УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ. Стрелочные измерительные головки ремонт


РЕМОНТ СТРЕЛОЧНОГО АМПЕРВОЛЬТМЕТРА

Ранее видеть  данный прибор приходилось только на цветных фото в интернете, а тут увидел на рынке; стекло разбито, к корпусу примотаны какие-то древние батареи и всё это покрыто слоем, мягко говоря, пыли. А запомнился мне  ампервольтметр – испытатель транзисторов ТЛ-4М тем, что в отличии от многих других им можно проверять помимо коэффициента  усиления и другие характеристики транзисторов:

  • обратный ток переходов коллектор — база (Ik.o.) и эмиттер — база (Iэ.о.)
  • начальный ток  коллектора (Iк.п.) от 0 до 100 мкА;

Дома разобрал корпус - измерительная головка лопнула пополам, пять проволочных резисторов погорели почти до состояния угольков, шарики фиксирующие положение дискового переключателя уже далеко не круглые, от колодки подсоединения проверяемых транзисторов, торчат одни ошмётки. Фотографировать не стал – а сейчас сожалею. Сравнение дало бы и наглядное  подтверждение, справедливо бытующего мнения, что приборы той поры практически не убиваемые.

Из всей работы по восстановлению самой долгой и кропотливой была общая очистка прибора. Наматывать резисторы не стал, а поставил обычные ОМЛТ (хорошо видно - левый ряд, все «попиленные»), с тонкой доводкой до нужного номинала «бархатным» надфилем. Всё остальное из электронных компонентов было цело.

Найти новую оригинальную колодку подключения проверяемых транзисторов, так же как и восстановить старую было не реально, поэтому подобрал что-то более или менее подходящее и что-то отрезал, что-то подклеил и в итоге, в функциональном смысле, замена удалась на славу. Крутить дисковый переключатель каждый раз после окончания измерений на «ноль» (выключать питание) не понравилось – поставил на отсек питания ползунковый выключатель. Благо место нашлось. Измерительная головка оказалась исправной, только склеил корпус. Шарики переключателя поставил пластмассовые («пули» от детского пистолета).

Для подключения транзисторов с короткими «ножками» сделал удлинители с зажимами типа «крокодил», а для удобства в работе две пары соединительных проводов (со щупами и с «крокодилами»). И всё. После подачи питания прибор заработал в полном объёме. Если и есть, какие погрешности в измерениях, то явно незначительные. Сравнения по замеру тока, напряжения и сопротивления с китайским мультиметром существенных различий не выявило.

Искать каждый раз по магазинам штатные батарейки для отсека питания категорически был не согласен. Поэтому выдумал следующее: убрал все  контактные пластины, для того чтобы входили в отсек по ширине две «пальчиковые» батарейки сделал пропил размером 9 х 60 мм в боковой стенке со стороны отсека прибора, а излишки свободного места по длине «убрал» благодаря изготовленным вставкам с контактными пружинами.

Если кому доведётся «повторять», то используя данный эскиз, сделать это будет не сложно.

Получилось даже как-то уютненько. Вопроса по питанию больше нет, дефицит на батарейки типа «АА» отсутствует. Не откажу себе в удовольствии предложить Вашему вниманию схему ампервольтметра – испытателя транзисторов. При такой простоте и столько прибор может.

Схема прибора ТЛ-4М

Это схема установки ламелей (контактов) в переключателе прибора. Без неё есть риск не собрать прибор вообще. Здесь же полное руководство по эксплуатации. Ремонт делал Babay.

   Ремонт электроники

 

elwo.ru

АДАПТАЦИЯ ИЗМЕРИТЕЛЬНЫХ ГОЛОВОК

Замена вышедшей из строя измерительной головки при ремонте стрелочных приборов осложняется тем, что многие типы головок уже давно не выпускаются. Достаточно хорошим выходом из положения может быть применение описываемой технологии замены измерительной головки. Желательно, чтобы у заменяющей головки были те же размеры, что и у неисправной. Чувствительность и сопротивление рамки могут сильно отличаться. Разобрав головки, можно попробовать переустановить шкалу неисправного прибора на исправный прибор. Если это невозможно, придется перенести (перерисовать) шкалу неисправной головки на исправную головку с сохранением пропорций.

Для электрической адаптации чаще всего требуется применение усилителя постоянного тока (УПТ), т.к. скорее всего новая головка будет иметь худшую чувствительность. На первый взгляд, даже при применении экономичного ОУ типа К140УД12, УПТ необходимо питать от отдельного биполярного источника напряжения ±1,5 В. Однако в результате экспериментов с ОУ типа К140УД12 было установлено, что они сохраняют работоспособность при питании от однополярного источника напряжением 1,35...1,6 В.

Рассмотрим особенности такого режима ОУ К140УД12. При однополяр-ном питании напряжение на входах данного ОУ для нормальной работы определяется (приблизительно) неравенством 1,1...1,2В больше Uвх и больше(Uпит-0,5В). Выходное напряжение операционного усилителя может изменяться в пределах от 0,5 В до (Uпит-0,5 В). Отсюда следует, что для нормальной работы ОУ необходимо напряжение питания как минимум 1,7...1,8 В. Эксперименты показали, что при напряжении UBX близком к Uп, дифференциальный входной каскад ОУ сохраняет свои функции, несмотря на то что входные токи многократно возрастают.

Входные транзисторы находятся в режиме насыщения, но их базовые токи могут быть уменьшены путем уменьшения программирующего тока. Схема УПТ для адаптации измерительной головки изображена на рисунке. Такую схему называют "токовым монитором". УПТ питается от одного элемента напряжением 1,35...1,6 В при токе покоя менее 10 мкА. Сопротивление резистора R1 должно быть равно сопротивлению рамки заменяемой головки. VD1 предназначен для обеспечения полного закрывания транзистора VT1. У данного УПТ наблюдается порог порядка 1 мВ. Резистор R3 необходим для устранения нелинейности в начале шкалы.

Схема с указанными номиналами была использована для замены головки тестера Ц4342. Заменяющая головка имела ток полного отклонения 300 мкА. Порядок наладки схемы был таким. Резистор R2 заменялся переменным и настраивался при входном напряжении на клеммах тестера 10 В. Затем был подключен и подобран R3 при напряжении в 1 В. Затем величина R2 снова уточнялась при напряжении 10 В. VT1 имел статический коэффициент передачи тока около 150. При использовании транзисторов с большим коэффициентом усиления имеет смысл заменить VD1 на кремниевый диод. Сопротивление программирующего резистора R4 может быть в несколько раз больше. При отсутствии резисторов в несколько мегаом, вместо резистора можно включить цепочку из 5-6 кремниевых диодов, соединенных последовательно. Резистор R5 включен для защиты измерительной головки от перегрузки. Срок службы элемента питания типа АА в данном УПТ может составить 1 ...2 года. Описанный УПТ может найти применение в стрелочных тестерах, волномерах и в других приборах. Измерительная головка, применяемая совместно с УПТ, может иметь ток полного от-клонения даже в несколько миллиампер.

Радиолюбительские схемы / Измерительные приборы

Другие страницы сайта

Пишите письма

На главную

Измерительные приборы

www.k88882.narod.ru

СТРЕЛОЧНЫЕ ПРИБОРЫ - ИНДИКАТОРЫ

   Наглядность - большое дело. Вот и народная мудрость гласит: - «Лучше раз увидеть, чем сто услышать». А в электронике, где протекающие процессы в работе того или иного устройства, подтверждаются зачастую косвенно, а то и вообще подразумеваются и даже берутся на веру, наглядное отображение вообще переоценить сложно. Недаром таким почитанием в среде радиолюбителей пользуются осциллографы, дающие возможность  «заглянуть» даже внутрь процесса. Но не буду о сложном – разобраться бы с простым. Собрал почти десяток различных зарядных устройств, а для зарядки аккумуляторов использую всё больше простенький лабораторный блок питания, имеющий визуальное отображение выходного напряжения и тока. Измерительные головки чётко информируют, сколько вольт и миллиампер идёт на заряжаемый аккумулятор. Вот только далеко не везде есть возможность их использовать, даже самые маленькие из них, зачастую всё равно будут непомерно большими для многих радиолюбительских самоделок. А вот стрелочные индикаторы от магнитофонов и других радиотехнических устройств прошлого века, которые не перевелись на базарах до сих пор, будут тут в самый раз. Вот некоторые из них:

   Стрелочный индикатор М476 предназначен для работы в цепях постоянного тока, при любом положении шкалы. Ток полного отклонения (зависит от модели) 40 - 300 мкА. Внутреннее сопротивление 4000 Ом. Длина шкалы - 28 мм, масса 25 гр.

   Стрелочный индикатор М4762 предназначен для работы при вертикальном положении шкалы. Ток отклонения 220 -  270 мкА.  Внутреннее сопротивление 2800 Ом. Размеры 49 х 45 х 32 мм. Длина шкалы – 34 мм.

   Стрелочный индикатор М68502 предназначен для работы при любом положении шкалы. Ток полного отклонения не более 250мкА. Внутреннее сопротивление 1000 Ом. Размеры  21,5 х 60 х 60,5 мм. Масса 30 гр. Эти индикаторы и им подобные объединяет:

  • небольшой размер
  • простота конструкции
  • низкая стоимость
  • и, конечно же, принцип действия

   Принцип действия основан на взаимодействии двух магнитных полей. Поля постоянного магнита и поля, образованного током, проходящим по бескаркасной рамке, которая состоит из большого числа (115 - 150) витков медного провода диаметром всего  8 - 9 микрон. Не вникая в нюансы можно назвать два основных действия, которые необходимо произвести для того, чтобы стало возможным использовать имеющийся индикатор:

  1. Оснастить его шунтом или добавочным сопротивлением (применяются для изменения верхнего предела измерения), в зависимости от того как будете его использовать (вольтметр / амперметр).
  2. Изготовить новую шкалу.

   Подбор шунта – подходящий по мощности низкоомный резистор ставим на контакты индикатора, параллельно ему переменный резистор  с большим сопротивлением, выставляем ток, на который будет использоваться индикатор, вращением переменного резистора устанавливаем стрелку на крайнее правое деление шкалы.

   Подбор добавочного сопротивления – подходящий по мощности переменный резистор большого сопротивления ставим на один из контактов индикатора, выставляем напряжение и вращением резистора устанавливаем стрелку на крайнее правое деление шкалы. Теперь дело за малым – нужно «добраться» до шкалы внутри индикатора, а для этого необходимо открыть его корпус. И вот тут впору растеряться, потому как никакого крепежа нет и корпус, состоящий из двух половинок, элементарно склеен. Потому, насколько качественно эта операция выполнена и какой клей применён, можно судить о том родились ли Вы под счастливой звездой )). Будем открыть индикатор М4762, на мой взгляд, самый сложный вариант. Но даже если был применён дихлорэтан, отчаиваться не стоит, так как он наверняка растворил только верхний слой органического стекла – материала, из которого изготовлен корпус. Поэтому берём в руки надфиль с крупной насечкой и обтачиваем по периметру место соединения двух половинок корпуса, равномерно со всех сторон.

   В процессе обтачивания периодически необходимо пробовать разъединить половинки корпуса, прилагая при этом какое-то усилие. В результате всё получилось.

   Изготовить новую шкалу не сложно: 

  1. сканируем старую
  2. вставляем изображение в специализированный графический редактор Sprint-Layout
  3. обрисовываем
  4. распечатываем
  5. вырезаем и клеим по месту

   Что там ни говори, а даже самый простой пробник с индикатором - это уже целый измерительный прибор!

   Форум по индикаторам

   Обсудить статью СТРЕЛОЧНЫЕ ПРИБОРЫ - ИНДИКАТОРЫ

radioskot.ru

Как устроен и работает стрелочный и цифровой мультиметр

Домашний мастер при ремонте квартиры своими руками сталкивается с необходимостью подключения светильников, розеток и выключателей по разным схемам. Такая деятельность требует выполнения электрических измерений и знания основных правил безопасности при работе под напряжением.

Наши советы помогут вам оптимально выбрать мультиметр для этих целей и понять основные правила безопасной работы с ним как в бытовой электропроводке, так и для ремонта подключаемых к ней приборов.

В материале статьи сравниваются два типа устройств измерителей: стрелочных аналоговых и цифровых. Это позволит оценить различные технологии замеров, сравнить их возможности, сделать выбор подходящей конструкции.

Содержание статьи

Назначение

Составное слово мультиметр обозначает своей первой частью «мульти» — много функций, которые выполняет этой прибор, а второй «метр» – измерение электрических величин.

Он позволяет определять:

  • значение действующего напряжения;
  • силу протекающего тока;
  • электрическое сопротивление подключенной цепи;
  • некоторые другие параметры.

Следует учесть, что прибор может иметь другие названия:

  1. авометр, обозначающее сокращение от ампер, вольт, ом измерение;
  2. или тестер, присвоенное первым аналоговым моделям.

На техническом языке его называют прибор многофункциональный измерительный.

Принципы измерения электрических величин

Поясняющая картинка из интернета с человечками призвана объяснить взаимосвязь процессов, происходящих в электрике, которые позволяет анализировать мультиметры любой конструкции.

Напряжение источника в вольтах старается пропихнуть ток в амперах через оказываемое ему противодействие сопротивлением в омах. Для анализа этих трех задач в мультиметр включены 3 отдельных измерительных прибора:

  • амперметр;
  • вольтметр;
  • омметр.

Кратко рассмотрим их функции.

Как работает амперметр

За основу действия аналоговых приборов принята измерительная головка магнитоэлектрической системы.

При протекании через нее электрического тока поворачивается подвижная рамка с противодействующей пружиной и прикрепленной к ним стрелкой, указывающей на шкале его силу в микроамперах — тысячных долях ампера. На таком диапазоне протекают токи через измерительную головку.

Однако амперметр замеряет не доли ампера, а целые и даже значительно большие значения. Такие величины тока способны выжечь все токопроводящие магистрали головки. Чтобы этого не произошло, их ограничивают параллельным подключением калиброванного электрического сопротивления, называемого шунтом.

Принцип шунтирования дополнительным сопротивлением уменьшает величину протекающего через головку тока и делает его пропорциональным входному значению. За счет этого шкалу градуируют в амперах, а не в тысячных его долях.

В цифровых приборах используются датчики токи, которые работают по микропроцессорным технологиям.

Устройство вольтметра

Та же измерительная головка подключается последовательно к добавочным сопротивлениям — токоограничивающим резисторам. Шкала прибора градуируется в вольтах.

Переключатель режимов у амперметра и вольтметра позволяет расширять пределы измерения.

Цифровой вольтметр работает от датчика напряжения.

Конструкция омметра

Принцип замера сопротивления раскрыт в статье о прозвонке электрической цепи тестером, многофункциональным индикатором.

Омметр также работает с помощью измерительной головки.

Для этого используется встроенный источник напряжения, который выдает строго эталонную величину. Ее при подготовке омметра к работе необходимо вручную откалибровать.

Замеряемое сопротивление подключается к гнездам прибора. Через него проходит ток, ограничивающийся в зависимости от номинала резистора. Он отклоняет стрелку омметра на величину, пропорциональную значению электрического сопротивления.

Шкала омметра просто градуируется в омах.

Цифровые приборы вычисляют значение сопротивления по результатам информации, получаемой от датчиков тока и напряжения, но работают также от встроенного источника питания. Ручная калибровка им не требуется.

Разновидности мультиметров

Аналоговые приборы

Рассмотрим на примере тестера Ц4324.

Сразу бросаются в глаза многофункциональная шкала в несколько рядов и переключатели режимов с большим рабочим диапазоном.

Заводская схема внутренних соединений представлена на фото ниже.

Более подробно назначение шкалы измерительной головки показано на картинке.

При каждом замере необходимо анализировать положение стрелки на определённом диапазоне, соответствующем роду току и проверяемому сигналу.

Положения центрального переключателя разбиты на три главных сектора (амперметра, вольтметра и омметра) выделенные красными стрелками. При работе следует определять не только диапазон измеряемой величины, но и форму сигнала.

Цифровые приборы

Внутренняя конструкция этого типа мультиметра намного сложнее, а внешние органы выполнены проще для пользователя. В качестве образца выберем одну из типовых моделей с минимальным количеством автоматических настроек.

Вместо стрелочного указателя и сложной шкалы работает дисплей, а положением центрального переключателя можно выбрать все режимы измерения в любом секторе.

Подключение измерительных проводов выполняется к двум гнездам из трех:

  • центральное — общее;
  • левое — используется для замера токов более 10 ампер;
  • правое — во всех остальных случаях.

Способы электрических замеров

Любой мультиметр сам ничего не измеряет. Он показывает только те величины, которые подготовил пользователь в созданном им режиме. Ошибки показаний чаще всего связаны с невнимательной работой человека.

Рассмотрим однотипные операции, которые необходимо выполнять на стрелочном и цифровом мультиметре.

Измерения тестером Ц4324

Замер напряжения
Работа с источниками постоянного тока

Выбираем соответствующий режим нажатием средней кнопки снизу и выставляем предел измерения больший, чем напряжение у замеряемой батарейки — 3 V.

Потребуется оценить полярность подключения проводов. Если пустить ток в обратном направлении через измерительную головку, то стрелка просто упрется в стопор слева от нуля. Замер не получится.

Для снятия отсчета необходимо выбрать правильно ту шкалу напряжения, на которой стоит знак постоянного тока. Следует учесть ее кратность на соответствующем положении переключателя.

Работа с источниками переменного тока

Обращаем внимание, что подобная операция относится к опасной и требует повышенного внимания.

Нажимаем до фиксации правую кнопку снизу со значком «~». Выбираем центральным переключателем соответствующий режим вольтметра и на нем положение 300 V. Только после этого устанавливаем концы в контакты розетки.

Со шкалы снимаем показания 250 V. Методика пользования ею та же, как и в предыдущем случае.

Замер тока

Положение переключателей и работа со шкалой выполняется по предыдущей методике.

Пальчиковая батарейка на 1,5 V выдала на лампочку 6,3 V ток 142 мА.

Замер сопротивления

В этом режиме важно:

  • проверить выставление стрелки на ноль, используя регулятор натяжения пружины измерительной головки, расположенный под стрелкой;
  • установить калиброванную величину источника питания ручкой потенциометра «Установка 0», размещенного в самой нижней части на лицевой стороне;
  • обеспечить расположение корпуса строго по горизонту.

Для измерения потребуется нажать одновременно две левых кнопки и установить переключатель на значок омов. Отсчет показания по шкале Ω получился 1,5. Такое сопротивление у нити накаливания в холодном состоянии.

Режим измерения сопротивлений мультиметром создан для проверки резисторов и других элементов радиоэлектронных устройств. Он не предназначен для оценки качества изоляции диэлектрического слоя. Мощность источника питания недостаточна для подобного измерения.

Оценку сопротивления изоляции кабелей и проводов выполняют специальными приборами, питающимися от мощных источников: ручных генераторов или бытовой сети 220 либо встроенных преобразователей с комплектом батареек. Их называют мегаомметрами.

Три приведенных опыта с малогабаритной лампочкой накаливания и батарейкой позволяют показать, что мощность источника энергии и потребителя следует правильно подбирать по нагрузке и напряжению.

1,5 V у батарейки и 6,3 у лампочки — явное несоответствие. Источник работает в аварийном режиме и не справляется с задачей: нить еле-еле светится. Ему искусственно создан режим перегрузки.

Аналогичный случай может произойти и в бытовой сети 220, где защиту от перегрузок выполняет автоматический выключатель, снимающий питание с оборудования с выдержкой времени.

Подключая любой потребитель в электрическую сеть всегда оценивайте его возможность надежной работы и способность защит устранять аварийные ситуации.

Измерения цифровым мультиметром

Замер напряжения
Работа с источниками постоянного тока

Потребуется только установить центральный переключатель в положение замера напряжения на соответствующем пределе (=2 V), вставить провода в гнезда прибора и подключить их к проверяемой батарейке. Результат сразу отображается на табло.

Если полярность подключения источника к мультиметру перепутана, то на табло отобразится знак минус. Значит замер надо повторить, перевернув провода на батарейке.

Этот прием используют для определения полярности источника.

Когда замер выполняется на большем пределе, то точность результата будет занижена. Необходимо соблюдать соответствие величин.

Работа с источниками переменного тока

Вначале переключатель режимов устанавливают в положение «~600 V», а затем проверяют напряжение в розетке.

У нас получился результат 231 вольт.

Замер тока

Мультиметр врезают в цепь тока, предварительно переключив его в режим амперметра и установив на соответствующую позицию измерений. Мы имеем показание 145 мА на пределе 200.

Знак минус перед значением тока свидетельствует о том, что полярность подключения проводов прибора в схему перепутана. Ток через него идет в обратном направлении.

Электрикам, часто сталкивающимися с измерениями, рекомендуем приобрести мультиметр с разъемным магнитопроводом трансформатора тока —клещами. Им удобно выполнять безразрывное подключение и быстрый замер.

Замер сопротивления

Центральный переключатель мультиметра установлен в положение 200 Ω, а результат 9,75 отображен на табло.

Таким же способом прибор работает на шкале kΩ. На приведенном фото даже завышен предел измерения сопротивления. На результате это особенно не сказывается, хоть и влияет.

Режим прозвонки

Цифровой мультиметр в отличие от аналогового стрелочного имеет такую дополнительную функцию. Она позволяет просто определять наличие электрического контакта внутри проверяемой цепи.

В замкнутой и разомкнутой схеме меняется индикация на табло, а у многих моделей приборов дополнительно появляется звуковой сигнал.

Режим прозвонки создан для анализа маленьких сопротивлений, характерных для цепей тока. Но им не стоит пользоваться в цепях напряжения. Особенно он удобен для проверки полупроводниковых элементов.

Режим генератора

Еще одна полезная функция для радиолюбителей, называемая на их сленге «пищалкой». Мультиметр выдает высокочастотные сигналы, которые позволяют проверять тракты звуковых усилителей и различные каналы передатчиков или приемников.

У владельцев стрелочных приборов такой функции нет. Они вынуждены делать подобный генератор своими руками.

Проверка транзисторов

Еще одна полезная функция цифрового мультиметра, которая также встречается на более сложных конструкциях стрелочных моделей.

Для проверки биполярного транзистора достаточно правильно вставить его ножки в соответствующее гнездо, учитывающее структуру p-n-p или n-p-n полупроводникового перехода. Для этого создано четыре контактных отверстия, в которые устанавливают ножки за счет поворота корпуса в одну из сторон.

У исправного транзистора сразу высвечивается коэффициент усиления h31.

Эта же функция на стрелочных тестерах требует снятия показаний и выполнения математических расчетов.

Основные правила безопасности

Мультиметр создан для измерения электрических величин и позволяет работать под напряжением. Его корпус и провода выполнены с соответствующей степенью защиты как по классу IP, так и по нормативам электрической безопасности от поражения током.

Качество защиты цифровых приборов выше, а их дизайн более продуман. Однако, даже при их пользовании следует быть внимательным и осторожным, соблюдать рекомендации производителя.

Любой цифровой мультиметр можно вывести из строя неправильным обращением при его несомненных преимуществах перед стрелочным прибором:

  • работе встроенных защит «от дурака», которые отключают схему от проникновения опасных токов, созданных при всех режимах измерения;
  • повышенной диэлектрической прочности изоляции.

Стрелочные старые тестеры требуют еще больше внимания: при неправильном подключении к цепям токам или напряжения, особенно в бытовой сети 220, элементы их внутренней схемы выгорают. Если калибровочные резисторы еще можно заменить, то с контактами переключателей и кнопок ситуация ремонта усугубляется.

Но чаще всего у них выходит из строя токопроводящая пружинка или обмотка измерительной головки. В этой ситуации ремонт обходится дороже покупки нового цифрового мультиметра.

Рекомендуем посмотреть видеоролик владельца Andrey Tonurwator “Как пользоваться мультиметром”.

Ждем комментариев на статью и напоминаем, что сейчас ей удобно поделиться с друзьями в соц сетях.

Полезные товары

housediz.ru

УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Аналоговые (со стрелочной измерительной головкой) тестеры типа 4353, 43101 и аналогичные были в своё время широко распространены и, возможно, есть в «закромах» многих радиолюбителей. Современные цифровые приборы, конечно, имеют гораздо меньшие габариты и большую функциональность и универсальность, тем не менее, из такого «старого» тестера можно при желании сделать вполне удобный измерительный прибор. Тем более, что стрелочный индикатор во многих случаях оказывается гораздо удобнее и нагляднее для отображения информации, если, конечно, при измерениях не требуется запредельная точность.

Так например, с использованием стрелочной головки от подобного тестера мной был сделан небольшой настольный измерительный прибор, который позволяет с достаточной для радиолюбителя точностью измерить ёмкость конденсаторов ( 5 пФ — 10 мкФ), индуктивности катушек ( от единиц мкГн до 1 Гн ), ёмкости электролитов ( 1 мкФ — 10 000 мкФ)  и их ESR, иметь «под рукой» фиксированные образцовые частоты ( 10, 100. 1000 Гц, 10, 100, 1000 кГц ). И, кроме того, имеет встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколёвки неизвестных транзисторов. Причём проверить параметры большинства элементов можно, не выпаивая их из схемы.

Прибор собирался в корпусе меньших размеров, чем «родной» от тестера и делался по «модульному» принципу — по желанию можно добавлять или исключать отдельные измерительные узлы и при этом не производить никаких существенных изменений в остальной схеме. Можно сохранить также и  изначальные фунции измерения напряжений и токов, если это потребуется. Причём совсем не обязательно ориентироваться на применённую здесь стрелочную головку от взятого мной тестера — подойдёт любая другая с током полного отклонения 50 … 200 мкА, это не принципиально. Ниже будут даны схемы и описания отдельных функциональных узлов-«модулей», структурная схема их соединений в приборе в целом.

Каждый «модуль» предназначен для измерения-проверки различных радиодеталей широкого применения и может использоваться не только в составе такого прибора, но и, конечно, отдельно, в виде небольшой независимой конструкции. Сами схемы измерительных узлов, входящие в состав, не новы и не раз были опубликованы в своё время в различных источниках и проверены на практике многими радиолюбителями, показав стабильную и надёжную работу, Никаких редких и дорогих элементов констукция не содержит, схемы чрезвычайно «лаконичные» и просты в понимании, не требуют особых приборов для настроек, при этом обеспечивают достаточную точность измерений при внимательной и грамотной сборке и применении заведомо исправных деталей.

Генератор образцовых частот

Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:

Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.

С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем). 

Модуль измерения L, C

Первая схема представляет собой узел измерения емкостей  конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).

Сигнал на вход подается с выхода генератора сигналов ( в нашем случае - с движка переключателя SA1 на рис.1). Через транзистор VT1, работающий в режиме ключа, прямоугольный импульсный сигнал можно снять с выхода «F» и использовать для проверки или настройки других внешних устройств, при этом  уровень сигнала можно регулировать резистором R4 в широких пределах. Этот же импульсный сигнал подаётся на измеряемые элементы — конденсаторы или индуктивности, подключаеые к соответствующим клеммам «C» или «L», выставив переключатель SA2 в соответствующее положение.

К выходу Uизм. подключаем непосредственно нашу измерительную головку (может понадобиться добавочное сопротивление, об этом будет сказано подробнее далее - «Модуль индикации»). Резистором R5 устанавливаем пределы измерений индуктивностей, а R6 — ёмкостей (например, подключаем к клеммам «Сх» и «Общ.» образцовый конденсатор 0,1 мкФ на диапазоне с частотой 1 кГц (см. схему рис.1) и подстроечником R6 устанавливаем стрелку прибора на конечное деление шкалы...). Питание этого модуля может быть 6-12 вольт.

Примечание: при настройке этого модуля была совсем исключена из схемы ёмкость С1 (1000 пФ), так как при её наличии не удавалось настроить диапазон измерений 1-100 пФ. При настройке также возможен подбор сопротивлений R2, R3 в зависимости от напряжения питания и конкретного типа применённого транзистора (может быть любой маломощный p-n-p структуры). В качестве выпрямительных использовались «старинные» германиевые диоды типа Д9, обеспечивающие более линейную характероистику отображения показаний стрелочной головки. Возможно применение кремниевых, но в данном случае я этот вариант не пробовал, так как диодов Д9 давно лежала без дела небольшая кучка.

Модуль измерения электролитических конденсаторов (+ C и ESR)

Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):

Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя  частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.

Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.

Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).

Переменное напряжение 100 кГц, наведённое во вторичной обмотке,  выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.

В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом. 

Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR  может быть как и у предыдущих схем.

Величины типовых (максимально допустимых) значений ESR различных конденсаторов  даны ниже в таблице (позаимствованно из открытых источников).

Функциональная схема соединений модулей прибора

Соединение между собой всех перечисленных выше «модулей» в одном общем приборе не представляет особой сложности и это видно из рис.4: 

Модуль индикации, помимо самой стрелочной головки, включает в себя шунтирующий конденсатор (10 … 47 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. Добавочное сопротивление подбирается в зависимости от чувствительности измерительной головки.   

В случае объединения всех перечисленных выше модулей в одном приборе следует иметь ввиду, что клемма «Общ.» на схеме рис.2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.

   

Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.

В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

При проверке полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С». Полевые транзисторы, или очень мощные биполярные всё-таки лучше проверять, выпаяв их из плат.

Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.

Примечания к схеме

Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:

  • 1 МГц     — 100 пФ                  — 100 мкГн
  • 100 кГц   — 1000 пФ                — 1 мГн
  • 10 кГц     —  0,01 мкФ               — 10 мГн
  • 1 кГц       — 0,1 (+100) мкФ      — 100 мГн
  • 100 Гц     — 1 (+1000) мкФ       — 1 Гн
  • 10 Гц       — 10 (+10000) мкФ   — 10 Гн

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Материал в редакцию сайта Радиосхемы прислал автор - Андрей Барышев.

   Форум по измерительной технике

   Обсудить статью УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

radioskot.ru

Ремонт тестера Ц4317. | remontkai.ru

Недостатком в эксплуатации и ремонте тестера Ц4317  является только то , что корпус  головки сделан из оргстекла.

Тестер после ремонта Ц4317.

При эксплуатации и ремонте тестера Ц 4317  бывает что стрелка зависает,из- за элекролизации верхней части головки и мешает при наладке и измерениях.Стрелка останавливается в любом месте шкалы и стоит покачивается. Других замечаний  на работу прибора у меня нет. Конечно были сбои в работе,но это мелкие неисправности с которыми я быстро справлялся. В основном это контакты переключателя и места паек. Был один раз обрыв в резисторной сборке. Долго я искал схемы этих сборок, но как говорят, кто ищет тот всегда найдет. Все схемы в конце статьи. А теперь коротко,как избавиться от главного недостатка ц4317, зависание стрелки. Делается это очень просто. Вырезаем прямоугольник 106 х 61мм из тонкого стекла. Аккуратно разбираем  головку прибора. Вынимаем стрелочный механизм. Вот теперь самое главное, надо срезать оргстекло над шкалой прибора. Делать это надо аккуратно не спеша. Способов резки оргстекла много и я думаю это не проблема. После зачистки и выравнивания краев,подгоняем стекло, обезжиривем и клеем (Моментом). После высыхания, собираем головку и ставим все на место. Теперь бутте уверены, что стрелка уже не застопориться и не будет дёргаться. Вот коротко и все. Удачи в ремонте и хорошего настроения КАИ.

 

Спасибо за посещение странички. Вы просмотрели эту рубрику. А я предлагаю посмотреть моё предложение по заработку. Сейчас все в интернете ищут способы как заработать. Я друзья предлагаю самый простой и эффективный метод . смотрите ЗДЕСЬ.

принципиальная схема тестера Ц4317

Приглашаю в друзья для общения.

remontkai.ru

Блог паяльщика » Обзор стрелочного тестера Ц4342-М1

Немного сбился с ритма и не успел написать статейку, чтобы выпустить её одновременно с видео. Но, как говорится, лучше поздно, чем никогда, так что ловите текстовый обзор стрелочного мультиметра Ц4342-М1 .

 Полный обзор и инструкция по работе со стрелочным мультиметром Ц4342-М1

 Лично для меня он представляет интерес не как измерительное устройство, а больше, как прибор из прошлой, ушедшей эпохи стрелочных измерительных приборов. Ведь не секрет, что в настоящее время рынок измерительных устройств заполонили цифровые тестеры и мультиметры, а такими стрелочными приборами пользуются в каких-то редких особых случаях либо же их используют те, кто долгое время работал с подобными устройствами и до сих пор не привык к цифровым измерителям. Да, да есть и такие люди. Один мой хороший знакомый как-то проговорился, что ему гораздо удобнее смотреть на стрелку и шкалу со значениями, нежели на готовые цифры современного мультиметра. Сам я отношу себя к представителю цифровой эпохи, и мне намного проще работать с цифровыми приборами, которые показывают готовый  результат, чем с такими вот стрелочными тестерами. Но, опять же, в некоторых случаях использование стрелочного тестера более целесообразно, например в случае измерения плавающего тока или напряжения, т.к. следить за плавно качающейся стрелкой на мой взгляд удобнее, чем пытаться разобрать постоянно меняющиеся цифры на цифровом мультиметре. Ещё одним несомненным достоинством такого старого стрелочного тестера является его простота. В отличие от цифровых устройств, в стрелочном приборе, конкретно этой модели, нет никаких процессоров, микроконтроллеров, сложных микросхем и другой электронной фигни. Всё, что мы увидим, если вскроем корпус тестера – это набор резисторов, переключатели, электромагнитный предохранитель, и простейшая микросхема защиты системы от превышения измеряемого напряжения или тока, ну и разумеется сам стрелочный циферблат.

Всё, никаких компонентов, которые могли бы «сойти с ума» и начать измерять неправильно, что к слову, произошло с моим цифровым мультиметром. Перестал он измерять ток в положении переключателя «мА», Амперы измеряет хорошо, а на измерениях миллиАмпер зашкаливает. Видимо что-то случилось с его вычислительным процессором. Грубо говоря, единственное, что здесь может выйти из строя в процессе  работы с прибором – это резисторы, ну и конечно в случае падения очень высока вероятность того, что стекло циферблата разобъется, но это уже механические повреждения, и этот факт нельзя считать каким-то минусом прибора – это конструктивная особенность всех стрелочных измерителей. Именно с несколькими неисправными резисторами данный прибор достался мне. Скачав инструкцию, в которой имеются номиналы всех деталей, буквально за пару часов тестер обрел свою вторую жизнь, причем большую часть времени потратил на поиск нужных резисторов, т.к. здесь очень критична погрешность резистора, и чем точнее будут подобраны резисторы в делителе, тем точнее прибор будет исполнять свои функции. К сожалению не удалось со 100% точностью подобрать резисторы взамен неисправных, и это сказалось на измерениях в режиме килоОм. Дело в том, что сейчас при переключениях режимов измерения с кОм, 10кОм, 100кОм, нужно каждый раз выводить стрелку прибора в нулевое положение, т.к. она немного смещается относительно нуля. Это несколько неудобно, но на самих показаниях и точности измерения такое неудобство не сказывается, прибор по прежнему с высокой точностью измеряет сопротивление.

Ну а теперь перейдем от слов к делу, и рассмотрим как же пользоваться таким стареньким стрелочным тестером.

Вот его основные характеристики

- измерение силы постоянного тока 0-2500 мА

- измерение силы переменного тока 0-2500 мА

- напряжение постоянного тока 0-1000 В

- напряжение переменного тока 0-1000 В

- сопротивление постоянному току 0 – 10 МОм

- абсолютный уровень сигнала по напряжению -10 - +15 dBu

- статический коэффициент передачи тока транзистора (h31) 0-3000

На лицевой части мы видим шкалу измерений, переключатель режимов измерений, три кнопки выбора типа измеряемого элемента, ручку регулятора подстройки нуля, разъемы для подключения щупов и кнопки включения / отключения электромагнитного предохранителя.

На задней части, конкретно на крышке батарейного нанесена схема подключения прибора для различных типов измерения, будь то ток, напряжение или сопротивление.

Сам прибор питается от трех батареек АА (пальчиковых).

Первое, что нужно сделать перед началом работы – это проверить узел защиты, т.е электромагнитный предохранитель, как я его называю, возможно он имеет другое название. Для этого нажимаем кнопку ХХ, тем самым включив его, и затем кнопку ХХ чтобы отключить. Мы должны услышать характерный щелчок, который свидетельствует, о том, что защита работает. Далее снова включаем УЗ (узел защиты), т.к. без него мы не сможем проводить какие-либо измерения, и переводим переключатель в нужный нам режим измерений.

 

Измерение постоянного напряжения стрелочным тестером  Ц4342-М1

И давайте кратенько пробежимся по всем видам измерений, доступных этому прибору. Начнем с измерения постоянного напряжения. За тип измеряемого напряжения и тока отвечает первая из трех кнопок, как можно видеть по обозначению возле самой кнопки, в нажатом состоянии происходит измерение переменного, в поднятом – постоянного тока и напряжения. Шкала напряжения и тока возле переключателя также окрашена в два цвета, черный цвет соответствует постоянному току и напряжению, красный цвет переменному. То же самое мы видим и на «экране» ,т.е. при измерении постоянной составляющей нам нужно смотреть на черные цифры, а при измерении переменной на красные.

Для наглядности рядом со стрелочным мультиметром положил более привычный цифровой, чтобы можно было сравнить показания одного и другого прибора. Блок питания мой может выдать максимум 12 вольт, поэтому перевожу переключатель в положение 50 Вольт и смотрим что показывает стрелка.

А стрелка показывает цифру 5…почему так? В этом и заключается вся сложность использования стрелочных тестеров. Нам каждый раз приходится пересчитывать на лету показания прибора. Переключатель установлен в положение 50В – это значит, что в данный момент прибор может измерить напряжение максимум в 50 Вольт, что соответствует значению на шкале 25. Всего на шкале как бы 5 основных отрезков (5,10,15,20,25), и в данном случае разделив 50 на 5 мы получим то, что один такой отрезок расценивается, как 10 Вольт. 50:5=10 Как можно увидеть на фото показания стрелочного и цифрового мультиметра в данном случае идентичны.

Рассмотрим еще один пример. Сейчас подадим на вход мультиметров напряжение 6 Вольт.

Для более точного измерения перещелкнем переключатель из положения 50 в положение 10 В и видим, что при значении 6 Вольт, стрелка находится на цифре 15. Опять нужно пересчитывать. Сейчас у нас предел измерений составляет 10 Вольт, а это значит, что каждый из пяти отрезков на шкале будет соответствовать 2 В. 10:5=2, т.е. на цифре «5» у нас 2 В, на цифре «10» 4 В, и на «15» будет 6 В, что мы и видим.

 Измерение переменного напряжения стрелочным тестером  Ц4342-М1

 Теперь измерим переменное напряжение, рисковать с измерением напряжения в сети не буду, а лучше возьму тестовое напряжение с вторичной обмотки трансформатора. Для измерения переменного тока и напряжения, как я уже говорил, нужно нажать первую кнопочку и ориентироваться уже не на черные, а на красные цифры.

Снова перевожу переключатель на 50В, и глядя на красные цифры шкалы измерения напряжения и тока видим, что стрелка находится между 5 и 10, как вы могли посчитать цифра 5 на шкале соответствует 10 В, цифра 10 – 20 В, а между ними у нас как известно 15 Вольт, чему есть подтверждение  в виде значений цифрового мультиметра.

 Измерение постоянного тока стрелочным тестером  Ц4342-М1

 Та же история с измерением тока. Переводим переключатель на измерение тока максимум в 100мА и измеряем заведомо известный ток в 60мА. Опять стрелка близка к цифре 15 значит измеряемый ток у нас примерно 60мА.

Самый простой  диапазон измерений максимум 25мА, потому что не нужно ничего пересчитывать и что мы видим на шкале, такой ток будет на самом деле. Сейчас стрелка находится чуть дальше 19мА, и на цифровом мультиметре у нас 18,9 мА. Показания немного отличаются, но кто из них прав не известно никому. Хотя там приблизительно отличие в 1мА и это большой роли не играет.

Также очень легко проводить измерение тока в режиме 5мА. Один отрезок шкалы – это 1мА, и сейчас тестер показывает ток в 2мА.

 Измерение сопротивления стрелочным тестером  Ц4342-М1

 Перейдем к измерению сопротивлений – это немного интереснее и сложнее. Для измерения сопротивлений нам необходимо нажать среднюю кнопку.

Если измеряем Омы – подключаем щупы в крайние  разъемы, если измеряем килоОмы и мегаОмы – подключаем щупы в средний и правый разъем. Там конечно же всё  обозначено, но это не нужно забывать. Начнем с маленького, т .е. с обычных Ом. Ставим переключатель в соответсвующее положение и видим, что сразу же стрелка отклонилась максимально вправо – так и должно быть. Далее нужно замкнуть щупы между собой и ручкой подстройки нуля подвести стрелку к нулевой метке на шкале измерения Ом. Берём резистор в 150 Ом и смотрим на стрелку, как видно стрелка  находится ровно на отметке 150 Ом.

Для измерения кОм откручиваем щуп от левого разъема и вставляем в центральный, переводим переключатель в режим измерения килоОм, снова калибруем прибор установкой стрелки в нулевое положение, но теперь уже ориентируемся на шкалу измерения кОм.

Здесь в отличие от режима измерения Ом стрелка изначально находится в крайне левом положении, а при замыкании щупов отклоняется вправо. Возьмем резистор 1,8 кОм и посмотрим на показания прибора. Шкала размечена до 10кОм, и стрелка находится в положении близком к 1,8.

Теперь переключим в режим измерений  К х 10, т.е. предел измерений уже не 10, а 100кОм и посмотрим на всё тот же резистор 1,8кОм.

Стрелка находится возле значения 0,2 что соответствует опять же 1,8кОм, но уже как бы в другом масштабе. Сейчас каждое цифровое обозначение нужно умножать на 10 и в положении 0,2 у нас будет уже не 200 Ом, а 2кОм. Точно также всё нужно перемножать при измерении К х 100, и лишь при измерении Мом у нас снова значение на шкале будет соответствовать сопротивлению резистора в мегаОмах.

 Измерение Ку транзистора стрелочным тестером  Ц4342-М1

 И рассмотрю ещё одну функцию этого прибора – измерение КУ транзисторов. Имеется два диапазона измерений, обычный 0-300 и h31x10 0-3000, и давайте попробуем измерить коэффициент усиления транзистора. Вставляем транзистор в специальную панельку, расположенную в верхней части прибора, при этом выводы транзистора «КБЭ» должны соответствовать буквенному обозначению на панельке. Зажимаем среднюю кнопку, и вместе с этим в зависимости от типа транзистора «p-n-p» или «n-p-n» нажимаем или нет следующую кнопочку. При измерении параметров транзистора, как и в случае с измерением сопротивлений, предварительно нужно откалибровать прибор, выставив стрелку тестера в «0». Для установки нуля ориентируемся на шкалу измерения кОм, НО само значение транзистора  нужно смотреть по другой шкале – шкала измерения Ом и h31. С этим можно запутаться с непривычки, что и произошло на видео, когда я записывал обзор на этот прибор.

Итак, транзистор я взял с заведомо известным КУ близкик м 40, поэтому переключим прибор в режим измерения в h31 и заблаговременно откалибровал прибор, выставив стрелку в 0 смотрим на стрелку цешки, которая показывает что-то около 35.

Теперь переключим прибор на предел измерений в h31x10,т.е. сейчас у нас предел не 300, а 3000. И сейчас видим, что стрелка только незначительно отклонилась и находится на втором делении, в данном случае одно деление составляет «20».

Так что в принципе функцию измерения КУ транзисторов данный тестер выполняет хорошо и показывает все значения довольно точно, им можно спокойно пользоваться.

 Выводы по стрелочному мультиметру  Ц4342-М1

 В заключение подведу свои выводы по этому прибору. Это не игрушка, не пережиток прошлого, а вполне рабочий экземпляр с реальной, действующей системой защиты, но с единственным на мой взгляд недостатком, который делает его использование не очень удобным в повседневной эксплуатации начинающим радиолюбителем. Думаю, вы догадались о каком недостатки я говорю – это его стрелочная шкала. На первых порах будет сложно разобраться, и легко запутаться, но если привыкнуть и на лету пересчитывать все значения на шкале, этот прибор будет безотказно служить вам много лет.

Один мой знакомый как-то сказал, что у него есть стрелочная цешка, доставшаяся от деда! Вы можете представить, чтобы какой-нибудь китайский мультиметр проработал три поколения? …

На этом обзор заканчиваю. Будет ещё один небольшой обзорчик другого стрелочного тестера, а для этого ниже по ссылки можете скачать инструкцию и схему. Если текстового варианта обзора вам оказалось мало, предлагаю посмотреть видео. Довольно продолжительное, но в нем я охватил практически все измерительные свойства этого измерительного прибора.

Инструкция и схема к Ц4342-М1

Видео по  работе со стрелочным тестером Ц4342-М1

p

theradioblog.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.