шумность работы – гул от встроенных трансформаторов ощущается даже через стену;
- повышенное тепловыделение;
- большой вес и крупные габариты;
- малый диапазон регулируемого входного напряжения – более узкий, чем предельные значения отклонений, встречающихся в отечественных сетях;
- невысокий КПД вследствие значительных потерь энергии на нагрев;
- неспособность работать при перегрузках и на холостом ходу;
- искажения синусоиды.
Стоить отметить, что все указанные недостатки характерны в первую очередь для классических феррорезонансных стабилизаторов первых поколений, в устройствах нового образца они максимально снижены или полностью исключены. Существенный минус современных моделей этой топологии – это их высокая цена, превышающая не только стоимость изделий других типов, но и on-line ИБП соответствующей мощности.
Применение
Несмотря на серьезные сдвиги в разработке более производительных, мощных и надежных преобразователей напряжения, устаревшие феррорезонансные стабилизаторы все еще пользуются спросом при работе с неприхотливой техникой такого же старого поколения. Приборы этой группы являются не самым удачным вариантом для бытового пользования по причине высокого уровня шумов и громоздкости конструкции, однако вполне могут быть использованы в подсобных помещениях или на загородных домах при плюсовых температурах.
Электромеханические стабилизаторы
Стабилизаторы данного типа появились практически одновременно с феррорезонансными, но имеют отличные от них конструкцию и принцип работы. Главные элементы любого устройства данной топологии – автотрансформатор и подвижный токосъёмный контакт, выполненный в виде ролика, ползунка или щетки.
Указанный контакт перемещается по обмотке трансформатора, вследствие чего происходит плавное увеличение или уменьшение коэффициента трансформации и соответствующее изменение (коррекция) поступающего из сети напряжения.
Первые электромеханические стабилизаторы имели ручную регулировки: специальный бегунок передвигался по катушке и отключал или подключал витки до количества, необходимого для достижения номинального значения выходного напряжения.
В современных устройствах этот процесс автоматизирован: плата управления анализирует входной ток и в случае отклонения его параметров сигнализирует сервоприводу, перекатывающему коммутационный контакт на сегмент тороидальной обмотки автотрансформатора с напряжением, максимально приближенным к номинальному.
Преимущества
Основное достоинство электромеханического принципа стабилизации напряжения – непрерывное регулирование с высокой точностью и без искажения синусоидальной формы сигнала. Также ключевым преимуществом является самая низкая стоимость электромеханических стабилизаторов на отечественном рынке.
Недостатки
Эти устройства имеют и ряд существенных недостатков, делающих их не самым оптимальным решением для защиты многих видов нагрузки, а именно:
- низкое (за исключением некоторых моделей) быстродействие – скорость реакции на изменение входного сигнала ограничивается временем, требуемым сервоприводу для срабатывания;
- возникновение кратковременных скачков выходного напряжения при резких перепадах входного, что пагубно влияет на чувствительные электронные компоненты защищаемого оборудования и осложняет применение в сетях с сильными перепадами напряжения;
- низкое качество фильтрации входных электромагнитных помех и трансляция возмущающего воздействия на выход устройства;
- низкая надежность из-за механически движущихся деталей, что значительно сокращает срок эксплуатации устройства, из-за чего именно этот тип стабилизаторов чаще всего выходит из строя.
Дополнительные неудобства при эксплуатации электромеханических стабилизаторов в домашних условиях создают:
- повышенный уровень шума и возможное искрение при работе – следствие движения сервопривода по виткам катушки;
- громоздкая конструкция, большое количество механических узлов и деталей, и, соответственно, большой вес;
- необходимость периодического обслуживания подверженного износу узла механического контакта, надёжность которого снижается пропорционально числу срабатываний.
Кроме того, приборы этой группы могут давать сбои при длительном использовании в условиях отрицательной температуры – такому оборудованию комфортнее в отапливаемых помещениях.
Применение
Перечисленные недостатки обуславливают ограниченную сферу применения электромеханических стабилизаторов – они все еще востребованы в сетях без молниеносных скачков напряжения. Разумеется, такие устройства не подходят для бытового использования в домашних условиях, но вполне удачно используются в качестве временной стабилизации напряжения в подсобном хозяйстве, гаражах, небольших мастерских – там, где снижение температуры незначительно. Хотя рассматриваемый тип преобразователей постепенно уходит в прошлое и уступает место более современным конструкциям на релейной и тиристорной основе.
Релейные стабилизаторы
Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному.
Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов).
Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).
Преимущества
Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт.
Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.
Недостатки
Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации.
Ступенчатая корректировка напряжения также:
- снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
- способствует трансляции искажений сетевой синусоиды на выход устройства.
Релейная топология сохраняет и ряд минусов присущих электромеханическим изделиям:
- работа стабилизатора не бесшумна – срабатывание сопровождается звуковым эффектом, подобным щелчку;
- реле в меньшей степени подвержены механическому износу, чем элементы сервопривода, но тенденция к ухудшению качества работы с увеличением срока эксплуатации сохраняется.
Применение
Релейные стабилизаторы подходят для защиты маломощных приборов в сетях, характеризующихся небольшими колебаниями напряжения. Вышеперечисленные недостатки говорят о недостаточном соответствии приборов этой группы требованиям по защите современной электроники, чувствительной к малейшим отклонениям питающего напряжения.
Тиристорные стабилизаторы
Данные устройства можно рассматривать как результат развития и усовершенствования дискретного принципа стабилизации. Их конструкция и принцип работы схожи с аппаратами релейной топологии.
Главное различие состоит в том, что переключение обмоток автотрансформатора выполняют не реле, а полупроводниковые силовые ключи – тиристоры, увеличивающие точность стабилизации и делающие работу устройства практически бесшумной.
Преимущества
Исполнительные блоки на базе полупроводниковых элементов не имеют механических деталей и обеспечивают минимальное время реакции на изменение входного напряжения (однако некоторая задержка всё-таки сохраняется).
Кроме бесшумной работы, быстродействия и увеличенной (относительно релейных моделей) точности стабилизации тиристорные стабилизаторы обладают следующими преимуществами:
- долговечность и надежность – полупроводниковые компоненты не подвержены механическому износу и имеют большой рабочий ресурс;
- широкий диапазон сетевого напряжения – возможна работа с большинством предельных отклонений;
- отсутствие генерации электромагнитных помех при работе;
- устойчивость к низким и высоким температурам окружающей среды;
- скромные габариты и небольшой вес;
- высокий КПД — отсутствие обмоток, реле и движимых элементов снижает уровень собственного энергопотребления.
Недостатки
Применение тиристорных ключей не способно полностью исключить основной недостаток дискретного принципа работы – ступенчатые скачки напряжения. Они неминуемо возникают при переключении трансформаторных обмоток и снижают точность стабилизации, повышение которой, как и в релейных моделях, негативно влияет на быстродействие устройства.
Даже самые современные стабилизаторы на полупроводниковых элементах не гарантируют безразрывное электропитание и сигнал идеальной синусоидальной формы. Определённые проблемы могут возникнуть, например, при работе с профессиональным аудио-видео оборудованием – помехи создаваемые при ступенчатом переключении отрицательно скажутся на качестве картинки и звука.
Ещё один минус тиристорных стабилизаторов – чувствительность к перегрузкам, которые могут привести к выходу из строя электронных ключей и дорогостоящему ремонту.
Симисторные стабилизаторы
Поскольку симисторы являются одним из типов тиристоров, то и принцип работы стабилизаторов на их базе существенно не различаются. Разница заключается в том, что в отличие от тиристоров, симисторы способны пропускать ток в обоих направлениях, поэтому нет необходимости в параллельно-встречном подключении двух тиристоров.
Также при подключении индуктивной нагрузки симисторы более уязвимы для скачков напряжения, нежели тиристоры, и требуют дополнительной защиты. Хотя этот недостаток компенсируется тем, что в симисторных устройствах применяется более простая электронная схема.
Преимущества
В целом же симисторные стабилизаторы обладают теми же преимуществами, что и тиристорные:
- низкий уровень шума при работе;
- быстрое реагирование на сетевые изменения – скорость составляет 10-20 мс;
- высокий уровень КПД, достигающий 98%, что выделяет их среди конкурентов более старых поколений;
- устойчивость к перегрузкам, например, тиристорные стабилизаторы способны проработать до 12 часов при перегрузке в 20%;
- долговечность прибора при работе на износ, но в то же время дорогостоящий ремонт в случае выхода из строя одного из компонентов;
- способность выдерживать температурные перепады, но уязвимость для повышенных уровней влажности.
Недостатки
Также устройства не лишены некоторых недостатков:
- низкая точность регулирования, обусловленная ступенчатой стабилизацией;
- более габаритная конструкция, по сравнению с тиристорными стабилизаторами;
- высокая стоимость в сравнении с релейными моделями.
Применение
Подводя итог по тиристорным и симисторным моделям, следует уточнить, что по параметрам они не намного превосходят релейные стабилизаторы, хотя их стоимость выше и в случае возникновения неисправности замена электронных компонентов обойдется дороже. Тем не менее, такие приборы пользуются спросом и в домашних условиях, и на даче, поскольку неприхотливы к окружающей среде и в то же время не создают шума. Однако крайне не рекомендуется подключать высокоточное оборудование к тиристорным/симисторным стабилизаторам.
Инверторные стабилизаторы
Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.
Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение.
Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.
Преимущества
Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%).
Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!
Другие важные преимущества инверторных стабилизаторов:
- максимально широкие границы рабочего сетевого напряжения (от 90 до 310 В), при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
- непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
- отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
- наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).
Недостатки
Возникает закономерный вопрос — есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах.
Устройства гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.
Полезная информация о стабилизаторах | Cтабилизаторы напряжения
Как подбрать стабилизатора напряжения для дома
Подбор стабилизатора напрямую зависит от суммы всех мощностей имеющихся электроприборов, одновременное использование которых допустимо, а также от нижней границы напряжения в сети.
Обратите внимание, в большинстве случаев все насосы, работающие на асинхронных двигателях, и основанная на них техника, к примеру, холодильник, расходуют мощность, почти в 1,5 раза превышая собственную номинальную. А причиной этому является отображение лишь полезной мощности, не включая потери (cos fi = 0,6 – 0,7).
Такие устройства отличаются чрезвычайно высокими пусковыми токами. Они могут значительно превышать номинальный.
Гарантированное правильное выполнение функций стабилизатора с ними, обеспечит такой вариант, как накапливание мощности в 1,5-2 раза. К примеру, к насосу в 1 КВт подойдёт стабилизатор, показатели которого равны не меньше 1,5 КВт.
Один из самых сложных случаев – это холодильник, десятилетнего производства и более. Раньше не было никаких общепризнанных стандартов по степени шума или предоставлению низких пусковых токов. Например, в холодильниках со 100 Вт допускается пусковая мощность 1,5 КВт и выше. Также отсутствовали какие-либо ограничения на паразитные выбросы энергии, которая накапливается в индуктивности компрессора (мотора) назад в сеть. Нормальное взаимодействие холодильников такого типа и стабилизаторов напряжения на симисторных ключах практически невозможно. Современные модели холодильников отличаются небольшой степенью шума и вертикальным компрессором. Отлично синхронизируются с ними стабилизаторы напряжения таких серий, как NORMA и STANDARD.
Хотелось бы выделить СВЧ-печь. Её магнетрону также необходим запас мощности в 1,5 раза относительно предельной мощности стабилизатора напряжения. Например, печь в 1 КВт взаимодействует со стабилизатором, обладающего предельной ёмкостью в 1,5 КВт и выше.
Таблица показателей средней потребляемой мощности приборов
Наименования электроприборов | Мощность, Вт |
---|---|
Телевизор | 60 |
Моноблок | 80 |
Проигрыватель DVD | 40 |
Видеомагнитофон | 40 |
Видеоплейер | 40 |
Видеокамера | 11 |
Акустическая система | до 100 |
Караоке | 50 |
Буфер | до 150 |
Ресивер | до 1000 |
Система ДК | 100 |
Музыкальный центр | 50 |
Тюнер | 10 |
Усилитель | 400 |
Аудиомагнитофон | 40 |
Электрогазовая плита | до 4000 |
Электрическая плита | до 10000 |
Морозильная камера | 200 |
Холодильник | до 200 |
Посудомоечная машина | 2000 |
Стиральная машина | 2300 |
Поверхность электрическая | до 6000 |
Поверхность электрогазовая | 2000 |
Духовка | 2000 |
Эл.водонагреватель | до 1500 |
Воздухоочиститель (вытяжка) | 300 |
Конвектор | 2000 |
Тепловентилятор | 2000 |
Электрический радиатор | 2500 |
Электрический камин | 2500 |
Кондиционер | до 1500 |
Вентилятор | 100 |
Вафельница | 2000 |
Кофеварка | до 2000 |
Кофеварка-эспрессо | до 2000 |
Кофемолка | 180 |
Сендвичница | 2000 |
Тостер | 2000 |
Эл.чайник | 2000 |
Фритюрница | 1000 |
Блендер | 600 |
Кухонный комбайн | до 1000 |
Миксер | 400 |
Мясорубка | до 1000 |
Соковыжималка | 500 |
Печь СВЧ | 2500 |
Пылесос | до 2000 |
Сушилка для рук | 1500 |
Утюг | 1500 |
Прибор для укладки волос | 500 |
Фен | 1500 |
Щипцы для завивки | 35 |
Швейная машина | 135 |
Компьютер | 135 |
Что же такое автоматический стабилизатор напряжения и стоит ли его покупать
Автоматические стабилизаторы напряжения предназначены для регулирования выходного напряжения при скачках в сети. То есть даже при небольшом изменении напряжения в сети, такие стабилизаторы автоматически выравнивают напряжение до положенных 220 Вольт. Рабочий диапазон автоматических стабилизаторов напряжения колеблется от 90В до 300В, в зависимости от конкретной модели и производителя.
Если выбрать автоматический стабилизатор Ресанта, то в основном у них рабочий диапазон 140-260 В, но есть модели которые предназначены для очень низкого напряжения и работают они от 90 В. Среди автоматических стабилизаторов напряжения фирмы Ресанта имеются электромеханические и цифровые стабилизаторы релейного типа. Отличаются они принципом регулировки выходного напряжения и погрешностью на выходе. Автоматические стабилизаторы электромеханического типа более надежны, долговечны и точны, но и цена на них несколько выше.
Если же говорить об автоматических итальянских стабилизаторах напряжения компании ORTEA, то у них рабочий диапазон в основном колеблется от 140 до 280 В. Автоматические стабилизаторы ORTEA обладают плавной и достаточно быстрой регулировкой, не боятся перегрузок и способны выдерживать перегрузки до 200% в течении двух минут. Погрешность выходного напряжения в таких стабилизаторах составляет от 0,5 до 5% в зависимости от входящего напряжения. Стабилизаторы ORTEA изготавливаются от 1 Квт до 1 МегаВт.
Что же касается автоматических стабилизаторов петербургского завода Полигон, то среди их моделей так же имеются и электронные и электромеханические автоматические стабилизаторы. От аналогов эти автоматические стабилизаторы отличает высочайшая надежность, точность и долговечность.
Автоматические стабилизаторы напряжения Полигон и ORTEA можно купить как обычному потребителю для использования в доме и на даче, так и крупным предприятиям, так как эти стабилизаторы относятся к промышленным стабилизаторам и способны обеспечить бесперебойную работу самого привередливого оборудования, в том числе и медицинского.
В нашем интернет — магазине вы можете получить профессиональную консультацию по выбору автоматического стабилизатора напряжения. А так же заказать и купить стабилизатор напряжения для дома и дачи или для любого промышленного объекта. Мы занимаемся продажей стабилизаторов напряжения от 500 Ватт до 5 МегаВатт.
Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока
Простенькая относительно схемка, со средними параметрами, на основe транзисторoв с большим усилением. Была сделана для своих нужд в качестве лабораторного.
Часто приходилось заниматься ремонтом или запуском разных схем, для которых нужно было просто иметь чем их питать 3V, 5V, 6V, 9V, 12V… И каждый раз искал что-нибудь подходящее. В ход шли блоки питания от калькуляторов, магнитофонов, аккумуляторы, батарейки. Иногда радовался, что соответствующий источник не давал больших токов, таким образом спасая меня от лишних трат. Конечно делал одно- двух-транзисторные стабилизаторы для решения этой проблемы, но резульнаты не удовлетворяли. Где-то на второй волне вдохновения родилось то, с чем хочу поделится.
Применяется до сих пор при ремонте и запуске устройств, если подходит выходное напряжение конечно. А также при не совсем обычном применении – проверка стабилитронов, зарядка пальчиковых аккумуляторов, просто как источник стабильного тока. В таких случаях крайне удобно наличие хотя бы вольтметра на выходе.
Содержание / Contents
Устройство разрабатывалось для выходного напряжения 1…12V и регулирования выходного тока в пределах 0,15…3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.
Схема стабилизатора напряжения с регулируемым ограничением выходного тока
Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 — компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 — датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.
Исходная схема с фиксированным напряжением и защитой по току
Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.
Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9…15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 — 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.
Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.
Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.
На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.
Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30…50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2…3 раза меньше.
VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2…3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.
С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.
Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).
Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.
Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.
Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.
Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.
Виктор Бабешко повторил конструкцию, прислал свой вариант печатки и фотку.
Файл в LayOut:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.
Камрад, рассмотри датагорские рекомендации
🌻 Купон до 1000₽ для новичка на Aliexpress
Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке.
Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.
🌼 Полезные и проверенные железяки, можно брать
Куплено и опробовано читателями или в лаборатории редакции.
04.05.18 изменил Datagor. Добавлен чертеж ПП
Типы регуляторов напряжения
и принцип работы | Статья
.
СТАТЬЯ
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами.Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.
Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного.Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.
Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсатор для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторы
могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT. Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи.HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии. Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%).Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать предполагаемое рассеивание мощности линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторы
очень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора
: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов.Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и понижающие-повышающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO). Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи
(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения. Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторов
обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход. Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением.Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Приложения для линейных и импульсных регуляторов
Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве.Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) .Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создавать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе.Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать подходящий регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, эффективность, производительность, стоимость) и любые дополнительные ключевые особенности, такие как индикация хорошего питания (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям.Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции. Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы.Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронике
_________________________
Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!
Получить техническую поддержку
Что такое регулятор напряжения и как он работает?
Большинству интегрированных ИС требуется постоянное напряжение, с которым они могли бы работать.Будь то простой логический вентиль или сложный микропроцессор, у них есть собственное рабочее напряжение. Наиболее распространенные рабочие напряжения — 3,3 В, 5 В и 12 В. Хотя у нас есть батареи и адаптеры постоянного тока, которые могут действовать как источник напряжения, в большинстве случаев они не могут быть напрямую подключены к нашей схеме, поскольку напряжение от них не регулируется.
Скажем, например, у нас есть батарея на 9 В, но нам нужно активировать реле 5 В, которое, очевидно, работает на 5 В. Что мы здесь делаем?
Что такое регулятор напряжения и почему мы его используем?
Вспомните школьные годы, нас учили, что на резисторах падает напряжение.Разве не было бы простым решением просто использовать резисторы для падения напряжения в соответствии с законом Ома? Но затем на резисторах падает напряжение в зависимости от протекающего через них тока. В тот момент, когда ваш компонент начинает потреблять меньше тока, напряжение резко возрастает и убивает его.
Вам нужно что-то получше — напряжение не должно зависеть от тока нагрузки, по крайней мере, не сильно. Следующее простейшее решение, которое приходит вам в голову, — это делитель напряжения. Для этого нужны два резистора, но, эй, если их можно втиснуть, они также могут работать.Еще одна неприятная проблема — в тот момент, когда ваш компонент начинает потреблять слишком большой ток, выход делителя проседает — верхний резистор не может удовлетворить текущую потребность. Теперь вы действительно начинаете желать, чтобы вы узнали об этом в школе. Вы можете исправить это, уменьшив номиналы резисторов, но это заставит два резистора потреблять слишком большой ток, что, вероятно, разрушит ваш текущий бюджет и станет слишком горячим с непосредственным риском отказа.
Что еще можно было сделать? Усиление! Конечно, вам пришлось потратить на это много часов лекций! Почему бы не добавить транзистор NPN в качестве повторителя напряжения? Делитель напряжения смещения можно подключить к базе, вход шины 12 В к коллектору, а выход к компоненту к эмиттеру, и бинго, вы решили проблему!
Конечно, исправление работает, но оставляет у вас неприятное ощущение — вы использовали три части, и при тестировании обнаруживаете, что сбои в шине питания 12 В идеально воспроизводятся на выходе.Конечно, это усилитель, у него нет интеллекта для автокомпенсации. Вы можете заменить нижний резистор делителя напряжения на стабилитрон, но ток, необходимый для правильного смещения стабилитрона (против таких вещей, как температурные коэффициенты и дрейф), почти равен потреблению вашего компонента, что совершенно бессмысленно.
Нет лучшего способа сделать это? Разве нет волшебного черного ящика, в котором было бы все необходимое для эффективного сброса напряжения? Миллионы EEE по всему миру пережили подобные периоды стресса (включая меня!).Конечно, не все проблемы связаны с падением напряжения, но подобные ситуации обычны в лабораториях EEE повсюду!
Но вам повезло — нужный вам компонент существует. Фактически, это одна из первых коммерческих реализаций технологии IC (не считая операционных усилителей) — скромный стабилизатор напряжения .
Если вы когда-нибудь посмотрите техническое описание регулятора напряжения, вы будете поражены схемой, в которой они были упакованы, чтобы понижать напряжение и поддерживать его в чистоте — хороший стабильный регулятор напряжения, усилители с обратной связью и компенсацией. — приличный силовой каскад.Конечно, если мы смогли вместить столько технологий в эти наши телефоны, почему бы не сделать регулировку напряжения в красивом корпусе TO-92?
Они становятся лучше с каждым днем - некоторые из них потребляют не более нескольких наноампер, то есть тысячных миллионных ампер! Более того, другие поставляются с защитой от короткого замыкания и перегрева, что делает их надежными.
Регуляторы напряжения — подробный обзор
Как мы видели в разделе выше, основная задача регулятора напряжения — понижать большее напряжение до меньшего и поддерживать его стабильность, поскольку это регулируемое напряжение используется для питания (чувствительной) электроники.
Регулятор напряжения в основном представляет собой усиленный эмиттерный повторитель, подобный описанному выше — транзистор, подключенный к стабильному опорному источнику, который выдает постоянное напряжение, понижая остальное.
Они также имеют встроенный усилитель ошибки, который измеряет выходное напряжение (снова через делитель), сравнивает его с опорным напряжением, вычисляет разницу и соответственно управляет выходным транзистором. Это далеко от делителя напряжения, который точно воспроизводит входной сигнал, хотя и немного меньше.Вы не хотите, чтобы пульсации переменного тока накладывались на вашу шину постоянного напряжения.
Желательно иметь транзистор с высоким коэффициентом усиления, так как управлять силовыми транзисторами очень сложно, с жалким коэффициентом усиления в диапазоне двух цифр. Это было преодолено с помощью транзисторов Дарлингтона, а в последнее время — полевых МОП-транзисторов. Поскольку для управления этими типами требуется меньший ток, общее потребление тока снижается. Это дополняется тем фактом, что внутренний источник опорного напряжения также потребляет очень небольшой ток.
Ток, который регулятор потребляет для управления всей этой внутренней схемой, когда выход не нагружен, называется током покоя. Чем меньше ток покоя, тем лучше.
Эти регуляторы построены с использованием трех транзисторов на силовом выходном каскаде — два из них в конфигурации Дарлингтона, а другой — в качестве устройства ограничения тока. Последовательные переходы CE в сумме дают падение напряжения на регуляторе около 2 В.
Это напряжение известно как напряжение падения, напряжение, ниже которого регулятор перестает регулировать.
Вы можете найти устройства, называемые LDO-стабилизаторами или стабилизаторами с малым падением напряжения, с падением напряжения около 0,4 В, поскольку они используют переключатель MOSFET.
Три терминала регулятора
Хватит разговоров, теперь перейдем к номерам деталей.
Наиболее распространенной серией регуляторов напряжения является серия 78XX .Две цифры после 78 представляют собой выходное напряжение регулятора, например, 7805 — это регулятор 5 В, а 7812 — регулятор 12 В. Выходные напряжения, доступные с фиксированными регуляторами, охватывают широкий диапазон от 3,3 В до 24 В с хорошими значениями, такими как 5 В, 6 В, 9 В, 15 В и 18 В.
Стабилизаторы этой серии отлично подходят для большинства целей, они могут выдерживать почти 30 В на входе и, в зависимости от корпуса, выходной ток до 1 А. Они исключительно просты в использовании — подключите входной контакт к входному напряжению, а выходной контакт — к устройству, которому требуется более низкое напряжение, и, конечно же, контакт заземления к земле.
Здесь развязывающие конденсаторы необязательны, поскольку усилители обратной связи «отклоняют» входную пульсацию и шум, следя за тем, чтобы они не передавались на выход. Однако, если ваше устройство потребляет более нескольких десятков миллиампер, рекомендуется не менее 4,7 мкФ на входе и выходе, предпочтительно из керамики.
Интересная вещь, которую делают люди, — на этих регуляторах делают примитивные зарядные устройства для телефонов. Просто подключите батарею 9 В ко входу и соответствующий USB-разъем к выходу, и вуаля, у вас есть аварийное зарядное устройство для телефона.Эта конструкция достаточно прочная, так как на микросхеме встроена термозащита.
Хорошая особенность таких регуляторов напряжения заключается в том, что их распиновка практически универсальна, поэтому возможна их замена. В настоящее время большинство «транзисторных» корпусов на печатных платах представляют собой регуляторы напряжения, которые можно использовать для других проектов, поскольку они очень просты в использовании.
Увеличение выходного тока регуляторов напряжения
Одним из ограничений, которое быстро преодолевает полезность, является выходной ток, который сильно ограничен корпусом и способом его установки.
Существуют сильноточные варианты этих регуляторов, но их сложно найти.
Единственные устройства, способные выдавать большие токи, — это импульсные преобразователи постоянного тока в постоянный, но показатели выходного шума ужасны.
Можно спроектировать собственный сильноточный линейный стабилизатор, но в конечном итоге вы столкнетесь со всеми проблемами, упомянутыми выше.
К счастью, есть способ «захватить» стандартный регулятор с помощью нескольких дополнительных деталей и увеличить выходной ток.
Большинство этих модификаций включают добавление обходного транзистора через стабилизатор и управление базой с входом, как показано на рисунке ниже.
Регулируемые регуляторы
Три концевых стабилизатора довольно хороши и просты в использовании, но что, если вам нужно нестандартное выходное напряжение, такое как 10,5 В или 13 В?
Конечно, более или менее возможно взломать фиксированные регуляторы, но требуемая схема довольно сложна и превосходит основную цель простоты.
Существует
устройств, которые могут выполнять эту работу за нас, самым популярным из которых является LM317.
LM317 похож на любой другой линейный стабилизатор со входом и выходом, но вместо контакта заземления есть контакт, называемый «Adjust». Этот вывод предназначен для получения обратной связи от делителя напряжения на выходе, чтобы на выводе всегда было 1,25 В, изменяя значения сопротивления, мы можем получить разные напряжения. В техническом описании даже сказано: «устраняет запасы множества фиксированных напряжений», но, конечно, это применимо только в том случае, если вы можете позволить себе иметь эти два резистора на борту.
В таких регулируемых регуляторах хорошо то, что при небольшом изменении конфигурации они могут также служить в качестве источников постоянного тока.
Подключив резистор к выходному контакту, а регулировочный штифт к другому концу резистора, как показано на рисунке, регулятор пытается поддерживать постоянное напряжение 1,25 В на выходном резисторе и, следовательно, постоянный ток на выходе. Эта простая схема довольно популярна среди диодных лазеров.
Фиксированные стабилизаторы тоже могут это делать, но напряжения падения неоправданно высоки (фактически, номинальное выходное напряжение). Однако они сработают в крайнем случае, если вы в отчаянии.
Ограничения регулятора напряжения
Самым большим преимуществом линейных регуляторов является их простота; больше нечего сказать.
Однако, как и все хорошие чипы, у них есть свои ограничения.
Линейные регуляторы работают как переменный резистор с обратной связью, сбрасывая ненужное напряжение.При рисовании того же тока, что и нагрузка. Эта потраченная впустую энергия преобразуется в тепло, что делает эти регуляторы горячими и неэффективными при высоких токах.
Например, регулятор 5 В с входом 12 В, работающий на токе 1 А, имеет потерю мощности (12 В — 5 В) * 1 А, что составляет 7 Вт! Это много потраченной впустую энергии, а КПД всего 58%!
Значит, при больших перепадах входного-выходного напряжения или при больших токах регуляторы имеют жалкую энергоэффективность.
Проблема дифференциального напряжения на входе-выходе может быть решена путем последовательного подключения нескольких регуляторов с уменьшением выходных напряжений (до желаемого значения напряжения), так что напряжение падает ступенчато.Хотя общая рассеиваемая мощность такая же, как при использовании одного регулятора, тепловая нагрузка распределяется по всем устройствам, снижая общую рабочую температуру.
Ограничения мощности и эффективности можно преодолеть, используя импульсный источник питания, но выбор зависит от приложения, нет четких правил относительно того, где и какой тип источника питания использовать.
Типы регуляторов напряжения: работа и их ограничения
В электроснабжении регуляторы напряжения играют ключевую роль.Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы? Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является неотъемлемой частью работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы. В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей.Источники питания бывают двух типов, такие как источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей. Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.
Что такое регулятор напряжения?
Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения. Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки.Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.
Регулятор напряжения
Существует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения — самый простой тип регулятора напряжения. Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением.Обсудим различные типы регуляторов напряжения.
Основными компонентами , используемыми в регуляторе напряжения , являются
- Цепь обратной связи
- Стабильное опорное напряжение
- Цепь управления проходным элементом
Процесс регулирования напряжения очень прост благодаря использованию трех вышеуказанных компонентов. Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока. На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.
Здесь проходной элемент — это один из видов твердотельного полупроводникового устройства, похожий на BJT-транзистор, PN-Junction Diode в противном случае MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.
Работа регулятора напряжения
Схема регулятора напряжения используется для создания и поддержания постоянного выходного напряжения даже при изменении входного напряжения, в противном случае условия нагрузки изменяются. Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов.Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.
Типы регуляторов напряжения и их работа
Эти регуляторы могут быть реализованы посредством интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения. Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.
Типы регуляторов напряжения
В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.
- Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
- Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
Линейные регуляторы напряжения
Линейный регулятор действует как делитель напряжения.В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения — это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.
Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе через транзистор, чтобы поддерживать постоянный выход.Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.
Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.
- Положительный Регулируемый
- Отрицательный Регулируемый
- Фиксированный выход
- Отслеживание
- Плавающий
Преимущества
К преимуществам линейного регулятора напряжения относятся следующие.
- Обеспечивает низкую пульсацию выходного напряжения
- Быстрое время отклика на нагрузку или изменение линии
- Низкие электромагнитные помехи и меньший шум
Недостатки
К недостаткам линейного регулятора напряжения относятся следующие.
- Очень низкий КПД
- Требуется большое пространство — необходим радиатор
- Напряжение выше входа не может быть увеличено
Регуляторы напряжения серии
В последовательном регуляторе напряжения используется регулируемый элемент, включенный последовательно с нагрузкой.Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.
Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения. Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.
Шунтирующие регуляторы напряжения
Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление.Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор. Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.
Применение шунтирующих регуляторов
Шунтирующие регуляторы используются в:
- Импульсные источники питания с низким выходным напряжением
- Цепи источника и стока тока
- Усилители ошибки
- Регулируемое напряжение или ток, линейные и импульсные источники питания
- Мониторинг
- Аналоговые и цифровые схемы, требующие точных эталонов
- Прецизионные ограничители тока
Импульсные регуляторы напряжения
Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.
Импульсный регулятор напряжения быстро включается и выключается для изменения выхода.Он требует управляющего генератора, а также заряжает компоненты накопителя.
В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся частотой, постоянным рабочим циклом и спектром шума, налагаемым PRM, изменяются; отфильтровать этот шум труднее.
Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном стабилизаторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.
В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.
Топологии коммутации
Имеет два типа топологий: диэлектрическая изоляция и неизолированная.
Изолированный
Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи делятся на два типа, включая следующие.
- Обратные преобразователи
- Прямые преобразователи
В перечисленных выше изолированных преобразователях рассматривается тема импульсных источников питания.
Без изоляции
Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — увеличивает входное напряжение; Step Down (Бак) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.
Опять же, неизолированные преобразователи подразделяются на разные типы, однако наиболее важными из них являются
- Понижающий преобразователь или понижающий регулятор напряжения
- Повышающий преобразователь или повышающий регулятор напряжения
- Понижающий или повышающий преобразователь
Преимущества топологий коммутации
Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.
Недостатки топологий коммутации
- Более высокое напряжение пульсаций на выходе
- Более медленное переходное время восстановления
- EMI производит очень шумный выходной сигнал
- Очень дорогие
Повышающие переключающие преобразователи, также называемые повышающими импульсными регуляторами более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления цепочками светодиодов используется повышающий импульсный регулятор напряжения.
Повышающие регуляторы напряжения
Допустим, контур без потерь Pin = Pout (входная и выходная мощности одинаковы)
Тогда V в I in = V out I out ,
I out / I in = (1-D)
Из этого следует, что в этой цепи
- мощности остаются прежними
- Напряжение увеличивается
- Ток уменьшается
- Эквивалентно трансформатору постоянного тока
Понижающее (понижающее) напряжение Регулятор
Понижает входное напряжение.
Понижающие регуляторы напряжения
Если входная мощность равна выходной мощности, то
P in = P out ; V вход I вход = V выход I выход ,
I выход / I вход = V вход / V выход = 1 / D
Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент трансформации находится в диапазоне 0-1.
Повышение / Понижение (повышение / понижение)
Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.
- Выходное напряжение имеет полярность, противоположную входной.
- Это достигается за счет прямого смещения диода с обратным смещением во время выключения, вырабатывающего ток и заряжающего конденсатор для выработки напряжения во время выключения.
- Используя этот тип импульсного стабилизатора, можно достичь эффективности 90%.
Повышающие / понижающие регуляторы напряжения
Регуляторы напряжения генератора
Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства, когда двигатель работает.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор имеет способность производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.
Регулятор напряжения генератора
Статор — это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.
Электронный регулятор напряжения
Простой регулятор напряжения может быть изготовлен из резистора, соединенного последовательно с диодом (или рядами диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.
Электронный регулятор напряжения
Транзисторный регулятор напряжения
Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного пробоя.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.
Основные параметры регуляторов напряжения
- Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают в себя напряжение i / p, напряжение o / p, а также ток включения / выключения. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
- Остальные параметры этого регулятора: частота коммутации, ток покоя; напряжение обратной связи тепловое сопротивление может применяться на основе требования
- Ток покоя является значительным, если эффективность во всех режимах ожидания или малой нагрузке является основной проблемой.
- Если частота коммутации рассматривается как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, термическое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
- Если контроллер имеет полевой МОП-транзистор, после этого все кондуктивные, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
- Самый важный параметр — это напряжение обратной связи, поскольку он определяет меньшее напряжение включения / выключения, которое может удерживать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.
Как правильно выбрать регулятор напряжения?
- Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
- Когда разработчик описал эти потребности, затем используйте таблицу параметрического поиска, чтобы найти лучшее устройство для удовлетворения предпочтительных потребностей.
- Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
- Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
- Это техническое описание в основном помогает в измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выхода и т. Д.
- Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, разнообразными эффективными и переключаемыми типами, такими как семейство MP171x, семейство HF500-x, MPQ4572-AEC1, MP28310, MP20056 и MPQ2013-AEC1.
Ограничения / недостатки
Ограничения регуляторов напряжения включают следующее.
- Одним из основных ограничений регуляторов напряжения является их неэффективность из-за рассеивания большого тока в некоторых приложениях.
- Падение напряжения на этой ИС похоже на падение напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
- Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
- В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоком входном напряжении рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
- Еще одним ограничением является то, что они просто способны к понижающему преобразованию по сравнению с типами переключения, поскольку эти регуляторы обеспечивают понижение и преобразование.
- Регуляторы, подобные импульсным, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут создавать больше шума, если их внешние компоненты не выбраны осторожно.
Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам, касающимся этой статьи или любой помощи в реализации проектов в области электротехники и электроники, вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?
Регуляторы напряжения и тока
Регуляторы напряжения и тока
Elliott Sound Products | Регуляторы напряжения и тока |
© 20013, Род Эллиотт
Вершина
Указатель статей
Основной указатель
Содержание
Введение
Потребность в регулировании источника питания является общим требованием, но не все знают, почему необходимо регулировать источник питания или когда цепь может безопасно работать от нерегулируемого источника питания.Существует много неправильных представлений о регулирующих органах в целом и много дезинформации о том, что необходимо, а что просто чрезмерно. К сверхстабильным регулируемым источникам питания предъявляются некоторые требования, но в подавляющем большинстве приложений это бывает редко.
Необходимость регулирования часто понимается неправильно, утверждая, что основные схемы операционных усилителей в аудиосистеме (например) должны работать от жестко регулируемых источников питания, иначе звуковая сцена пострадает, или будет потеряна «авторитетность» низких частот (что бы это ни было может означать), или, возможно, высокие частоты будут «завуалированы», а средние частоты будут «загромождены».По большей части это ерунда, но эти мифы широко распространяются до тех пор, пока они каким-то образом не становятся «самоочевидными» из-за количества ссылок, перекрестных ссылок и людей, ссылающихся на сайты, на которых есть информация, которая, по их мнению, «подтверждает» их точку зрения.
Регуляторы напряжения можно найти почти в каждом элементе электронного оборудования и варьируются от типов с очень низким напряжением (например, 3,3 В для многих микропроцессоров) до сотен вольт, используемых в некоторых ламповых усилителях и другом оборудовании, которое работает с высоким напряжением.
Не каждое напряжение нужно регулировать. Обычно операционные усилители, используемые в аудиосистеме, поставляются с регулируемыми источниками питания (обычно ± 15 В), но в первую очередь это делается для обеспечения низких пульсаций (100 или 120 Гц) и шума. Операционные усилители не особо заботятся о том, есть ли шум в источнике питания, и они совершенно счастливы, даже если напряжения питания немного изменяются во время работы. При условии, что их максимальное рабочее напряжение не превышается, а источники питания остаются достаточно высокими, чтобы пропускать сигнал без искажений, колебания напряжения питания не приведут к значительным изменениям выходного сигнала.
Однако обычно это считается неприемлемым. Подача на операционные усилители должна регулироваться , потому что ни один операционный усилитель не имеет бесконечного PSRR , и он ухудшается на высоких частотах, поскольку коэффициент усиления разомкнутого контура падает из-за внутренней (или внешней) частотной компенсации. Во многих случаях может быть достаточно простого стабилизатора на стабилитроне, но он неэффективен и по современным стандартам считается очень «низкотехнологичным».
Регуляторы напряжения
IC очень недорогие и дают отличные результаты.Конечно, есть ограничения. Дифференциальное напряжение входа-выхода никогда не должно превышаться, некоторые из них сравнительно шумны, и необходим радиатор, если они используются для передачи выходного тока от умеренного до высокого. До регуляторов IC люди обычно использовали дискретные версии, и их можно было заставить работать очень хорошо. Естественно, высокая производительность требует большей сложности схемы, и в наши дни мало случаев, когда дискретный стабилизатор является лучшим предложением, чем версия IC.
Эту статью следует читать вместе с блоками питания малой мощности.Обе статьи охватывают схожие области, но эта версия нацелена больше на полное понимание концепции , а не на предоставление идей для конструкторов.
Стабилитроны тоже имеют свою страничку. Примечание по применению AN008 — Как использовать стабилитроны описывает многие из основных характеристик стабилитронов, а также некоторые основные характеристики и другую полезную информацию. Особый интерес представляет динамическое сопротивление, которое представляет собой спецификацию, которая указывает, насколько хорошо стабилитрон может уменьшить пульсации и шум.Чем ниже динамическое сопротивление, тем лучше стабилитрон будет регулировать и подавлять шум.
Существует ряд терминов, которые используются для описания работы любого регулятора. Приведенная ниже таблица взята из статьи «Источники питания малой мощности» и включает краткие пояснения.
Параметр Пояснение Регулировка нагрузки Процент, представляющий собой изменение напряжения при заданном изменении выходного тока Постановление о линии Процент.изменение выходного напряжения для данного изменения входного напряжения Падение напряжения Минимальный перепад напряжения между входом и выходом, прежде чем регулятор перестанет поддерживать приемлемую производительность Максимальное входное напряжение Абсолютное максимальное напряжение, которое может быть приложено к входной клемме регулятора относительно земли Подавление пульсаций Выражается в дБ, отношение пульсаций на входе (от нерегулируемого источника постоянного тока) к пульсации на выходе Шум Где указано, количество случайных (тепловых) шумов, присутствующих в регулируемом выходном постоянном напряжении. Переходная характеристика Обычно отображается графически, показывает мгновенную производительность с изменениями линейного напряжения или тока нагрузки
Не все из вышеперечисленных спецификаций будут даны, и не все они важны для многих приложений.Переходный отклик важен для любого регулятора, который подает быстро меняющуюся нагрузку, например логику TTL. Пульсации и шум важны для низкоуровневых аудиоприложений, особенно тех, которые используют дискретные транзисторы, где схема может иметь относительно низкое подавление шума источника питания.
Иногда думают, что простого резистивного делителя напряжения достаточно, чтобы обеспечить «регулируемое» напряжение. Если выход не буферизован с помощью повторителя (интегрированного или дискретного), это не регулируется .Делитель напряжения чувствителен к нагрузке, поэтому он может выдавать номинальное напряжение только в разомкнутой цепи (без нагрузки). Как только вы потребляете ток, напряжение упадет. Кроме того, любой шум (гудение, гудение и т. Д.) На питающем делитель источнике также будет попадать на выход. Простые делители были обычным явлением в ламповых усилителях, где основной источник питания может проходить через несколько резисторов с конденсаторами для заземления на каждом переходе, и клапанные каскады, образующие нагрузку.Это не «регулирование» ни в каком виде, это просто фильтрация, и здесь не рассматривается, кроме как часть надлежащего регулятора (где такие схемы фильтрации также довольно распространены).
Зачем регулировать?
Итак, зачем нам стабилизированное напряжение?
При большом количестве источников напряжения и во множестве схемных топологий мы этого не делаем. Однако теперь это так просто сделать и дает столько преимуществ, что было бы почти глупо не сделать этого. Основным преимуществом является то, что пульсации источника питания (при 100 или 120 Гц) почти полностью устраняются, и мы можем работать с операционными усилителями при напряжении, близком к их максимальному напряжению, не беспокоясь о низком сетевом напряжении, вызывающем преждевременное ограничение, или о высоком сетевом напряжении, вызывающем сбои.Нерегулируемый источник питания будет изменять свое напряжение при изменении напряжения сети (что обычно изменяется на величину от + 10% до -15%). Многие люди живут в районах, где напряжение изменяется сильнее, и если подача не регулируется, оно будет колебаться примерно на тот же процент, что и входящая сеть.
Нерегулируемый источник питания также изменяет свое выходное напряжение с нагрузкой, поэтому по мере того, как схема потребляет энергию, напряжение падает. Точно так же, когда нагрузка уменьшается, напряжение возрастает. Это называется регулированием нагрузки, и при нерегулируемом питании включает отклонений от сети.Небольшая нагрузка при максимальном напряжении сети означает, что питаемые цепи будут получать максимально возможное напряжение, которое может превышать абсолютное максимальное значение, указанное производителем ИС. ИС логики TTL имеют очень ограниченную устойчивость к перенапряжению, и они выйдут из строя, если будет превышено максимальное значение. Рекомендуемое напряжение — 5 В, допустимый диапазон — от 4,5 до 5,5 вольт. Каждый использует регулируемое питание для ИС TTL просто потому, что было бы глупо (и рискованно) поступать иначе.КМОП-логика обычно будет вполне довольна очень простым стабилитронным шунтирующим стабилизатором, потому что потребление тока очень низкое. Источник питания должен быть правильно обведен с соответствующей емкостью.
Во многих ранних транзисторных усилителях мощности использовались стабилизированные источники питания, поскольку они использовали один источник питания, а колебания напряжения могли создавать дозвуковой выходной сигнал. Кроме того, во многих из этих ранних усилителей использовались транзисторы, которые работали при напряжении, близком к предельным, и если бы напряжение увеличивалось слишком сильно, они выходили из строя.В наши дни почти никто не использует регулируемые источники питания для усилителей мощности, потому что это увеличивает стоимость и значительную тепловую нагрузку и, как правило, не служит полезной цели. В некоторых ламповых усилителях используются регулируемые напряжения экранной сетки для получения максимальной мощности без нагрузки на клапаны. Другие просто подчеркнули клапаны (и даже во многих последних разработках это делается до сих пор).
Очень редко можно увидеть предусилитель, использующий операционные усилители или дискретные транзисторы, в котором , а не , использует стабилизированные источники питания. Большинство людей используют регуляторы IC, но есть и те, кто считает, что дискретный регулятор даст лучшую производительность.Я не буду вступать в дебаты о предполагаемой «слышимости» регулятора и «звуке постоянного тока», потому что, насколько я понимаю, это в основном принятие желаемого за действительное, без научных оснований или подтверждения правильным проведением слепого AB-тестирования. По определению, постоянный ток — это постоянный ток, поэтому его не слышно. В некоторых случаях может быть слышен шум , наложенный на DC .
Большинство импульсных источников питания (SMPS) регулируются и могут использоваться напрямую, без дополнительных действий.Тем не менее, они почти всегда относительно шумные, имея существенное свидетельство частоты коммутации (и ее гармоник) в источнике постоянного тока. Хотя эти артефакты переключения почти всегда неслышны, они сбивают с толку и могут сильно затруднить разумные измерения в цепи.
Далее, зачем нам стабилизированный ток?
Помимо источников тока, раковин и зеркал (см. Статью), регуляторы тока раньше были более диковинкой, чем что-либо еще.Они использовались во многих областях в течение многих лет, но только недавно стали повсеместными — светодиодное освещение. Подавляющее большинство из них работают в импульсном режиме, потому что в противном случае потери энергии будут чрезмерными, что снижает общую эффективность светодиодного источника света. Тем не менее, все еще есть примеры, когда линейный регулятор имеет больше смысла.
В частности, простой линейный стабилизатор тока легко подключить к плате Veroboard, что нелегко сделать с любой схемой переключения.Требования к линейным регуляторам тока незначительны по сравнению с регуляторами напряжения, но вы никогда не узнаете, когда он вам понадобится. В некоторых случаях вам понадобится регулировка как напряжения , так и тока , и зарядка аккумулятора — один из наиболее очевидных случаев, когда они будут совмещены.
В целом потребность в прецизионном регуляторе тока (в отличие от источника тока в составе, например, схемы усилителя) очень ограничена, но, поскольку принципы и результаты во многом одинаковы для регулирования как напряжения, так и тока, они того стоят. покрытие.
1 — Базовый дискретный регулятор напряжения
Первыми использованными регуляторами были газоразрядные трубки [1] . Питание трубки осуществлялось через резистор, и напряжение разряда было достаточно стабильным при условии, что ток не слишком сильно менялся. Если требовался большой ток, то для его подачи в качестве катодного повторителя использовался традиционный мощный вентиль (вакуумная трубка). Добавление дополнительных клапанов позволило получить хорошо регулируемое питание, на которое не повлияли изменения тока нагрузки или колебания входного напряжения.
Современный эквивалент газоразрядной трубки — стабилитрон. Они по-прежнему очень часто используются для регулирования либо в качестве простого шунтирующего регулятора (например, газоразрядная трубка), либо с дополнительными частями для формирования дискретного регулятора. Поскольку основной шунтирующий регулятор является самым простым, на него стоит обратить внимание в первую очередь. Более подробная информация об использовании стабилитронов представлена на странице Application Note 008 на веб-сайте ESP.
Рисунок 1 — Базовый стабилитрон шунтирующего регулятора
Одним из основных недостатков простого шунтирующего стабилитрона является то, что он постоянно потребляет максимально допустимый ток от источника питания.Как показано выше, напряжение питания составляет 15 В, и это только один источник питания. Я буду использовать эту же общую компоновку для большинства диаграмм, потому что это делает их менее загроможденными и более легкими для понимания. Если требуется отрицательный источник питания, обычно это просто обратное значение, указанное для положительного напряжения. Сам источник питания (трансформатор и конденсатор фильтра) используется в большинстве примеров, но не будет показан, если только понимание схемы не является важным.
В вышеупомянутом источнике питания R1 должен обеспечивать достаточный ток, чтобы всегда оставаться в оптимальном диапазоне стабилитрона, а также обеспечивать нагрузку.Стабилитроны не рекомендуются для любых схем, в которых ток изменяется более чем на несколько процентов. Ток стабилитрона должен составлять (примерно) от 10% до 50% от максимального тока стабилитрона, который очень просто получается из напряжения и номинальной мощности. Стабилитрон 15 В и 1 Вт может выдерживать максимальный ток …
.
I = P / V
I = 1/15 = 66,7 мА
Ток стабилитрона не должен превышать 50% от максимального, чтобы поддерживать повышение температуры стабилитрона до разумного значения. Кроме того, при таком токе он будет довольно горячим, и на напряжение не будет сильно влиять температура окружающей среды.Таким образом, мы должны стремиться к 33 мА и не менее 7 мА, чтобы гарантировать, что динамическое сопротивление стабилитрона достаточно низкое, чтобы быть полезным. Поскольку номинальное входное напряжение составляет около 21 В, это означает, что сопротивление резистора должно быть около 180 Ом (R = V / I). 180 Ом дает ток стабилитрона 33 мА, но только когда ток нагрузки равен нулю, а напряжение в сети равно 230 В (или 120 В), и при условии, что выходное напряжение трансформатора равно 15 В RMS.
На самом деле ничего из вышеперечисленного обычно не соответствует действительности. Нет смысла иметь стабилизированное напряжение, но без нагрузки, поэтому нам нужно знать, какой ток потребляет цепь с питанием.Это может быть доступно из таблиц данных (для операционных усилителей), или вам, возможно, придется либо рассчитать, либо измерить фактический потребляемый ток. Для этих упражнений мы предполагаем, что ток нагрузки составляет 20 мА.
Теперь, если нагрузка потребляет 20 мА, это означает, что ток стабилитрона теперь снижен до 13 мА (33–20 мА), что находится в желаемом диапазоне. Чтобы сохранить значение 33 мА, которое мы рассмотрели вначале, общий ток , потребляемый от источника питания, будет равен требуемому току стабилитрона (33 мА) плюс ток нагрузки (20 мА), всего 53 мА.R1 теперь нужно пересчитать, и он станет 113 Ом. 120 Ом в этом случае вполне нормально. Поскольку общий потребляемый ток выше ожидаемого, на конденсаторе фильтра будет больше пульсаций, чем мы ожидали. Из-за дополнительного тока напряжение будет меньше запланированного нами 21 В (нерегулируемого), но, к счастью, эти ошибки обычно не настолько велики, чтобы вызвать катастрофу. Если нагрузка отключена, теоретический ток стабилитрона будет 33 мА (нормальный ток стабилитрона) плюс 20 мА, которые потребляла бы нагрузка — всего 53 мА.Стабилитрон сильно нагревается до , и этот тип простого шунтирующего регулятора обычно не следует использовать без нагрузки.
Показанные характеристики питания должны быть разумными. Симулятор сообщает мне, что при входном среднеквадратичном напряжении 15 В мы получаем 19,4 В постоянного тока после выпрямителя и фильтра с пульсацией 94 мВ (300 мВ P-P) на частоте 100 Гц. Регулируемое напряжение составляет 15,1 В с пульсацией 4,9 мВ RMS (16 мВ P-P). Ток нагрузки составляет 20 мА, но ток стабилитрона намного ниже запланированного, всего 15.7 мА. Хотя R1 можно уменьшить, чтобы обеспечить больший ток в стабилитрон, это также вызовет повышение напряжения пульсаций и немного снизит исходное напряжение постоянного тока. Суммарный ток от выпрямителя и фильтра составляет 35,7 мА … 20 мА на нагрузку и 15,7 мА на стабилитрон. R1 рассеивает 152,7 мВт, а рассеивание стабилитрона составляет 235,5 мВт (15 В x 15,7 мА). Как выяснилось, это безопасная общая конфигурация, и стабилитрон выживет, даже если входное напряжение сети повысится до максимально возможного.
Ток трансформатора составляет немногим более 113 мА (среднеквадратичное значение), состоящий из резких пиков ± 480 мА. Обратите внимание, что ток трансформатора с мостовым выпрямителем более чем в 3 раза превышает постоянный ток в этом примере, но он может быть выше или ниже в зависимости от выходного импеданса трансформатора (я использовал значение 0,2 Ом для моделирования). Если импеданс увеличивается, среднеквадратичный и пиковый ток уменьшаются, но вместе с тем уменьшается и напряжение постоянного тока.
Как видно из вышеизложенного, необходимо учитывать несколько взаимосвязанных факторов.Когда также принимаются во внимание обычные колебания напряжения в сети, количество возможностей резко возрастает. К счастью, ошибки и отклонения от теоретических значений всегда будут, но пока проектировщик делает поправки, конечный результат все равно будет удовлетворительным. Важно знать, что почти никогда все не будет так просто, как кажется на первый взгляд.
Если R1 разделен на два резистора равного номинала (2 x 56 Ом будет работать), то второй конденсатор от центрального отвода до земли уменьшит пульсации напряжения.При всего лишь 220 мкФ пульсации сокращаются до менее четверти (около 1,2 мВ RMS). Два резистора необходимы для отделения дополнительной емкости от основной крышки фильтра и стабилитрона, оба из которых имеют очень низкий импеданс (вы также увидите, как этот трюк используется ниже). Возможно, неожиданно, пульсации напряжения немного больше при подключенной нагрузке. Это связано с тем, что стабилитрон пропускает меньше тока и его динамическое сопротивление немного увеличивается.
Обратите внимание, что на Рисунке 1 показан конденсатор оконечного фильтра, и это важно в большинстве случаев.Он не так эффективен, как можно было бы надеяться, потому что он подключен параллельно стабилитрону с низким сопротивлением, но он немного снижает шум и (что более важно) обеспечивает мгновенный пиковый ток, который может потребоваться некоторым схемам. Фактически, очень и очень мало регуляторов любого типа следует использовать без разумной емкости на выходе. 10 мкФ часто бывает достаточно, но более высокие значения в большинстве случаев не вызовут никаких проблем.
2 — Следующий шаг к регулированию напряжения
Шунтирующее регулирование, описанное выше, по-прежнему является очень полезным инструментом, и во многих случаях это, безусловно, самый простой и дешевый способ получить, например, слаботочный стабилизированный источник питания для вспомогательных цифровых схем.Однако регулирование линии и нагрузки не является прекрасным, поэтому этот метод не подходит для нагрузок, которые имеют быстрые (или большие) изменения тока. Следующая разработка — это простой последовательный транзистор, добавляемый к стабилитрону, и это описано в статье о малых источниках питания. Здесь это повторяться не будет. Когда ток нагрузки регулятора проходит через транзистор, схема называется «последовательным» регулятором, потому что активное выходное устройство включено последовательно с током нагрузки.
Ниже показан базовый дискретный регулятор.Раньше это была очень распространенная схема до появления 3-контактных IC-регуляторов. Производительность может быть неплохой, но это ни в коем случае не точный регулятор. В основную форму схемы внесено несколько хитрых дополнений, которые описаны ниже. Трансформатор и мостовой выпрямитель точно такие же, как на рис. 1. C4 часто требуется для предотвращения высокочастотных колебаний, и его значение обычно находится где-то между 47 пФ и 1 нФ. Более высокие значения замедлят схему, и она не сможет достаточно быстро отреагировать на быстрые изменения нагрузки (плохая переходная характеристика).
Рисунок 2 — Простой дискретный регулятор серии
Хотя показанная схема имеет (почти) такое же выходное напряжение, что и шунтирующий стабилизатор, показанный выше, она потребляет меньше тока от выпрямителя. При той же подключенной нагрузке 20 мА (750 Ом) он потребляет 29,8 мА (а не постоянные 35,7 мА, независимо от того, подключена нагрузка или нет). Уменьшение тока означает, что входная пульсация уменьшается, а обратная связь, используемая в цепи, помогает еще больше.
В частности, обратите внимание, что есть два резистора (R1 и R2) для обеспечения тока базы для последовательного каскада Дарлингтона.Центральный отвод подключается к C2, и это снижает пульсации напряжения с ~ 78 мВ RMS на C1 до примерно 500 мкВ на C2 и менее 100 мкВ на базе Q1. Пульсации на выходе составляют всего 28 мкВ — на 70 дБ меньше пульсаций на C1. Сравните это с рисунком 1, на котором подавление пульсации составляет около 25 дБ.
Следующий хитрый трюк использует R6. Если бы этого не было, ток стабилитрона был бы максимум ~ 630 мкА, что слишком мало для обеспечения стабильной работы. R1 и R2 можно было бы уменьшить, но тогда C2 нужно было бы больше.Таким образом, регулируемое и сглаженное выходное напряжение используется для подачи тока, достаточного для правильной работы стабилитрона. Он добавляет немного более 8,7 мА стабилитрона (в моделировании общее значение составляет 9,4 мА). Это превышает минимум 5%, необходимый для стабильности (стабилитрон 6,2 В 1 Вт может потреблять до 161 мА при 25 ° C).
Чтобы учесть допуск стабилитрона (до ± 10%), было принято делать R5 переменной. В показанном примере вы можете использовать банк в 20k (что было бы довольно грубо) или R5 можно было бы уменьшить до 8.2к с банком 5к последовательно. Эта схема имеет обратную связь, а коэффициент усиления регулятора устанавливается R4 и R5. Стабилитрон — это опорное напряжение. Этот регулятор представляет собой ту же базовую схему, которую я использовал для Project 96, источника фантомного питания 48 В для микрофонов.
Опорное напряжение (стабилитрон) должно быть близко к 1/2 выходного напряжения, если это возможно, но может быть и меньше 1/4. Так что, если вам нужен выход 100 В, вы можете использовать стабилитрон на 24 В.
R4 и R5 образуют цепь обратной связи и определяют коэффициент усиления схемы.Если они равны, коэффициент усиления схемы равен 2. Напряжение база-эмиттер Q3 добавляется к опорному напряжению, так что на самом деле это не 6,2 В, а 6,85 В для схемы, показанной на рисунке 2. Это также добавляет ошибку из-за до температуры перехода Q3, которая обычно принимается равной -2 мВ / ° C. При условии, что температура Q3 не сильно изменится, ошибка не имеет большого значения.
Выходное напряжение можно определить следующим образом …
Усиление = (R4 / R5) + 1
Усиление = (12/10) + 1 = 2.2
В ВЫХ = В REF × усиление
В ВЫХ = 6,85 × 2,2 = 15,07 В постоянного тока
Для разработки дискретного регулятора, такого как показанный на рисунке 2, есть несколько общих рекомендаций. R1 + R2 должны обеспечивать достаточный базовый ток для последовательной комбинации Q1 и Q2. Необходимый базовый ток определяется коэффициентом усиления пары (предположим, 1000 для типичной комбинации), и должен быть абсолютным минимумом удвоенных , который необходим при максимальном выходном токе.Если оно меньше этого, Q3 (усилитель ошибки) не будет иметь достаточного тока для работы, и вы потеряете регулирование. Согласно общепринятому практическому правилу, базовый ток последовательного транзистора (транзисторов) должен быть в 5-10 раз больше наихудшего. Однако это можно смягчить, если вам не нужна идеальная регулировка.
Итак, для приведенной выше схемы мы можем использовать следующие основные уравнения для R1 и R2 …
R1 + R2 = V IN — V OUT / I B × 10 — где I B определяется…
I B = I OUT / h FE (Q1 × Q2) … (предположим усиление 1000), поэтому …
I OUT = 20 мА
I B = 20 мкА × 10 = 200 мкА
В IN — V OUT = 19,4 — 15 = 4,4 В
R1 + R2 = 4,4 В / 200 мкА = 22 кОм, поэтому R1 = R2 = 11 кОм
Хотя это можно было бы заставить работать, это было бы довольно глупо, потому что регулятор мог бы выдавать только 20 мА, если вы придерживаетесь рекомендаций по проектированию. Уменьшая значения R1 и R2 до 2.2k, схема будет отлично работать с выходным током не менее 100 мА. При 100 мА выходное напряжение упадет до 14,99 В, а пульсации увеличатся до 115 мкВ. Учитывая относительную простоту схемы, производительность неплохая!
Обратите внимание, что устройство последовательного прохода показано как пара транзисторов, подключенных в конфигурации Дарлингтона, но транзистор Дарлингтона и N-канальный MOSFET также будут работать. Стабилитрон должен быть подключен между затвором и истоком полевого МОП-транзистора — 4.Стабилитрон 7 В обеспечит более чем достаточный ток при использовании МОП-транзистора IRF540 (или аналогичного), а также обеспечит базовое ограничение тока или . Поскольку коэффициент усиления у полевого МОП-транзистора не такой высокий, как у пары Дарлингтона, стабилизация и характеристики пульсации не так хороши. Однако затвор не потребляет ток, поэтому значения R1 и R2 могут быть выше, чем это необходимо для биполярных транзисторов.
Добавив некоторую сложность, схему можно заставить работать еще лучше, но для 99% приложений в этом нет никакого смысла.Единственное, чего нет у , так это защиты от короткого замыкания. Если выход закорочен, последовательные транзисторы (Q1 и Q2) выйдут из строя. Если мы просто ограничим ток до заданного максимума, мы можем обнаружить, что рассеивание Q2 выходит за пределы допустимой безопасной области. При 20 В на входе (достаточно близко) и (скажем) на выходе 100 мА и закороченном выходе рассеивание в Q2 будет 20 * 0,1 = 2 Вт. Очевидно, это не проблема при низком входном напряжении и малом токе регулятора, но становится серьезной проблемой при увеличении напряжения или тока.
Рисунок 3 — Простой дискретный серийный регулятор с ограничением тока
Добавляя Q4 и R7, мы можем применить базовую защиту от короткого замыкания с помощью простого ограничения тока. Когда напряжение на R7 достигнет 0,6–0,7 В, Q4 будет проводить и «украсть» ток из последовательно проходящих транзисторов. Это только самая простая форма защиты, и хотя она работает, это определенно не высокотехнологичное решение проблемы. Как показано, ток ограничен примерно 130 мА, а рассеивание в Q2 составляет примерно 2.4 Вт (радиатор будет обязательно). Показанная компоновка ни в коем случае не единственный метод, но он работает достаточно хорошо. Дополнительное сопротивление снижает характеристики регулирования, и при приближении к пределу тока наблюдается заметный провал напряжения.
Более продвинутое ограничение тока включает в себя так называемое ограничение «обратного отсчета», когда доступный ток постепенно уменьшается по мере падения выходного напряжения. Например, пока выход близок к 15 В, предел может быть установлен на (скажем) 1 А, но если выход закорочен, максимальный доступный ток может быть уменьшен до 100 мА.Ограничение обратного тока является более сложным и в некоторых случаях может привести к отказу источника питания от запуска — например, если схема с питанием потребляет ток, превышающий нормальный, при низких входных напряжениях. Поскольку эта статья посвящена общим принципам, ограничение тока обратной связи не будет включено.
2.1 — Дифференциальное напряжение ввода-вывода
Дискретная схема по-прежнему имеет преимущества, когда вам нужен источник питания с более высокими требованиями к напряжению, чем могут удовлетворить стандартные 3-контактные ИС.Хотя доступны высоковольтные версии, их бывает трудно получить, и они все еще имеют ограниченный перепад входного-выходного напряжения. Вы можете представить, что LM317HV (например) подойдет, так как он имеет максимальное дифференциальное напряжение на входе-выходе 60 В.
Легко упустить из виду тот факт, что максимальное входное напряжение на самом деле составляет всего 60 В для LM317HV, потому что при первом включении выходной конденсатор разряжен и близок к короткому замыканию. Точно так же регуляторы серии 317/337 имеют защиту от короткого замыкания, но если входное напряжение превышает максимальное дифференциальное напряжение на входе-выходе, то есть большая вероятность того, что ИС выйдет из строя.
Можно создать дискретную схему с любым входным напряжением, которое вам нравится, ограниченное только выбором последовательно проходных транзисторов и других необходимых компонентов. Если вам нужен стабилизированный источник питания на 250 В, то вам просто не повезло, если вы попытаетесь использовать любой доступный стабилизатор IC. Если вы знаете, как построить дискретный регулятор, то (почти) нет ограничений на входное или выходное напряжение.
При разработке регуляторов высокого напряжения необходимо учитывать множество факторов, особенно защиту от короткого замыкания.Если у вас есть нерегулируемое напряжение (скажем) 500 В и вам нужно регулируемое 400 В, представьте мгновенное рассеивание мощности в устройстве последовательного прохода, если выход закорочен! Без продуманных мер защиты короткое замыкание вызовет мгновенный отказ устройства последовательного прохода, и чрезвычайно сложно обеспечить какую-либо достаточно быструю схему защиты. Это можно сделать, но здесь мы не будем рассматривать, поскольку для этого потребуется обширное тестирование, чтобы убедиться, что схема защиты работает должным образом (это не конструкторская статья — она предназначена только для объяснения принципов).
Рисунок 4 — Дифференциальное напряжение ввода-вывода
Схема слева на Рисунке 4 (A) выглядит безопасной, но в момент включения выходная крышка разряжается и представляет собой кратковременное короткое замыкание. Колпачок большего размера может некоторое время казаться очень низким импедансом, как показано справа (B). Таким образом, дифференциальное напряжение представляет собой полное входное напряжение (45 В), которое может значительно превышать номинальные значения для регулятора и вызвать отказ. Если выход закорочен (возможно, в оборудовании есть танталовые конденсаторы для развязки источника питания ¹), на регулятор будет подаваться полное входное напряжение до тех пор, пока не будет отключено питание или он не выйдет из строя!
Примечание 1: Танталовые конденсаторы (и всегда были) самые ненадежные конденсаторы из когда-либо созданных.Они совершенно не переносят сильные импульсные токи, и
уникальны тем, что их режим отказа — короткое замыкание (которое может быть прерывистым). Как известно постоянным читателям, я никогда не рекомендую танталовые крышки для чего-либо.
Очень важно, чтобы входное и выходное дифференциальное напряжение не превышалось, и для IC-регуляторов это значение указано в спецификации (обычно как абсолютное максимальное значение). Для дискретного регулятора это максимальное напряжение на последовательном и других транзисторах, которое ограничивается напряжением пробоя коллектор-эмиттер или напряжением сток-исток для полевого МОП-транзистора.
Вы вполне можете спросить, а зачем на регуляторе диод. В некоторых случаях общая емкость на выходе регулятора может быть такой, что он сохраняет заряд дольше, чем крышка основного фильтра (C1). Это особенно верно, если перед регулятором берется дополнительная нерегулируемая нагрузка. Если регулятор должен иметь обратное смещение, он почти наверняка выйдет из строя, поэтому вы не сможете подключить стендовый источник питания непосредственно к цепи, не повредив регулятор.Добавление диода означает, что любое напряжение на выходе передается на вход регулятора, что предотвращает возможное повреждение внутренней цепи. Диод также следует добавить к дискретным регуляторам, если есть вероятность, что на выходе может быть напряжение, но не на входе.
2.2 — Требования к дифференциальному напряжению ввода-вывода
Хотя важно гарантировать, что максимальный дифференциал ввода-вывода никогда не будет превышен, также важно убедиться, что имеется достаточно дифференциала для предотвращения проблем.Минимум обычно указывается в даташите, и это не относится к среднему значению! Мгновенное входное напряжение никогда не должно падать настолько (из-за пульсаций напряжения), чтобы регулятор больше не мог поддерживать выходное напряжение. Например, если регулятору требуется минимум 2 В дифференциала для поддержания регулирования, мгновенное входное напряжение всегда должно быть более чем на 2 В выше выходного напряжения.
Это включает пульсации напряжения и любое снижение сетевого напряжения, которое находится в пределах обычно ожидаемого диапазона для входящего источника переменного тока.Некоторые люди спрашивали, почему я рекомендую трансформатор 15–0–15 В для источников постоянного тока ± 15 В, когда я знаю, что напряжение трансформатора обычно будет выше, чем указано при небольшой нагрузке. В общем, вы можете ожидать около 25 В постоянного тока на входе регулятора, что может показаться чрезмерным. Тем не менее, это включает в себя значительную поправку на низкое напряжение в сети, пульсации и дополнительное сглаживание.
Рисунок 5 — Пульсация входного напряжения относительно напряжения. Регулируемая мощность
На рисунке 5 вы можете увидеть, что произойдет, если входящий постоянный ток упадет ниже минимума, необходимого для поддержания регулирования.Поскольку крышка входного фильтра слишком мала, пульсации позволяют входному напряжению упасть ниже предела, при котором регулятор может поддерживать выходное напряжение на уровне 15 В. В результате пульсация передается от входа к выходу.
В случае, показанном выше, очевидным ответом является увеличение емкости фильтрующего конденсатора, чтобы пульсации были уменьшены до разумного значения, и проблема была решена. Однако вам все же нужно рассмотреть случай, когда напряжение в сети падает — это может иметь точно такой же эффект.Если напряжение сети упадет на 20% (с 230 В до 184 В или с 120 до 96 В), то же самое произойдет и с выходом трансформатора. Это означает, что вместо номинальных 15 В переменного тока выходная мощность будет снижена до 12 В переменного тока, и этого недостаточно, чтобы позволить ИС поддерживать регулирование — даже при условии, что ноль пульсации напряжения!
Неважно, является ли регулятор дискретным или основанным на ИС — результаты будут одинаковыми. Единственным решением было бы либо использовать трансформатор с более высоким напряжением (например, 18 В RMS), либо использовать конструкцию стабилизатора с малым падением напряжения (LDO), либо в виде интегральной схемы, либо в виде дискретного.У регуляторов LDO могут быть проблемы со стабильностью из-за их конструкции, и, как правило, их следует избегать, если нет другого варианта. См. Регуляторы LDO, если вы хотите узнать о них больше.
3 — Регуляторы IC
Регуляторы
IC (3-полюсные) в настоящее время являются наиболее распространенными из всех аналоговых / линейных типов. В течение многих лет у нас были регуляторы 78xx (положительный) и 79xx (отрицательный), а также множество аналогичных устройств с разными номерами деталей, и было доступно несколько стандартных напряжений.Были доступны версии на 5, 8, 12, 15, 18 и 24 В, но они (в основном) рационализированы до 3–5 В, 12 В и 15 В. Некоторые из странных напряжений все еще могут быть доступны, если вы внимательно присмотритесь. Регулируемые регуляторы (LM317 / 337) позволяют людям создавать источники питания практически для любого напряжения, которое им нравится, от 1,25 В до 50 В, если вы используете версии с высоким напряжением.
Они удобны, фиксированные регуляторы также доступны в маломощных версиях в корпусе TO-92. 78L05 особенно распространен, поскольку он может обеспечивать регулируемое питание для небольших микроконтроллеров, проектов на основе PIC и других логических схем с низким энергопотреблением.Внутренняя схема этих микросхем в настоящее время довольно развита, и они обладают очень хорошими характеристиками. Все они имеют защиту от короткого замыкания и включают внутренние предохранители от перегрева, поэтому они практически неразрушимы … почти!
Многие энтузиасты аудио часто считают обычные регуляторы серий 78xx / 79xx «низшими», но это неоправданно. Да, они несколько шумные, но типичный выходной шум низкий и очень редко вызывает проблемы со схемами операционных усилителей, но это может быть проблема с простыми схемами с плохим отклонением источника питания.Стоит отметить, что выходной конденсатор нужен в первую очередь для стабильности, и без него регулятор, вероятно, будет колебаться. Неважно, 10 мкФ или 1000 мкФ, пульсация на выходе не изменится.
Это явно странное поведение связано с выходным сопротивлением регулятора. Согласно таблице данных на 7815, он имеет выходное сопротивление 0,008 Ом (8 миллиом) на частотах до 1 кГц, после чего оно возрастает до 6 дБ / октаву. На частоте 100 Гц конденсатор 1 мФ (1000 мкФ) имеет реактивное сопротивление равное 1.59 Ом, и это абсолютно не влияет на 8 миллиомов регулятора. Выходное сопротивление остается ниже 1 Ом на любой частоте до 1 МГц, а на крайних частотах конденсатор будет иметь некоторое влияние.
Подавление пульсаций заявлено как минимум 54 дБ (7815) при типичном значении 70 дБ. Типичный выходной шум заявлен как 90 мкВ. Простой способ снизить уровень шума и пульсаций напряжения — это добавить на выходе регулятора простой резистивно-конденсаторный фильтр. Для выходных токов 100 мА или менее резистор 10 Ом и конденсатор на 1000 мкФ уменьшат выходное напряжение на 1 В при 100 мА, но уменьшат пульсации 100 Гц еще на 16 дБ (минимум).Это также уменьшит широкополосный шум. На частоте 1 кГц любой шум регулятора уменьшается на 36 дБ, а на частоте 10 кГц — на 56 дБ. В сочетании с уже и без того низким уровнем шума и пульсации остаточная величина незначительна. Как и ожидалось, эту технику можно успешно использовать только при сравнительно небольших токах.
Также можно использовать фильтр, состоящий из катушки индуктивности и конденсатора, но необходимо очень внимательно следить за тем, чтобы частота -3 дБ была намного ниже частоты пульсаций, иначе вы можете легко получить больше пульсаций вместо меньших! Например, LC-фильтр, состоящий из индуктора 1 мГн и конденсатора 1 мФ (1000 мкФ), имеет частоту 159 Гц и увеличит пульсацию на 4 дБ.Увеличение индуктивности до 10 мГн приводит к уменьшению пульсации на 10 дБ, а также к быстрому ослаблению всех частот выше 50 Гц. В идеале катушка индуктивности (или конденсатор) должна быть больше, а любой LC-фильтр чувствителен к импедансу нагрузки и может вызывать переходные колебания при изменении нагрузки — рекомендуется соблюдать особую осторожность!
Многие люди также думают, что добавление большого конденсатора к выходу уменьшит шум и пульсации. Как отмечалось выше, это не работает. Очевидно, что параллельное включение емкостного реактивного сопротивления более 1 Ом и менее 20 мОм не даст многого.На более высоких частотах выходное сопротивление регулятора будет расти, поэтому емкость от 10 мкФ до 100 мкФ имеет смысл для ограничения ВЧ-шума и обеспечения стабильности регулятора.
Обратите внимание, что LDO (регуляторы с низким падением напряжения) часто имеют строгие критерии стабильности, поэтому я предлагаю вам прочитать статью, в которой рассматриваются эти потенциально сварливые ИС. В основном они ведут себя прилично, но это не гарантируется, если вы не сделаете все правильно.
3.1 — Регулируемые регуляторы IC
LM317 / 337 рекомендуются для замены фиксированных регуляторов и обеспечивают гораздо большую гибкость.Они стабильны и хорошо работают. Самое главное, у них нет вредных привычек, и это важный фактор для любого дизайна. Project 05 — это пример двойного регулятора, использующего эти универсальные ИС. При использовании, как показано в проекте, производительность примерно такая же, как у фиксированного регулятора. Это можно улучшить, но для этого потребуется несколько дополнительных деталей. Дополнительные конденсаторы включены в плату Project 05.
Выходное напряжение устанавливается с помощью пары резисторов. Нормальный ток от вывода «Adj» (регулировка) может варьироваться от ~ 50 до 100 мкА, и необходимо обеспечить больший постоянный ток, который, по крайней мере, на порядок больше, чем нормальный ток от этого вывода.Обычно это делается путем добавления резистора между выходом и регулировочным контактом, обычно 100 или 120 Ом. Опорное напряжение номинально составляет 1,25 В, но оно может варьироваться от 1,2 В до 1,3 В от одной микросхемы к другой. Предполагая, что 1,25 В, ток через внешний резистор на 100 Ом составляет 12,5 мА, что значительно превышает ток регулировочного штыря. Полная схема подключения показана ниже.
Рисунок 6 — Регулируемый регулятор, показан LM317
Как отмечалось выше, внутреннее опорное напряжение равно 1.25 В, поэтому через R1 проходит 12,5 мА. Мы можем игнорировать ток регулировочного вывода, потому что он будет не более 0,1 мА, и хотя это вызывает небольшую ошибку, это меньше, чем изменение опорного напряжения. Значение R1 довольно важно. Если он слишком велик, внутренний рабочий ток ИС приведет к увеличению выходного напряжения без нагрузки. Максимальное значение зависит от устройства — отрицательная версия требует меньшего сопротивления. Большинство дизайнеров используют значения от 100 до 220 Ом.Минимальный выходной ток для LM317 составляет около 5 мА или 10 мА для LM337. Использование резисторов 100 Ом гарантирует стабильный выходной сигнал как для положительных, так и для отрицательных регуляторов.
Значение для R2 вычислить легко, потому что мы знаем, что он передает 12,5 мА и всегда будет на 1,25 В меньше выходного напряжения. Следовательно, на выходе 15В получаем …
I R2 = 12,5 мА
В R2 = V ВЫХ — 1,25 = 13,75
R2 = V / I = 13,75 / 12.5 = 1,1 тыс.
Это сильно отличается от формулы, представленной в таблице данных, и хотя процесс немного дольше, по крайней мере, вы можете вспомнить, как это делать, потому что он основан на простой математике (закон Ома), которую гораздо легче запомнить, чем формула. Из-за допуска опорного напряжения (1,2–1,3 В) фактическое выходное напряжение может варьироваться от 14,4 В до 15,6 В (± 1%), хотя большинство ИС будут ближе к расчетному значению. Разница напряжений не имеет значения для схем операционных усилителей.Формула, представленная в таблицах данных: …
V ВЫХ = 1,25 × (1 + R2 / R1) + I ADJ × R2
Это учитывает ток регулировочного штыря (обычно 50 мкА), который прибавит около 55 мВ при использовании резисторов 1,1 кОм. В общем, нет смысла стремиться к такому уровню точности, потому что IC представляет собой стабилизатор напряжения , а не прецизионный эталон. Если вам нужна точность, вы должны использовать прецизионный источник опорного напряжения, такой как TL431, LM336, LT1009, или решение, описанное в SLYT183 — Прецизионные источники опорного напряжения от Texas Instruments.
Назначение D1 такое же, как описано выше — он предотвращает повреждение, приложенное к выходу регулятора. D2 должен разрядить C2. Если этот диод не установлен, регулировочный штифт может на мгновение стать больше, чем выходное значение (например, если выход закорочен), что приведет к повреждению ИС. D3 немного сложнее.
Если вы построите один регулятор, D3 можно не устанавливать. Однако, если вы собираете источник питания с двойной полярностью (например, ± 15 В), D3 должен быть включен (на оба источника).Это защитный диод, который не дает регулятору получить отрицательный выход на выходе, что может привести к отключению микросхемы … , и она не восстановится! Но как это может случиться? Когда используются два источника питания, неизбежно, что один будет немного быстрее другого. Нагрузка (операционные усилители или другие схемы) обычно использует только заземление в качестве эталона, поэтому мощность потребляется между источниками, а , а не , от каждого источника к земле. Тот, который появляется первым, может принудить выходной сигнал более медленного регулятора к противоположной полярности, и это может вызвать фиксацию ИС в состоянии отказа, из которого она не может восстановиться.
Это реальная проблема, и диоды (D3 и его противоположный номер на отрицательном питании) должны быть включены. Это можно увидеть на принципиальной схеме Project 05. Что может еще больше усугубить, так это то, что проблема может быть периодической, и ее трудно отследить, если вы не знаете, что искать.
4 — Повышение тока от регуляторов IC
Совсем не редкость, что вам может потребоваться намного больший выходной ток, чем вы можете получить от микросхемы трехконтактного стабилизатора.Существуют версии TO-3 с более высоким током, но этого может быть недостаточно, например, если вы запитываете большую микшерную консоль. Существует очень распространенный прием, который используется для увеличения выходной мощности, а для положительного регулятора требуется просто добавить один резистор и силовой транзистор PNP. Если вы используете TIP36C (самый доступный и дешевый силовой транзистор, который вы можете получить), его легко получить до 10 А, хотя вам необходимо установить очень хороший радиатор и тщательно управлять входным напряжением, чтобы обеспечить безопасную рабочую зону. не превышено.
Рисунок 7 — Регулируемый регулятор с усилением, использующий LM317 и TIP36C
ИС регулятора будет обеспечивать ток до предела, определенного R3. Как только напряжение на R3 превысит 0,7 В, Q1 и Q2 включатся и подадут столько тока, сколько потребует нагрузка. Входное напряжение должно быть достаточно высоким, чтобы обеспечить правильное регулирование при более высоком токе, и крышка основного фильтра также должна иметь соответствующий размер, чтобы минимизировать входные пульсации. Вышеупомянутая схема обычно требует обмотки на трансформаторе 20 В RMS, а диоды также должны выдерживать максимальный непрерывный ток.
Будьте осторожны — здесь нет защиты от короткого замыкания, потому что регулятор не сможет отключить добавленные транзисторы в случае неисправности. Вы, , могли бы спасти транзисторы, включив предохранитель, как показано, но не рассчитывайте на это. Несмотря на очевидные ограничения, это очень полезная схема, и ее часто рекомендуют в технических описаниях и примечаниях к применению. В показанной конфигурации и при условии, что на входе 25 В постоянного тока, стабилизатор будет обеспечивать максимум около 320 мА плюс базовый ток транзисторов, а два TIP36C обеспечивают остальное.Рассеивание на Q1 и Q2 будет почти 50 Вт при выходном токе 5 А, поэтому радиатор и монтаж должны быть отличными. Тепловое сопротивление между корпусом и радиатором всего 0,5 ° C / Вт вызовет повышение температуры каждого транзистора на 12,5 ° C, поэтому использование транзисторов с параллельным проходом абсолютно необходимо.
В некоторых примечаниях к применению предлагается использовать транзистор драйвера и транзисторы с параллельным проходом, но это необходимо только в том случае, если регулятор не может обеспечить ток, достаточный для обеспечения необходимого тока базы.Если учесть в техническом описании TIP35C / 36C h FE 25, стабилизатор на 1 А может запитать достаточно транзисторов, чтобы получить выходной ток 25 А. У кого-нибудь есть схема, на которую нужно 10 000 операционных усилителей?
5 — Базовый регулятор тока
«Самый простой» регулятор тока — это просто высоковольтный источник питания и резистор. Например, если у вас есть источник питания постоянного тока 1 кВ и резистор 1 кОм, это даст вам 1 А при нагрузке от нуля до примерно 20 Ом (при регулировке 2%). Хотя концепция проста, реализация совсем не похожа — источник питания 1 кВ при 1 А — действительно серьезная проблема, и для резистора потребуется номинальная мощность 1000 Вт (1 А при 1 кВ — это 1 кВт).Итак, хотя концепция проста, реализация трудна, дорога и опасна.
В отличие от регулирования напряжения не существует простого диода, который мог бы регулировать ток. «Диоды» регулятора тока существуют, но на самом деле это не диоды — это микросхемы (обычно содержащие полевой транзистор и резистор). Номинальная мощность обычно очень ограничена, и они подходят только для работы с довольно низким током. Любой полевой транзистор с режимом истощения (JFET) можно использовать в качестве простого регулятора тока, но доступный ток будет довольно низким, как и максимальное напряжение.В отличие от стабилитронов, стабильность невелика, и они действительно полезны только там, где точность не требуется. Большинство из них ограничены до ~ 20 мА или около того и при относительно низких напряжениях (<100 В). Рассеиваемая мощность обычно не превышает 500 мВт.
Однако можно использовать пару транзисторов для получения очень точного регулирования тока, а приложенное напряжение ограничивается только напряжением пробоя транзисторов. Максимальный доступный ток в основном определяется безопасной рабочей зоной проходного транзистора.Как и в случае с регулятором напряжения, вам необходимо знать требования перед тем, как начать. Как и во всем электронном, необходимо идти на компромиссы, и вам нужно знать основные параметры, прежде чем переходить к кремнию.
6 — Более продвинутый регулятор тока
Не существует по-настоящему простого регулятора тока, который можно было бы использовать при токе, который может потребоваться для светодиодов — наиболее распространенной нагрузки, которую вы найдете на данный момент. Ток, необходимый для типичных мощных светодиодов, составляет от 350 мА до 700 мА с прямым напряжением ~ 3.5V для каждого серийного белого светодиода. Если у нас есть 5 светодиодов по 1 Вт последовательно, нам потребуется минимальное напряжение 17,5 В (мы будем использовать источник постоянного тока 22 В) при токе 300 мА.
Схема на дискретных транзисторах, использующая дешевый полевой МОП-транзистор, будет работать на удивление хорошо, и ее довольно просто реализовать. У него есть небольшая проблема с термической стабильностью, но мы можем использовать это в наших интересах. Схема показана ниже, и это просто мощная версия очень распространенного источника тока. MOSFET рассеивает чуть больше 1.2 Вт, и эта мощность полностью тратится (радиатор для полевого МОП-транзистора необходим). Тем не менее, это не намного больше, чем мы ожидаем в потерях от импульсного регулятора тока, работающего при том же напряжении и токе, а в некоторых случаях могут быть даже меньше.
D5 (стабилитрон 12 В) не является обязательным и защищает затвор от перенапряжения. Схема регулирования достаточно быстрая, чтобы гарантировать, что напряжение на затворе никогда не будет превышать примерно 6 В, даже если повышение напряжения питания происходит мгновенно.Однако включение стабилитрона обеспечивает защиту затвора, если нагрузка отключена (или становится разомкнутой), или если цепь подключена неправильно (если вы ее построите).
Рисунок 8 — Дискретный источник тока на базе полевого МОП-транзистора
Почему я решил использовать MOSFET, а не биполярный транзистор для Q2? В этом случае все сводится к минимизации потерь тока в базе проходного транзистора, а MOSFET не нуждается в токе затвора. Резистор 10 кОм подает ток коллектора ~ 2 мА на Q1, и это необходимо, чтобы транзистор мог функционировать и обеспечивать напряжение затвора.Ток контролируется Q1, который включается, когда напряжение на R2 достигает ~ 0,7 В. Когда Q1 включается, Q2 выключается (частично), потому что напряжение затвора уменьшается. Состояние равновесия наступает за микросекунды, и система устойчива. При изменении импеданса нагрузки или входящего напряжения схема будет компенсировать. Если бы компенсация была идеальной, не было бы пульсаций тока через нагрузку — это был бы чистый постоянный ток. Показанная схема генерирует пульсацию на нагрузке примерно 380 мкА (117 мкА, среднеквадратичное значение) со средним током 308 мА.
Q1 имеет нормальный отрицательный температурный коэффициент 2 мВ / ° C любого кремниевого транзистора, поэтому, если он нагревается, ток будет падать. Мы можем использовать это, чтобы определить, нагреваются ли светодиоды, и уменьшить ток для компенсации. Если Q1 имеет температуру 50 ° C, ток снижается до 290 мА. Хотя это нельзя считать полным уровнем компенсации, это все же лучше, чем вообще ничего. Эта общая форма линейного регулятора тока может использоваться везде, где вам нужно, чтобы ток оставался постоянным независимо от изменений нагрузки.Вы должны знать о температурной зависимости Q1, потому что она есть, полезна она или нет.
Схема регулятора тока не будет иметь значительных отклонений между нагрузкой с нулевым сопротивлением и максимальной нагрузкой (16,7 В, что при 300 мА эквивалентно 55,5 Ом). Его можно использовать с любыми светодиодами мощностью от 1 до 5 1 Вт без изменения тока, хотя рассеиваемая мощность полевого МОП-транзистора, естественно, увеличится при использовании менее 5 светодиодов. На самом деле, это настолько хорошо, что даже измерить текущее изменение в симуляторе сложно.Однако, если объединенное напряжение на полевом МОП-транзисторе и R2 меньше ~ 1,5 В, он больше не сможет обеспечивать номинальный ток.
У схемы на Рисунке 8 есть одна проблема, заключающаяся в том, что выходной ток зависит от напряжения питания. Это связано с переменным током через Q1 (через R1). Однако изменение невелико и становится довольно линейным, когда напряжение превышает необходимое для регулирования. Ток варьируется от 308 мА (вход 19 В) до 312 мА (вход 30 В). Это более чем приемлемо, но это можно улучшить, запитав Q1 от источника тока.Это добавляет сложности, которую трудно оправдать, но для некоторых других приложений это может быть требованием.
В показанной схеме «опорное напряжение» составляет 0,7 В и представляет собой просто напряжение база-эмиттер Q1. Чтобы сделать источник тока, который не меняется в зависимости от температуры, необходимо использовать прецизионный эталон с температурной компенсацией. Само собой разумеется, что это добавляет сложности с небольшой выгодой в реальном выражении.
6.1 — Дифференциальное напряжение ввода-вывода
Регулятор тока ничем не отличается от регулятора напряжения в том, что он должен иметь достаточно «запасного» напряжения, чтобы он мог нормально функционировать.В случае схемы, показанной выше, полевой МОП-транзистор почти ничего не требует (около 200 милливольт), а на R2 должно быть напряжение — 650-700 мВ. Когда входное напряжение падает ниже этих комбинированных напряжений (около 1 В), либо из-за низкого напряжения в сети, либо из-за слишком высокого напряжения пульсаций, схема больше не может регулироваться. Ток через нагрузку никогда не может быть выше, чем предполагалось, но он может быть намного ниже при слабом питании или высокой пульсации.
Необходимое дополнительное напряжение зависит от схемы, но неразумно ожидать, что схема будет регулировать ток в узких пределах, если запас по напряжению недостаточен.Если напряжение чрезмерно, рассеивание в устройстве последовательного прохода увеличивается, и энергия расходуется в виде тепла. Если предполагается, что нагрузка представляет собой резистор, потребляющий тот же ток, что и нормальная нагрузка, закон Ома гласит, что доступное напряжение должно быть на выше, чем необходимое для проталкивания желаемого тока через резистор.
Например, как указано выше, для 5 светодиодов мощностью 1 Вт при 300 мА потребуется напряжение ~ 16,7 В, что эквивалентно резистору на 55,5 Ом. Мгновенное напряжение питания всегда должно быть не менее 17.7 В, чтобы полевой МОП-транзистор мог снова регулировать ток до 300 мА. Стоит отметить, что со стандартным импульсным источником питания с регулируемым током ситуация не отличается — входное напряжение всегда должно быть больше, чем максимальное напряжение на нагрузке в худшем случае. Пониженно-повышающие импульсные регуляторы могут изменять свой режим работы в зависимости от входного напряжения.
Импульсный стабилизатор выигрывает, когда входное напряжение намного больше, чем требуется для нагрузки, так как эффективность будет намного выше.При том же токе нагрузки ток от источника с импульсным стабилизатором фактически уменьшается с увеличением напряжения питания. С линейным регулятором ток остается прежним, а потери мощности (в виде тепла) увеличиваются. Однако регуляторы переключения выходят за рамки этой статьи.
7 — IC Регулятор тока
ИС общего регулируемого регулятора также могут использоваться в качестве регуляторов тока. В таблицах данных (и ниже) показаны примеры, и они работают достаточно хорошо.Эти схемы полагаются на опорное напряжение 1,25 В, поэтому резистор, чувствительный к току, должен понижать это напряжение во время нормальной работы ограничителя тока. В отличие от версии, показанной выше, в которой используется чувствительный резистор 2,2 Ом на 300 мА (резистор рассеивает ~ 200 мВт), если вы, например, используете LM317, чувствительный резистор должен быть около 4,2 Ом и рассеивать ближе к 400 мВт. Конечно, в этом нет ничего страшного, но это также означает, что на регуляторе требуется немного более высокий перепад напряжения.
Стандартный LM317, используемый в качестве регулятора тока, имеет отличные характеристики.Обратной стороной является то, что опорное напряжение составляет 1,25 В, в то время как «опорное» напряжение для дискретной версии, показанной выше, составляет всего 0,7 В. Это означает, что LM317 требует большего запаса по напряжению. Моделирование показывает, что показанная ниже схема не будет регулировать ток должным образом, пока входное напряжение не превысит 19,8 В, включая минимальный уровень пульсаций напряжения. C2 используется, чтобы гарантировать, что цепь не колеблется.
Рисунок 9 — LM317 как источник тока
Разницу в опорном напряжении легко увидеть, посмотрев на резистор считывания тока — R1 на рисунке 9 и R2 на рисунке 8.В то время как 2,2 Ом достаточно для схемы на Рисунке 8, для LM317 требуется резистор 4,15 Ом, который должен быть рассчитан на 1 Вт. LM317 интересует только одно — напряжение на R1. При условии, что это напряжение может поддерживаться на уровне внутреннего опорного напряжения (1,25 В), выходной ток фиксируется на уровне 300 мА. Ток равен …
I = V REF / R1
I = 1,25 / 4,15 = 301,2 мА
Если у вас есть запасное напряжение, R1 может быть 4,7 Ом, с резистором и подстроечным резистором, подключенными параллельно, как показано на рисунке 10.Стеклоочиститель подключается к регулировочной клемме LM317, позволяя изменять ток. Показанная схема позволяет изменять ток от 267 мА до 340 мА с помощью VR1.
Рисунок 10 — LM317 как регулируемый источник тока
Вы можете использовать LM317 в качестве регулируемого регулятора тока до максимально допустимого тока и рассеиваемой мощности. Он далеко не так эффективен, как импульсный стабилизатор тока, но легко собирается на макетной плате или даже на бирках.Его можно использовать для создания прототипов и проверки концепции или даже в качестве автономного тестового источника для управления мощными светодиодами при тестировании радиаторов и схем освещения (например). Как и в схеме на Рисунке 8, ток будет практически одинаковым независимо от количества используемых светодиодов мощностью 1 Вт. Это предполагает, что прямое напряжение светодиодов примерно на 4-5 В меньше, чем напряжение питания.
8 — Отрицательные регуляторы
В этой статье рассматриваются только положительные регуляторы, но отрицательные регуляторы легко изготовить с использованием тех же основных схем, но с частями противоположной полярности (обратные стабилитроны, PNP вместо транзисторов NPN и наоборот и т. Д.)). Таким образом, негативные регуляторы не рассматриваются сами по себе. Отрицательным эквивалентом регуляторов 78xx является серия 79xx, а LM317 соответствует LM337.
Однако есть одна конфигурация, которая на первый взгляд не выглядит так, как будто она будет работать, но она настолько полезна, что показана здесь. Требуется немного нестандартного мышления, чтобы понять, что если одна сторона источника питания регулируется (например, положительная), то по определению другая сторона (отрицательная) должна также регулироваться.Если бы было иначе, электроника в целом просто не имела бы смысла и не работала бы.
Рисунок 11 — Положительные и отрицательные напряжения с использованием только положительных регуляторов
Фактически, источники питания могут быть полностью раздельными и просто подключаться к минусу верхнего регулятора / источника питания, соединенному с плюсом нижнего. Таким образом могут быть подключены два отдельных импульсных источника питания, и он работает с любым типом источника питания, при условии, что между их вторичными источниками нет другого соединения, кроме того, которое вы делаете сами.Вы даже можете иметь разные напряжения для источников питания + ve и -ve, если хотите (но это не всегда полезно).
9 — Методы опорного напряжения
Для всех регуляторов напряжения и тока требуется источник опорного напряжения, поскольку он используется в качестве фиксированной точки, с которой можно сравнивать выходное напряжение или ток. Идеальное опорное напряжение будет совершенно нечувствительным к дрейфу, связанному с возрастом, изменениям температуры и входного напряжения, поэтому оно будет всегда оставаться на одном и том же напряжении.Излишне говорить, что идеального эталона не существует, но некоторые хитрости схемы действительно подходят.
Как отмечалось во введении, в схеме клапана используются газоразрядные трубки, и они не являются ни особенно точными, ни стабильными. С появлением кремниевых полупроводников ситуация значительно улучшилась, и стабилитроны стали предпочтительным выбором. Стабилитрон 6,2 В имеет дополнительный положительный и отрицательный температурный коэффициент (tempco) и довольно стабилен в разумном диапазоне температур.Однако напряжение действительно изменяется с током , поэтому простой резистор не обеспечит опорное напряжение с желаемой стабильностью. Это препятствие обычно преодолевается путем питания стабилитрона от источника постоянного тока — обычно два, причем один обеспечивает эталонный ток для второго.
Если бы можно было создать источник тока, нечувствительный как к приложенному напряжению, так и к температуре, то самым простым из известных источников опорного напряжения был бы резистор. Если определенный (и идеально регулируемый) ток проходит через резистор с очень низкой температурой, то напряжение на этом резисторе должно быть постоянным.Конечно, вы не можете потреблять ток нагрузки, и для создания прецизионного источника тока вам понадобится прецизионный источник опорного напряжения. Совершив полный круг, очевидно, что нужно что-то более практичное.
Стабилитроны с напряжением пробоя около 6,2 В могут работать при определенном токе и будут показывать очень близкую к нулю температуру, если ток правильный. К сожалению, это не указано в технических данных, и оптимальный ток варьируется от одного диода к другому.Точный необходимый ток можно найти экспериментально, но этот метод требует много времени, и мало кто будет так склонен (в том числе и я). Это особенно верно, когда прецизионные эталонные диоды можно получить легко и дешево.
В µA723 (и LM723) используется стабилитрон 5,7 В с низкой температурой. Еще лучше — стабилитрон 5,6 В с температурой + 2 мВ / ° C (типовая), включенный последовательно с диодом, смещенным в прямом направлении, с температурой -2 мВ / ° C — результат равен нулю. Никогда не получится добиться идеального результата, и прямой ток по-прежнему должен строго контролироваться, чтобы получить стабильное напряжение.
В современных ИС наиболее распространенным эталоном является запрещенная схема. Обратите внимание, что хотя схема называется шириной запрещенной зоны, на самом деле она не зависит от ширины запрещенной зоны кремния (около 1,205 эВ — электрон-вольт), а просто имеет примерно такое же эффективное напряжение. Да, я знаю, что это не имеет особого смысла и сбивает с толку, но так оно и есть. Существует много различных версий, которые широко используются, и большинство из них в значительной степени зависят от методов обработки IC. Если бы вы построили его из отдельных частей, его почти наверняка нельзя было бы использовать.Находясь на едином куске кремния и все части находятся в непосредственной близости, означает, что все переходы имеют одинаковую температуру друг с другом. В эталонных значениях ширины запрещенной зоны используются схемы с равными, но противоположными температурными коэффициентами — точно так же, как стабилитрон и диод, описанные выше, но при более низком и более полезном напряжении. «Стандартное» (если такое есть) опорное напряжение запрещенной зоны имеет напряжение от 1,2 до 1,5 В — например, номинальное опорное напряжение для LM317 составляет 1,25 В.
Если вы хотите точно знать, как делается ссылка на запрещенную зону, в сети есть много информации.Однако большая часть из них не особенно полезна, потому что она очень техническая, и большинство статей посвящено методам изготовления ИС. Конечно, в этом есть смысл, потому что для создания работоспособного эталона запрещенной зоны необходимо изготовить ИС. Однако для полноты картины ниже показана типовая схема. Идея состоит в том, что есть две взаимодополняющие части схемы с равными, но противоположными температурными коэффициентами. Ток часто жестко регулируется, и нередко в схемах с запрещенной зоной в ИС используется опорное напряжение запрещенной зоны для стабилизации тока питания, который питает опорную цепь!
Рисунок 12 — Концептуальная схема эталонной ширины запрещенной зоны
Некоторые примеры прецизионных источников опорного напряжения включают LM113 (первый, датированный 1971 годом и разработанный Бобом Видларом), TL431 и LM336 (оба регулируемые), а также многие другие.Концептуальная схема LM113 показана выше. Обратите внимание, что физическая площадь Q2 сделана в 16 раз больше, чем Q1, и это один из нескольких факторов, которые заставляют схему работать. Большинство используют похожую технику.
Интересно отметить, что если вам понадобится прецизионный источник тока, вам понадобится прецизионный источник опорного напряжения. В идеале, особенно если входное напряжение может изменяться более чем на небольшую величину, лучший способ питания прецизионного опорного напряжения — через источник тока.Однако это не должно создавать головоломки, потому что эталонный источник тока должен быть только хорошим, а не идеальным. Мир прецизионных источников (будь то напряжение или ток) требует большого внимания к деталям, и необходимо минимизировать колебания входного напряжения, тока нагрузки и температуры. Операционные усилители часто необходимы, потому что они имеют близко согласованные входные транзисторы, которые будут оставаться при практически одинаковых температурах.
Там, где требуется максимальная точность , всегда было обычной практикой использовать печь с электронным управлением для повышения температуры окружающей среды схемы, чтобы гарантировать, что изменения температуры окружающей среды будут иметь минимальное влияние на температуру схемы или совсем не повлиять на нее.Излишне говорить, что это необходимо только тогда, когда выполняются измерения с гораздо более высокой точностью, чем обычно — такие методы были обычными для счетчиков с очень высокой точностью, но не являются необходимыми для большинства повседневных приложений. Современный эталон ширины запрещенной зоны часто обеспечивает точность, необходимую для большинства измерений.
10 — Змеиное масло
К сожалению, но неизбежно, что некоторые люди будут ассоциировать регуляторы напряжения с «магическими» свойствами, способными каким-то образом влиять на «темп, ритм, время и пространство» (и нет, я тоже не знаю, что это должно означать). как звуковая сцена, басовый «авторитет», высокие «воздух» и, в более широком смысле, вкус и ощущение во рту хлопьев для завтрака.Это последнее утверждение (к сожалению) не глупее всех остальных. Почти все без исключения, это вопиющая чушь, и никогда не будет подкреплен результатами двойного слепого теста.
Есть несколько «особых» дизайнов, которые, кажется, привлекли внимание, но я не собираюсь придавать им какое-либо значение, называя имена. Есть несколько (очень немного!) Конструкций, которые требуют лучшего, чем обычно, регулирования, обычно требующего более низкого уровня шума, чем можно достичь с помощью стандартных ИС регуляторов.Часто это происходит из-за того, что конструкция схемы также сильно пропитана змеиным маслом и может иметь особенно плохое отклонение источника питания или быть чрезмерно чувствительной к сопротивлению источника питания.
Нет сомнений в том, что некоторые из «специальных» регуляторов могут иметь превосходные характеристики с гораздо более низким уровнем шума, чем обычные типы ИС. Если вы хотите поэкспериментировать, они могут быть очень полезными и могут доставить массу удовольствия, пока вы экспериментируете с ними. Тем не менее, они , а не , заставят любой грамотный звуковой дизайн звучать «лучше» или даже «иначе» — особенно те, которые используют операционные усилители.
Ничто из того, что я скажу или другие здравомыслящие дизайнеры, конечно, никого не изменит. Если люди склонны верить в «волшебный» аспект звука, они почти наверняка услышат разницу, и это мнение не будет оспорено двойным слепым тестированием, что укрепляет веру в то, что мы можем слышать вещи, которые нельзя измерить или количественно оценить с помощью наука или физика.
Выводы
Регулируемые источники питания используются повсеместно и во многих случаях считаются необходимыми, даже если схемы могут работать достаточно хорошо без регулирования.Простой факт заключается в том, что регулировка источников питания дает нам свободу использовать схемы, которые в противном случае вносили бы в схемы большое количество шума. Обычно дешевле (и конечный результат меньше) использовать регулятор, чем пытаться использовать более продвинутые фильтры для удаления гула и шума 100/120 Гц из источника питания.
В первые дни, когда вентили (вакуумные лампы) были единственными доступными усилителями, регулирование было трудным и дорогостоящим. Клапанные регуляторы использовались только в случае крайней необходимости из-за соображений стоимости и дополнительной надежности.По сегодняшним меркам стабильность регулирования была довольно обычной, но ее было достаточно для приложений того времени. В большинстве случаев разработчики пошли на все, чтобы использовать фильтрацию для удаления гула (100 Гц или 120 Гц) от источников питания. В фильтрах использовались катушки индуктивности, резисторы и конденсаторы для удаления шума из наиболее чувствительных частей цепи, а регулируемые источники питания были практически неслыханными для потребительского оборудования.
Сегодня у нас есть огромное количество ИС стабилизаторов, ИС прецизионного опорного напряжения и доступ к схемам, которые было бы невероятно дорого реализовать всего 50 лет назад.Одной из первых микросхем регуляторов была почтенная микросхема µA723, которая была произведена рядом компаний после ее появления. Впервые он был выпущен Fairchild в 1967 году и сохранился до сих пор. Сомнительно, что многие люди потрудились бы использовать его больше, чем для ремонта существующего продукта, и поэтому я не включил схему, использующую его. Несмотря на свой возраст, это все еще очень хорошая ИС, и ее часто используют, например, в настольных источниках питания.
Для повышения точности в некоторых случаях вы найдете один регулятор, обеспечивающий напряжение для второго регулятора — это схема с двойным регулированием, иногда известная как «суперрегулятор».Это только изолирует второй регулятор от колебаний входного напряжения, но если шум, регулировка нагрузки или температурная стабильность второго регулятора не идеальны, конечный результат, вероятно, не стоит затраченных усилий. Вы, вероятно, получите очень хорошее неприятие гула, но этого в любом случае легко добиться. Имейте в виду, что один немного сбитый провод или заземление шасси в источнике питания может легко нейтрализовать эффекты регуляторов с точки зрения уменьшения шума / гудения.
Существует множество различных микросхем стабилизаторов напряжения от разных производителей, и было бы сложно попытаться включить их все.Прецизионные эталоны также используются в АЦП и ЦАП , особенно в тех, которые предназначены для точных измерительных функций. Вы также должны включить микросхемы импульсных регуляторов как напряжения, так и тока — некоторые из них оптимизированы для того или другого. Количество устройств огромно, особенно с коммутационными типами. Каждый год в каталоги поставщиков добавляется больше, и большая часть спроса на новые устройства обусловлена требованиями к «твердотельному» (светодиодному) освещению.
Линейные регуляторы намного проще спроектировать и построить, чем любые регуляторы импульсного режима, потому что здесь не задействованы высокие частоты и нет магнитных компонентов, о которых следует беспокоиться.Это делает линейный вариант разумным выбором для тестирования конструкции, даже если заранее известно, что конечный источник питания будет переключателем. Необходимо завершить проектирование и в первую очередь установить требуемые требования к напряжению, току и температуре. Когда все они известны, пора работать над окончательной конструкцией режима переключения.
Список литературы
- Трубки газоразрядного регулятора — Википедия
- Таблицы данных 78xx и 79xx (включая версии с низким энергопотреблением)
- LM317 / 337 Листы данных
- Постоянный диод — Википедия
- Current Regulator (Regulative [sic]) диоды — Semitec
- Искусство электроники, Пол Горовиц, Cambridge University Press (© 1989)
- Эталонные значения ширины запрещенной зоны — Аналоговые инновации
- Дизайн ссылок на запрещенную зону: испытания и невзгоды — Боб Пиз
Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2012. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта. |
Страница опубликована и защищена авторскими правами © Род Эллиотт, июнь 2013 г.
Управление питанием, Глава 7: ИС регулятора напряжения
Практически во всех источниках питания используются полупроводники для обеспечения регулируемого выходного напряжения. Если источник питания имеет вход переменного тока, он выпрямляется до постоянного напряжения. ИС преобразователя мощности принимает входной сигнал постоянного тока и выдает выходной сигнал постоянного тока или управляет полупроводниковыми переключателями на выходе внешней мощности для создания выходного постоянного тока. Это стабилизатор напряжения, когда его выходное напряжение возвращается в цепь, благодаря которой напряжение остается постоянным.Если выходное напряжение имеет тенденцию повышаться или понижаться, обратная связь заставляет выходное значение оставаться прежним.
Преобразователь мощности может работать как по импульсной, так и по линейной схеме. В линейной конфигурации управляющий транзистор всегда рассеивает мощность, которую можно минимизировать, используя стабилизаторы с малым падением напряжения (LDO), которые регулируют правильно даже при относительно низком перепаде напряжения между их входом и выходом. ИС LDO имеют более простые схемы, чем их собратья с импульсным режимом, и производят меньше шума (без переключения), но ограничены своей способностью выдерживать ток и рассеивать мощность.Некоторые микросхемы LDO рассчитаны на ток около 200 мА, а другие — до 1 А.
КПД ИС LDO может составлять 40-60%, тогда как ИС в режиме переключения могут показывать КПД до 95%. Топологии с коммутационным режимом являются основным подходом для встроенных систем, но LDO также находят применение в некоторых приложениях.
Линейный регулятор с малым падением напряжения (LDO)
Линейные регуляторы
LDO обычно используются в системах, где требуется малошумящий источник питания вместо импульсного стабилизатора, который может нарушить работу системы.LDO также находят применение в приложениях, где регулятор должен поддерживать регулирование с небольшими различиями между входным напряжением питания и выходным напряжением нагрузки, например, в системах с батарейным питанием. Их низкое падение напряжения и низкий ток покоя делают их подходящими для портативных и беспроводных приложений. LDO со встроенным силовым полевым МОП-транзистором или биполярным транзистором обычно обеспечивают выходные сигналы в диапазоне от 50 до 500 мА.
Стабилизатор напряжения LDO работает в линейной области с топологией, показанной на рис.7-1. Основными компонентами стабилизатора напряжения являются последовательный транзистор (биполярный транзистор или полевой МОП-транзистор), усилитель дифференциальной ошибки и точный источник опорного напряжения.
7-1. В базовом LDO один вход усилителя дифференциальной ошибки, установленный резисторами R1 и R2, контролирует процентное значение выходного напряжения. Другой вход усилителя ошибки — это стабильное опорное напряжение (V REF ). Если выходное напряжение увеличивается относительно VREF, усилитель дифференциальной ошибки изменяет выход проходного транзистора для поддержания постоянного выходного напряжения нагрузки (V OUT ).
Ключевыми рабочими факторами LDO являются его падение напряжения, коэффициент отклонения источника питания (PSRR) и выходной шум. Низкое падение напряжения относится к разнице между входным и выходным напряжениями, которая позволяет ИС регулировать выходное напряжение нагрузки. То есть LDO может регулировать выходное напряжение нагрузки до тех пор, пока его вход и выход не приблизятся друг к другу при падении напряжения. В идеале падение напряжения должно быть как можно меньшим, чтобы свести к минимуму рассеивание мощности и максимизировать эффективность.Обычно считается, что падение напряжения достигается, когда выходное напряжение упало до 100 мВ ниже номинального значения. Ток нагрузки и температура проходного транзистора влияют на падение напряжения.
Внутренний источник опорного напряжения LDO — это потенциальный источник шума, обычно выражаемый в микровольтах RMS в определенной полосе частот, например, 30 мкВ RMS в диапазоне от 1 до 100 кГц. Этот низкий уровень шума вызывает меньше проблем, чем переходные процессы переключения и гармоники импульсного преобразователя. На рис. 7-1 LDO имеет штырек байпаса (опорного напряжения) для фильтрации шума опорного напряжения с конденсатором относительно земли.Добавление входных, выходных и байпасных конденсаторов, указанных в таблице, обычно приводит к беспроблемному уровню шума.
Среди их эксплуатационных соображений — тип и диапазон приложенного входного напряжения, требуемое выходное напряжение, максимальный ток нагрузки, минимальное падение напряжения, ток покоя, рассеиваемая мощность и ток отключения.
Управление контуром компенсации частоты LDO с включением нагрузочного конденсатора снижает чувствительность к ESR конденсатора (эквивалентное последовательное сопротивление), что обеспечивает стабильный LDO с конденсаторами хорошего качества любого типа.Кроме того, выходной конденсатор должен располагаться как можно ближе к выходному.
Дополнительные функции в некоторых LDO:
• Вход разрешения, позволяющий внешнее управлять включением и выключением LDO.
• Плавный пуск, который ограничивает пусковой ток и контролирует время нарастания выходного напряжения при включении питания.
• Контакт байпаса, который позволяет внешнему конденсатору снижать шум опорного напряжения.
• Выходной сигнал ошибки, указывающий, выходит ли выход из регулирования.
• Тепловое отключение, при котором LDO отключается, если его температура превышает заданное значение.
• Защита от перегрузки по току (OCP), которая ограничивает выходной ток LDO и рассеиваемую мощность.
LT3042
LT3042 от Linear Technology — это линейный стабилизатор с малым падением напряжения (LDO), в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).
PSRR описывает, насколько хорошо схема отклоняет пульсации, введенные на ее входе.Пульсации могут быть вызваны либо входным источником питания, например пульсациями питания 50/60 Гц, пульсациями переключения от преобразователя постоянного / постоянного тока, либо пульсациями из-за совместного использования входного питания с другими цепями.
Для LDO PSRR является функцией регулируемой пульсации выходного напряжения по сравнению с пульсацией входного напряжения в заданном частотном диапазоне (обычно от 10 Гц до 1 МГц), выраженной в децибелах (дБ). Это может быть важным фактором, когда LDO питает аналоговые схемы, потому что низкий PSRR может позволить пульсации на выходе влиять на другие схемы.
Выходные конденсаторы
с низким ESR и дополнительные конденсаторы обхода опорного напряжения улучшают характеристики PSRR. В аккумуляторных системах должны использоваться LDO, которые поддерживают высокий PSRR при низком напряжении аккумуляторной батареи.
LT3042, показанный на упрощенной схеме на рис. 7-2, представляет собой LDO, который снижает шум и увеличивает PSRR. Вместо опорного напряжения, используемого в большинстве традиционных линейных регуляторов, LT3042 использует опорный ток, который работает с типичным уровнем шумового тока 20 пА / √Гц (6nARMS в полосе частот от 10 Гц до 100 кГц).
7-2. LT3042 — это LDO-стабилизатор, в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).
Источник тока сопровождается высокопроизводительным буфером напряжения Rail-to-Rail, что позволяет легко подключать его параллельно для дальнейшего снижения шума, увеличения выходного тока и распределения тепла на печатной плате. Параллельное подключение нескольких LT3042 дополнительно снижает уровень шума в √N раз, где N — количество параллельных цепей.
LT3080
LT3080 компании
Linear Technology является уникальным, 1.1A LDO, который можно подключить параллельно для увеличения выходного тока или распределения тепла в платах для поверхностного монтажа (рис. 7-3). Эта ИС выводит коллектор проходного транзистора, чтобы обеспечить работу с малым падением напряжения — до 350 мВ — при использовании с несколькими источниками питания. Функции защиты включают защиту от короткого замыкания и безопасную рабочую зону, а также тепловое отключение.
7-3. LT3080 может программировать выходное напряжение на любой уровень от нуля до 36 В.
Ключевой особенностью LT3080 является способность обеспечивать широкий диапазон выходного напряжения.Используя опорный ток через единственный резистор, выходное напряжение программируется на любой уровень от нуля до 36 В. Он стабилен с емкостью на выходе 2,2 мкФ и может использовать небольшие керамические конденсаторы, которые не требуют дополнительного ESR, в отличие от других регуляторов.
LT3080 особенно хорошо подходит для приложений, требующих нескольких рельсов. Его архитектура регулируется до нуля с помощью одного резистора, который обслуживает современные низковольтные цифровые ИС, а также обеспечивает простую параллельную работу и управление температурой без радиаторов.Регулировка выхода на «ноль» позволяет отключить схему с питанием, а когда вход предварительно отрегулирован — например, входной источник 5 В или 3,3 В — внешние резисторы могут помочь распределить тепло.
Прецизионный внутренний источник тока «0» TC 10 мкА подключается к неинвертирующему входу его операционного усилителя мощности, который обеспечивает низкоомный буферизованный выход для напряжения на неинвертирующем входе. Один резистор между неинвертирующим входом и землей устанавливает выходное напряжение; установка этого резистора на ноль дает нулевой выходной сигнал.Любое выходное напряжение может быть получено от нуля до максимума, определяемого входным источником питания.
Использование источника истинного тока позволяет регулятору демонстрировать усиление и частотную характеристику независимо от положительного входного импеданса. Старые регулируемые регуляторы изменяют коэффициент усиления контура с выходным напряжением и изменяют полосу пропускания при обходе регулировочного штифта. Для LT3080 коэффициент усиления контура не изменяется при изменении выходного напряжения или обходе. Регулировка выхода не фиксируется в процентах от выходного напряжения, а составляет фиксированную долю милливольт.Использование источника истинного тока позволяет обеспечить стабилизацию всего коэффициента усиления буферного усилителя, и никакое усиление не требуется для повышения опорного напряжения до более высокого выходного напряжения.
ИС может работать в двух режимах. Один из них — это трехконтактный режим, который соединяет управляющий контакт с входным контактом питания, что ограничивает его падение до 1,35 В. В качестве альтернативы вы можете подключить вывод «control» к более высокому напряжению, а вывод питания IN к более низкому напряжению, что приведет к падению напряжения 350 мВ на выводе IN и минимизации рассеиваемой мощности.Это позволяет источнику питания 1,1 А регулировать от 2,5VIN до 1,8VOUT или от 1,8VIN до 1,2VOUT с низким уровнем рассеивания.
Импульсные ИС
На рис. 7-4 показан упрощенный ШИМ-контроллер, используемый с импульсным преобразователем. Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, что заставляет компаратор управлять временем включения и выключения ШИМ. На рис. 7-4 показано, как изменяется ширина импульса ШИМ для разных процентов времени включения и выключения. Чем больше время включения, тем выше выпрямленное выходное напряжение постоянного тока.Регулировка выходного напряжения сохраняется, если выходной сигнал, отфильтрованный силовым полевым МОП-транзистором, имеет тенденцию к изменению, если это происходит, обратная связь регулирует рабочий цикл ШИМ, чтобы поддерживать выходное напряжение на желаемом уровне.
7-4. Контроллер PWM генерирует прямоугольные волны разной ширины в зависимости от обратной связи по выходному напряжению.
Для генерации сигнала ШИМ усилитель ошибки принимает входной сигнал обратной связи и стабильное опорное напряжение для создания выходного сигнала, связанного с разностью двух входов.Компаратор сравнивает выходное напряжение усилителя ошибки с пилообразной характеристикой генератора, создавая модулированную ширину импульса. Выход компаратора применяется к логической схеме переключения, выход которой поступает на выходной драйвер для внешнего силового полевого МОП-транзистора. Логика переключения обеспечивает возможность включения или отключения сигнала ШИМ, подаваемого на силовой полевой МОП-транзистор.
Большинство микросхем ШИМ-контроллеров обеспечивают токоограничивающую защиту путем измерения выходного тока. Если вход считывания тока превышает определенный порог, он завершает текущий цикл (поцикловое ограничение тока).
Компоновка схемы имеет решающее значение при использовании резистора считывания тока, который должен быть типа с низкой индуктивностью. Расположите конденсатор фильтра считывания тока очень близко к выводу PWM IC и подключите его напрямую. Кроме того, все чувствительные к шуму маломощные заземляющие соединения должны быть соединены вместе рядом с IC GND, а одно соединение должно быть выполнено с заземлением питания (точка заземления сенсорного резистора).
В большинстве микросхем ШИМ-контроллеров частоту генератора задает один внешний резистор или конденсатор.Чтобы установить желаемую частоту генератора, используйте уравнение в таблице данных контроллера для расчета номинала резистора.
Некоторые преобразователи ШИМ включают возможность синхронизации генератора с внешними часами с частотой, которая либо выше, либо ниже частоты внутреннего генератора. Если нет необходимости в синхронизации, подключите вывод синхронизации к GND, чтобы предотвратить шумовые помехи.
Поскольку ИС ШИМ является частью цепи обратной связи, вход усилителя ошибки должен использовать схему частотной компенсации для обеспечения стабильности системы.
Типичный преобразователь мощности принимает входной сигнал постоянного тока, преобразует его в частоту переключения, а затем выпрямляет его для получения выходного постоянного тока. Часть его выхода постоянного тока сравнивается с опорным напряжением (V REF ) и управляет ШИМ. Если выходное напряжение имеет тенденцию к увеличению, напряжение, подаваемое обратно в схему ШИМ, уменьшает ее рабочий цикл, в результате чего ее выходное напряжение уменьшается и поддерживается надлежащее регулируемое напряжение. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь приводит к увеличению рабочего цикла переключателя мощности, поддерживая регулируемый выход при надлежащем напряжении.
Обычно силовой полупроводниковый переключатель включается и выключается с частотой, которая может находиться в диапазоне от 100 кГц до 1 МГц, в зависимости от типа ИС. Частота переключения определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра. Чем выше частота переключения, тем меньше физический размер и стоимость компонентов. Для оптимизации эффективности материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. Таким образом, материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.
На рис. 7-5 показана упрощенная схема импульсного регулятора напряжения. Для импульсных преобразователей постоянного и постоянного тока требуется средство для изменения выходного напряжения в ответ на изменения нагрузки. Один из подходов заключается в использовании широтно-импульсной модуляции (ШИМ), которая управляет входом в соответствующий переключатель питания. Сигнал ШИМ состоит из двух значений: ВКЛ и ВЫКЛ. Фильтр нижних частот, подключенный к выходу переключателя питания, обеспечивает напряжение, пропорциональное времени включения и выключения контроллера ШИМ.
7-5. Импульсный преобразователь использует широтно-импульсный модулятор для управления регулированием
Существует два типа импульсных преобразователей: изолированные и неизолированные, что зависит от наличия прямого пути постоянного тока от входа к выходу. В изолированном преобразователе используется трансформатор, обеспечивающий изоляцию входного и выходного напряжения (рис. 7-6).
7-6. Изолированный импульсный преобразователь использует трансформатор для изоляции.
В неизолированном преобразователе обычно используется индуктор, и между входом и выходом нет развязки по напряжению (рис. 7-7). Для подавляющего большинства приложений подходят неизолированные преобразователи. Однако в некоторых приложениях требуется изоляция между входным и выходным напряжениями. Преимущество преобразователя на основе трансформатора состоит в том, что он может легко создавать несколько выходных напряжений, тогда как преобразователь на основе индуктора обеспечивает только один выход.
7-7.Неизолированный импульсный преобразователь.
Топологии цепей
В преобразователях питания постоянного тока используются две основные топологии ИС. Если выходное напряжение ниже входного напряжения, ИС называется понижающим преобразователем. Если выходное напряжение выше входного напряжения, ИС называется повышающим преобразователем.
В своей базовой схеме (рис. 7-8) понижающий стабилизатор принимает входной сигнал постоянного тока, преобразует его в частоту переключения ШИМ (широтно-импульсный модулятор), которая управляет выходным сигналом силового полевого МОП-транзистора (Q1).Внешний выпрямитель, катушка индуктивности и выходной конденсатор создают регулируемый выход постоянного тока. Стабилизатор IC сравнивает часть выпрямленного выходного напряжения постоянного тока с опорным напряжением (V REF ) и изменяет рабочий цикл ШИМ для поддержания постоянного выходного напряжения постоянного тока. Если выходное напряжение имеет тенденцию к увеличению, ШИМ снижает свой рабочий цикл, вызывая уменьшение выходного сигнала и поддержание регулируемого выходного сигнала при надлежащем напряжении. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь заставляет рабочий цикл ШИМ увеличиваться и поддерживать регулируемый выход.
7,8. Базовый понижающий преобразователь; индуктор всегда «противостоит» входному напряжению.
Топология понижающего или понижающего регулятора имеет преимущества простоты и низкой стоимости. Однако он имеет ограниченный диапазон мощности, и его прямой путь постоянного тока от входа к выходу может создать проблему, если есть закороченный переключатель питания.
LT8602
LT8602 от Linear Technology представляет собой монолитный понижающий импульсный стабилизатор постоянной частоты, работающий по току, с четырьмя выходными каналами (рис.7-9). Два канала — это каналы высокого напряжения с входом от 3 до 42 В, а два других — каналы низкого напряжения с входом от 2,6 до 5,5 В.
7-9. Четырехканальный понижающий преобразователь LT8602 имеет два канала высокого напряжения с входом от 3 до 42 В, а два других — каналы низкого напряжения с входом от 2,6 до 5,5 В.
В ИС используется один генератор, который генерирует два тактовых сигнала (CLK) на 180 градусов. не в фазе. Каналы 1 и 3 работают с CLK1, а каналы 2 и 4 работают с CLK2.Понижающий стабилизатор потребляет входной ток только во время верхнего цикла включения, поэтому многофазный режим снижает пиковый входной ток и удваивает частоту входного тока. Это снижает как пульсации входного тока, так и требуемую входную емкость.
Каждый канал высокого напряжения (HV) представляет собой синхронный понижающий стабилизатор, который работает от собственного вывода PVIN. Внутренний полевой МОП-транзистор с максимальной мощностью включается в начале каждого цикла генератора и выключается, когда ток, протекающий через верхний МОП-транзистор, достигает уровня, определяемого его усилителем ошибки.Усилитель ошибки измеряет выходное напряжение через внешний резистивный делитель, подключенный к выводу FB, для управления пиковым током в верхнем переключателе.
Пока верхний полевой МОП-транзистор выключен, нижний полевой МОП-транзистор включен на оставшуюся часть цикла генератора или до тех пор, пока ток в катушке индуктивности не начнет реверсировать. Если в результате перегрузки через нижний переключатель проходит ток более 2 А (канал 1) или 3,3 А (канал 2), следующий тактовый цикл будет отложен до тех пор, пока ток переключения не вернется к более низкому безопасному уровню.
Высоковольтные каналы имеют входы Track / Soft-Start (TRKSS1, TRKSS2). Когда на этом выводе ниже 1 В, преобразователь регулирует вывод FB на напряжение TRKSS вместо внутреннего опорного напряжения. На выводе TRKSS имеется подтягивающий ток 2,4 мкА. Вывод TRKSS также может использоваться, чтобы позволить выходу отслеживать другой регулятор, либо другой канал высокого напряжения, либо внешний регулятор.
Как показано на упрощенной схеме индуктивно-повышающего преобразователя постоянного тока (рис. 7-10), включение силового полевого МОП-транзистора вызывает нарастание тока через катушку индуктивности.При выключении силового МОП-транзистора ток через диод направляется к выходному конденсатору. Несколько циклов переключения создают напряжение выходного конденсатора из-за заряда, который он накапливает от тока катушки индуктивности. В результате выходное напряжение выше входного.
7-10. Базовый неизолированный импульсный индуктивно-повышающий преобразователь постоянного тока.
LTC3124
Типичная прикладная схема LTC3124 компании Linear Technology, показанная на рис. 7-11, использует внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода из 2.От 5 до 15 В. При настройке на выход 12 В он может непрерывно выдавать до 1,5 А от входа 5 В. Ограничение по току 2,5 А на фазу, а также возможность программирования выходного напряжения до 15 В делают его пригодным для различных приложений.
7-11. В прикладной схеме LTC3124 используется внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода от 2,5 до 15 В.
Использование двух фаз, расположенных на равном расстоянии 180 град. кроме того, удваивает частоту пульсаций на выходе и значительно снижает ток пульсаций выходного конденсатора.Хотя для этой архитектуры требуются две катушки индуктивности, а не одна, она имеет несколько важных преимуществ:
• Существенно более низкий пиковый ток индуктивности позволяет использовать индукторы меньшего размера и с меньшими затратами.
• Значительно сниженный выходной ток пульсации сводит к минимуму требования к выходной емкости.
• Более высокочастотные пульсации на выходе легче отфильтровать для приложений с низким уровнем шума.
• Входной ток пульсации также снижен для снижения шума VIN.
При двухфазном режиме работы одна фаза всегда подает ток на нагрузку, если VIN больше половины VOUT (для рабочих циклов менее 50%).По мере дальнейшего уменьшения рабочего цикла, ток нагрузки между двумя фазами начинает перекрываться, происходя одновременно для растущей части каждой фазы по мере того, как рабочий цикл приближается к нулю. По сравнению с однофазным преобразователем, это значительно снижает как выходной ток пульсации, так и пиковый ток в каждой катушке индуктивности.
LTC3124 обеспечивает преимущество для систем с батарейным питанием, он может запускаться от входов с напряжением до 1,8 В и продолжать работать от входов с напряжением до 0.5 В при выходном напряжении более 2,5 В. Это увеличивает время работы за счет максимального увеличения количества энергии, извлекаемой из входного источника. Ограничивающими факторами для применения являются способность источника питания обеспечивать достаточную мощность на выходе при низком входном напряжении и максимальный рабочий цикл, который ограничен 94%. При низких входных напряжениях небольшие падения напряжения из-за последовательного сопротивления становятся критическими и ограничивают подачу мощности преобразователем.
Даже если входное напряжение превышает выходное напряжение, ИС будет регулировать выход, обеспечивая совместимость с любым типом батарей.LTC3124 — идеальное решение для повышающих приложений, требующих выходного напряжения до 15 В, где определяющими факторами являются высокая эффективность, небольшие размеры и высокая надежность.
LTC3110
LTC3110 от Linear Technology представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы (рис. 7-12). Это двунаправленное, программируемое зарядное устройство для суперконденсаторов с понижающим и повышающим входным током обеспечивает активную балансировку заряда для суперконденсаторов 1-й или 2-й серии.Его запатентованная топология понижающего-повышающего шума с низким уровнем шума выполняет работу двух отдельных импульсных регуляторов, экономя размер, стоимость и сложность.
7-12. LTC3110 — это комбинация понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы.
Двунаправленный относится к потоку постоянного тока, связанному с VSYS, выводом источника питания для резервного выходного напряжения системы и входного напряжения зарядного тока. В одном направлении LTC3110 работает как понижающий-повышающий стабилизатор, снимая ток с суперконденсатора и обеспечивая регулируемое напряжение на нагрузке на выводе VSYS.В другом направлении знак тока меняется на противоположный, и точно ограниченный ток течет от системной шины обратно, чтобы зарядить суперконденсатор. Если VSYS падает из-за потери мощности, он может автономно переключать направление для стабилизации напряжения системы, подавая ток от суперконденсатора в VSYS.
LTC3110 имеет диапазоны напряжения конденсатора / батареи от 0,1 до 5,5 В и резервного напряжения системы от 1,8 до 5,25 В, что делает его подходящим для широкого спектра приложений резервного копирования с использованием суперконденсаторов или батарей, например:
• Он объединяет все функции, необходимые для использования преимуществ суперконденсаторов, зарядки, балансировки и резервного копирования.
• Ограничение входного тока с точностью ± 2% исключает использование внешних компонентов, снижает IQ и позволяет использовать все возможности источника питания без превышения пределов безопасности.
• Распределение входной мощности позволяет LTC3110 и другим преобразователям постоянного / постоянного тока или нагрузкам использовать один и тот же источник питания с минимальным снижением номинальных характеристик / запасом.
• Активный балансировщик синхронно перемещает заряд между конденсаторами, устраняя внешние балластные резисторы и их потери мощности, что приводит к меньшему количеству циклов перезарядки и более быстрой зарядке.
• Он может автономно переходить из режима зарядки в резервный или переключать режимы на основе внешней команды.
На рис. 7-13 ШИМ-регулятор включает и выключает полевой МОП-транзистор. Без обратной связи рабочий цикл ШИМ определяет выходное напряжение, которое в два раза больше входного для 50% рабочего цикла. Увеличение напряжения в два раза приводит к тому, что входной ток в два раза превышает выходной ток. В реальной схеме с потерями входной ток немного выше.
7-13.Базовый прямой преобразователь может работать как повышающий или понижающий преобразователь. Теоретически он должен использовать «идеальный» трансформатор без потоков утечки, нулевого тока намагничивания и потерь.
Его преимущества — простота, низкая стоимость и возможность увеличения мощности без использования трансформатора. Недостатками являются ограниченный диапазон мощностей и относительно высокая пульсация на выходе из-за постоянной энергии, исходящей от выходного конденсатора.
Выбор индуктора является важной частью этой схемы повышения, потому что значение индуктивности влияет на входные и выходные пульсации напряжения и токи.Индуктор с низким последовательным сопротивлением обеспечивает оптимальную эффективность преобразования энергии. Выберите номинальный ток насыщения катушки индуктивности так, чтобы он был выше установившегося пикового тока катушки индуктивности в приложении.
Для обеспечения стабильности для рабочих циклов выше 50% для индуктора требуется минимальное значение, определяемое минимальным входным напряжением и максимальным выходным напряжением. Это зависит от частоты переключения, рабочего цикла и сопротивления открытого МОП-транзистора.
Топология прямого преобразователя (рис.7-13) представляет собой изолированную версию понижающего преобразователя. Использование трансформатора позволяет прямому преобразователю быть либо повышающим, либо понижающим преобразователем, хотя наиболее распространенным применением является понижающий преобразователь. Основными преимуществами прямой топологии являются ее простота и гибкость.
Другая топология с трансформаторной изоляцией, упрощенный обратноходовой преобразователь (рис. 7-14), работает в режиме непрямого преобразования. Топология Flyback — один из наиболее распространенных и экономичных способов генерирования умеренного уровня изолированного питания в преобразователях переменного тока в постоянный.Он обладает большей гибкостью, поскольку может легко генерировать несколько выходных напряжений путем добавления дополнительных вторичных обмоток трансформатора. Недостатком является то, что регулирование и пульсации на выходе не так жестко контролируются, как в некоторых других топологиях, и нагрузки на выключатель питания выше.
7-14. Трансформатор базового обратноходового преобразователя обычно имеет воздушный зазор, что позволяет ему накапливать энергию во время работы и передавать энергию диоду во время простоя.
LT3798
LT3798 компании
Linear Technology представляет собой изолированный контроллер обратного хода с одноступенчатой активной коррекцией коэффициента мощности (PFC). Эффективность более 86% может быть достигнута при уровне выходной мощности до 100 Вт. В зависимости от выбора внешних компонентов он может работать в диапазоне входных напряжений от 90 до 277 В переменного тока и может легко увеличиваться или уменьшаться. Кроме того, LT3798 может использоваться в приложениях с высоким входным напряжением постоянного тока, что делает его пригодным для использования в промышленности, электромобилях, горнодобывающей промышленности и медицине.
На рис. 7-15 показано типичное приложение для LT3798. Эта ИС представляет собой контроллер переключения режима тока, специально предназначенный для создания источника постоянного тока / постоянного напряжения с изолированной обратноходовой топологией. Для поддержания регулирования в этой топологии обычно используется обратная связь по выходному напряжению и току от изолированной вторичной обмотки выходного трансформатора до VIN. Обычно для этого требуется оптоизолятор. Вместо этого LT3798 использует пиковый ток внешнего полевого МОП-транзистора, полученный из считывающего резистора, для определения выходного тока обратноходового преобразователя без использования оптопары.
7-15. Контроллер обратного хода LT3798 с одноступенчатой активной коррекцией коэффициента мощности (PFC).
Как показано на рис. 7-15, выходной трансформатор имеет три обмотки, включая выходную. Сток внешнего полевого МОП-транзистора подключается к одной из первичных обмоток. Третья обмотка трансформатора определяет выходное напряжение, а также подает питание для установившегося режима работы. Вывод VIN подает питание на внутренний LDO, который генерирует 10 В на выводе INTVCC. Схема внутреннего управления состоит из двух усилителей ошибок, схемы минимума, умножителя, передаточного затвора, компаратора тока, генератора низкого выходного тока и главной защелки.Кроме того, схема выборки и хранения контролирует выходное напряжение третьей обмотки. Компаратор обнаруживает режим прерывистой проводимости (DCM) с конденсатором и последовательным резистором, подключенными к третьей обмотке.
Во время типичного цикла драйвер затвора включает внешний полевой МОП-транзистор, так что ток течет в первичной обмотке. Этот ток увеличивается со скоростью, пропорциональной входному напряжению и обратно пропорциональной индуктивности намагничивания трансформатора. Контур управления определяет максимальный ток, и компаратор выключает переключатель, когда он достигает этого значения.Когда переключатель выключается, энергия трансформатора вытекает из вторичной обмотки через выходной диод D1. Этот ток уменьшается со скоростью, пропорциональной выходному напряжению. Когда ток уменьшается до нуля, выходной диод отключается, и напряжение на вторичной обмотке начинает колебаться в зависимости от паразитной емкости и намагничивающей индуктивности трансформатора.
Напряжение на всех обмотках одинаковое, поэтому и третья обмотка тоже работает. Конденсатор, подключенный к выводу DCM, отключает компаратор, который служит детектором du / dt при возникновении звонка.Эта временная информация используется для расчета выходного тока. Детектор du / dt ожидает, пока сигнал вызывного сигнала достигнет своего минимального значения, а затем включается переключатель. Такое переключение аналогично переключению при нулевом напряжении и сводит к минимуму потери энергии при включении переключателя, повышая эффективность до 5%. Эта ИС работает на границе непрерывного и прерывистого режимов проводимости, что называется критическим режимом проводимости (или граничным режимом проводимости). Работа в режиме критической проводимости позволяет использовать трансформатор меньшего размера, чем конструкции, работающие в режиме постоянной проводимости.
SEPIC
Несимметричный преобразователь первичной индуктивности (SEPIC) представляет собой топологию преобразователя постоянного / постоянного тока, который обеспечивает положительное регулируемое выходное напряжение от входного напряжения, которое изменяется сверху вниз от выходного напряжения. В упрощенном преобразователе SEPIC, показанном на рис. 7-16, используются две катушки индуктивности, L1 и L2, которые могут быть намотаны на один и тот же сердечник, поскольку в течение всего цикла переключения к ним прикладываются одинаковые напряжения. Использование спаренного дросселя занимает меньше места на ПК. плата и, как правило, дешевле, чем два отдельных индуктора.Конденсатор C4 изолирует вход от выхода и обеспечивает защиту от короткого замыкания нагрузки.
7-16. Две катушки индуктивности в базовом преобразователе SEPIC могут быть намотаны на один и тот же сердечник, поскольку в течение всего цикла переключения к ним прикладываются одинаковые напряжения.
ИС регулирует выход с помощью ШИМ-управления в текущем режиме, которое включает силовой полевой МОП-транзистор Q1 в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности.Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором. Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется в каждом цикле переключения. Рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.
Сигнал пилообразного изменения от генератора добавляется к пилообразному сигналу тока. Эта компенсация наклона предназначена для предотвращения субгармонических колебаний, которые присущи управлению режимом тока при скважности выше 50%. Контур обратной связи регулирует вывод FB до опорного напряжения через усилитель ошибки. Выход усилителя ошибки подключен к выводу COMP. К выводу COMP подключена внешняя RC-компенсационная цепь для оптимизации контура обратной связи для обеспечения стабильности и переходной характеристики.
TPS61170
TPS61170 — это монолитный высоковольтный импульсный стабилизатор от Texas Instruments со встроенным силовым полевым МОП-транзистором 1,2 А, 40 В. Устройство может быть сконфигурировано в нескольких стандартных топологиях регулятора, включая повышающий и SEPIC. На рис. 7-17 показана конфигурация SEPIC. Устройство имеет широкий диапазон входного напряжения для поддержки приложений с входным напряжением от батарей или регулируемых шин питания 5 В, 12 В.
7-17. TPS61170 сконфигурирован как преобразователь SEPIC.
В ИС встроен полевой транзистор нижнего уровня на 40 В для обеспечения выходного напряжения до 38 В. Устройство регулирует выход с помощью токового режима управления ШИМ (широтно-импульсной модуляцией). Частота переключения ШИМ составляет 1,2 МГц (типовая). Схема управления ШИМ включает переключатель в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности. Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором.Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется каждый цикл переключения. Как показано на блок-схеме, рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.
TPS61170 работает на 1.Частота коммутации 2 МГц, что позволяет использовать низкопрофильные катушки индуктивности и недорогие керамические входные и выходные конденсаторы. Он имеет встроенную защиту, включая ограничение по току, плавный пуск и тепловое отключение.
Гистерезисный преобразователь
Базовый гистерезисный регулятор, показанный на рис. 7-18, представляет собой тип импульсного регулятора, в котором не используется ШИМ. Он состоит из компаратора с входным гистерезисом, который сравнивает выходное напряжение обратной связи с опорным напряжением. Когда напряжение обратной связи превышает опорное напряжение, выходной сигнал компаратора становится низким, отключая понижающий переключатель MOSFET.Переключатель остается выключенным до тех пор, пока напряжение обратной связи не упадет ниже опорного напряжения гистерезиса. Затем на выходе компаратора устанавливается высокий уровень, включается переключатель и снова повышается выходное напряжение.
7-18. Базовый гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока.
Базовый гистерезисный преобразователь состоит из компаратора ошибок, управляющей логики и внутреннего задания. Выход обычно управляет синхронным выпрямителем, который может быть внутренним или внешним.Часть выходного напряжения возвращается в компаратор ошибок, который сравнивает его с опорным напряжением. Если выходное напряжение стремится к низкому уровню относительно опорного напряжения, выходной конденсатор заряжается до тех пор, пока не достигнет равновесия с опорным напряжением. Затем компаратор включает синхронный выпрямитель. Когда синхронный выпрямитель включен, выходное напряжение падает достаточно низко, чтобы преодолеть гистерезис компаратора, после чего синхронный выпрямитель отключается, начиная новый цикл.
В гистерезисном регуляторе нет усилителя ошибки напряжения, поэтому его реакция на любое изменение тока нагрузки или входного напряжения практически мгновенно. Таким образом, гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока. Недостатком обычного гистерезисного регулятора является то, что его частота изменяется пропорционально ESR выходного конденсатора. Поскольку начальное значение часто плохо контролируется, а ESR электролитических конденсаторов также изменяется с температурой и возрастом, практические изменения ESR могут легко привести к изменениям частоты в диапазоне от одного до трех.Однако существует модификация гистерезисной топологии, которая устраняет зависимость рабочей частоты от ESR.
LM3475
LM3475 — это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ) (рис. 7-19). Схема гистерезисного управления не использует внутренний генератор. Частота переключения зависит от внешних компонентов и условий эксплуатации. Рабочая частота снижается при малых нагрузках, что обеспечивает превосходную эффективность по сравнению с архитектурами с ШИМ.Поскольку переключение напрямую контролируется выходными условиями, гистерезисное управление обеспечивает исключительную переходную характеристику нагрузки.
7-19. LM3475 — это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ).
LM3475 использует контур управления напряжением на основе компаратора. Напряжение на выводе обратной связи сравнивается с опорным напряжением 0,8 В с гистерезисом 21 мВ. Когда входное напряжение FB компаратора падает ниже опорного напряжения, выход компаратора становится низким.Это приводит к тому, что выходной сигнал драйвера PGATE переводит затвор PFET в низкий уровень и включает PFET.
При включенном PFET входной источник питания заряжает COUT и подает ток на нагрузку через PFET и катушку индуктивности. Ток через катушку индуктивности линейно нарастает, а выходное напряжение увеличивается. Когда напряжение FB достигает верхнего порога (опорное напряжение плюс гистерезис), выход компаратора становится высоким, и PGATE выключает PFET. Когда PFET выключается, загорается диод, и ток через катушку индуктивности падает.Когда выходное напряжение падает ниже опорного напряжения, цикл повторяется.
Конвертер Cuk
Преобразователь Cuk — это преобразователь постоянного тока, величина выходного напряжения которого может быть больше или меньше входного напряжения. По сути, это повышающий преобразователь, за которым следует понижающий преобразователь с конденсатором для передачи энергии. Это инвертирующий преобразователь, поэтому выходное напряжение отрицательно по отношению к входному. Неизолированный преобразователь Cuk может иметь только противоположную полярность между входом и выходом.Он использует конденсатор в качестве основного элемента накопления энергии, в отличие от большинства других типов преобразователей, в которых используется катушка индуктивности.
Как и другие преобразователи (понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь), преобразователь Cuk может работать в режиме непрерывного или прерывистого тока. Однако, в отличие от этих преобразователей, он также может работать в режиме прерывистого напряжения (напряжение на конденсаторе падает до нуля во время цикла коммутации).
LM2611 от Texas Instruments представляет собой преобразователь Cuk, который состоит из контроллера режима тока со встроенным первичным переключателем и встроенной схемой измерения тока (рис.7-20). Обратная связь подключена к усилителю внутренней ошибки и использует внутреннюю компенсацию типа II / III. Генератор рампы обеспечивает некоторую компенсацию наклона системе. Вывод SHDN — это логический вход, предназначенный для отключения преобразователя.
7-20. LM2611 сконфигурирован как преобразователь Cuk
Импульсный ШИМ-стабилизатор с фиксированной частотой
А, LM2611 имеет опорное напряжение -1,23 В, что делает его идеальным для использования в преобразователе Cuk. Преобразователь Cuk инвертирует вход и может повышать или понижать абсолютное значение.Используя катушки индуктивности как на входе, так и на выходе, преобразователь Cuk производит очень небольшие колебания входного и выходного тока. Это значительное преимущество по сравнению с другими инвертирующими топологиями, такими как повышенно-понижающий и обратный.
Многофазный преобразователь
По мере увеличения требований к току возрастает и потребность в увеличении количества фаз в преобразователе. Однофазные понижающие контроллеры подходят для низковольтных устройств с токами до 25 А, однако рассеивание мощности и эффективность являются проблемой при более высоких токах.Одним из подходов к более высоким токовым нагрузкам является многофазный понижающий контроллер. Их производительность делает их идеальными для питания персональной электроники, портативных промышленных устройств, твердотельных накопителей, приложений с малыми ячейками, ПЛИС и микропроцессоров.
Двухфазная схема, показанная на рис. 7-21, имеет чередование фаз, что снижает токи пульсаций на входе и выходе. Это также уменьшает количество горячих точек на печатной плате или отдельном компоненте. Двухфазный понижающий преобразователь вдвое снижает рассеиваемую мощность тока RMS в полевых МОП-транзисторах и катушках индуктивности.Перемежение также снижает переходные потери.
7-21. Базовый многофазный преобразователь имеет две чередующиеся фазы, что снижает токи пульсаций на входе и выходе.
Многофазные элементы работают на общей частоте, но сдвинуты по фазе, так что переключение преобразования происходит через равные промежутки времени, контролируемые общей микросхемой управления. Микросхема управления изменяет время переключения каждого преобразователя так, чтобы фазовый угол между переключениями преобразователя составлял 360 градусов./ n, где n — количество фаз преобразователя. Выходы преобразователей параллельны, так что эффективная частота пульсаций на выходе равна n × f, где f — рабочая частота каждого преобразователя. Это обеспечивает лучшие динамические характеристики и значительно меньшую развязывающую емкость по сравнению с однофазной системой.
Разделение тока между многофазными ячейками необходимо, чтобы не потреблять слишком много тока. В идеале каждая многофазная ячейка должна потреблять одинаковое количество тока.Чтобы добиться равного распределения тока, необходимо контролировать и контролировать выходной ток для каждой ячейки.
Многофазный подход также предлагает преимущества упаковки. Каждый преобразователь выдает 1 / n от общей выходной мощности, уменьшая физический размер и величину магнитных полей, используемых в каждой фазе. Кроме того, силовые полупроводники в каждой фазе должны обрабатывать только 1 / n общей мощности. Это распределяет внутреннее рассеивание мощности между несколькими силовыми устройствами, устраняя концентрированные источники тепла и, возможно, необходимость в радиаторе.Несмотря на то, что здесь используется больше компонентов, компромисс по стоимости может быть благоприятным.
Многофазные преобразователи
имеют важные преимущества:
• Пониженный среднеквадратичный ток конденсатора входного фильтра, позволяет использовать меньшие и менее дорогие типы
• Распределенный отвод тепла, снижает температуру горячих точек, повышая надежность
• Повышенная общая мощность
• Повышенная эквивалентная частота без увеличения коммутационных потерь, что позволяет использовать меньшие эквивалентные индуктивности, сокращающие переходное время нагрузки.
• Пониженный ток пульсаций в выходном конденсаторе снижает пульсации напряжения на выходе и позволяет использовать меньшие и менее дорогие выходные конденсаторы
• Превосходная реакция на переходные процессы при нагрузке во всем диапазоне нагрузок
Многофазные преобразователи
также имеют некоторые недостатки, которые следует учитывать при выборе количества фаз, например:
• Необходимость в большем количестве переключателей и выходных катушек индуктивности, чем в однофазной конструкции, что приводит к более высокой стоимости системы, чем однофазное решение, по крайней мере, ниже определенного уровня мощности
• Более сложный контроль
• Возможность неравномерного распределения тока между фазами
• Добавлена сложность топологии схемы
Синхронное выпрямление
КПД — важный критерий при проектировании преобразователей постоянного тока, что означает, что потери мощности должны быть минимизированы.Эти потери вызваны переключателем мощности, магнитными элементами и выходным выпрямителем. Для уменьшения потерь в переключателе мощности и магнитных потерь требуются компоненты, которые могут эффективно работать на высоких частотах переключения. В выходных выпрямителях могут использоваться диоды Шоттки, но синхронное выпрямление (рис. 7-22), состоящее из силовых полевых МОП-транзисторов, может обеспечить более высокий КПД.
7-22. Синхронный выпрямитель более эффективен, чем диодный выпрямитель.
Полевые МОП-транзисторы
имеют более низкие потери прямой проводимости, чем диоды Шоттки.В отличие от обычных самокоммутирующихся диодов, полевые МОП-транзисторы включаются и выключаются с помощью управляющего сигнала затвора, синхронизированного с работой преобразователя. Основным недостатком синхронного выпрямления является дополнительная сложность и стоимость, связанные с устройствами MOSFET и соответствующей управляющей электроникой. Однако при низких выходных напряжениях результирующее повышение эффективности более чем компенсирует недостаток стоимости во многих приложениях.
Компенсация регулятора напряжения
Импульсные источники питания
используют отрицательную обратную связь для регулирования своей выходной мощности до желаемого значения.Оптимальная система управления SMPS, использующая отрицательную обратную связь, должна обеспечивать скорость, точность и отклик без колебаний. Один из способов добиться этого — ограничить частотный диапазон, в котором реагирует SMPS. Чтобы быть стабильным, частотный диапазон или полоса пропускания должны соответствовать частоте, на которой тракт передачи с обратной связью от входа к выходу падает на 3 дБ (так называемая частота кроссовера). Обязательно ограничивайте полосу пропускания до того, что на самом деле требуется вашему приложению. Принятие слишком широкой полосы пропускания влияет на помехозащищенность системы, а слишком низкая пропускная способность приводит к плохой переходной характеристике.Вы можете ограничить полосу пропускания системы управления SMPS, сформировав ее кривую усиления контура (V OUT / V IN ) с помощью блока компенсатора G (s), показанного на рис. 7-23. Этот блок гарантирует, что после определенной частоты амплитуда усиления контура упадет и опустится ниже 1 или 0 дБ.
7-23. Типичная модель импульсного источника питания с отрицательной обратной связью использует блок компенсации, G (s) и H (s), усиление разомкнутого контура. VIN (s) — это вход, а VOUT (s) — это выход.
Кроме того, для получения отклика, сходящегося к стабильному состоянию, нам необходимо убедиться, что фаза, при которой величина усиления контура равна 1, меньше -180 градусов. Чтобы убедиться, что мы держимся подальше от -180 град. на частоте кроссовера компенсатор G (s) должен адаптировать отклик контура на выбранной частоте кроссовера для создания необходимого запаса по фазе. Соответствующий запас по фазе гарантирует, что, несмотря на внешние возмущения или неизбежные спреды добычи, изменения в усилении контура не поставят под угрозу стабильность системы.Запас по фазе также влияет на переходную характеристику системы. Следовательно, компенсатор G (s) должен обеспечивать желаемые характеристики усиления и фазы.
Используя анализатор цепей, вы можете определить запасы устойчивости, измерив коэффициент усиления и фазу контура управления, а затем просмотреть полученный график Боде (рис. 7-24), который представляет собой график зависимости коэффициента усиления и фазы от частоты источника питания. . 60 град. запас по фазе предпочтителен, но 45 град. обычно приемлемо. Обычно приемлемым считается запас усиления –10 дБ.Коэффициент усиления и запас по фазе важны, потому что фактические значения компонентов могут изменяться в зависимости от температуры. Таким образом, значения компонентов могут отличаться от блока к блоку при производстве, в результате чего коэффициент усиления по напряжению и фаза контура управления изменяются соответствующим образом. Кроме того, значения компонентов могут изменяться со временем и вызывать нестабильность.
7-24. Типичный график Боде для импульсного стабилизатора напряжения IC показывает частоту кроссовера, усиление и запас по фазе.
Если значения компонентов приводят к обнулению фазы на частоте кроссовера, регулятор становится нестабильным и колеблется.Целью компенсации является обеспечение наилучшего запаса по усилению и фазе при максимально возможной частоте кроссовера. Высокая частота кроссовера обеспечивает быструю реакцию на изменения тока нагрузки, тогда как высокое усиление на низких частотах обеспечивает быстрое установление выходного напряжения. Значения компонентов и вариации V OUT / V IN могут привести к компромиссу между высокой частотой кроссовера и высоким запасом устойчивости.
7-25. LM21305 — это ИС импульсного регулятора, в котором используется один узел компенсации, для которого требуются компоненты компенсации RC и CC1, подключенные между контактом COMP и AGND.
Определение компенсации для источника питания не всегда легко, потому что оценка графика Боде невозможна, когда нет доступа к петле обратной связи к детали. В других случаях доступ к контуру обратной связи затруднен, потому что оборудование интегрировано или потребуется вырезать дорожку на печатной плате. В других случаях устройства либо содержат несколько контуров управления, и только один из них доступен, либо порядок контура управления выше второго порядка, и в этом случае график Боде является плохим предиктором относительной стабильности.Еще одна сложность заключается в том, что во многих портативных электронных устройствах, таких как сотовые телефоны и планшеты, схемы очень малы и густо заполнены, что практически не мешает доступу к элементам контура управления.
В вышеуказанных случаях единственный способ проверить стабильность — это оценка неинвазивного запаса стабильности (NISM). Он получен на основе легко доступных измерений выходного импеданса. Математическое соотношение, которое позволяет точно определять стабильность контура управления по данным выходного импеданса, было разработано Picotest и включено в программное обеспечение OMICRON Lab Bode 100 Vector Network Analyzer (VNA).На рис. 7-26 показана испытательная установка для этого измерения.
7-26. Недоступные измерения выходного импеданса (Пикотест).
Один из первых методов компенсации предусматривал использование регулятора напряжения с внешними узлами, чтобы разработчик мог вставлять компоненты компенсации. Определение значений компонентов компенсации включало анализ ИС регулятора и его внешних компонентов. После определения необходимой компенсации разработчик смоделировал или измерил схему регулятора с установленными компенсационными компонентами.Для получения желаемых результатов этот процесс обычно требовал нескольких итераций.
Для правильного внедрения компенсационной сети требуются инженеры со специальными инструментами, навыками и опытом. Если схема была смоделирована и не измерена, разработчик должен был в конечном итоге вставить фактические компоненты компенсации для измерения характеристик источника питания. Моделирование было настолько хорошо, насколько хорошо дизайнер знал компоненты и паразиты. Модель могла быть неполной или отличаться от реальной схемы, поэтому компенсацию необходимо было проверить путем измерения реальной схемы.Неизменно требовалась доработка из-за возможных ошибок, связанных с заменой компонентов. Ремонтные работы также могут изменить характеристики источника питания и повредить цепи, питаемые от регулятора.
Некоторые поставщики ИС регуляторов включали компоненты внутренней компенсации, поэтому конструкция не нуждалась в дальнейшем анализе. Однако разработчику пришлось использовать внешние компоненты, указанные производителем.
Единичный компенсационный узел был следующим этапом в этой эволюции. Примером этого является ИС импульсного регулятора LM21305 компании Texas Instruments, показанная на рис.7-25. LM21305 обычно требует только одного резистора и конденсатора для компенсации. Однако иногда требовался дополнительный конденсатор.
Автоматическая компенсация
Для устранения проблем, связанных с ручным определением компенсации источника питания, две компании разработали технологию автоматической компенсации. В результате были разработаны ИС регулятора смешанных сигналов с автоматической компенсацией. Это избавило проектировщика от необходимости в специальных инструментах, знаниях или опыте для оптимизации производительности.Автоматическая компенсация устанавливает выходные характеристики таким образом, чтобы изменения из-за допусков компонентов, старения, температуры, входного напряжения и других факторов не влияли на производительность.
Семейство цифровых источников питания
CUI NDM2Z (рис. 7-27) включает автоматическую компенсацию с использованием ИС регулятора Intersil / Zilker ZL8101M. Автоматическая компенсация обходит традиционную практику создания маржи для учета вариаций компонентов, что может привести к более высоким затратам на компоненты и более длительным циклам проектирования.
7-27. В семействе источников питания CUI NDM2Z используется автоматическая компенсация, которая позволяет динамически устанавливать оптимальную стабильность и переходную характеристику.
Источники питания NDM2Z на 50 А обеспечивают КПД 91% при входном напряжении 12 В постоянного тока и выходном напряжении 1,0 В постоянного тока при нагрузке 50%. Все эти источники питания имеют входной диапазон от 4,5 до 14 В постоянного тока и программируемый выход от 0,6 до 5,0 В постоянного тока в версии 12 А и от 0,6 до 3,3 В постоянного тока в версиях 25 А и 50 А.
Функции модуля
включают активное разделение тока, последовательность напряжения, отслеживание напряжения, синхронизацию и распределение фазы, программируемый плавный пуск и останов, а также множество возможностей мониторинга.Простой и легкий в использовании графический интерфейс пользователя CUI помогает в этих проектах.
ZL8101
В NMD2Z используется синхронный понижающий контроллер Intersil / Zilker ZL8101, работающий в режиме напряжения, с широтно-импульсным модулятором постоянной частоты (PWM). В этом цифровом контроллере третьего поколения используется специальный оптимизированный конечный автомат для генерации точных импульсов ШИМ и собственный микроконтроллер, используемый для настройки, обслуживания и оптимизации (рис. 7-28). Для этого требуются внешние драйверы, силовые полевые МОП-транзисторы, конденсаторы и катушки индуктивности.Интегрированная подрегулировка позволяет работать от одного источника питания от 4,5 В до 14 В. Используя простые штыревые соединения или стандартные команды PMBus, вы можете настроить обширный набор функций управления питанием с помощью графического интерфейса Intersil PowerNavigator.
7-28. Блок-схема Intersil ZL8101 IC показывает выходы PWM (PWMH и PWML), которые взаимодействуют с внешним драйвером, таким как ZL1505.
Первоначально автоматическая компенсация ZL8101 измеряет характеристики силовой передачи и определяет требуемую компенсацию.ИС сохраняет значения компенсации и использует их для последующих входов. После включения ZL8101 готов к регулированию мощности и выполнению задач управления питанием без необходимости программирования. Расширенные параметры конфигурации и изменения конфигурации в реальном времени доступны через интерфейс I2C / SMBus. Встроенная энергонезависимая память (NVM) сохраняет данные конфигурации.
Вы должны выбирать полевые МОП-транзисторы с внешним питанием в первую очередь для RDS (ON) и во вторую очередь для полного заряда затвора. Фактический выходной ток преобразователя мощности зависит от характеристик драйверов и выходных полевых МОП-транзисторов.
Конфигурируемые функции защиты цепей непрерывно защищают ИС и нагрузку от повреждений из-за сбоев системы. ZL8101 непрерывно контролирует входное напряжение, выходное напряжение / ток, внутреннюю температуру и температуру внешнего термодиода. Вы также можете установить параметры мониторинга для определенных предупреждений о неисправности.
Петля с нелинейным откликом (NLR) улучшает время отклика и снижает переходные отклонения выходного сигнала нагрузки. Чтобы оптимизировать эффективность преобразователя мощности, ZL8101 отслеживает его рабочие условия и постоянно регулирует время включения и выключения полевых МОП-транзисторов высокого и низкого напряжения.Алгоритмы адаптивной оптимизации производительности, такие как управление мертвым временем, эмуляция диодов и адаптивная частота, обеспечивают большее повышение эффективности.
Сигнал Power-Good (PG) указывает, что выходное напряжение находится в пределах указанного допуска от целевого уровня, и условия неисправности отсутствуют. По умолчанию вывод PG определяет, находится ли выходное напряжение в пределах -10% / + 15% от целевого напряжения. Вы можете изменить эти пределы и полярность через интерфейс I2C / SMBus.
Внутренний контур фазовой автоподстройки частоты (ФАПЧ) служит для синхронизации внутренних схем.Вы можете управлять ФАПЧ от внешнего источника синхронизации, подключенного к выводу SYNC. Вы можете установить частоту переключения от 200 кГц до 1,33 МГц.
Графический интерфейс на базе Windows обеспечивает возможность полной настройки и мониторинга через интерфейс I2C / SMBus.
NDM3Z-90
CUI — это модуль на 90 А, который имеет несколько функций, обеспечивающих высокую эффективность преобразования мощности. Адаптивные алгоритмы и управление зарядом от цикла к циклу сокращают время отклика и уменьшают отклонение выходного сигнала в результате переходных процессов нагрузки.
ZL8800
NDM3Z использует Intersil ZL8800 для автоматической компенсации. Это двойной или двухфазный цифровой контроллер постоянного / постоянного тока. Каждый выход может работать независимо или использоваться вместе в двухфазной конфигурации для сильноточных приложений. ZL8800 поддерживает широкий диапазон выходных напряжений (от 0,54 В до 5,5 В), работая от входных напряжений от 4,5 до 14 В. На рис. 7-29 показана двухфазная конфигурация, в которой используются внешние модули питания DRMOS.
7-29.Intersil ZL8800 сконфигурирован как двухфазный преобразователь
Благодаря полностью цифровому управлению ChargeMode Control, ZL8800 будет реагировать на скачок переходной нагрузки в течение одного цикла переключения. Этот уникальный метод модуляции без компенсации позволяет конструкциям соответствовать требованиям к переходным процессам с минимальной выходной емкостью, что позволяет сэкономить средства и место на плате.
Фирменная однопроводная последовательная шина DDC (Digital-DC) компании
Intersil позволяет ZL8800 обмениваться данными между другими ИС Intersil.Используя DDC, ZL8800 выполняет сложные функции, такие как балансировка фазных токов между ИС, упорядочивание и устранение неисправностей, устраняя необходимость в сложных системах управления источниками питания с многочисленными внешними дискретными компонентами.
ZL8800 имеет пошаговую защиту от перегрузки по току на выходе. Входное и выходное напряжение, а также напряжение питания драйвера DrMOS / MOSFET защищены от повышенного и пониженного напряжения. Для контроля температуры доступны два внешних и один внутренний датчик температуры, один из которых используется для защиты от пониженной и повышенной температуры.Функция параметрического захвата моментальных снимков позволяет пользователям делать моментальные снимки рабочих данных и данных о неисправностях в нормальных или неисправных условиях.
Интегрированные регуляторы
с малым падением напряжения (LDO) позволяют ZL8800 работать от одного источника питания, устраняя необходимость в дополнительных линейных регуляторах. Выход LDO может использоваться для питания внешних драйверов или устройств DrMOS.
Благодаря полной совместимости с PMBus, ZL8800 способен измерять и сообщать входное напряжение, входной ток, выходное напряжение, выходной ток, а также внутреннюю температуру устройства, внешние температуры и вспомогательное напряжение на входе.
Этот блок питания включает в себя широкий спектр настраиваемых функций управления питанием, которые легко реализовать с минимальным количеством внешних компонентов. Кроме того, источник питания имеет защитные функции, которые постоянно защищают нагрузку от повреждений из-за неожиданных сбоев системы.
Стандартная конфигурация источника питания подходит для широкого диапазона операций с точки зрения входного напряжения, выходного напряжения и нагрузки. Конфигурация хранится во внутренней энергонезависимой памяти (NVM).Все функции управления питанием можно перенастроить с помощью интерфейса PMBus.
Автоматическая компенсация Powervation
Компания
Bellnix Co. Ltd. (Япония) использует цифровой контроллер ROHM PV3012 Powervation в своем низкопрофильном модуле постоянного / постоянного тока на 60 А. Цифровой модуль питания BDP12-0.6S60R0 представляет собой неизолированный понижающий преобразователь, совместимый с PMBus, который удовлетворяет потребности в конструкциях с малым форм-фактором, обеспечивая при этом высокую надежность и высокую производительность. ROHM PV3012 — это цифровой двухфазный контроллер (рис.7-30).
7-30. ИС PV3012 от Powervation — это ИС с автоматической компенсацией в реальном времени с одним выходом, двух- или однофазным цифровым синхронным понижающим контроллером для приложений POL.
Используется BDP на 60 А, и параллельная работа модуля BDP поддерживается через шину разделения тока DSS компании ROHM. Этот совместимый с PMBus модуль обеспечивает точные измерения и телеметрические отчеты, полную линейку программируемых функций защиты источника питания, хорошее энергопотребление и дополнительную функцию отслеживания — все в компактном 32.Дизайн корпуса SMD, соответствующий ROHS, 8 мм × 23,0 мм.
Цифровой контроллер
ROHM PV3012 Powervation также используется в сильноточных цифровых модулях POL серии iJB от TDK-Lambda. Продукты серии iJB поддерживают работу при низком напряжении и сильном токе, обеспечивая точность заданного значения ± 0,5% по линии, нагрузке и диапазону температур. В то время как функциональность модуля PMBus обеспечивает телеметрию напряжения, тока и температуры в реальном времени и обеспечивает полную программируемость преобразователя постоянного / постоянного тока, в продуктах серии iJB также используются контакты для настройки функций, что позволяет использовать их в приложениях, не поддерживающих PMBus. .
Используя интеллектуальную технологию автонастройки Powervation, Auto-Control, модули iJB POL обеспечивают лучшую динамическую производительность и стабильность системы для приложения. Auto-Control — это запатентованная технология адаптивной компенсации, которая оптимизирует динамические характеристики и стабильность системы в реальном времени, не требуя внесения шума или недостатков периодических методов. Это ключевое преимущество для модулей и других конструкций, которые управляют неизвестными или переменными нагрузками на выходе, и решает проблемы, связанные с дрейфом параметров нагрузки, возникающим в зависимости от температуры и времени.
Еще одним пользователем цифрового контроллера PV3012 является модуль DC / DC OKLF-T / 25-W12N-C от Murata Power Solutions. Это неизолированный преобразователь постоянного тока в постоянный, вырабатывающий максимум 25 А при выходном напряжении 1,2 В при работе до 70 ° C с потоком воздуха 200 LFM. Регулируемые выходы обеспечивают точное регулирование от 0,69 В до 3,63 В в широком диапазоне входных напряжений (от 6,5 В до 14 В).
Модуль OKLF 25 A компании
Murata Power Solutions обеспечивает сверхбыструю реакцию на переходные процессы при нагрузке, исключительные характеристики снижения номинальных характеристик и типичный КПД> 90% в форм-факторе с высокой плотностью мощности.Модуль представляет собой полноценный автономный источник питания; Благодаря использованию ИС цифрового управления PV3012 он обеспечивает полный набор функций защиты и прецизионную точность уставки.
Этот преобразователь POL обеспечивает прецизионную точность уставки ± 0,5% по линии, нагрузке и диапазону температур — намного лучше, чем аналоговые варианты. Кроме того, это предложение повышает ценность за счет использования компактных приподнятых катушек индуктивности и функции автоматического управления Powervation.
PV3204
Одним из новых продуктов Powervation от ROHM, обеспечивающих автокомпенсацию, является PV3204, двухфазный цифровой синхронный понижающий контроллер с адаптивной компенсацией контура для приложений точки нагрузки (POL) (рис.7-31). Выход может подавать от 0,6 В до 5,5 В и может быть настроен и управляться через PMBus или посредством программирования, хранящегося в энергонезависимой памяти (NVM). Помимо интерфейса SMBus, PV3204 предоставляет 3-битный параллельный интерфейс VID с отображением от 0,85 В до 1,0 В с шагом 25 мВ и 1,05 В.
7-31. Powervation PV3204 — это двухфазный цифровой синхронный понижающий контроллер с адаптивной автоматической компенсацией контура для приложений точки нагрузки (POL).
PV3204
PV3204 использует фирменный адаптивный цифровой контур управления Powervation, Auto-Control, технологию адаптивной компенсации контура в реальном времени для переключаемых преобразователей мощности, которая автономно балансирует компромисс между динамическими характеристиками и стабильностью системы.Auto-Control избавляет от сложных вычислений и настройки оптимальной стабильности, используемой с традиционными методами компенсации. Функция Auto-Control регулирует коэффициенты P, I и D в каждом цикле переключения для непрерывного достижения оптимальной стабильности в широком диапазоне помех. Автоматическое управление встроено в архитектуру управления цифровых устройств Powervation и не зависит от шума, вносимого периодическими калибровками. Непрерывный характер автоматического управления позволяет ему управлять изменениями в системе, которые происходят в режиме реального времени или медленно с течением времени при использовании источника питания.Эта самокомпенсация происходит от цикла к циклу, поэтому Auto-Control может непрерывно регулироваться в соответствии с изменениями температуры, которые происходят во время использования источника питания, и учитывает другие факторы, такие как старение и дрейф.
Этот контроллер может использоваться в одно- или двухфазном режиме. При использовании в двухфазном режиме фазы могут добавляться или удаляться по мере изменения нагрузки, так что эффективность максимальна во всем диапазоне нагрузки. Кроме того, выходы фаз чередуются, так что эффективная частота переключения на выходе увеличивается вдвое.
Цифровые функции этого контроллера преобразователя мощности PMBus позволяют осуществлять системную телеметрию (удаленное измерение и составление отчетов) о токе, напряжении и температуре.
Кроме того, чтобы максимизировать производительность и надежность системы, ИС обеспечивает температурную коррекцию / компенсацию нескольких параметров.
регулятор напряжения | Определение, типы и факты
Регулятор напряжения , любое электрическое или электронное устройство, поддерживающее напряжение источника питания в допустимых пределах.Стабилизатор напряжения необходим для поддержания напряжений в предписанном диапазоне, который может выдерживать электрическое оборудование, использующее это напряжение. Такое устройство широко используется в автомобилях всех типов для согласования выходного напряжения генератора с электрической нагрузкой и требованиями зарядки аккумулятора. Регуляторы напряжения также используются в электронном оборудовании, в котором чрезмерные колебания напряжения могут быть вредными.
В автомобилях регуляторы напряжения быстро переключаются с одного на другое из трех состояний цепи с помощью подпружиненного двухполюсного переключателя.На низких скоростях некоторый ток от генератора используется для усиления магнитного поля генератора, тем самым увеличивая выходное напряжение. На более высоких скоростях в цепь возбуждения генератора вводится сопротивление, так что его напряжение и ток уменьшаются. На еще более высоких скоростях цепь отключается, уменьшая магнитное поле. Скорость переключения регулятора обычно составляет от 50 до 200 раз в секунду.
В электронных регуляторах напряжения используются твердотельные полупроводниковые устройства для сглаживания колебаний тока.В большинстве случаев они работают как переменные сопротивления; то есть сопротивление уменьшается, когда электрическая нагрузка велика, и увеличивается, когда нагрузка меньше.
Регуляторы напряжения выполняют те же функции в крупных системах распределения электроэнергии, что и в автомобилях и других машинах; они минимизируют колебания напряжения, чтобы защитить оборудование, использующее электричество. В системах распределения электроэнергии регуляторы находятся либо на подстанциях, либо на самих фидерных линиях.Используются два типа регуляторов: ступенчатые регуляторы, в которых переключатели регулируют подачу тока, и индукционные регуляторы, в которых асинхронный двигатель подает вторичное, постоянно регулируемое напряжение для выравнивания колебаний тока в фидерной линии.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Редакция Британской энциклопедии
Эта статья была недавно отредактирована и обновлена Адамом Августином, управляющим редактором, справочное содержание.
Узнайте больше в этих связанных статьях Britannica:
Пропуск для серии
»Примечания по электронике
Последовательный регулятор или регулятор последовательного прохода — это наиболее широко используемый вид регуляторов напряжения, используемых в линейных источниках питания.
Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания
Шунтирующий регулятор
Регулятор серии
Ограничитель тока
Регуляторы серий 7805, 7812 и 78 **
См. Также:
Обзор электроники блока питания
Импульсный источник питания
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания
Последовательный стабилизатор напряжения или, как его иногда называют, последовательный стабилизатор напряжения — наиболее часто используемый подход для обеспечения окончательного регулирования напряжения в линейно регулируемом источнике питания.
Линейный стабилизатор серии обеспечивает высокий уровень производительности, особенно когда требуется низкий уровень шума, пульсаций и переходных процессов на регулируемом выходе.
Существует множество схем, использующих дискретные электронные компоненты, которые обеспечивают линейное регулирование с помощью последовательного элемента, и в дополнение к этому практически все ИС линейных регуляторов используют этот подход.
Это означает, что существует множество вариантов последовательных регуляторов напряжения, которые открываются при проектировании электронной схемы источника питания.
Основы регуляторов напряжения серии
В последовательном регуляторе напряжения или последовательном регуляторе напряжения используется регулируемый элемент, включенный последовательно с нагрузкой. Изменяя сопротивление последовательного элемента, можно изменять падение напряжения на нем, чтобы напряжение на нагрузке оставалось постоянным.
Блок-схема последовательного регулятора напряжения
Преимущество последовательного регулятора напряжения состоит в том, что величина потребляемого тока фактически равна величине, потребляемой нагрузкой, хотя некоторая часть будет потребляться любой схемой, связанной с регулятором.В отличие от шунтирующего регулятора напряжения, последовательный регулятор не потребляет полный ток, даже если нагрузка не требует никакого тока. В результате последовательный стабилизатор напряжения значительно более эффективен.
Вместо того, чтобы потреблять ток, который не требуется нагрузке для поддержания напряжения, он снижает разницу напряжений между входным напряжением и требуемым стабилизированным напряжением.
Для поддержания достаточного уровня регулирования и подавления шумов и переходных процессов, которые могут возникать на входящем напряжении, последовательные линейные регуляторы напряжения должны значительно снижать напряжение.Многим высококачественным стабилизаторам напряжения с низким уровнем шума и пульсации требуется несколько вольт на последовательном регулирующем элементе. Это означает, что в этом компоненте рассеивается значительная мощность, и для устройства последовательного регулятора, а также для источника питания в целом требуется хороший теплоотвод и отвод тепла.
Хотя последовательный регулятор значительно более эффективен, чем шунтирующий регулятор, он значительно менее эффективен, чем импульсный источник питания. Эффективность последовательного регулятора напряжения и любых линейных источников питания, использующих их, будет зависеть от нагрузки и т. Д., Но часто достигаются уровни эффективности менее 50%, тогда как источники питания с импульсным режимом могут достигать уровней более 90%.
Стабилизаторы напряжения серии
имеют относительно низкий уровень эффективности по сравнению с импульсным блоком питания, но они обладают преимуществами простоты, а также на их выходе отсутствуют всплески переключения, наблюдаемые на некоторых импульсных блоках питания, хотя SMPS улучшаются, а производительность многих сейчас исключительно хорошо.
Регулятор напряжения простой эмиттерный повторитель
Конструкция электронной схемы простого транзисторного регулятора напряжения с эмиттерным повторителем очень проста.Сама по себе эта схема не используется широко в линейном источнике питания, но может использоваться в другом оборудовании для обеспечения понижающего напряжения и т. Д. От шины с более высоким напряжением.
Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя
В схеме используется однопроходный транзистор в виде конфигурации эмиттерного повторителя и одиночный стабилитрон или другой диод регулятора напряжения, управляемый резистором от нерегулируемого источника питания.
Это обеспечивает простую форму системы обратной связи, обеспечивающую поддержание напряжения стабилитрона на выходе, хотя и со снижением напряжения, равным напряжению перехода база-эмиттер — 0.6 вольт для кремниевого транзистора.
Спроектировать такую схему последовательного регулятора напряжения несложно. Зная максимальный ток, требуемый нагрузкой, можно рассчитать максимальный ток эмиттера. Это достигается делением тока нагрузки, то есть тока эмиттера транзистора, на Β или hfe транзистора.
Стабилитрону обычно требуется минимум около 10 мА, чтобы маленький стабилитрон мог поддерживать свое регулируемое напряжение.Затем следует рассчитать резистор, чтобы обеспечить базовый ток возбуждения и минимальный ток Зенера, исходя из данных о нерегулируемом напряжении, напряжении Зенера и требуемом токе. [(Нерегулируемое напряжение — напряжение стабилитрона) / ток]. К току следует добавить небольшой запас, чтобы обеспечить достаточно места для запаса при нагрузке, и, следовательно, база транзистора принимает полный ток.
Рассеиваемая мощность стабилитрона должна быть рассчитана для случая, когда ток нагрузки и, следовательно, ток базы равен нулю.В этом случае стабилитрон должен будет принимать полный ток, проходящий через последовательный резистор.
Иногда через стабилитрон или опорный диод напряжения может быть помещен конденсатор, чтобы помочь устранить шум и любые переходные процессы напряжения, которые могут возникнуть.
Выборка выходного сигнала
Простая схема последовательного регулятора напряжения с эмиттерным повторителем напрямую сравнивает выходной сигнал с опорным напряжением. Таким образом, выходное напряжение было равно опорному, без учета падения напряжения на базе эмиттера.
Однако можно улучшить характеристики регулятора напряжения, выбрав часть выходного напряжения и сравнив ее с эталонным. Для этой функции можно использовать дифференциальный усилитель, например операционный усилитель. Если это будет сделано, то выходное напряжение станет больше, чем опорное напряжение, поскольку отрицательная обратная связь в цепи борется за сохранение двух сравниваемых напряжений одинаковыми.
Если, например, опорное напряжение составляет 5 вольт, а дискретизатор или делитель потенциала обеспечивает 50% выходного напряжения, то выходное напряжение будет поддерживаться на уровне 10 вольт.
Последовательный регулятор напряжения с дискретным выходом / figcaption>
Деление потенциала или выборку можно сделать переменными, и, таким образом, выходное напряжение можно отрегулировать до требуемого значения. Обычно этот метод используется только для небольших настроек, поскольку минимальный выходной уровень, полученный этим методом, равен выходному напряжению, равному опорному напряжению.
Следует помнить, что использование делителя потенциала снижает коэффициент усиления контура обратной связи. Это снижает коэффициент усиления контура и тем самым снижает характеристики регулирования.Обычно существует достаточное усиление контура, чтобы это не было большой проблемой, за исключением случаев, когда дискретизируется только очень небольшая часть выходного сигнала.
Также следует проявлять осторожность, чтобы не увеличивать выходное напряжение до точки, при которой на регуляторе не будет достаточного падения напряжения для достаточного регулирования выходного напряжения.
Регулятор прохода серии
с обратной связью
Чтобы обеспечить улучшенный уровень производительности по сравнению с простым эмиттерным повторителем, можно добавить более сложную сеть обратной связи в схему регулятора напряжения.Это достигается путем дискретизации выходного сигнала, сравнения его с эталоном, а затем использования некоторого вида дифференциального усилителя для обратной связи по разнице с целью исправления ошибок.
Можно использовать простую двухтранзисторную схему для последовательного регулятора с измерением напряжения и обратной связью. Хотя довольно просто использовать операционный усилитель, который обеспечит более высокий уровень обратной связи и, следовательно, лучшее регулирование, эта двухтранзисторная схема хорошо иллюстрирует принципы.
Простая схема последовательного регулятора с двумя транзисторами
В этой схеме TR1 образует последовательный транзистор. Второй транзистор, TR2, действует как дифференциальный усилитель, подавая напряжение ошибки между опорным диодом и измеренным выходным напряжением, которое является пропорцией выходного напряжения, установленного потенциометром. Резистор R1 обеспечивает ток для коллектора TR2 и диода опорного напряжения ZD1.
Опорное напряжение
Любой линейный стабилизатор напряжения может быть настолько хорош, насколько хорош источник опорного напряжения, который используется в качестве основы для сравнения в системе.Хотя теоретически можно использовать аккумулятор, для большинства приложений это не подходит. Вместо этого почти повсеместно используются эталоны на основе стабилитронов.
Интегральные стабилизаторы и эталоны
используют сложные комбинации транзисторов и резисторов на кристалле для получения точных источников опорного напряжения с температурной компенсацией.
Опорное напряжение должно подаваться от нерегулируемого источника питания. Его нельзя взять из регулируемой мощности, так как есть проблемы с запуском.При запуске нет выхода, поэтому выход задания будет нулевым, и он будет поддерживаться до запуска задания.
Упрощенный источник опорного напряжения для последовательного регулятора напряжения
Часто выход опорного источника подается через делитель потенциала. Это не только снижает выходное напряжение, которое обычно очень полезно, но также позволяет добавить к выходу конденсатор, чтобы помочь устранить любую пульсацию или шум, которые могут присутствовать. Пониженное напряжение также полезно, потому что минимальное выходное напряжение определяется опорным напряжением.
Стабилизаторы напряжения серии с малым падением напряжения
Одним из факторов, которые необходимо учитывать при выборе любого регулятора, является напряжение, которое должно подаваться на элемент последовательного прохода. Часто для линейных регуляторов требуется значительное падение поперечного сечения элемента последовательного прохода для достижения наилучшего регулирования и подавления шума. Например, линейный регулятор с выходным напряжением 12 вольт может быть рассчитан на входное напряжение 18 вольт или более.
Для любого линейного регулятора существует минимальное напряжение, которое требуется на последовательном элементе, прежде чем регулятор «отключится».«Это падение напряжения можно увидеть во многих интегральных схемах линейных регуляторов.
В некоторых схемах важно иметь регулятор с низким падением напряжения. Если доступное входное напряжение не очень высокое, важно иметь линейный стабилизатор с низким падением напряжения. Он должен хорошо регулироваться, несмотря на ограниченное напряжение на нем.
Хотя схемы, показанные здесь, представляют собой простые транзисторные схемы, те же принципы используются в более крупных схемах, а также в интегральных схемах.В одних и тех же концепциях регуляторов серии, а также в схемах опорных диодов, выборки и других областях используются одни и те же элементы.
Используемые здесь концепции используются практически в линейных регулируемых источниках питания, которые могут предложить очень хорошие уровни производительности.