Трансформатор это устройство предназначенное для
Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.
Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.
Устройство трансформатора
Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.
1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода
Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.
Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.
Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.
Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.
Вид уличного силового трансформатора
Конструкция силового трансформатора подобна обычному бытовому трансформатору.
Виды
Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.
В зависимости от различных факторов силовые трансформаторы делятся на виды:
- По выполняемой задаче . Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
- По числу фаз . Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
- По количеству обмоток . Двухобмоточные и трехобмоточные.
- По месту монтажа . Наружные и внутренние.
Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.
Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.
Принцип действия
Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.
С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.
Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.
В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.
Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.
Сфера использования
Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.
Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:
- В сварочном оборудовании.
- Для электротермических устройств.
- В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
- Номинальное значение напряжения и мощности.
- Наибольший ток обмоток.
- Габаритные размеры.
- Вес устройства.
Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.
Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:
I = S х √3U, где S и U – это мощность по номиналу, и напряжение.
Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.
Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.
Установка и эксплуатация
Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.
Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.
Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.
Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.
После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.
Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.
Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2 , где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1,U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.
ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.
ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
ОБЛАСТЬ ПРИМЕНЕНИЯ
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.
В зависимости от назначения трансформаторы делят на:
Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.
Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.
Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.
–>
© 2012-2019 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Что такое трансформатор
Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.
В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.
Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.
Принцип работы трансформатора
В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.
В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.
Режимы работы трансформатора
Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.
В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.
Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.
Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.
Виды трансформаторов
В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.
Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.
Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.
Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.
Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.
Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.
Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.
Уравнения идеального трансформатора
Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.
Магнитопровод трансформатора
Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.
В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.
Обмотка трансформатора
Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.
В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.
Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.
Применение трансформаторов
Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.
Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).
Схема трансформатора
- Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
- Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
- Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
- Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
- Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
- Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
- Изоляция проводников стекло-шелк.
- Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
- Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
- Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
- Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
- Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.
ТРАНСФОРМАТОР — это… Что такое ТРАНСФОРМАТОР?
- ТРАНСФОРМАТОР
- ТРАНСФОРМАТОР, устройство для преобразования переменного тока и НАПРЯЖЕНИЯ с сохранением частоты. Состоит из двух или более проволочных обмоток, намотанных на сердечник и индуктивно связанных. Входной ток подается на одну из обмоток (первичную), выходной снимается с другой обмотки (вторичной). Если пренебречь потерями на сердечнике, отношение входного и выходного напряжений равно отношению числа витков проволоки на первой обмотке к числу витков второй. см. также ЭЛЕКТРИЧЕСКИЙ ТОК.
Научно-технический энциклопедический словарь.
Синонимы:
- ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ
- ТРАНСФОРМНЫЙ СБРОС
Смотреть что такое «ТРАНСФОРМАТОР» в других словарях:
трансформатор — Статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем … Справочник технического переводчика
ТРАНСФОРМАТОР — (от латинского transformo преобразую) электрический, устройство для преобразования переменного напряжения по величине. Состоит из одной первичной обмотки и одной или нескольких вторичных и ферромагнитного сердечника (магнитопровода). Основные… … Современная энциклопедия
ТРАНСФОРМАТОР — прибор для превращения переменных токов малой силы и большого напряжения в токи большой силы и малого напряжения, или обратно. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. трансформатор I. (лат.… … Словарь иностранных слов русского языка
трансформатор — преобразователь; актер, фокусник Словарь русских синонимов. трансформатор сущ., кол во синонимов: 7 • автотрансформатор (2) • … Словарь синонимов
ТРАНСФОРМАТОР — (автотрансформатор) аппарат, понижающий или повышающий напряжение переменного тока. Трансформатором, понижающим напряжение до безопасной величины, пользуются для питания электрических звонков переменного тока (обычно трансформатор составляет… … Краткая энциклопедия домашнего хозяйства
Трансформатор — (от латинского transformo преобразую) электрический, устройство для преобразования переменного напряжения по величине. Состоит из одной первичной обмотки и одной или нескольких вторичных и ферромагнитного сердечника (магнитопровода). Основные… … Иллюстрированный энциклопедический словарь
ТРАНСФОРМАТОР — (от лат. transformo преобразую) устройство для преобразования каких либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор) или объектов (напр., фототрансформатор) … Большой Энциклопедический словарь
трансформатор — а, м. transformateur <лат. tranformaro < trans через, сквозь + formo придаю вид, образовываю. 1. Преобразователь чего л. из одного вида, состояния в другой вид, другое состояние. < Кристаллические фосфоры> превращают один вид света в… … Исторический словарь галлицизмов русского языка
ТРАНСФОРМАТОР — ТРАНСФОРМАТОР, трансформатора, муж. (от лат. transformo придаю другой вид). 1. Преобразователь, переделыватель (книжн. редк.). 2. Аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения (физ., тех.). 3.… … Толковый словарь Ушакова
ТРАНСФОРМАТОР 1 — ТРАНСФОРМАТОР 1, а, м. Устройство для преобразования видов, форм или свойств энергии. Электрический т. (электромагнитный аппарат, меняющий напряжение тока). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Книги
- Трансформатор, Портнягин Дмитрий. Дмитрий Портнягин — бизнес-блогер № 1 в России по охвату аудитории, долларовый миллионер, основатель логистической компании «ТранзитПлюс» . Дмитрий Портнягин — простой парень родом из Тынды,… Подробнее Купить за 844 руб
- Трансформатор 2. Как развить скорость в бизнесе и не сгореть, Портнягин Дмитрий. Дмитрий Портнягин — бизнес-блогер № 1 (YouTube-канал «Трансформатор»- 1, 35 млн подписчиков)*, серийный предприниматель, основатель бизнес-сообщества» Трансформатор» и автор самой продаваемой… Подробнее Купить за 774 руб
- Трансформатор 2 Как развить скорость в бизнесе и не сгореть, Портнягин Д.. Дмитрий Портнягин — автор самого популярного* бизнес-канала на YouTube («Трансформатор» — 1, 35 миллиона подписчиков) и самой успешной** бизнес-книги в России. Более 200 тысяч экземпляров… Подробнее Купить за 620 руб
Другие книги по запросу «ТРАНСФОРМАТОР» >>
режимы, схема, назначение, из чего состоит
Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.
Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.
Назначение трансформаторов
Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.
Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.
Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.
Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:
- импульсные трансформаторы;
- силовые трансформаторы;
- трансформаторы тока.
Принцип работы трансформатора
Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.
Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.
Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.
Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.
Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.
Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.
Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.
Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.
Идеальный трансформатор
Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.
Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Потери энергии в трансформаторе
Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.
В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.
Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!
Электрический трансформатор. Основное оборудование электрических станций и подстанций.
Основное оборудование электрических станций и подстанций
Трансформатор
Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.
Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.
Базовые принципы действия трансформатора
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
- Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.
Исключение — силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.
Основные части конструкции трансформатора
Основными частями конструкции трансформатора являются:
- магнитопровод
- обмотки
- каркас для обмоток
- изоляция
- система охлаждения
- прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)
В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:
- Стержневой
- Броневой
- Тороидальный
Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.
В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.
Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.
Режимы работы трансформатора
Режим холостого хода
Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»).
Режим нагрузки
Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной — ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.
Режим короткого замыкания
Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.
Режим холостого хода
При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.
Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.
Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.
Режим короткого замыкания
В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.
Данный режим широко используется в измерительных трансформаторах тока.
Режим нагрузки
При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.
Виды трансформаторов
Силовой трансформатор
Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).
Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».
Автотрансформатор
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.
Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.
Трансформатор тока
Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.
Трансформатор напряжения
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
Разделительный трансформатор
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.
Согласующий трансформатор
Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.
Пик-трансформатор
Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
Трансфлюксор
Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.
История создания трансформаторов
Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.
Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).
Братья Гопкинсоны разработали теорию электромагнитных цепей.
В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.
В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.
30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.
Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.
Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.
С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.
1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).
В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.
Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.
Трансформатор. Устройство и принцип действия трансформатора.
Простейший трансформатор представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.
Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток
Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.
Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)
Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.
Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов
Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.
Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.
Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.
Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)
Первым трансформатором может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.
Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время
Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.
Устройство и принцип работы трансформатора
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.
Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.
Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.
В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.
Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.
1. Принцип работы трансформатора.
Принцип работы трансформатора основан на явлении электромагнитной индукции.
Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.
При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.
В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.
Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.
Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.
Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.
Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.
Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.
Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.
Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.
Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.
Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.
2. Устройство трансформатора.
2.1. Магнитопровод. Магнитные материалы.
Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.
Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.
Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.
Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.
Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.
Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.
Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.
Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.
Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.
2.2. Типы магнитопроводов.
Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.
Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.
Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.
В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.
Стержневые.
В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.
Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.
Броневые.
В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.
Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.
Тороидальные.
Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.
Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.
Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.
За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.
На этом пока закончим. Продолжим во второй части.
Удачи!
Литература:
1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
Силовые трансформаторы. Виды и устройство. Работа и применение
Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.
Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.
Устройство трансформатора
Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.
1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода
Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.
Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.
Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.
Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.
Конструкция силового трансформатора подобна обычному бытовому трансформатору.
Виды
Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.
В зависимости от различных факторов силовые трансформаторы делятся на виды:
- По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
- По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
- По количеству обмоток. Двухобмоточные и трехобмоточные.
- По месту монтажа. Наружные и внутренние.
Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.
Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.
Принцип действия
Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.
С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.
Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.
В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.
Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.
Сфера использования
Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.
Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии.
Вот некоторые области применения силовых трансформаторов:
- В сварочном оборудовании.
- Для электротермических устройств.
- В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
- Номинальное значение напряжения и мощности.
- Наибольший ток обмоток.
- Габаритные размеры.
- Вес устройства.
Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.
Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:
I = S х √3U, где S и U – это мощность по номиналу, и напряжение.
Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.
Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.
Установка и эксплуатация
Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.
Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.
Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.
Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.
После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.
Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.
Похожие темы:
[Решено] Трансформатор — это устройство на
Вопрос:
Бесплатная практика с пробными тестами из тестовой тетради
Опции:
- повышение (или понижение) напряжения постоянного тока
- выработка электроэнергии
- повышение (или понижение) напряжения переменного тока
- преобразование переменного тока в постоянный
Правильный ответ:
Вариант 3 (Решение ниже)
Этот вопрос ранее задавали в
Официальный доклад BSF RM (проведено 22 сентября 2019 г.)
Решение:
Скачать вопрос с решением PDF ››
КОНЦЕПЦИЯ :
- Трансформатор используется для преобразования низкого напряжения (или большого тока) в высокое напряжение (или низкий ток) и высокого напряжения в низкое напряжение.
- Работает по принципу электромагнитной индукции .
- Первичная катушка имеет Np витков , а другая катушка, называемая вторичной обмоткой , имеет Np витков .
- Обычно первичная катушка работает с входной катушкой , а вторичная обмотка работает как выходная катушка трансформатора .
- Когда на первичную катушку подается переменное напряжение, результирующий ток создает переменный магнитный поток, который связывает вторичную катушку и индуцирует в ней ЭДС.Величина этой ЭДС зависит от количества витков вторичной обмотки.
- В трансформаторе напряжение во вторичной обмотке рассчитывается по
\ (\ frac {N_ {s}} {N_ {p}} = \ frac {V_ {s}} {V_ {p}} \)
Где Np и Ns — количество витков в первичной обмотке и вторичные обмотки соответственно, а Vp и Vs — среднеквадратичные напряжения на первичной и вторичной обмотках соответственно.
- В трансформаторе нагрузка подключена ко вторичной обмотке, а первичная обмотка трансформатора подключена к источнику переменного тока.
ПОЯСНЕНИЯ:
- Поскольку трансформатор преобразует более высокое напряжение в более низкое напряжение и наоборот , Таким образом, мы можем сказать, что его можно использовать для получения подходящего напряжения. Поэтому вариант 3 правильный.
- Кроме того, трансформатор работает по принципу электромагнитной индукции. Его можно использовать только для получения подходящего переменного напряжения, но не постоянного.
Скачать вопрос с решением PDF ››
Трансформатор
— Энергетическое образование
Рисунок 1.Трансформатор, устанавливаемый на площадку для распределения электроэнергии. [1]
Трансформатор — это электрическое устройство, которое использует электромагнитную индукцию для передачи сигнала переменного тока от одной электрической цепи к другой, часто изменяя (или «преобразуя») напряжение и электрический ток. Трансформаторы не пропускают постоянный ток (DC) и могут использоваться для снятия постоянного напряжения (постоянного напряжения) из сигнала, сохраняя при этом изменяющуюся часть (переменное напряжение). В электрической сети трансформаторы играют ключевую роль в изменении напряжения, чтобы уменьшить потери энергии при передаче электроэнергии.
Трансформаторы изменяют напряжение электрического сигнала, исходящего от электростанции, обычно увеличивая (также называемое «повышением») напряжение. Трансформаторы также снижают («понижают») напряжение на подстанциях, а также в распределительных трансформаторах. [2] Трансформаторы также используются в составе устройств, как трансформаторы тока.
Как работают трансформаторы
Часто кажется удивительным, что трансформатор сохраняет общую мощность неизменной при повышении или понижении напряжения.Следует иметь в виду, что при повышении напряжения ток падает:
- [математика] P = I_1 V_1 = I_2 V_2 [/ математика]
Трансформаторы используют электромагнитную индукцию для изменения напряжения и тока. Это изменение называется действием трансформатора и описывает, как трансформатор изменяет сигнал переменного тока с его первичной на вторичную составляющую (как в приведенном выше уравнении). Когда на первичную катушку подается сигнал переменного тока, изменяющийся ток вызывает изменение магнитного поля (становится больше или меньше).Это изменяющееся магнитное поле (и связанный с ним магнитный поток) будет проходить через вторичную катушку, индуцируя напряжение на вторичной катушке, тем самым эффективно связывая вход переменного тока от первичного ко вторичному компоненту трансформатора. Напряжение, приложенное к первичному компоненту, также будет присутствовать во вторичном компоненте.
Как упоминалось ранее, трансформаторы не пропускают вход постоянного тока. Это известно как изоляция постоянного тока. [2] Это связано с тем, что изменение тока не может быть вызвано постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.
Рисунок 1. Простой рабочий трансформатор. [3] Ток [math] I_p [/ math] поступает с напряжением [math] V_p [/ math]. Ток проходит через [math] N_p [/ math] обмотки, создавая магнитный поток в железном сердечнике. Этот поток проходит через [math] N_s [/ math] витков провода на другом контуре. Это создает ток [math] I_s [/ math] и разность напряжений во второй цепи [math] V_s [/ math]. Электроэнергия ([математика] V \ умноженная на I [/ математика]) остается прежней.
Основным принципом, который позволяет трансформаторам изменять напряжение переменного тока, является прямая зависимость между соотношением витков провода в первичной обмотке и вторичной обмотке и отношением первичного напряжения к выходному напряжению.Отношение числа витков (или петель) первичной обмотки к числу витков вторичной обмотки известно как коэффициент витков . Соотношение витков устанавливает следующее соотношение с напряжением:
[математика] \ frac {N_p} {N_s} = \ frac {V_p} {V_s} = \ frac {I_s} {I_p} [/ math]
- [math] N_p [/ math] = Количество витков в первичной катушке
- [math] N_s [/ math] = Количество витков вторичной катушки
- [math] V_p [/ math] = напряжение на первичной обмотке
- [math] V_s [/ math] = Напряжение на вторичной обмотке
- [math] I_p [/ math] = Ток через первичный
- [math] I_s [/ math] = Ток через вторичную обмотку
Из этого уравнения, если количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке ([math] N_p \ gt N_s [/ math]), то напряжение на вторичной катушке будет на меньше, чем на , чем в первичной катушке.Это известно как понижающий трансформатор, потому что он понижает или понижает напряжение. В таблице ниже показаны распространенные типы трансформаторов, используемых в электрической сети.
Тип трансформатора | Напряжение | Передаточное число | Текущий | Мощность |
Понижение | входное (первичное) напряжение> выходное (вторичное) напряжение | [math] N [/ math] p > [math] N [/ math] s | [math] I [/ math] p <[math] I [/ math] s | [math] P [/ math] p = [math] P [/ math] s |
Шаг вперед | входное (первичное) напряжение <выходное (вторичное) напряжение | [math] N [/ math] p <[math] N [/ math] s | [math] I [/ math] p > [math] I [/ math] s | [math] P [/ math] p = [math] P [/ math] s |
Один к одному | входное (первичное) напряжение = выходное (вторичное) напряжение | [math] N [/ math] p = [math] N [/ math] s | [math] I [/ math] p = [math] I [/ math] s | [math] P [/ math] p = [math] P [/ math] s |
Трансформатор один к одному будет иметь одинаковых значений для всего и используется в основном для цель обеспечения изоляции постоянного тока.
Понижающий трансформатор будет иметь на более высокое первичное напряжение, , чем вторичное напряжение, но на более низкое значение первичного тока, чем его вторичный компонент.
В случае повышающего трансформатора первичное напряжение будет ниже , чем вторичное напряжение, что означает, что первичный ток будет больше, чем вторичный компонент.
Эффективность
В идеальных условиях напряжение и ток изменяются с одинаковым коэффициентом для любого трансформатора, что объясняет, почему значение первичной мощности равно значению вторичной мощности для каждого случая в приведенной выше таблице.По мере того, как одно значение уменьшается, другое увеличивается, чтобы поддерживать постоянный равновесный уровень мощности. [2]
Трансформаторы могут быть чрезвычайно эффективными. Трансформаторы большой мощности могут достичь отметки эффективности 99% в результате успехов в минимизации потерь в трансформаторе. Однако трансформатор всегда будет выдавать немного меньшую мощность, чем его входная мощность, поскольку полностью исключить потери невозможно. Есть некоторое сопротивление трансформатора.
Чтобы узнать больше о трансформаторах, см. Гиперфизику.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
Трансформатор — это устройство для увеличения или
Трансформатор — это устройство для увеличения или уменьшения a. c. Напряжение.
Конструкция трансформатора
Условное обозначение трансформатора
Как работает трансформатор Сердечник из ламинированного мягкого железа Входное напряжение Выходное напряжение (переменный ток) Первичная катушка Вторичная катушка
Все трансформаторы состоят из трех частей: 1.Первичная катушка — на эту катушку подается входящее напряжение Vp (напряжение на первичной катушке). 2. Вторичная катушка — обеспечивает выходное напряжение Vs (напряжение на вторичной катушке) на внешнюю цепь. 3. Ламинированный железный сердечник — он магнитно связывает две катушки. Обратите внимание, что между двумя катушками нет электрического соединения, которые построены с использованием изолированного провода.
Два типа трансформатора Повышающий трансформатор увеличивает напряжение: на вторичной обмотке больше витков, чем на первичной.Понижающий трансформатор снижает напряжение — на вторичной обмотке меньше витков, чем на первичной. Чтобы повысить напряжение в 10 раз, на вторичной катушке должно быть в 10 раз больше витков, чем на первичной. Соотношение витков говорит нам, на какой коэффициент будет изменяться напряжение.
Формула для трансформатора, где Vp = первичное напряжение Vs = вторичное напряжение Np = количество витков в первичной обмотке Ns = количество витков во вторичной обмотке.
Рабочий пример No.1 На схеме изображен трансформатор. Рассчитайте напряжение на вторичной обмотке этого трансформатора. Повышающий трансформатор!
Решение
Рабочий пример № 2 Трансформатор с 1380 витками в первичной обмотке должен использоваться для преобразования сетевого напряжения 230 В для работы лампы 6 В. Сколько витков должна иметь вторичная обмотка этого трансформатора? VP = 230 В NP = 1380 Очевидно Понижающий трансформатор !! VS = 6 В NS =?
Решение
Входное напряжение и выходное напряжение не совпадают по фазе Когда входное напряжение имеет максимальное / минимальное значение, выходное напряжение равно нулю и наоборот
Основы работы с трансформаторами и принципы работы с трансформаторами
Одна из основных причин, по которой мы используем переменные напряжения и токи переменного тока в наших домах и на рабочих местах, заключается в том, что источники переменного тока можно легко генерировать при подходящем напряжении, преобразовывать (отсюда и название трансформатор) в гораздо более высокие напряжения, а затем распространять по стране с использованием национальная сетка пилонов и кабелей на очень большие расстояния.
Причина преобразования напряжения на гораздо более высокий уровень заключается в том, что более высокие напряжения распределения подразумевают более низкие токи при той же мощности и, следовательно, более низкие потери I 2 * R в сетевой кабельной сети. Эти более высокие напряжения и токи передачи переменного тока могут быть затем снижены до гораздо более низкого, безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в наших домах и на рабочих местах, и все это возможно благодаря базовому трансформатору напряжения .
Типовой трансформатор напряжения
Трансформатор напряжения можно рассматривать как электрический компонент, а не как электронный компонент. Трансформатор в основном представляет собой очень простое статическое (или стационарное) электромагнитное пассивное электрическое устройство, которое работает по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое.
Трансформатор делает это путем соединения двух или более электрических цепей с помощью общей колеблющейся магнитной цепи, которая создается самим трансформатором.Трансформатор работает на принципах «электромагнитной индукции» в форме взаимной индукции.
Взаимная индукция — это процесс, при котором катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости от нее. Тогда мы можем сказать, что трансформаторы работают в «магнитной области», а трансформаторы получили свое название от того факта, что они «преобразуют» один уровень напряжения или тока в другой.
Трансформаторы
могут увеличивать или уменьшать уровни напряжения и тока источника питания без изменения его частоты или количества электроэнергии, передаваемой от одной обмотки к другой через магнитную цепь.
Однофазный трансформатор напряжения в основном состоит из двух электрических катушек с проволокой, одна из которых называется «Первичная обмотка», а другая — «Вторичная обмотка». В этом руководстве мы определим «первичную» сторону трансформатора как сторону, которая обычно принимает питание, а «вторичную» как сторону, которая обычно подает питание. В однофазном трансформаторе напряжения первичной обмоткой обычно является сторона с более высоким напряжением.
Эти две катушки не находятся в электрическом контакте друг с другом, а вместо этого намотаны вместе вокруг общей замкнутой магнитной железной цепи, называемой «сердечником».Этот сердечник из мягкого железа не является твердым, а состоит из отдельных пластин, соединенных вместе, чтобы помочь уменьшить потери сердечника.
Две обмотки катушки электрически изолированы друг от друга, но магнитно связаны через общий сердечник, что позволяет передавать электрическую мощность от одной катушки к другой. Когда электрический ток проходит через первичную обмотку, создается магнитное поле, которое индуцирует напряжение во вторичной обмотке, как показано.
Однофазный трансформатор напряжения
Другими словами, для трансформатора нет прямого электрического соединения между двумя обмотками катушки, что дало ему также название изолирующий трансформатор .Обычно первичная обмотка трансформатора подключается к источнику входного напряжения и преобразует или преобразует электрическую энергию в магнитное поле. В то время как работа вторичной обмотки заключается в преобразовании этого переменного магнитного поля в электрическую энергию, производящую требуемое выходное напряжение, как показано.
Конструкция трансформатора (однофазный)
- Где:
- V P — первичное напряжение
- V S — вторичное напряжение
- N P — количество первичных обмоток
- N S — количество вторичных обмоток
- Φ (phi) — флюсовая связь
Обратите внимание, что две обмотки катушки не связаны электрически, а связаны только магнитно.Однофазный трансформатор может увеличивать или уменьшать напряжение, подаваемое на первичную обмотку. Когда трансформатор используется для «увеличения» напряжения на его вторичной обмотке относительно первичной, он называется повышающим трансформатором . Когда он используется для «уменьшения» напряжения на вторичной обмотке относительно первичной, он называется понижающим трансформатором .
Однако существует третье условие, при котором трансформатор вырабатывает на своей вторичной обмотке такое же напряжение, какое прикладывается к его первичной обмотке.Другими словами, его выход идентичен по передаваемому напряжению, току и мощности. Этот тип трансформатора называется «трансформатором импеданса» и в основном используется для согласования импеданса или изоляции прилегающих электрических цепей.
Разница в напряжении между первичной и вторичной обмотками достигается изменением количества витков катушки в первичной обмотке (N P ) по сравнению с количеством витков катушки на вторичной обмотке (N S ).
Поскольку трансформатор в основном является линейным устройством, теперь существует соотношение между количеством витков первичной катушки, деленным на количество витков вторичной катушки. Это соотношение, называемое коэффициентом трансформации, более широко известно как «коэффициент трансформации» трансформаторов (TR). Это значение коэффициента трансформации определяет работу трансформатора и соответствующее напряжение на вторичной обмотке.
Необходимо знать соотношение количества витков провода на первичной обмотке по сравнению с вторичной обмоткой.Передаточное число витков, которое не имеет единиц измерения, сравнивает две обмотки по порядку и записывается с двоеточием, например 3: 1 (3-к-1). В этом примере это означает, что если на первичной обмотке 3 вольта, то на вторичной обмотке будет 1 вольт, а на 1 вольт — 3 вольта. Тогда мы можем видеть, что если соотношение между количеством витков изменяется, результирующие напряжения также должны изменяться в том же соотношении, и это правда.
Трансформаторы — все о «соотношениях». Соотношение первичной и вторичной обмоток, отношение входа к выходу и коэффициент трансформации любого данного трансформатора будет таким же, как и его коэффициент напряжения.Другими словами, для трансформатора: «коэффициент трансформации = коэффициент напряжения». Фактическое количество витков провода на любой обмотке, как правило, не важно, просто соотношение витков, и это соотношение дается как:
Трансформаторы
A Коэффициент трансформации
Предполагая идеальный трансформатор и фазовые углы: Φ P ≡ Φ S
Обратите внимание, что порядок чисел при выражении значения коэффициента трансформации трансформаторов очень важен, так как соотношение витков 3: 1 выражает совершенно другое соотношение трансформатора и выходное напряжение, чем то, в котором соотношение витков задается как 1: 3 .
Основы трансформатора Пример №1
Трансформатор напряжения имеет 1500 витков провода на первичной обмотке и 500 витков провода на вторичной обмотке. Каким будет коэффициент трансформации (TR) трансформатора.
Это соотношение 3: 1 (3-к-1) просто означает, что на каждую вторичную обмотку приходится три первичные обмотки. По мере того, как соотношение перемещается от большего числа слева к меньшему числу справа, значение первичного напряжения постепенно понижается, как показано.
Основы трансформатора Пример №2
Если к первичной обмотке того же трансформатора, указанного выше, приложено 240 В (среднеквадратичное значение), каким будет результирующее вторичное напряжение холостого хода.
Снова подтверждаем, что трансформатор является «понижающим» трансформатором, поскольку первичное напряжение составляет 240 вольт, а соответствующее вторичное напряжение ниже 80 вольт.
Тогда основная цель трансформатора — преобразовывать напряжения с заданными соотношениями, и мы можем видеть, что первичная обмотка имеет установленное количество или количество обмоток (катушек провода) на ней, чтобы соответствовать входному напряжению.Если вторичное выходное напряжение должно быть таким же, как входное напряжение на первичной обмотке, то на вторичный сердечник должно быть намотано такое же количество витков катушки, как и на первичном сердечнике, что дает равное соотношение витков 1: 1. (1 к 1). Другими словами, одна катушка включает вторичную обмотку, а другая — первичную.
Если выходное вторичное напряжение должно быть больше или выше, чем входное напряжение (повышающий трансформатор), то на вторичной обмотке должно быть больше витков, обеспечивающих соотношение витков 1: N (1-к-N), где N представляет собой число передаточных чисел.Аналогичным образом, если требуется, чтобы вторичное напряжение было ниже или ниже первичного (понижающий трансформатор), то количество вторичных обмоток должно быть меньше, обеспечивая соотношение витков N: 1 (N-к-1). .
Трансформатор Действие
Мы видели, что количество витков на вторичной обмотке по сравнению с первичной обмоткой, соотношение витков, влияет на величину напряжения, доступного от вторичной обмотки. Но если две обмотки электрически изолированы друг от друга, как создается это вторичное напряжение?
Ранее мы говорили, что трансформатор в основном состоит из двух катушек, намотанных на общий сердечник из мягкого железа.Когда к первичной катушке прикладывается переменное напряжение (V P ), ток течет через катушку, которая, в свою очередь, создает вокруг себя магнитное поле, называемое взаимной индуктивностью , посредством этого тока, протекающего в соответствии с законом Фарадея из электромагнитная индукция. Сила магнитного поля нарастает по мере увеличения тока от нуля до максимального значения, которое задается как dΦ / dt.
По мере того, как магнитные силовые линии, устанавливаемые этим электромагнитом, расширяются наружу от катушки, сердечник из мягкого железа формирует путь и концентрирует магнитный поток.Этот магнитный поток связывает витки обеих обмоток, когда он увеличивается и уменьшается в противоположных направлениях под влиянием источника переменного тока.
Однако сила магнитного поля, индуцированного в сердечнике из мягкого железа, зависит от силы тока и количества витков в обмотке. Когда ток уменьшается, напряженность магнитного поля уменьшается.
Когда магнитные линии потока проходят вокруг сердечника, они проходят через витки вторичной обмотки, вызывая наведение напряжения во вторичной катушке.Величина индуцированного напряжения будет определяться: N * dΦ / dt (закон Фарадея), где N — количество витков катушки. Также это индуцированное напряжение имеет ту же частоту, что и напряжение первичной обмотки.
Тогда мы можем видеть, что одинаковое напряжение индуцируется в каждом витке катушки обеих обмоток, потому что один и тот же магнитный поток связывает витки обеих обмоток вместе. В результате общее индуцированное напряжение в каждой обмотке прямо пропорционально количеству витков в этой обмотке. Однако пиковая амплитуда выходного напряжения, доступного на вторичной обмотке, будет уменьшена, если магнитные потери сердечника велики.
Если мы хотим, чтобы первичная катушка создавала более сильное магнитное поле, чтобы преодолеть магнитные потери сердечника, мы можем либо послать через катушку больший ток, либо сохранить тот же ток, и вместо этого увеличить количество витков катушки (N P ) обмотки. Произведение ампер на витки называется «ампер-витки», которое определяет силу намагничивания катушки.
Предположим, что у нас есть трансформатор с одним витком в первичной обмотке и только с одним витком во вторичной.Если один вольт приложен к одному витку первичной катушки, при условии отсутствия потерь, должно протекать достаточно тока и генерироваться достаточно магнитного потока, чтобы вызвать один вольт в одном витке вторичной обмотки. То есть каждая обмотка поддерживает одинаковое количество вольт на виток.
Поскольку магнитный поток изменяется синусоидально, Φ = Φ max sinωt, то основное соотношение между наведенной ЭДС, (E) в обмотке катушки из N витков определяется выражением:
ЭДС = количество оборотов x скорость изменения
- Где:
- ƒ — частота потока в Герцах, = ω / 2π
- Ν — количество витков катушки.
- Φ — количество флюса в полотнах
Это известно как уравнение ЭДС трансформатора . Для ЭДС первичной обмотки N будет числом витков первичной обмотки (N P ), а для ЭДС вторичной обмотки N будет числом витков вторичной обмотки (N S ).
Также обратите внимание, что, поскольку трансформаторы требуют переменного магнитного потока для правильной работы, трансформаторы, следовательно, не могут использоваться для преобразования или подачи постоянного напряжения или тока, поскольку магнитное поле должно изменяться, чтобы индуцировать напряжение во вторичной обмотке.Другими словами, трансформаторы НЕ работают с установившимся постоянным напряжением , а только с переменным или пульсирующим напряжением.
Если первичная обмотка трансформатора была подключена к источнику постоянного тока, индуктивное реактивное сопротивление обмотки было бы равно нулю, поскольку постоянный ток не имеет частоты, поэтому эффективное полное сопротивление обмотки будет очень низким и равным только сопротивлению используемой меди. . Таким образом, обмотка будет потреблять очень большой ток от источника постоянного тока, что приведет к ее перегреву и, в конечном итоге, сгоранию, потому что, как мы знаем, I = V / R.
Основы трансформатора, пример №3
Однофазный трансформатор имеет 480 витков на первичной обмотке и 90 витков на вторичной обмотке. Максимальное значение плотности магнитного потока составляет 1,1 Тл, когда на первичную обмотку трансформатора подается напряжение 2200 В, 50 Гц. Вычислить:
а). Максимальный поток в сердечнике.
б). Площадь поперечного сечения сердечника.
в). Вторичная наведенная ЭДС.
Поскольку номинальное вторичное напряжение равно вторичной наведенной ЭДС, другой более простой способ рассчитать вторичное напряжение из отношения витков дается как:
Электрическая мощность в трансформаторе
Еще одним из основных параметров трансформатора является его номинальная мощность. Номинальная мощность трансформатора получается простым умножением тока на напряжение, чтобы получить номинальную мощность в Вольт-амперах , (ВА). Небольшие однофазные трансформаторы могут быть рассчитаны только на вольт-амперы, но более мощные силовые трансформаторы рассчитаны на единицы по кило вольт-ампер , (кВА), где 1 кило вольт-ампер равен 1000 вольт-амперам, а единицы Мега-вольт-ампер , (МВА), где 1 мегавольт-ампер равен 1 миллиону вольт-ампер.
В идеальном трансформаторе (без учета потерь) мощность, доступная во вторичной обмотке, будет такой же, как и мощность в первичной обмотке, они являются устройствами постоянной мощности и не изменяют мощность, а изменяют только отношение напряжения к току. Таким образом, в идеальном трансформаторе коэффициент мощности равен единице, поскольку напряжение V, умноженное на ток, I останется постоянным.
То есть электрическая мощность на одном уровне напряжения / тока на первичной стороне «преобразуется» в электрическую энергию на той же частоте с тем же уровнем напряжения / тока на вторичной стороне.Хотя трансформатор может повышать (или понижать) напряжение, он не может повышать мощность. Таким образом, когда трансформатор увеличивает напряжение, он снижает ток и наоборот, так что выходная мощность всегда равна входной мощности. Тогда мы можем сказать, что первичная мощность равна вторичной мощности (P P = P S ).
Мощность в трансформаторе
Где: Φ P — это первичный фазовый угол, а Φ S — вторичный фазовый угол.
Обратите внимание, поскольку потеря мощности пропорциональна квадрату передаваемого тока, то есть: I 2 R, увеличение напряжения, скажем, удвоение (× 2) напряжения уменьшит ток на ту же величину, (÷ 2) при подаче того же количества мощности на нагрузку и, следовательно, уменьшении потерь в 4 раза. Если бы напряжение было увеличено в 10 раз, ток уменьшился бы в том же разы, уменьшив общие потери в 100 раз.
Основы трансформатора — КПД
Трансформатору не требуются движущиеся части для передачи энергии.Это означает, что отсутствуют потери на трение или парусность, связанные с другими электрическими машинами. Однако трансформаторы действительно страдают от других типов потерь, называемых «потерями в меди» и «потерями в стали», но в целом они довольно малы.
Потери в меди, также известные как I 2 R потери — это электрическая мощность, которая теряется в тепле в результате циркуляции токов вокруг медных обмоток трансформатора, отсюда и название. Потери в меди представляют собой самые большие потери в работе трансформатора.Фактические потери мощности в ваттах можно определить (в каждой обмотке) возведением в квадрат ампер и умножением на сопротивление обмотки в омах (I 2 R).
Потери в железе, также известные как гистерезис, представляют собой запаздывание магнитных молекул внутри сердечника в ответ на переменный магнитный поток. Это запаздывающее (или не совпадающее по фазе) состояние связано с тем, что для переворота магнитных молекул требуется энергия; они не меняют направление, пока поток не достигнет достаточной силы, чтобы повернуть их вспять.
Их реверсирование приводит к трению, а трение вызывает тепло в сердечнике, что является формой потери мощности. Гистерезис внутри трансформатора можно уменьшить, сделав сердечник из специальных стальных сплавов.
Интенсивность потерь мощности в трансформаторе определяет его КПД. Эффективность трансформатора отражается в потерях мощности (мощности) между первичной (входной) и вторичной (выходной) обмотками. Тогда результирующий КПД трансформатора равен отношению выходной мощности вторичной обмотки, P S , к мощности, потребляемой первичной обмоткой, P P , и, следовательно, является высоким.
Идеальный трансформатор имел бы 100% КПД, передавая всю электрическую энергию, которую он получает с первичной стороны, на вторичную. Но настоящие трансформаторы, с другой стороны, не эффективны на 100%. При работе с полной нагрузкой их максимальный КПД составляет от 94% до 96%, что все еще неплохо для электрического устройства. Для трансформатора, работающего при постоянном напряжении и частоте переменного тока, его КПД может достигать 98%. КПД трансформатора η определяется как:
.
КПД трансформатора
Где: вход, выход и потери выражены в единицах мощности.
Обычно при работе с трансформаторами первичные ватты называются «вольт-ампер», ВА , чтобы отличить их от вторичных ватт. Тогда приведенное выше уравнение эффективности можно изменить на:
Иногда легче вспомнить взаимосвязь между входом, выходом и эффективностью трансформатора с помощью изображений. Здесь три величины VA, W и η наложены в треугольник, дающий мощность в ваттах вверху с вольт-амперами и эффективность внизу.Это расположение представляет собой фактическое положение каждой величины в формулах эффективности.
Треугольник КПД трансформатора
и транспонирование вышеуказанных величин треугольника дает нам следующие комбинации одного и того же уравнения:
Затем, чтобы найти Вт (выход) = VA x эфф., Или найти VA (вход) = W / eff., Или найти КПД, эфф. = Вт / ВА и т. Д.
Основные сведения о трансформаторе
Затем подведем итоги этого учебника по основам работы с трансформатором.Трансформатор изменяет уровень напряжения (или уровень тока) на своей входной обмотке на другое значение на выходной обмотке с помощью магнитного поля. Трансформатор состоит из двух электрически изолированных катушек и работает по принципу «взаимной индукции» Фарадея, согласно которому ЭДС индуцируется во вторичной катушке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в обмотке первичной катушки.
Как первичная, так и вторичная обмотки катушки намотаны вокруг общего сердечника из мягкого железа, сделанного из отдельных пластин, чтобы уменьшить вихревые токи и потери мощности.Первичная обмотка трансформатора подключена к источнику переменного тока, который должен быть синусоидальным по своей природе, а вторичная обмотка подает электроэнергию на нагрузку. При этом трансформатор можно использовать в обратном направлении с источником питания, подключенным к вторичной обмотке, при условии соблюдения номинальных значений напряжения и тока.
Мы можем представить трансформатор в виде блок-схемы следующим образом:
Базовое представление трансформатора
Соотношение первичной и вторичной обмоток трансформатора относительно друг друга дает либо повышающий трансформатор напряжения, либо понижающий трансформатор напряжения с отношением числа витков первичной обмотки к числу вторичных витков, называемым «витками». коэффициент »или« коэффициент трансформации ».
Если это отношение меньше единицы, n <1, тогда N S больше, чем N P , и трансформатор классифицируется как повышающий трансформатор. Если это отношение больше единицы, n> 1, то есть N P больше, чем N S , трансформатор классифицируется как понижающий трансформатор. Обратите внимание, что однофазный понижающий трансформатор также можно использовать в качестве повышающего трансформатора, просто поменяв местами соединения и сделав обмотку низкого напряжения первичной, и наоборот, пока трансформатор работает в пределах своей первоначальной проектной мощности в ВА.
Если отношение витков равно единице, то есть n = 1, то и первичная, и вторичная обмотки имеют одинаковое количество витков катушки, поэтому напряжения и токи будут одинаковыми как для первичной, так и для вторичной обмоток.
Этот тип трансформатора 1: 1 классифицируется как изолирующий трансформатор, поскольку первичная и вторичная обмотки трансформатора имеют одинаковое количество вольт на виток. Эффективность трансформатора — это отношение мощности, которую он передает нагрузке, к мощности, которую он потребляет от источника питания.В идеальном трансформаторе нет потерь, поэтому нет потери мощности, тогда P IN = P OUT .
В следующем руководстве, посвященном основам работы с трансформатором , мы рассмотрим физическую конструкцию трансформатора и рассмотрим различные типы магнитных сердечников и пластинки, используемые для поддержки первичной и вторичной обмоток.
Что такое трансформатор (и как он работает)?
Что такое трансформатор?
Принцип работы трансформатора
Принцип работы трансформатора очень прост.Взаимная индукция между двумя или более обмотками (также известными как катушки) позволяет передавать электрическую энергию между цепями. Этот принцип более подробно поясняется ниже.
Теория трансформатора
Допустим, у вас есть одна обмотка (также известная как катушка), которая питается от переменного электрического источника. Переменный ток через обмотку создает непрерывно изменяющийся и переменный поток, окружающий обмотку.
Если к этой обмотке приблизить другую обмотку, некоторая часть этого переменного магнитного потока соединится со второй обмоткой.Поскольку этот поток постоянно изменяется по своей амплитуде и направлению, во второй обмотке или катушке должна быть изменяющаяся магнитная связь.
Согласно закону электромагнитной индукции Фарадея, во второй обмотке возникает ЭДС. Если цепь этой вторичной обмотки замкнута, то через нее будет протекать ток. Это основной принцип работы трансформатора .
Давайте использовать электрические символы, чтобы помочь наглядно это представить. Обмотка, которая получает электроэнергию от источника, известна как «первичная обмотка».На схеме ниже это «Первая катушка».
Обмотка, которая дает желаемое выходное напряжение за счет взаимной индукции, обычно известна как «вторичная обмотка». Это «Вторая катушка» на диаграмме выше.
Трансформатор, увеличивающий напряжение между первичной и вторичной обмотками, определяется как повышающий трансформатор. И наоборот, трансформатор, который снижает напряжение между первичной и вторичной обмотками, определяется как понижающий трансформатор.
Увеличивает или понижает трансформатор уровень напряжения, зависит от относительного количества витков между первичной и вторичной сторонами трансформатора.
Если на первичной обмотке больше витков, чем на вторичной обмотке, то напряжение снизится (понизится).
Если на первичной обмотке меньше витков, чем на вторичной обмотке, то напряжение возрастет (пошагово).
Хотя приведенная выше схема трансформатора теоретически возможна в идеальном трансформаторе, это не очень практично. Это связано с тем, что на открытом воздухе только очень малая часть потока, создаваемого первой катушкой, будет связываться со второй катушкой.Таким образом, ток, протекающий по замкнутой цепи, подключенной ко вторичной обмотке, будет чрезвычайно мал (и его трудно измерить).
Скорость изменения потокосцепления зависит от количества связанного потока со второй обмоткой. Таким образом, в идеале почти весь поток первичной обмотки должен быть связан со вторичной обмоткой. Это эффективно и рационально достигается за счет использования трансформатора с сердечником. Это обеспечивает путь с низким сопротивлением, общий для обеих обмоток.
Назначение сердечника трансформатора — обеспечить путь с низким сопротивлением, через который проходит максимальное количество магнитного потока, создаваемого первичной обмоткой, и соединяется с вторичной обмоткой.
Ток, который первоначально проходит через трансформатор при его включении, называется пусковым током трансформатора.
Если вы предпочитаете анимированное объяснение, ниже представлено видео, объясняющее, как именно работает трансформатор:
Детали и конструкция трансформатора
Три основные части трансформатора:
- Первичная обмотка трансформатора
- Магнитный сердечник трансформатора
- Вторичная обмотка трансформатора
Первичная обмотка трансформатора
Который создает магнитный поток, когда он подключен к источнику электроэнергии.
Магнитный сердечник трансформатора
Магнитный поток, создаваемый первичной обмоткой, который проходит через этот путь с низким сопротивлением, связанный с вторичной обмоткой, и создает замкнутую магнитную цепь.
Вторичная обмотка трансформатора
Поток, создаваемый первичной обмоткой, проходит через сердечник и соединяется со вторичной обмоткой. Эта обмотка также намотана на тот же сердечник и дает желаемую мощность трансформатора .
ТРАНСФОРМАТОР Трансформатор — это статическое устройство.
Презентация на тему: «ТРАНСФОРМАТОР Трансформатор — статическое устройство.» — стенограмма презентации:
1
ТРАНСФОРМАТОР Трансформатор — это статическое устройство.
Слово «трансформатор» происходит от слова «преобразовать». Трансформатор не является устройством преобразования энергии, но это устройство, которое преобразует электрическую мощность переменного тока на одном уровне напряжения в электрическую мощность переменного тока на другом уровне напряжения под действием магнитного поля, но с пропорциональным увеличением или уменьшением номинального тока., без изменения частоты. Это может быть повышение или понижение.
2
РАБОТА ТРАНСФОРМАТОРА
Основным принципом работы трансформатора является взаимная индуктивность между двумя цепями, которые связаны общим магнитным потоком. Базовый трансформатор состоит из двух катушек, которые электрически разделены и индуктивны, но связаны магнитным полем через сопротивление. Принцип работы трансформатора можно понять из рисунка ниже РАБОТА ТРАНСФОРМАТОРА.
3
Классификация трансформатора
По фазе Однофазная Трехфазная По сердечнику Тип сердечника Тип оболочки По системе охлаждения Самоохлаждение Воздушное охлаждение Масляное охлаждение
4
5
Трехфазный трансформатор
Обычно, когда требуется трехфазный, достаточно одного корпуса с тремя первичными и тремя вторичными обмотками, намотанными на общий сердечник.Однако три однофазных трансформатора с одинаковым номиналом могут быть соединены в трехфазную батарею. Поскольку каждый однофазный трансформатор имеет первичную и вторичную обмотки, то 3 однофазных трансформатора будут иметь необходимые 3 первичные и 3 вторичные обмотки и могут быть подключены в полевых условиях по схеме треугольник-треугольник или треугольник-звезда для достижения необходимых трех -фазный трансформаторный блок
6
Идеальный трансформатор Идеальный трансформатор — это трансформатор без потерь, т.е.е. обмотка не имеет омического сопротивления, магнитной утечки и, следовательно, потерь I2 R и сердечника. Однако реализовать такой трансформатор на практике невозможно. Тем не менее, приблизительная характеристика идеального трансформатора будет использоваться при описании практического трансформатора. V1 V2 N1: N2 E1 E2 I1 I2 V1 — Первичное напряжение V2 — Вторичное напряжение E1 — Первичное индуцированное напряжение E2 — вторичное индуцированное напряжение N1: N2 — Коэффициент трансформации
Что такое электрические трансформаторы? | Triad Magnetics
Трансформаторы — это электрические устройства, способные изменять уровень напряжения переменного тока в цепи.Они работают только с цепями переменного тока, а не с цепями постоянного тока (DC). Основные компоненты трансформатора — это две отдельные катушки с проволокой, намотанные на один сердечник. Катушка, подключенная к входящему источнику или источнику напряжения, является первичной катушкой, катушка, подключенная к выходному выходу или выходу напряжения, является вторичной катушкой, а сердечник представляет собой электромагнитное устройство, которое препятствует (ограничивает) или усиливает (увеличивает) поток напряжения в соответствии с требованиями к выходу. .
Более глубокое исследование того, как работают трансформаторы, их различные типы и общие области применения, помогает лучше понять критически важную функцию, которую они выполняют, обеспечивая полезную мощность для работы компьютеров, бытовой техники, осветительных приборов и многих других электрические и электронные устройства.
Как работают трансформаторы и их различные типы
Трансформаторы не вырабатывают электроэнергию. Вместо этого они передают его из одной цепи переменного тока в другую. Этот процесс передачи начинается, когда электрический ток входит в трансформатор. Ток поступает через соединение с первичной обмоткой (также называемой обмоткой, потому что она наматывается на часть сердечника). Эта обмотка вокруг сердечника преобразует электрическую энергию в магнитное поле, которое затем течет через сердечник в обмотки вторичной катушки.Вторичная катушка превращает электромагнитный поток обратно в электрическую энергию с необходимым выходным напряжением.
Как указано выше, основной трансформатор состоит из четырех основных компонентов:
- Входные соединения: Также называемое первичной стороной, входное соединение — это место, где мощность поступает на трансформатор.
- Выходные соединения: Выходное соединение — или вторичная сторона — трансформатора передает преобразованную мощность (повышенную или пониженную) за пределы трансформатора на нагрузку.
- Обмотки трансформатора: В большинстве случаев первичная и вторичная обмотки представляют собой не отдельные катушки, а несколько катушек, связанных с их основным входным или выходным источником для уменьшения магнитного потока (мера силы электрического поля через заданную поверхность). Величина увеличения или уменьшения напряжения зависит от соотношения витков первичной и вторичной обмоток или количества витков каждой катушки вокруг сердечника. Например, трансформатор с соотношением витков 3: 1 преобразует 3 вольта в 1 вольт в понижающем трансформаторе, а коэффициент 3: 5 преобразует 3 вольта в 5 вольт в повышающем трансформаторе.
- Сердечники трансформатора: Сердечник трансформатора усиливает магнитную связь между первичной и вторичной цепями. Он обеспечивает контролируемый путь магнитного потока через трансформатор от первичной обмотки ко вторичной обмотке. Сердечники — это не сплошной стальной стержень. Вместо этого они состоят из множества тонких ламинированных листов стали. Эта конструкция помогает ограничить или исключить накопление тепла внутри трансформатора. В трансформаторах используются два типа сердечников — сердечник и корпус, которые отличаются друг от друга расположением первичной и вторичной катушек.Обмотки наматываются вокруг сердечника в варианте с сердечником, в то время как в варианте с оболочкой сердечник окружает обмотки.
Существует много различных типов трансформаторов, и Triad Magnetics предлагает широкий ассортимент этих стандартных продуктов для самых разных применений. Различные категории трансформаторов включают:
Силовые трансформаторы
Силовые трансформаторы увеличивают или уменьшают линейное напряжение и, если это необходимо для работы интегральной схемы или других специализированных схем, могут помочь с преобразованием напряжения переменного тока в напряжение постоянного тока.Эти трансформаторы работают на одной из трех частот, измеряемых в герцах (Гц), или на количестве циклов в секунду. Хотя некоторые импульсные силовые трансформаторы работают на частотах 2,5 мегагерца и выше, стандартные линейные силовые трансформаторы работают на частотах 50, 60 и 400 Гц.
Поскольку частота остается постоянной от источника к выходу в силовом трансформаторе, герц является важным измерением, которое влияет на размер сердечника и количество тепла, выделяемого трансформатором.При проектировании или покупке силового трансформатора необходимо учитывать это измерение, наряду с первичным напряжением, вторичным среднеквадратичным напряжением и током, характеристиками монтажа и, иногда, пробивным напряжением между первичными и вторичными частями.
Разделительные трансформаторы и автотрансформаторы
Изолирующие трансформаторы и автотрансформаторы — это два противоположных типа силовых трансформаторов.
Изолирующие трансформаторы состоят из первичной и вторичной обмоток, которые не соединены, поскольку они намотаны независимо друг от друга.Такая конструкция позволяет этим устройствам изолировать части схемы, предотвращая сотрясение.
С другой стороны, автотрансформаторы используют часть первичной обмотки как часть вторичной обмотки, что создает прямое соединение между двумя линиями с помощью медного провода. Эти устройства используют меньше меди в катушках, что делает их менее дорогими и более компактными. Их основное применение — это приборы американского производства, предназначенные для зарубежных рынков, где линейное напряжение составляет 230 В, а устройство должно работать при 115 В.
Аудио трансформаторы
Аудиотрансформатор выполняет другую функцию, чем силовой или изолирующий трансформатор. Звуковые преобразователи преобразуют электрические сигналы, несущие звук. Катушки в аудиопреобразователях имеют различные уровни импеданса (сопротивление электрической цепи, измеряемое в омах) в диапазоне частот от 20 Гц до 100 000 Гц. Различные уровни импеданса в аудиокомпонентах возникают из-за изменений материала сердечника или коэффициента трансформации трансформатора и влияют на качество звука.
Импульсные трансформаторы
Этот тип трансформатора обрабатывает импульсы электрических токов очень высокой частоты без искажения сигнала. Разработка импульсного трансформатора для одновременного повышения или понижения импульса связана с соотношением витков катушек. Этот тип трансформатора может передавать импульс переменного тока от одной цепи к другой, одновременно блокируя сигналы постоянного тока.
Применение и использование трансформаторов
Силовые трансформаторы и изолированные трансформаторы присутствуют на различных этапах распределения электроэнергии, от электростанции до розеток в доме или офисе.Повышающие трансформаторы преобразуют мощность электростанции в более высокое напряжение для улучшения передачи, в то время как понижающие трансформаторы на подстанциях и барабанах трансформаторов снижают напряжение для общего использования. Хотя это их наиболее распространенный вариант использования, существует бесчисленное множество других электрических и электронных применений трансформаторов, в том числе:
- Настенные трансформаторы (например, зарядные устройства для электронных устройств)
- Электростанции и возобновляемые источники энергии
- Средства автоматизации и управления промышленными процессами
- Системы освещения
- Мелкая бытовая техника (например, компьютеры, телевизоры, тостеры, микроволновые печи)
- Крупная бытовая техника (например, стиральные машины, сушилки, копировальные аппараты)
- Усилители звука и динамики
- Медицинские приборы (включая оборудование для МРТ и компьютерной томографии, кислородные насосы и контроллеры капельницы)
Самый оптимальный тип трансформатора зависит от технических характеристик конкретного приложения.Некоторые из характеристик, которые следует учитывать, включают:
- входное напряжение (т.е. первичное напряжение),
- выходное напряжение (т.е. вторичное напряжение),
- выходной ток,
- уровень мощности и
- (от рисового зерна до большого полуприцепа).
Размер трансформатора
Свяжитесь с Triad Magnetics сегодня для ваших нужд трансформатора
Трансформаторы
различных типов и форм позволяют безопасно использовать широкий спектр электрических и электронных устройств.Это простое устройство с относительно простой функцией, но они являются важным элементом электроснабжения домов и рабочих мест.
Компания Triad Magnetics поставляет различные трансформаторы для широкого спектра применений. Свяжитесь с нами, чтобы узнать больше о широком ассортименте трансформаторов, которые у нас есть, или запросите смету на трансформатор, который наилучшим образом соответствует вашим потребностям, у одного из наших экспертов.