Краткий курс: как проверить полевой транзистор мультиметром на исправность. Сток исток затвор на схеме база эмиттер коллектор


Как проверить полевой транзистор мультиметром

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора.

Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.

При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Порядок проверки исправности n-канального транзистора мультиметром следующий:

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.

Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).

Оценка исправности р-канального устройства

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Выводы:

  1. Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
  2. Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
  3. Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.

Видео о том, как проверить полевой транзистор

elektrik24.net

Транзисторы." База, Эмиттер, Коллектор", "Сток, исток, затвор", это одно и тоже, просто разные обозначения или есть разница?

<a rel="nofollow" href="http://umal.me/0sc" target="_blank" >Смотрu тут</a>

Дaвно cпрaшuвала <a rel="nofollow" href="http://umal.me/0sc" target="_blank" > отвeт</a>

<a rel="nofollow" href="http://umal.me/0sc" target="_blank" >Смотpи тут</a>

Дaвно спpашuвалa <a rel="nofollow" href="http://umal.me/0sc" target="_blank" > ответ</a>

<a rel="nofollow" href="http://umal.me/0sc" target="_blank" >Смотpu тут</a>

Есть разница. Первое для биполярных транзисторов, второе для полевых, они совершенно по-разному устроены. Между этими транзисторами есть только аналогия по назначению выводов. Как и с электронными лампами - "сетка, катод, анод" .

это типа одно и тоже у разных типов транзисторов

Это как бутылки с вином и водкой. Все вроде одинаково, а внутри содержание разное.

оба теоретически как управляемый вентиль т. е. есть два контакта для подключения в цепь и управление физически разные явления происходят

touch.otvet.mail.ru

Лекция 5 Полевые транзисторы и принцип их работы

1.5. Полевые транзисторы, принцип их работы

Наряду с биполярными транзисторами нашли применение полевые транзисторы, в которых рабочие носители заряда переносятся по каналу, формируемому в полупроводнике n или p типа таким образом, что они не проходят через границыp иnслоев. По способу формирования канала эти приборы подразделяются на транзисторы сp-n переходом, со встроенным каналом и индуцируемым каналом. Два последних типа относятся к МДП-транзисторам.

В отличие от биполярного транзистора, где происходит токовое управление потоком рабочих носителей заряда, в полевом транзисторе управление потоком осуществляется электрическим полем, что и дало наименование прибору. Преимуществом полевых транзисторов является весьма малый уровень мощности, который потребляется для управления потоком, поскольку ток входной цепи практически равен нулю. Однако эти транзисторы уступают биполярным по уровню выходной мощности.

Рис.1.11. Структура полевого транзистора

с p-n переходом

Структура транзистора с p-n переходом схематически представлена на рис.1.11. Прибор имеет три электрода: исток (аналог эмиттера в биполярном транзисторе), сток (аналог коллектора) и затвор (аналог базе). На рис.1.11 показано включение этого транзистора по схеме с общим истоком, аналогичной схеме ОЭ включения биполярного транзистора. Канал протекания рабочих носителей заряда (в рассматриваемом случае электронов), формируемый в полупроводникеn-типа, заключен между двумяp-n переходами. Канал с двух сторон снабжен двумя электродами: истоком, с которого носители заряда начинают движение, и стоком, где это движение заканчивается. Третий электрод, затвор, соединен сp-слоями. Между истоком и стоком приложено напряжениеU, обеспечивающее перенос носителей заряда между этими электродами. Управляющим (входным) напряжением являетсяU. На затвор подается “минус” относительно истока. Таким образом,p-n переход находится в закрытом состоянии, что обусловливает малую величину тока в цепи затвора. При увеличении отрицательного значения напряженияUпроисходит увеличение шириныp-n перехода за счетn- слоя канала, а тем самым уменьшение ширины канала (см. рис.1.12,а). В результате происходит увеличение сопротивления канала, что и обеспечивает управление потоком электронов.

Рис.1.12. Сужение канала полевого транзистора с p-n переходомпри приложении напряжений: а - U, б - U

Напряжение Uтакже изменяет ширину канала за счет изменения шириныp-n перехода. Однако, поскольку оно равномерно приложено по длине канала, то его ширина уменьшается по мере приближения к стоку, к которому подведен “плюс” (см. рис.1.12,б). Очевидно, степень уменьшения ширины канала, а, следовательно, его сопротивление будет увеличиваться при увеличении напряженияU. Этим объясняется вид выходной, стоковой характеристики, приведенной на рис.1.13. При малых значениях напряженияUобусловленное этим напряжением уменьшение ширины канала не существенно. В данных условиях на движения носителей заряда в канале оказывает влияние только напряжение между стоком и истоком, в результате чего ток стокаI резко увеличивается с ростом U. При больших значениях напряжения Uток носителей заряда находится под влиянием двух противодействующих факторов. С увеличением напряжения, с одной стороны, увеличивается скорость переноса носителей заряда от истока к стоку, а с другой стороны, - увеличивается сопротивление канала. В результате величина тока стока лишь немного растет при увеличении напряженияU, в приборе устанавливается режим насыщения, ограничивающийся сверху пробивным напряжениемUси проб. Режимы пробоя на рис.1.13 (а также на рис.1.15) не указаны. Увеличение отрицательного напряженияU увеличивает сопротивление канала, что обусловливает смещение вольт-амперной характеристики в область малых значений токаI. При этом также уменьшается величина напряжения пробоя.

Рис.1.13. Стоковая характеристика полевого

транзистора с p-n переходом

Наименование МДП-транзисторы (“металл – диэлектрик – проводник”) связано с конструктивными особенностями этих приборов. Они отражены на рис.1.14, на котором приведена схема конструкции транзистора с встроенным каналом. На поверхности подложки, которая выполнена из полупроводника типа p, создается канал n-типа с областями истока и стока. Полупроводник покрыт окисной пленкой, на которую наносится металлическая пленка, выполняющая функцию затвора. Таким образом, канал оказывается изолированным от затвора диэлектрической, окисной пленкой. В общем случае МДП-транзистор имеет четыре электрода. Четвертый электрод соединен с подложкой. Схема включения такого транзистора показана на рис.1.14.

Рис.1.14. Структура МДП-транзистора

Технология изготовления МДП-транзисторов с индуцированным каналом обусловила их широкое применение в составе микросхем. В таких транзисторах специально канал не создается. Он формируется (индуцируется) на поверхности подложки при положительном напряжении затвор- исток, когда электрическое поле затвора вытягивает из подложки электроны, за счет которых создается канал протекания тока стока. Очевидно, в МДП-транзисторе с индуцированным каналом при нулевом напряжении Uток стока отсутствует, а с увеличением напряжения затвор-исток увеличивается ток стока, что иллюстрируется рис.1.15, на котором приведена стоковая характеристика такого прибора.

Рис.1.15. Стоковые характеристики МДП-транзистора

с индуцированным каналом

Следует отметить, что в биполярном транзисторе ток коллектора также увеличивается с увеличением входного напряжения (см. рис.1.8 и 1.9). Однако, начальные участки вольт-амперных характеристик выходных цепей биполярных и полевых транзисторов отличаются. Если в биполярном транзисторе в области малых напряжений UКЭнаклон вольт-амперных характеристик не зависит от тока базы, т.е. от входного напряжения, то в полевом транзисторе, как видно из рис.1.15, эта зависимость существенна. Принципы работы МДП-транзисторов были рассмотрены на примере приборов сn-каналом. Аналогичным образом функционируют и транзисторы сp-каналом, в которых рабочими носителями заряда являются дырки, а подложка выполнена из полупроводникового материалаn-типа. В таких приборах направление токов и полярность напряжений будут противоположны тем, которые имеются у приборов сn-каналом. На рис.1.16 приведены схемные обозначения полевых транзисторов.

Рис.1.16. Схемные обозначения полевых транзисторов:

1 - транзистор с p-n переходом: с n-каналом,

2 - транзистор с p-n переходом и с p-каналом,

3 - МДП-транзистор с встроенным n-каналом,

4 - МДП-транзистор с встроенным p- каналом,

5 - МДП-транзистор с индуцированным n-каналом,

6 - МДП-транзистор с индуцированным p- каналом

Входное и выходное сопротивления полевых транзисторов, в отличие от биполярных, имеют существенную емкостную компоненту. Это учитывается схемой замещения для переменных токов и напряжений. Наиболее распространенная схема замещения полевого транзистора приведена на рис.1.17, в которой отражено наличие трех межэлектронных емкостей: Сзи– затвор – исток,Сси– сток – исток,Сзс– затвор – сток. Первые две обусловлены, в основном, барьерной емкостью закрытогоp-n- перехода, примыкающего как к истоку, так и к стоку. Поэтому их величины, составляющие 10 – 40 пФ, в три – пять раз превышают величину емкости сток – исток.

Рис.1.17. Схема замещения полевого транзистора

Наличие в схеме источника тока Suвхотражает зависимость выходного тока от входного напряжения, гдеS– крутизна передаточной характеристики, определяемая соотношением

S =.

Зависимость выходного тока от напряжения сток – исток учитывается сопротивлением ri, величина которого определяется как

ri= .

Величины параметров Sи riрассчитываются с использованием стоковой характеристики транзистора.

studfiles.net

Хотите знать что такое транзистор? Смотрите наши видео уроки! Читайте статью.

Первоначальное название радиодетали – триод, по числу контактов. Этот радиоэлемент способен управлять током в электрической цепи, под воздействием внешнего сигнала. Уникальные свойства применяются в усилителях, генераторах и других аналогичных схемных решениях.

Обозначение транзисторов на схеме

Долгое время в радиоэлектронике царствовали ламповые триоды. Внутри герметичной колбы, в специальной газовой или вакуумной среде размещались три основных компонента триода:

  • Катод
  • Сетка
  • Анод

Когда на сетку подавался управляющий сигнал небольшой мощности, между катодом и анодом можно было пропускать несравнимо большие значения. Величина рабочего тока триода многократно выше, чем управляющего. Именно это свойство позволяет радиоэлементу выполнять роль усилителя.

Триоды на основе радиоламп работаю достаточно эффективно, особенно при высокой мощности. Однако габариты не позволяют применять их в современных компактных устройствах.

Представьте себе мобильный телефон или карманный плейер, выполненный на таких элементах.

Вторая проблема заключается в организации питания. Для нормального функционирования, катод должен быть сильно разогрет, чтобы началась эмиссия электронов. Нагрев спирали требует много электроэнергии. Поэтому ученые всего мира всегда стремились создать более компактный прибор с такими же свойствами.

Первые образцы появились в 1928 году, а в середине прошлого столетия был представлен работающий полупроводниковый триод, выполненный по биполярной технологии. За ним закрепилось название «транзистор».

Что такое транзистор?

Транзистор – полупроводниковый электроприбор в корпусе или без него, имеющий три контакта для работы и управления. Главное свойство такое же, как у триода – изменение параметров тока между рабочими электродами при помощи управляющего сигнала.

Благодаря отсутствию необходимости разогрева, транзисторы затрачивают мизерное количество энергии на обеспечение собственной работоспособности. А компактные размеры рабочего полупроводникового кристалла, позволяют использовать радиодеталь в малогабаритных конструкциях.

Благодаря независимости от рабочей среды, кристаллы полупроводника можно использовать как в отдельном корпусе, так и в микросхемах. В комплекте с остальными радиоэлементами, транзисторы выращивают прямо на монокристалле.

Выдающиеся механические свойства полупроводника нашли применение в подвижных и переносных устройствах. Транзисторы нечувствительны к вибрации, резким ударам. Обладают неплохой температурной стойкостью (при сильной нагрузке применяют радиаторы охлаждения).

Поэтому достаточно быстро ламповые триоды были вытеснены компактными, прочными и недорогими транзисторами.

Однако применение радиоламп не прекращено. В мощных радиопередатчиках, генераторах – ламповые усилители успешно применяются. Некоторые возможности мощных радиоламп недостижимы (или реализация имеет слишком высокую цену) для полупроводниковых приборов.

[tip]Это интересно! В бытовом исполнении часто можно встретить современные ламповые приборы. Например, любимые меломанами усилители звука. Считается, что их звучание более мягкое.[/tip]

Классификация транзисторов

По структуре кристалла. Основных направлений конструкции (а стало быть, и свойств детали) – два. Они наглядно изображены на иллюстрации:

Чтобы понять, что такое транзистор – необходимо знать принцип его работы.

В этом видео подробно о структуре транзистора, для чего он нужен и как он работает.

Полевые транзисторы

Работают точно так же, как вакуумные триоды. Имеют два рабочих вывода (сток и исток) и управляющий (затвор). Электрический ток протекает между стоком и истоком с интенсивностью, которая зависит от управляющего сигнала. Сигнал в виде поперечного электрического поля формируется между затвором и стоком или затвором и истоком.

Все разновидности полевых транзисторов на иллюстрации:

Рассмотрим основные виды:

Управляющий p-n переход.Сток и исток подключены к полупроводниковой пластине. Она может быть n- или p- типа. Управляющий электрод соединен с пластиной при помощи p-n перехода. Управляющий сигнал малой мощности открывает p-n канал, заставляя транзистор работать в режиме усиления сигнала.

Прекращение подачи управляющего сигнала приводит к отключению канала. Разумеется, между управляющим сигналом и рабочим током существует линейная зависимость.

Главная особенность полевого транзистора – управление осуществляется не током, а напряжением. Применение полевых транзисторов – в основном интегральные схемы. Мизерное (близкое к нулю) потребление электроэнергии, позволяет использовать радиодетали в системах с компактными и маломощными источниками питания, например – наручных часах.

Полевые транзисторы большой мощности применяются в качественных звуковых усилителях, в качестве альтернативы вакуумным триодам.

Разумеется, как и любая другая деталь – полевики могут выходить из строя. Чтобы по ошибке не выбросить исправную деталь, можно проверить транзистор в домашних условиях

Как прозвонить полевой транзистор мультиметром?

Обратите внимание

Если ваш прибор имеет функцию проверки транзисторов – воспользуйтесь ей. Мы рассматриваем мультиметр без такой функции.

    • Переводим тестер в режим проверки диодов. За виртуальный диод принимается переход между стоком и истоком. Исправный переход работает в точности, как полупроводниковый диод;
    • Соединяем плюсовой контакт измерительного провода с истоком, минусовой со стоком. Если транзистор исправен – показания мультиметра должны быть в пределах 500-600;
    • Чтобы проверка была окончательной, необходимо проверить протекание тока в обратном направлении. Меняем полярность подключения. Тестер показывает условно бесконечное сопротивление. На дисплее цифра 1.

  • Проверка полевого транзистора не ограничена тестированием перехода на проводимость. Надо проверить открытие рабочего канала. Специального источника питания не нужно, мы рассматриваем способ, как проверить транзистор мультиметром автономно. Достаточно питания тестера, чтобы открыть переход. Минусовой щуп подключаем к истоку, плюсовой к управляющему затвору. У исправного транзистора откроется канал исток-сток.
  • Прозвонка транзистора в канале исток-сток покажет падение напряжения на канале p-n перехода.
  • Меняем полярность на электродах исток-сток. Если транзистор исправен – канал p-n перехода закроется. Проверяем ток в канале исток-сток — проверка транзистора мультиметром показывает закрытый p-n переход.

МДП транзистор с изолированным затвором.В отличие от предыдущей модели – затвор отделен от канала диэлектриком. Так называемое срабатывание затвора возникает только при достижении определенного напряжения и заданной полярности.

Такие транзисторы имеют узкую специализацию, и применяются в основном в составе микросхем. Методика, как проверить полевой транзистор тут не подходит. Собственно, это и не нужно, транзисторы штучно практически не используются.

Для закрепления прочитанного, смотрите видео на тему: Как проверить полевой транзистор мультиметром.

Биполярные транзисторы

Метод работы принципиально отличается от полевых полупроводниковых триодов. На полупроводниковом кристалле создается два p-n перехода.

Рабочий ток образуется за счет переноса заряда либо электронами, либо так называемыми дырками. То есть ток может протекать в любом (но только одном) направлении. Поэтому транзисторы такого типа именуются биполярными.

Биполярный транзистор, как и любой другой, имеет три вывода.

  1. База. Соединяется со средним слоем полупроводника;
  2. Эмиттер и коллектор. Эти контакты имеют соединение с внешними слоями кристалла.

Благодаря универсальности работы, на биполярниках выполняется множество схем – в основном усилительные.

  • Схема с общей базой. Универсально подключение. Щадящий режим, но при этом способность усиливать рабочий сигнал – слабая;
  • Схема с общим эмиттером. Очень высокий КПД, рабочий сигнал усиливается с максимально возможным коэффициентом. Недостатки – сложный расчет сопротивления на входе (при проектировании схем) и сильная зависимость от температуры;
  • Схема с общим коллектором. В сравнение с предыдущим вариантом включения, способность усиления сигнала существенно меньше. Можно эффективно использовать входное сопротивление элемента.

Режимы работы транзисторов, выполненных по биполярной технологии:

Активный режим прямой.Эмиттер-база в открытом состоянии, коллектор-база закрыт. Как проверить транзистор мультиметром в таком режиме? Зная схему подключения – как обычный диод.

Активный режим инверсия. Эмиттер-база закрыт, коллектор-база открыт. Проверка радиоэлемента проводится аналогичным способом, только полярность тестера обратная.

Насыщение.Переходы находятся в открытом состоянии. Запуск такого режима осуществляется одновременным подключением к внешнему источнику обоих переходов. Состояние стабильное.

Отсечка.Коллекторный переход включен в инверсном направлении. Эмиттерный переход работает в двух направлениях. Важно! Для обеспечения режима нельзя подавать напряжение выше порога срабатывания.

Барьер.База подключена к коллектору. Для мягкости работы последовательно с рабочей цепью подключается резистор. Схему можно использовать в качестве диода с резистивным ограничителем по току.

Если вы разобрались в принципе работы, вопросов как прозвонить транзистор возникнуть не должно. С точки зрения мультиметра, транзистор – это набор диодов. При понимании, в каком направлении открыты p-n переходы, проверка сводится к прозвонке виртуальных диодов.

Смотрите подробное видео про биполярные транзисторы, их структуру и способы применения в электронике.

obinstrumente.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.