Разбираем устройство светодиодных прожекторов, смотрим на составные части. Светодиод устройство
56.Устройство и принцип действия светодиодов, основные характеристики и параметры
Одним из наиболее распространенных источников света является светодиод- полупроводниковый прибор с одним или несколькими электрическими переходами, преобразующий электрическую энергию в энергию некогерентного светового излучения. Принцип действия излучающих полупроводниковых приборов основан на явлении электролюминесценции, т.е. излучении света телами под действием электрического поля. Структура полупроводникового прибора отражения информации представляет собой выпрямляющий электрический переход или гетеропереход. Излучение такого прибора (светодиод) вызвано самопроизвольной рекомбинацией носителей заряда при прохождении прямого тока через выпрямляющий электрический переход. Чтобы кванты энергии- фотоны, освободившиеся при рекомбинации, соответствовали квантам видимого света, ширина запрещенной зоны исходного полупроводника должна быть относительно большой (1,5-3 эВ). К наиболее освоенным полупроводникам для изготовления светодиодов относится арсенид галлия GaAs , фосфид галлия GaP , нитрид галлия GaN и др. Конструкция плоского светодиода показана на рис.
К p-n-переходу подается прямое напряжение, в результате чего происходит диффузионное перемещение носителей через него. Прохождение тока через p-n-переход сопровождается рекомбинацией инжектированных неосновных носителей Если бы рекомбинация электронов и дырок, вводимых в выпрямляющий переход, происходила только с излучением фотонов, то внутренний квантовый выход – отношение излученных фотонов к числу рекомбинировавших пар носителей заряда за один и тот же промежуток времени – был бы равен 100 %. Однако значительная часть актов рекомбинации заканчивается выделением энергии в виде квантов тепловых колебаний– фотонов. Таки переходы называются безызлучательными. Внешний квантовый выход определяется отношением числа фотонов, испускаемых диодом во внешнее пространство, к числу инжектируемых носителей через p-n-переход. Внешняя квантовая эффективность (квантовый выход) светодиодов значительно ниже внутренней. Это связано с тем, что большая часть квантов света испытывает полное внутреннее отражение на границе раздела полупроводника и воздуха с возможным поглощением части фотонов. Внешний квантовый выход удается повысить при использовании полусферических структур, параболоида и др. до 30-35 % (рис. 8.23).
База n-типа выполнена в виде полусферы, область р – эмиттер. В результате угол выхода излучения существенно расширяется и резко снижаются потери на полное внутреннее отражение, поскольку световые лучи отходят к границе раздела полупроводник-воздух практически перпендикулярно. Светоизлучающие диоды служат основой для более сложных приборов, к которым относится цифробуквенный индикатор, выполненный в виде интегральной схемы из нескольких светодиодов. Они располагаются так, чтобы при соответствующих комбинациях светящихся элементов получалось изображение буквы или цифры. Матричные индикаторы содержат большое число
элементов, из которых синтезируют любые знаки. В случае управляемых светодиодов размер светящейся области диода зависит от уровня поданного напряжения. Такие диоды используются в качестве индикаторов настойки приборов, для записи аналоговой информации на фотопленку, как шкалы различных измерительных приборов. Принцип действия ИК-диодов такой же, как и светодиодов, различаются они только шириной запрещенной зоны. На рис. 8.24 приведена конструкция одноразрядного знакового индикатора, в котором используется семь светодиодов и децимальная точка.
Основные параметры светодиодов- яркость и мощность излучения, прямое рабочее постоянное напряжение, наибольшее обратное напряжение, длина волны излучаемого света. Светодиоды потребляют малую мощность, имеют низкое рабочее напряжение и совместимы с интегральными схемами.
Существуют три типа светодиодов: в металлостеклянном (АЛ102), пластмассовом (АЛ307) корпусе и бескорпусные (АЛ301).
На светодиодах ведется разработка точечно-растровых индикаторов, а также цветных точечно-растровых экранов.
studfiles.net
Сверхяркие светодиоды. Типы и устройство. Работа и применение
Сверхяркие светодиоды – это специальные полупроводниковые приборы, которые выделяются высочайшей яркостью свечения. Подобные изделия появились в результате развития технологического процесса в светодиодной технике. Благодаря этому образовалась отдельная ниша, в которой стали использоваться светодиоды высокой яркости. Эти изделия имеют свои специфические характеристики, плюсы и минусы, которые выделяют их среди остальных элементов. К примеру, они отличаются высокой мощностью и светоотдачей.
Однако подобные светодиоды все еще остаются достаточно дорогими вследствие их конструктивных особенностей. Поэтому еще сравнительно недавно такие светодиоды использовались ограниченно. Однако сегодня они находят все большее применение в самых разных областях. Спрос на данные изделия растет с каждым днем. Планируется, что лет через 5-10 подобные светодиоды будут применяться повсеместно.
Виды
Сверхяркие светодиоды в большинстве случаев имеют следующую классификацию:
- Epistar. Представляют диоды высокого качества, которые выделяются компактными габаритами. Их особенностью являются длительный период работы. Такие изделия широко применяются в различных областях.
- Cree. Подобные световые диоды действуют на базе карбида кремния, а также нитрида галлия. Эти изделия также выделяются продолжительным временем работы. К тому же диоды этого вида потребляют минимум электрической энергии, в частности это 12 вольт. В большинстве случаев их применяют для освещения пешеходных и подземных переходов, автомобильных дорог. К тому же производители используют их в осветительных приборах, к примеру, в фонарях. Необходимо отметить, что светодиоды cree выделяются высоким качеством, вследствие чего их стоимость несколько выше моделей других разновидностей.
- Smd. Относятся к распространенной светодиодной продукции. Эти изделия часто встречаются в различных областях. В особенности они популярны для подсветки зданий и сооружений, в том числе интерьерного дизайна внутри помещений. К примеру, при помощи светодиодных лент smd создаются уникальные в дизайнерском плане интерьеры помещений. Однако подобные ленты чаще всего используются совместно со специальными драйверами, то есть блоками питания. Подобные приборы снижают действующее напряжение с 220 до 12 вольт.
На данный момент главными производителями указанных светодиодов являются американские, тайванские и китайские компании.
Отдельной группой выступают светодиоды XLamp, которые выделяются особой мощностью. Их конструктивное исполнение предполагает присутствие теплоотводящего радиатора, что вызвано большим током в 350мА и выше. Благодаря эффективному отводу тепла данный вид светодиода также может работать длительное время. Данная группа делится на три вида: MC, XP и XR. Отличие указанных видов изделий заключается в разных габаритах и формах. Светодиоды XLamp в большинстве случаев применяются для наружного и внутреннего освещения автомобилей.
Устройство
Сверхяркие светодиоды практически всегда имеют конструкцию, которая практически полностью повторяет устройство стандартного светодиода. Типичные изделия монтируются на стандартное основание, тогда как продукция высокой яркости монтируется на теплоотводящую подложку. В остальном – это типичный диод с p-n переходом.
Так, благодаря техническим новациям компании CREE, устройство светодиодов группы XR имеет следующее строение:
- В виде корпусного основания выступает подложка, выполненная из металла и керамики, которая выделяется высокой теплопроводностью. В результате обеспечивается минимальное тепловое сопротивление, в том числе электроизоляция корпуса кристалла от теплоотводящего элемента.
- Кристаллы создаются из кристаллов карбида кремния.
- Материал подложки выполнен из карбида кремния, а также нитрида алюминия. Благодаря этому решается проблема появления механических напряжений в кристалле вследствие смены температуры.
- Металлический корпус также выступает в качестве рефлектора.
- Плавающая линза выполнена из кварцевого стекла. Она установлена в корпусе не жестко и сохраняет свое положение благодаря адгезии к желеобразному герметику. В результате она как бы плавает. Использование такой конструкции дает возможность исключить появление механических напряжений. Также это дает возможность выполнить автофокусировку в широчайшем диапазоне температур;
Показатели указанных светодиодов находятся в прямой зависимости от вида кристаллов, которые установлены в них. Ранее кристаллы были небольшого размера, однако в последнее время промышленность использует новые кристаллы, которые выделяются достаточно большой площадью, в том числе высокой световой отдачей. Они способны действовать при больших токах, а значит светить очень ярко.
Принцип действия
Сверхяркие светодиоды вне зависимости от вида действуют по одинаковому принципу. Диоды выполнены в виде чипа, из полупроводникового материала. Для образования р-n перехода чип покрывается легированными примесями. Подобная конструкция свойственна моделям светодиодов типа cree и smd. Принцип действия в данном случае базируется на перетекании электрического тока от р-анода к n-катоду. В результате напряжение передается в одном направлении.Цвет и длина волны светового излучения зависит от ширины рабочей зоны р-n перехода. Довольно часто для изготовления подобного перехода применяется германий и кремний. Для создания высокой яркости применяется сапфир в виде подложки.
Применение
Сверхяркие светодиоды находят довольно широкое применение.
- Они применяются для подсветки в жидкокристаллических дисплеях мобильников и коммутаторов.
- Для производства светодиодной рекламы.
- Для автомобильной светотехники, в частности для подсвечивания салона, а также индикации поворотов, элементов торпеды. Они часто монтируются в фарах, стоп-сигналах и габаритных огнях.
- Они выступают в качестве светоизлучающих элементов в дорожных указателях и светофорах.
- Довольно часто их используют для освещения помещений мастерских, различных производств, в том числе домов, квартир, подсобных помещений и так далее.
- В качестве сигнальных излучающих элементов в авиации, судоходстве и на железной дороге.
- Для подводного освещения.
- Для ландшафтного освещения.
- Сверхяркие светодиоды широко применяются в медицинской отрасли. В частности, их используют в эндоскопических приборах, дерматоскопах, лампах и ином оборудовании.
- Подобные светодиоды часто используются для тюнинга машин. При помощи них можно заменить практически все стандартные лампочки. К примеру, в автомобильных магазинах продаются готовые комплекты, которые можно сразу включить в электрическую схему машины без каких-либо усовершенствований.
- Для рекламной сферы и так далее.
Светодиоды высокой яркости создают значительный световой поток при небольшом потреблении электрической энергии. Благодаря указанным свойствам можно решать проблемы значительных затрат электрической энергии на освещение, которые на данный момент все еще являются существенными. К тому же при помощи подобных светодиодов можно создать требуемый уровень освещения помещений.
Плюсы и минусы
Сверхяркие светодиоды за последние несколько лет стали невероятно востребованными. Причин тому несколько:
- Энергоэффективность. На данный момент это наиболее экономичные источники света, потребляющие минимум электрической энергии. При применении подобных изделий удается сэкономить порядка 80% электрической энергии.
- Существенный срок службы.
- Возможность функционирования в широких температурных режимах.
- Минимальный нагрев.
- Наличие ударопрочности, в том числе в ряде случаев и влагостойкости.
Как выбрать
- Если Вы хотите приобрести сверхяркие светодиоды, то для начала следует определиться, где Вы их будете применять. Эти изделия могут иметь разное напряжение, что определяется назначением и моделью. В большинстве случаев оно составляет в пределах 1,5-4 В, но может быть и 12 В. В большинстве случаев это влияет на цвет излучения. К примеру, низкое напряжение, как правило, обеспечивает инфракрасный цвет, тогда как высокое обеспечивает создание белого цвета. Средняя мощность для весьма сильных диодов равняется 1 Вт, для типичных представителей – порядка 0,3 Вт.
- В магазине можно приобрести светодиоды в разных цветовых решениях: белые, синие, красные, оранжевые и другие модели.
- Не стоит прельщаться дешевыми изделиями. Вызвано это тем, что яркие светодиоды, произведенные с нарушением технологии или некачественных материалов, через определенное время понизят свою светоотдачу. К примеру, дешевые модели спустя 4 тысячи часов работы лишаются порядка 35% яркости. Тогда как качественные светодиоды даже через 50 тысяч часов работы сохраняют свою яркость практически на прежнем уровне. Колебания яркости могут быть не более 20%
Экономия в будущем
На данный момент широкое внедрение указанных светодиодов невозможно, так как они стоят довольно дорого. Однако в будущем внедрение новых разработок и технологий позволит внедрить их повсеместно. К примеру, города и каждый житель смогут значительно экономить электроэнергию, расходы снизятся в 14-18 раз.
Похожие темы:
electrosam.ru
Устройство светодиодных прожекторов, из чего состоят
Светодиодный прожекторЕще до недавнего времени светодиодные прожекторы были достаточно дорогими. Не каждый мог себе позволить их купить. Технологии не стоят на месте. Светодиоды усовершенствуются, драйвера становятся дешевле и т.д. и т.п. Соответственно конечный продукт становится на порядок дешевле своих предшественников.
Основное предназначение любого прожектора - освещение больших пространств. И не важно, что это - архитектурные сооружения или территория. ПО сравнению с другими источниками света - ДНАТ, ДРИ или ДРЛ окупаемость LED прожекторов достаточно быстра.
Мощности светодиодных прожекторов сильно варьируются и могут быть от 10, 20, 30 Вт и до особенно мощных - 50, 100 и более Вт. В своей основной массе прожекторы выпускают с цветовой температурой не менее 6500 К. Оно и понятно. Мы не ставим такой источник света в квартире. Мы устанавливаем его на улице, а соответственно хотим получить яркий, "сильный" свет. Именно такая температура даст нам максимально большой световой поток, по сравнению с 2700, 3000 К или 4500 К.
Вообще, устройство любого светодиодного прожектора практически не отличается друг от друга и не зависит от места установки: будь это прожектор на 220В, 110В мощностью 50 или 10 Вт (100Вт), уличного или промышленного исполнения.
Светодиоды в LED прожекторах
Из названия самих источников света понятно, что одним из основных компонентов стоит считать светодиоды) Масло масляное). Наиболее востребованными остаются LEDs следующих типов:
- мощные светодиоды 350 мА ( 1,3,5 Вт )
- сверхмощные диоды на основе COB технологии ( по мне - так самые предпочтительные )
- SMD светодиоды
Об основных достоинствах, недостатках, строении и т.п. можете прочитать в этом материале. Ниже я только заострю на основные отличия между данными типами диодов. Всю остальную информацию можно прочитать по ссылке, указанной выше.
Особенность устройства мощных светодиодов 1,3,5 Вт для прожекторов
Визуально Вы не сможете определить разницу между мощными диодами 1,3,5 Вт, если, конечно не "супер профессионал". Разницу можно определить только по силе света. И то, не всегда. Могут быть подвохи. Если есть специальный инструмент, то можно определить какой мощности диод, сравнив размеры самого кристалла. Но не у всех есть такие приборы. Да и в повседневной жизни они не очень нужны.
На фото Вы можете видеть, что производство таких типов диодов достаточно сложное. А это ведет к удорожанию последних.
По большому счету, мощные диоды 1,3,5 Вт уже устарели. Если брать во внимание из использование в светодиодных прожекторах. Для получения более-менее качественных световых характеристик диодов нужно большое количество. А это далеко не лучший вариант с позиции ценообразования. Я давно уже наблюдаю, как большинство продавцов пытается "хотя бы" куда-нибудь сбыть свой товар.
Но есть и плюсы в таких LEDs - тепловой нагрев. С ним достаточно просто справиться, по сравнению с другими типами чипов.
Сверхмощные светодиоды на основе технологии COB для прожекторов
На 2015-2016 года прожектора на таких диодах получили огромное предпочтение у покупателей. И это не только из-за дешевизны чипов, но и по большей части от того, что в один такой диод с легкостью можно "запихать" несколько кристаллов и получить от 10, 20, 30, 50 ВТ и более. Вплоть до 500 Вт! Есть уже и такие диоды. Я их не "пытал", но думаю с теплоотводом проблемы просто жуткие должны быть.
Конструктивно СОБ диоды также имеют большие отличия. От круглых, овальных, до прямоугольных и квадратных. В один корпус помещается от 9 до нескольких десятков кристаллов и заливаются люминофором.
Качественные светодиодные прожекторы отличаются от дешевых именно хорошими чипами. На хороших плата состоит из сплава меди, либо материалов повышенной теплопроводности. Это дает возможность получить до 0,5 К/Вт. Это позволяет получить эффективный теплоотвод. Большой популярностью на COB диодах стали прожектора мощностью 10, 20, 30 и 50 Вт.
Сверхяркие SMD светодиоды в устройстве прожекторов
SMD светодиоды получили свое название от английского Surface Montage Details - поверхностный монтаж деталей. Самыми распространенными SMD в прожекторах являются SMD 5050, SMD 2835 и SMD 5630 (5730). Также в продаже частенько замечаюи и СМД 7230, но пока их не тестировал и ничего про них сказать не могу. Но по первому впечатлению светят более, чем добротно. Производство прожекторов на любых диодах для поверхностногоомнтажа экономически оправданы. Стоимость достаточно низкая ( по сравнению с COB ) диодами, плюс к этому достаточно просто "бороться" с отводом тепла.
Виды и типы LED прожекторов на разных светодиодах
Вид прожекторов на разных диодах
В зависимости от устанавливаемых в корпус прожекторов диодов, последние имеют разнообразные виды и формы. Наиболее компактные - на СОБ диодах, средний размер имеют прожекторы, устроенные на SMD и самые большие - на мощных диодах 1,3,5Вт. Вообще, большой размер прожекторов на мощных чипах обуславливается только тем, что для хорошего светового потока требуется много диодов. Также не стоит забывать о необходимости устанавливать на такие светодиоды и вторичную оптику ( коллиматоры, линзы ), что также влияет наконечный размер прожектора.
Отражатели и линзы в LED прожекторах
Устройство прожекторов немыслимо без отражателей и линз. Оба этих оптических прибора служат для формирования определенного угла светового потока, получаемого мощными светодиодами. Правильно подобранная оптика максимально увеличит эффективность и плотность светового потока. Вся имеющаяся оптика подразделяется на линзы и на отражатели для светодиодов.
Линзы для светодиодов в прожекторах
Большинство линз выпускают из прочного стекла наивысшего качества. По большей части их устанавливают в прожекторы или светильники уличного освещения, промышленные источники света.
Основа любой линзы - боросиликатный материал, способный по своему составу придавать прочностные характеристики и придавать изделию высокий показатель прозрачности. В магазинах большой популярностью пользуются линзы с круговой и косинусной диаграммой.
Любой светодиод имеет первоначальную оптику с углом излучения 120 градусов. Нам не всегда нужен такой угол. Как правило, диодные прожекторы освещают только определенный участок помещения. Для изменения угла рассеивания производители используют в устройстве прожекторов коллиматорные и фокусирующие линзы, френелевские преломители и т.п.
Используя колиматоры мы получаем разнообразные пучки света. Наиболее распространенные линзы на 15, 30, 45, 60, 90 градусов. Менее распространены линзы на 126 градусов, позволяющие расширить угол излучения светодиода. Еще раз повторюсь... Коллиматорная вторичная оптика нашла широкое применение в прожекторах с мощными светодиодами.
Широкое применение получили фокусирующих линз в устройствах на COB светодиодах.
Принцип работы фокусирующих линз
Виды и типы отражателей в прожекторах
По способу распределения отраженного потока отражение может быть зеркальным ( направленным ), рассеянным ( диффузным ), направленно-рассеянным и смешанным. На основании этого, в прожекторах применяются и соответствующие отражатели. Если смотреть по видам, то отражатели подразделяются на: симметричные, ассиметричные, круглосимметричные, способные создать различные световые потоки по направленности и градусам.
Кругло-симметричные параболические отражатели
Симметричные отражатели устанавливают в прожекторы в том случае, если есть необходимость ограничить телесный угол распределения светового потока при условии широкого светораспределения в продольной плоскости. Отражатели таких типов имеют разную глубину и диаметр. В зависимости от глубины отражателя получается узколучевой, заливающий или рассеивающий световой поток.
Параболический диффузионный отражатель
Самые распространенные отражатели. Такие отражатели дают нам возможность получить от светодиода равномерно распределенный пучок света. Единственный минус таких устройств - их нельзя выполнять из цветных металлов.
Driver в устройстве светодиодных прожекторов
Светодиоды- полупроводниковые приборы, критичные к току. Для питания необходимо использовать специальные драйверы. Для питания светодиодов абсолютно не требуется больших напряжений. К примеру для мощных диодов достаточно 3,2В в 350 мА ( 1W ). COB кристаллы способны работать от 5,5 В. По факту, на LED можно и 6000 Вольт "кинуть". Диод берет только то напряжение, которое ему необходимо. С током же будут проблемы. Если Вы захотите и подадите на кристалл ток, превышающий заводские характеристики, то попросту сожгете свой диодик. Хорошо, если это дешевые приборы, а если 20,30,100 Вт матрицы? Цена на них кусается. И не каждому хочется заново тратить свои кровные на покупку очередных матриц только из-за того, что решили поэкспериментировать и подать заведомо не предназначенный для него ток. Исходя из этого любое устройство светодиодного источника света, будь это светильник, лампа или прожектор имеет LED драйвер. Основное и главное его предназначение - стабилизация постоянного тока. Основное требование любого драйвера - КПД, стабильность выходного тока и надежность.
Если более популярно, то при напряжении 220 В из блока питания (драйвера) будет выходить определенное заданное значение напряжения и СТРОГО определенный ток. Конечно, Вам никто не мешает собрать прожектор самостоятельно на коленке и запитать его первым попавшимся блоком питания, например, от компьютера. Но дам гарантию, что в 90 процентах случаев Ваше чудо-творение не долго проработает. Блок питания -- это не драйвер. Он выдает необходимое напряжение, но никак не стабилизирует ток.
В 2015-2016 году по статистике производителей, наиболее популярными прожекторами были и есть - 10 Вт светильники. Для прожекторов с такой мощностью необходимо использовать драйвер с диапазоном напряжений 20-38В и током 350-700мА.
Монтажные платы и радиаторы, устанавливаемые в корпус прожекторов
Последнее, что нам предстоит рассмотреть на сегодня - теплоотвод.
КПД любого источника света на LEDs на порядок больше, чем у ламп накаливания. Температурный режим ЛН составляет порядка 200 градусов Цельсия. В светодиодах - не более 100-150, в зависимости от типа. Температура осветительной арматуры не должна превышать 80 градусов, что позволить свести к минимуму процесс деградации кристаллов светодиода.
Для снижения рабочей температуры светодиодов устройство прожекторов имеет монтажную плату и радиатор. Раньше платы изготавливали из алюминия. В настоящий момент развивается технология производства плат на основе керамо-алюминиевых материалов. Это позволяет получить не только хорошее электрическое соединение, но и достаточно эффективный теплоотвод. При монтаже диодов на плату необходимо обильно смазывать место соединение чипов с платой термопроводящей пастой.
Бытует ошибочное мнение, что монтажная плата, выполненная из алюминия может самостоятельно справиться с теплом. Это не верно. Дополнительный теплоотвод в любом светодиодном источнике света просто необходим. Для прожекторов и ламп - это радиатор. У каждого производителя свои наработки. Радиаторы имеют форму кругов, шаров, прямоугольников и т.д. и т.п. Есть хорошие экземпляры прожекторов - с дополнительным искусственным охлаждением - вентилятором. К таким можно отнести источники мощностью от 100 Вт. В таких конструкциях кулеры более чем желательны.
Вообще - радиаторы - достаточно щекотливая тема. И как-нибудь я обязательно посвящу этому большую статью. А пока раскланиваюсь...)
leds-test.ru
Светодиод. Устройство, строение и принцип работы. Светодиодные лампы
Светодиод (также используется сокращение СИД - светоизлучающий диод; латинский эквивалент – LED: light-emitting diode) - это полупроводниковый прибор с электронно-дырочным р-n переходом, который продуцирует оптическое излучение, когда через него проходит электрический ток.
Принцип работы светодиода.
В основе работы Led светодиода лежит p-n-переход, так называемый электронно-дырочный переход. Работа светодиода построена на взаимодействии двух полупроводников p-типа и n-типа. P – positive, то есть положительный тип, или дырочный. N – negative, то есть отрицательный тип, или электронный. В результате пропускания электрического тока в месте соприкосновения двух полупроводников происходит переход от одного типа проводимости к другому.
Когда через полупроводники проходит электрический ток, отрицательный заряд электронов соединяются с ионами положительно заряженных дырок. В этот момент выделяется энергия, и мы видим излучение света.
Устройство светодиода.
Светодиоды имеют самые разные формы. Но самая распространенная конструкция светодиода - традиционный 5-миллиметровый корпус. У такого корпуса сверху расположена линза, а внизу рефлектор. Внутри корпуса располагается кристалл, который излучает свет при прохождении электрического тока.
Схема светодиода незамысловата: он имеет два вывода - анод и катод. На катоде как раз и расположен алюминиевый параболический рефлектор (отражатель). Он внешне выглядит, как чашеобразное углубление, на дно которого помещен кристалл. Полупроводниковый монокристалл – это основной элемент лед светодиода, в котором и происходит p-n-переход. Как правило, монокристалл имеет форму кубика размером 0,3x0,3x0,25 мм.
Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус являющийся одновременно фокусирующей линзой вместе с рефлектором определяют угол излучения светодиода и направленность пучка света.
Виды светодиодов, спектр и цвета.
Современные светодиоды бывают всех цветов радуги: красные, оранжевые, желтые, зеленые, синие, белые.
Свечение, которое излучает светодиод при подключении его к электрическому току, зависит не от цветовой окраски корпуса. Он зависит от материала, который используется при производстве полупроводника. Так, например, примеси алюминия, индия, гелия, фосфора вызывают свечение от красного до желтого цвета. Азот, галлий, индий придают излучаемому свету цвета от зеленого до голубого. Чтобы добиться белого свечения в кристалл добавляют люминофор, используемый для производства люминесцентных ламп.
Яркость и мощность светодиода.
Обычно светодиоды рассчитаны на силу тока в 20 мА. Производятся также, например, четырехъкристальные диоды, которые рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА.
Логично предположить, что яркость светодиода зависит от его мощности. Чем больше мощность, тем больше яркость. Но есть ограничения для силы тока, определенные сопротивлением полупроводникового материала. Иначе может произойти электрический пробой, и лед диод может сгореть.
Светодиодные светильники нельзя подключать в электрическую сеть напрямую. Например, для подключения светодиодной ленты используются специальные устройства-трансформаторы. Правильно подобрать трансформатор вам поможет наш электрик в Королеве или наш мастер электрик в Юбилейном. Если вы живете в других городах Подмосковья, то для подключения светодиодной ленты вы можете, например, вызвать электрика в Мытищи или заказать услуги электрика в Щелково.
Основные характеристики светодиодов.
- Продолжительный ресурс работы: в зависимости от производителя и параметров от 30 000 до 100 000 часов. Для сравнения, срок службы электрических ламп накаливания составляет 1000 часов.
- Энергосберегающие технологии – для работы диода необходимо около 10% энергии, требуемой для обычной лампочки накаливания.
- Надежность и механическая прочность. Если изучить, почему перегорают электрические лампы накаливания, то можно увидеть, что одной из причин является простая вибрация. Для диода вибрация не страшна.
- Разнообразная цветовая гамма, а также выбор направления светового излучения.
- Лед светодиоды производятся из экологически чистых материалов, не содержат ртуть.
К сожалению, сегодня полки магазинов зачастую наводнены низкокачественными китайскими светодиодными лампами. И потому не всегда они являются настолько долговечными и надежными, как это заявлено производителями и номинальной технологией. Поэтому при покупке светодиодных ламп следует внимательно изучить их характеристики и отзывы. Выбирайте только качественные светодиодные светильники, и тогда они будут вас радовать долгие годы.
Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, электрик Королёв.
elektrik-korolev.ru
Принцип работы светодиода: устройство и характеристики светодиода
Осветительные приборы, где источниками света служат светодиоды, получают все большее распространение во всех областях. Для того, чтобы правильно их использовать, необходимо знать все особенности и принцип работы светодиода.
Физические свойства светодиодов
Каждый светодиод является полупроводниковым диодом, способным преобразовывать электрическую энергию в световое излучение. Когда по диоду протекает прямой ток, происходит перенос электронов или дырок в определенную область. При этом, происходит смена энергетических уровней с высокого на низкий с выделением избыточной энергии в виде излучения квантов света.
Для того, чтобы излучение светодиодов было разноцветным, в материал полупроводников добавляются специальные активирующие вещества. В основном, используется монохроматическое излучение, где для каждого диода предусмотрена собственная длина волны. Цвета свечения могут быть управляемыми. Для этого применяются два перехода, излучающих свет, с различными спектральными характеристиками. Эти характеристики показывают, в какой зависимости находится интенсивность излучения и длина излучаемой световой волны.
Параметры и характеристики светодиодов
Излучение светодиода находится в зависимости от угла направленности, определяемого его конструкцией. Свое влияние на интенсивность оказывают линзы и материал, использованный для защиты кристалла. Светодиод может излучать рассеянный или узконаправленный свет.
На свойства светодиодов оказывает влияние температура окружающей среды. Например, при повышении температуры, падает яркость свечения, уменьшается напряжение. Получается прямая линейная зависимость температуры и яркости. Поэтому, в зависимости от использования, светодиоды имеют большой разброс параметров.
Наиболее высокие требования предъявляются к диодам, предназначенным для наружных объектов. Они должны работать в очень широком диапазоне температур, не изменяя, при этом, яркости света. Такие параметры обеспечиваются с помощью современных технологий и новейшего оборудования. Принцип работы светодиода связан с высокой скоростью их действия. Для нарастания излучения достаточно нескольких секунд от момента прямого воздействия импульса тока.
Данные световые приборы различаются между собой и внешними конструктивными признаками. Корпуса могут быть металлическими с линзами из стекла, обеспечивающими острое направленное излучение. Используются и оптически прозрачные пластмассовые корпуса с рассеянным светом. Все они предназначены для конкретных условий использования, в зависимости от конструкции, параметров и технических характеристик.
Устройство светодиода
electric-220.ru
Как устроен светодиод
Светодиод он же LED, это сложное полупроводниковое устройство с высоким КПД. Светодиод теряет всего 4 % энергии которая преобразуется в тепло, а остальные 96 % преобразуется в свет.
К сравнению, лампа накаливания имеет вольфрамовую нить, нагреваясь до 2000 градусов она начинает излучать свет. При этом, 96 % энергии тратится на нагрев нити.
И так светодиод с нуля.
Основой светодиода является полупроводник, особый материал который при определенных условиях пропускает ток. Основа для изготовления полупроводников в светодиодах, является синтетическая сапфировая подложка, которую выращивают в лаборатории.
Подложку размещают в камере реакторе, после чего в течение 6 часов при температуре 1000 градусов на ней выращивают сложную полупроводниковую гетероструктуру, состоящую из нитридов галлия, индия и алюминия.
Атомы этих металлов, помещены в специальных металлических контейнерах расположенных в емкостях с жидкостью, для поддержания определенной температуры. От них по трубкам, через форсунки попадают в камеру реактор.
Атомы из емкостей поступают к форсункам расположенным внутри камеры реактора.
Открывая в определенном порядке форсунки, металла органические соединения оседают на подложке.
Химические процессы.
Нитриды осаждаются слоями в 1 нано метр, в результате химической реакции между аммиаком и парами металла органических соединений.
Внедрением примесей кремния и магния получают в нитридах необходимые N и P типы проводимости. После завершения процесса подложку извлекают из камеры и проверяют на электро проводимость.
Что за внутренний процесс, откуда свет?
Все материалы состоят из атомов и летающих вокруг них электронов, в некоторых веществах внешние электроны, слабо связанны с ядром своего атома. Тем самым они способны покинуть его, став свободными электронами, в физике их обозначают буквой ( n ), именно они и переносят на себе электрический заряд. Чем больше у вещества свободных электронов, тем выше его электро проводимость. На месте где располагался электрон образуется сгусток электромагнитного поля, в физике обозначается буквой ( p ), его называют дыркой.
После обработки в камере реакторе, у сапфира появляется много свободных электронов. Пропуская ток через подложку, свободные электроны ( n ), начинают двигаться на встречу дыркам ( p ). Проходя через дырку, электрон выбрасывает фотон света который мы видим.
Идем дальше.
После успешного завершения проверки, светодиодную подложку направляют на дальнейшую обработку. При помощи травления химическими составами или лазером, светодиодным кристаллам задают необходимые формы и размеры. В зависимости от мощности будущего светодиода определяются его параметры и габариты.
Как только подложка обретает свою микро архитектуру, то ее вновь отправляют на тестирование только уже каждого микро чипа в отдельности. Процесс проверки 6000 тысяч кристаллических чипов, занимает 3 часа, при диаметре основной подложки 15 см.
Прошедшие проверку светодиодные чипы, загружают в станок который автоматически наносит контактные группы и извлекает чипы, размещая их в пластиковые или керамические корпуса. Проделать это в ручном режиме не возможно, имея даже микроскоп.
Последний штрих.
После размещения чипов, другой аппарат заливает чип светодиода спец составом из геля и люминофора. Этот состав защищает чип от внешних вредоносных факторов, а люминофор придает светодиодному чипу необходимый оттенок. В основном это теплый белый свет. Все кристаллы изначально светятся синим светом. Для получения другого свечения, в гетероструктуру светодиодного чипа, вносят примеси других атомов металла. В качестве заливки используют прозрачный силиконовый гель.
Светодиодный чип готов для монтажа в любой светодиодный прибор или устройство. Монтаж также выполняется автоматизированной машиной. Но и в ручную их монтировать уже вполне возможно, необходимо знать параметры пайки и располагать хорошим инструментом.
all-leds.ru
Определение светодиода и его конструкция Светодиод - это полупроводниковый прибор, действие которого основано на явлении испускания фотонов, возникающем при рекомбинации носителей разноименных зарядов в области контакта полупроводниковых материалов с разными типами проводимости (так называемый р-n-переход). Явление свечения (выделение фотонов при совершении упомянутого p-n-перехода) сопровождало работу уже самого первого полупроводникового диода, разработанного для того, чтобы пропускать ток в одном направлении, и использовавшегося в качестве выпрямителя. Но оно скорее мешало, чем помогало ему выполнять свои основные функции. Ну а с тем, что мешает работать, как известно, надо бороться всеми возможными способами. И боролись. Примерно до середины 50-х гг. XX в. Но уже к концу этого десятилетия положение изменилось, и были начаты работы по увеличению яркости свечения. И в начале 60-х гг. появились первые диоды, действующие как источник света, - светодиоды. Светились они красным, очень слабо, но тем не менее довольно быстро нашли себе применение в качестве индикаторов включения в самых разных приборах, сменив мини-лампы накаливания. Но дальше этого дело довольно долго не шло. С мертвой точки процесс сдвинулся в начале 90-х, когда создали первый синий светодиод. Правда, чтобы увидеть его свечение, необходимо было воспользоваться мощным увеличительным стеклом. А уж стоил он столько!.. Но светился. Затем, как утверждают специалисты, произошла революция, которую совершил японский профессор С. Накамура, создав яркий синий светодиод. Дальнейшие события развивались, как в ускоренной киносъемке: появились зеленые светодиоды, за ними желтые и, наконец, белые. Практически одновременно с разработкой велась подготовка к их промышленному выпуску. И пять-семь лет назад они впервые были использованы при создании наружной рекламы. В последние же год-полтора светодиоды стали массовым видом продукции, выпускаемой производителями Европы, Юго-Восточной Азии, США и России. Основу светодиода (Light Emitting Diode, или LED) составляет искусственный полупроводниковый кристаллик размером 0,3 ? 0,3 мм, в котором реализован вышеупомянутый p-n-переход. Цвет свечения зависит от материала кристаллика. Так, красные и желтые светодиоды, как правило, изготовляют на основе арсенида галлия, зеленые и синие - на галлий-нитридной основе. Усиления свечения добиваются разными способами. В одних случаях в состав кристаллика вводят специальные добавки и присадки, в других - применяют многослойные структуры, что позволяет реализовать в одном кристаллике сразу несколько р-n-переходов, увеличив тем самым яркость его свечения. Кристаллик "сажают" в металлическую полированную чашечку (медную или алюминиевую), которая является отражателем и "катодом" (-). К самому кристаллику "приваривают" золотую нить-"анод" (+). Затем всю конструкцию заливают прозрачным компаундом, которому придают определенную форму (назовем это колбой). От нее зависит угол излучения света, испускаемого кристалликом. Если верх колбы плоский, свет выходит широким пучком (угол составляет 120-130°). Если верх выпуклый, получается линза, собирающая свет в более узкий пучок (угол 8-60°). Чем меньше угол излучения, тем более интенсивный световой поток дает кристалл. Выпускаются светодиоды разных цветов: красного, желтого, зеленого, синего, сине-зеленого и белого, причем белый с недавних пор бывает нескольких оттенков (холодного, теплого, "солнечного" и т. д.). |
www.diodmag.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.