26.06.2024

Трансформатор это устройство: Трансформатор простыми словами: устройство, принцип работы, виды

Содержание

устройство и принцип работы, назначение, схемы, фото и видео-инструкция как сделать и подключить трансформатор своими руками


Автор Aluarius На чтение 7 мин. Просмотров 608 Опубликовано

Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое  может изменять напряжение переменного тока (увеличивать или уменьшать).

Трансформаторы тока

Устройство и принцип работы

Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.

Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.

Что касается количества витков, то получается так:

  • если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
  • и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.

Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:

k=w1/w2, где w – это число витков в катушке с соответствующим номером.

Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.

И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.

  • Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
  • Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).

Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.

Схема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Схема замещения

Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.

По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.

Фазировка

Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.

Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.

Заключение по теме

Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.

Трансформатор — урок. Физика, 9 класс.

Переменный ток обладает ещё одним важным свойством: его напряжение можно сравнительно легко менять — трансформировать (слово «трансформация» образовано от латинского слова transformo — «преобразую»). Достигается это посредством несложного устройства — трансформатора, созданного в \(1876\) году  русским учёным Павлом Николаевичем Яблочковым.  

Трансформатор — устройство, осуществляющее повышение и понижение напряжения переменного тока при неизменной частоте и незначительных потерях мощности.

Простейший трансформатор состоит из двух катушек изолированного провода и замкнутого стального сердечника, проходящего сквозь обе катушки. Катушки изолированы друг от друга и от сердечника. Одна из катушек, называемая первичной, включается в сеть переменного тока. Действие трансформатора основано на явлении электромагнитной индукции. Магнитное поле первичной катушки переменное и меняется с той же частотой, что и ток в первичной катушке. Переменный ток в первой катушке создаёт в стальном сердечнике переменное магнитное поле. Это переменное магнитное поле пронизывает другую катушку, называемую вторичной, и создаёт в ней переменный индукционный ток.

 

 

Допустим, что первичная катушка имеет w1 витков, и по ней проходит переменный ток при напряжении U1. Вторичная обмотка имеет w2 витков, и в ней индуцируется переменный ток при напряжении U2.

Опыт показывает, что во сколько раз число витков вторичной катушки больше (или меньше) числа витков на первичной катушке, во столько же раз напряжение на вторичной катушке больше (или меньше) напряжения на первичной катушке:

 

U2U1=w2w1=k.

 

Величина \(k\) называется коэффициентом трансформации. Коэффициент равен отношению числа витков вторичной обмотки к числу витков в первичной обмотке.

Во сколько раз увеличивается напряжение на вторичной обмотке трансформатора, примерно во столько же раз уменьшается в ней сила тока при работе нагруженного трансформатора.

В результате мощность тока в первичной и вторичной обмотках трансформатора почти одинакова, поэтому КПД трансформатора близок к единице. Коэффициент полезного действия (КПД) у мощных трансформаторов достигает \(99,5\) %.

Трансформатор — это… Что такое Трансформатор?

Трансформатор силовой ОСМ 0,16 — Однофазный сухой многоцелевого назначения мощностью 0.16 кВт

Трансформа́тор (от лат.  transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока (ГОСТ 16110-82).

Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

История

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории. [1]

Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).[1]

Братья Гопкинсоны разработали теорию электромагнитных цепей.[1]

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока[2].

В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.[1]

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон[2]. В 1885 г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.[3]

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла, патент США № 381968 от 01. 05.1888, заявка на изобретение № 252132 от 12.10.1887), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла, патент США № 381968 от 01.05.1888, заявка на изобретение № 252132 от 12.10.1887), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).[4]

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.[5]

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.[5]

Базовые принципы действия трансформатора

Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная

Работа трансформатора основана на двух базовых принципах:

  1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит, что:

Где

U2 — Напряжение на вторичной обмотке,
N2 — число витков во вторичной обмотке,
Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

Где

U1 — мгновенное значение напряжения на концах первичной обмотки,
N1 — число витков в первичной обмотке.

Поделив уравнение U2 на U1, получим отношение[6]:

Уравнения идеального трансформатора

Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток[7]. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков[8]. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

Где

P1 — мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,
P2 — мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения.[9] Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для вторичной цепи: .

Режимы работы трансформатора

1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепью трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью[10] компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Векторная диаграмма напряжений и токов в трансформаторе на холостом ходу при согласном включении обмоток приведена в[11] на рис.1.6 б).

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим с нагрузкой

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Схематично, процесс преобразования можно изобразить следующим образом:

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. Векторная диаграмма напряжений и токов в трансформаторе с нагрузкой при согласном включении обмоток приведена в[11] на рис.1.6 в).

Теория трансформаторов

Уравнения линейного трансформатора.

Пусть i1, i2 — мгновенные значения тока в первичной и вторичной обмотке соответственно, u1 — мгновенное напряжение на первичной обмотке, RH — сопротивление нагрузки. Тогда

Здесь L1, R1— индуктивность и активное сопротивление первичной обмотки, L2, R2— то же самое для вторичной обмотки, L12— взаимная индуктивность обмоток. Если магнитный поток первичной обмотки полностью пронизывает вторичную, то есть если отсутствует поле рассеяния, то . Индуктивности обмоток в первом приближении пропорциональны квадрату количества витков в них.

Мы получили систему линейных дифференциальных уравнений для токов в обмотках. Можно преобразовать эти дифференциальные уравнения в обычные алгебраические, если воспользоваться методом комплексных амплитуд.

Для этого рассмотрим отклик системы на синусоидальный сигнал u1=U1 e-jω t (ω=2π f, где f — частота сигнала, j — мнимая единица). Тогда i1=I1 e-jω t и т. д., сокращая экспоненциальные множители получим

U1=-jωL1 I1 -jωL12 I2+I1 R1

-jωL2 I2 -jω L12 I1+I2 R2 =-I2 Zн

Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки Rн её импедансом Zн. Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома— напряжение на нагрузке, и т. п.

Т-образная схема замещения трансформатора.

На рисунке показана эквивалентная схема трансформатора с подключенной нагрузкой, как он видится со стороны первичной обмотки.

Здесь T — коэффициент трансформации, L12 — «полезная» индуктивность первичной обмотки, L1п, L2п — индуктивности первичной и вторичной обмотки, связанные с рассеянием,R1п, R2п — активные сопротивления первичной и вторичной обмотки соответственно, Zн — импеданс нагрузки.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.

Габаритная мощность

Габаритная мощность трансформатора описывается следующей формулой:

Pгаб=(P1 + P2)/2=(U1I1 + U2I2)/2

  • 1 — первичной обмотки
  • 2 — вторичной обмотки

Однако, это конечный результат. Или академическое определение. Изначально габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.

КПД трансформатора

КПД трансформатора находится по следующей формуле:

        

где

P0 — потери холостого хода (кВт) при номинальном напряжении
PL — нагрузочные потери (кВт) при номинальном токе
P2 — активная мощность (кВт), подаваемая на нагрузку
n — относительная степень нагружения (при номинальном токе n=1).

Виды трансформаторов

Трансформатор

Мачтовая трансформаторная подстанция с трёхфазным понижающим трансформатором

Силовой трансформатор

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (100-750 кВ), городских электросетей (как правило 6 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Автотрансформатор

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформатор тока

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала!

Трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса[12]. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Разделительный трансформатор

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции.[13] Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

Согласующий трансформатор

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.

Пик-трансформатор

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель

Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Трансфлюксор

В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Трансфлюксор — разновидность трансформатора, используемая для хранения информации[14][15]. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.

Основные части конструкции трансформатора

Стержневой тип трёхфазных трансформаторов

Броневой тип трёхфазных трансформаторов

Основными частями конструкции трансформатора являются:

  • магнитопровод
  • обмотки
  • каркас для обмоток
  • изоляция
  • система охлаждения
  • прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

  • Стержневой
  • Броневой
  • Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Магнитная система (магнитопровод)

Магнитная система (магнитопровод) трансформатора — выполняется из электротехнической стали, пермаллоя, феррита или другого ферромагнитного материала в определённой геометрической форме. Предназначается для локализации в нём основного магнитного поля трансформатора. Магнитопровод в зависимости от материала и конструкции может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из 2, 4 и более «подков». Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется — стержень[16]

Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется — ярмо[16]

В зависимости от пространственного расположения стержней, выделяют:

  1. Плоская магнитная система — магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости
  2. Пространственная магнитная система — магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях
  3. Симметричная магнитная система — магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней
  4. Несимметричная магнитная система — магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня

Обмотки

Основным элементом обмотки является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Сечение проводника обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади сечения проводника он может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.

Транспонированный кабель, применяемый в обмотке трансформатора

Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.

Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу, как показано на рисунке. Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции[17].

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.

Дисковая обмотка

Обмотки разделяют по:

  1. Назначению
    • Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
    • Регулирующие — при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
    • Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.
  2. Исполнению
    • Рядовая обмотка — витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
    • Винтовая обмотка — винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
    • Дисковая обмотка — дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.
    • Фольговая обмотка — фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.
Схемы и группы соединения обмоток трёхфазных трансформаторов

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

  • Y-соединение («звезда»), где каждая обмотка соединена одним из концов с общей точкой, называемой нейтральной. Различают «звезду» с выводом от общей точки (обозначение Y0 или Yn) и без него (Y)
  • Δ-соединение («треугольник»), где три фазных обмотки соединены последовательно
  • Z-соединение («зигзаг»). При данном способе соединения каждая фазная обмотка состоит из двух одинаковых частей, размещенных на разных стержнях магнитопровода и соединенных последовательно, встречно. Полученные три фазные обмотки соединяются в общей точке, аналогично «звезде». Обычно применяется «зигзаг» с отводом от общей точки (Z0)

Как первичная, так и вторичная обмотки трансформатора могут быть соединены любым из трёх способов, показанным выше, в любых комбинациях. Конкретный способ и комбинация определяются назначением трансформатора.

Y-соединение обычно применяется для обмоток, работающих под высоким напряжением. Это объясняется многими причинами:

— обмотки трехфазного автотрансформатора могут быть соединены только «звездой»;

— когда вместо одного сверхмощного трехфазного трансформатора применяют три однофазных автотрансформатора соединить их иным способом невозможно;

— когда вторичная обмотка трансформатора питает высоковольтную линию, наличие заземленной нейтрали снижает перенапряжения при ударе молний. Без заземления нейтрали невозможна работа дифференциальной защиты линии, в части утечки на землю. При этом первичные обмотки всех принимающих трансформаторов на этой линии не должны иметь заземленной нейтрали;

— существенно упрощается конструкция регуляторов напряжения (переключателей отпаек). Размещение отпаек обмотки с «нейтрального» конца обеспечивает минимальное количество групп контактов. Снижаются требования к изоляции переключателя, т.к. он работает при минимальном напряжении относительно Земли;

— это соединение наиболее технологично и наименее металлоемко.

Соединение в «треугольник» применяется в трансформаторах, где одна обмотка уже соединена «звездой», в особенности с выводом нейтрали.

Эксплуатация все еще широко распространенных трансформаторов со схемой Y/Y0 оправдана, если нагрузка на его фазы одинаковая (трехфазный двигатель, трехфазная электропечь, строго рассчитанное уличное освещение и пр.) Если же нагрузка несимметричная (бытовая и прочая однофазная), то магнитный поток в сердечнике выходит из равновесия, а нескомпенсированный магнитный поток (так называемый «поток нулевой последовательности») замыкается через крышку и бак, вызывая их нагрев и вибрацию. Первичная обмотка не может этот поток скомпенсировать, т.к. её конец соединен с виртуальной нейтралью, не соединенной с генератором. Выходные напряжения будут искажены (возникнет «перекос фаз»). Для однофазной нагрузки такой трансформатор по сути является дросселем с разомкнутым сердечником, и полное его сопротивление велико. Ток однофазного короткого замыкания будет сильно занижен по сравнению с расчетным (для трехфазного к.з.), что делает ненадежной работу защитной аппаратуры.

Если же первичная обмотка соединена треугольником (трансформатор со схемой Δ/Y0), то обмотки каждого стержня имеют два вывода как к нагрузке, так и к генератору, и первичная обмотка может подмагничивать каждый стержень в отдельности, не влияя на два других и не нарушая магнитное равновесие. Однофазное сопротивление такого трансформатора будет близко к расчетному, перекос напряжения практически устранен.

С другой стороны, у обмотки треугольником усложняется конструкция переключателя отпаек (контакты под высоким напряжением).

Соединение обмотки треугольником позволяет циркулировать третьей и кратным ей гармоникам тока внутри кольца, образованного тремя последовательно соединёнными обмотками. Замыкание токов третьей гармоники необходимо для снижения сопротивления трансформатора несинусоидальным токам нагрузки (нелинейная нагрузка)и поддержания его напряжения синусоидальным. Третья гармоника тока во всех трёх фазах имеет одинаковое направление, данные токи не могут циркулировать в обмотке, соединённой звездой с изолированной нейтралью.

Недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения, в случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте. Соединённая треугольником обмотка трансформатора устранит данное нарушение, так как обмотка с соединением треугольником обеспечит затухание гармонических токов. Иногда в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, предусмотренной не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, предназначенные для зарядки, между фазой и нейтралью на стороне первого контура, снабжены обычно соединённой треугольником обмоткой. Однако ток в соединённой треугольником обмотке может быть очень слабым для достижения минимума номинальной мощности, а требуемый размер проводника обмотки чрезвычайно неудобен для заводского изготовления. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны главным образом определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток, и выражается весьма незначительной цифрой.

При использовании соединения пары обмоток различными способами возможно достигнуть различных степеней напряжения смещения между сторонами трансформатора.

Сдвиг фаз между ЭДС первичной и вторичной обмоток принято выражать группой соединений. Для описания напряжения смещения между первичной и вторичной, или первичной и третичной обмотками, традиционно используется пример с циферблатом часов. Так как этот сдвиг фаз может изменяться от 0° до 360°,а кратность сдвига составляет 30°, то для обозначения группы соединений выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига в 30°. Одна фаза первичной указывает на 12, а соответствующая фаза другой стороны указывает на другую цифру циферблата.

Наиболее часто используемая комбинация Yd11 означает, например, наличие 30º смещения нейтрали между напряжениями двух сторон

Схемы и группы соединения обмоток трёхфазных двухобмоточных трансформаторов[18][19] (не закончена, в работе)
Схема соединения обмотокДиаграмма векторов напряжения
холостого хода*
Условное
обозначение
ВННН
У/Д-11

Примечание: на диаграмме зелёным цветом обозначены векторы обмотки Звезда, синим — Треугольник, красным смещение вектора AB.

В железнодорожных трансформаторах также встречается группа соединений «разомкнутый треугольник — неполная звезда».

Бак

Бак в первую очередь представляет собой резервуар для масла, а также обеспечивает физическую защиту для активного компонента. Он также служит в качестве опорной конструкции для вспомогательных устройств и аппаратуры управления.

Перед заполнением маслом бака с активным компонентом внутри из него выкачивается весь воздух, который может подвергнуть опасности диэлектрическую прочность изоляции трансформатора (поэтому бак предназначен для выдерживания давления атмосферы с минимальной деформацией).

Ещё одним явлением, учитываемым при проектировании баков, является совпадение звуковых частот, вырабатываемых сердечником трансформатора, и частот резонанса деталей бака, что может усилить шум, излучаемый в окружающую среду.

Конструкция бака допускает температурно-зависимое расширение масла. Чаще всего устанавливается отдельный расширительный бачок, который также называется расширителем.

При увеличении номинальной мощности трансформатора воздействие больших токов внутри и снаружи трансформатора оказывает влияние на конструкцию. То же самое происходит с магнитным потоком рассеяния внутри бака. Вставки из немагнитного материала вокруг сильноточных проходных изоляторов снижают риск перегрева. Внутренняя облицовка бака из высокопроводящих щитков не допускает попадания потока через стенки бака. С другой стороны, материал с низким магнитным сопротивлением поглощает поток перед его прохождением через стенки бака.

Обозначение на схемах

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2,3 — вторичные обмотки. Число полуокружностей в очень грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).

При обозначении трансформатора жирной точкой около вывода могут быть указаны начала катушек (не менее чем на двух катушках, знаки мгновенно действующей ЭДС на этих выводах одинаковы). Применяется при обозначении промежуточных трансформаторов в усилительных (преобразовательных) каскадах для подчёркивание син- или противофазности, а также в случае нескольких (первичных или вторичных) обмоток, если соблюдение «полярности» их подключения необходимо для работы остальной части схемы. Если начала обмоток не указаны явно, то предполагается, что все они направлены в одну сторону (после конца одной обмотки — начало следующей).

В схемах трёхфазных трансформаторах «обмотки» располагают перпендикулярно «сердечнику» (Ш-образно, вторичные обмотки напротив соответствующих первичных), начала всех обмоток направлены в сторону «сердечника».

Применение трансформаторов

Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют силовые трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трёх однофазных трансформаторов, соединённых в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трёх фаз общий.

Несмотря на высокий КПД трансформатора (для трансформаторов большой мощности — свыше 99 %), в очень мощных трансформаторах электросетей выделяется большая мощность в виде тепла (например, для типичной мощности блока электростанции 1 ГВт на трансформаторе может выделяться мощность до нескольких мегаватт). Поэтому трансформаторы электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью. Масло циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой. «Сухие» трансформаторы используют при относительно малой мощности (до 16000 кВт).

Применение в источниках электропитания

Компактный сетевой трансформатор

Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. Например, в телевизоре с помощью трансформаторов получают напряжения от 5 вольт (для питания микросхем и транзисторов) до нескольких киловольт (для питания анода кинескопа через умножитель напряжения).

В прошлом в основном применялись трансформаторы, работающие с частотой электросети, то есть 50-60 Гц.

В схемах питания современных радиотехнических и электронных устройств (например в блоках питания персональных компьютеров) широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы. Система управления с помощью широтно-импульсной модуляции (ШИМ) позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение.

В прошлом сетевой трансформатор (на 50-60 Гц) был одной из самых тяжёлых деталей многих приборов. Дело в том, что линейные размеры трансформатора определяются передаваемой им мощностью, причём оказывается, что линейный размер сетевого трансформатора примерно пропорционален мощности в степени 1/4. Размер трансформатора можно уменьшить, если увеличить частоту переменного тока. Поэтому современные импульсные блоки питания при одинаковой мощности значительно легче.

Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в тех случаях, когда надо обеспечить минимальный уровень высокочастотных помех, например при высококачественном звуковоспроизведении.

Другие применения трансформатора

  • Разделительные трансформаторы (трансформаторная гальваническая развязка). Нейтральный провод электросети может иметь контакт с «землёй», поэтому при одновременном касании человеком фазового провода (а также корпуса прибора с плохой изоляцией) и заземлённого предмета тело человека замыкает электрическую цепь, что создаёт угрозу поражения электрическим током. Если же прибор включён в сеть через трансформатор, касание прибора одной рукой вполне безопасно, поскольку вторичная цепь трансформатора никакого контакта с землёй не имеет.
  • Импульсные трансформаторы (ИТ). Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ, заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
  • Измерительные трансформаторы. Применяют для измерения очень больших или очень маленьких переменных напряжений и токов в цепях РЗиА.
  • Измерительный трансформатор постоянного тока. На самом деле представляет собой магнитный усилитель, при помощи постоянного тока малой мощности управляющий мощным переменным током. При использовании выпрямителя ток выхода будет постоянным и зависеть от величины входного сигнала.
  • Измерительно-силовые трансформаторы. Имеют широкое применение в схемах генераторов переменного тока малой и средней мощности (до мегаватта), например, в дизель-генераторах. Такой трансформатор представляет собой измерительный трансформатор тока с первичной обмоткой, включённой последовательно с нагрузкой генератора. Со вторичной обмотки снимается переменное напряжение, которое после выпрямителя подаётся на обмотку подмагничивания ротора. (Если генератор — трёхфазный, обязательно применяется и трёхфазный трансформатор). Таким образом, достигается стабилизация выходного напряжения генератора — чем больше нагрузка, тем сильнее ток подмагничивания, и наоборот.
  • Согласующие трансформаторы. Из законов преобразования напряжения и тока для первичной и вторичной обмотки (I1=I2w2/w1,U1=U2w1/w2) видно, что со стороны цепи первичной обмотки всякое сопротивление во вторичной обмотке выглядит в (w1/w2 раз больше. Поэтому согласующие трансформаторы применяются для подключения низкоомной нагрузки к каскадам электронных устройств, имеющим высокое входное или выходное сопротивление. Например, высоким выходным сопротивлением может обладать выходной каскад усилителя звуковой частоты, особенно, если он собран на лампах, в то время как динамики имеют очень низкое сопротивление. Согласующие трансформаторы также исключительно полезны в высокочастотных линиях, где различие сопротивления линии и нагрузки привело бы к отражению сигнала от концов линии, и, следовательно, к большим потерям.

Фазоинвертирующие и согласующие трансформаторы в выходном каскаде усилителя звуковой частоты с транзисторами одного типа проводимости. Транзистор в такой схеме усиливает только половину периода выходного сигнала. Чтобы усилить оба полупериода, нужно подать сигнал на два транзистора в противофазе. Это и обеспечивает трансформатор T1. Трансформатор T2 суммирует выходные импульсы VT1 и VT2 в противофазе и согласует выходной каскад с низкоомным динамиком

  • Фазоинвертирующие трансформаторы. Трансформатор передаёт только переменную компоненту сигнала, поэтому даже если все постоянные напряжения в цепи имеют один знак относительно общего провода, сигнал на выходе вторичной обмотки трансформатора будет содержать как положительную, так и отрицательную полуволны, причём, если центр вторичной обмотки трансформатора подключить к общему проводу, то напряжение на двух крайних выводах этой обмотки будет иметь противоположную фазу. До появления широкодоступных транзисторов с npn типом проводимости фазоинвертирующие трансформаторы применялись в двухтактных выходных каскадах усилителей, для подачи противоположных по полярности сигналов на базы двух транзисторов каскада. К тому же, из-за отсутствия «ламп с противоположным зарядом электрона», фазоинвертирующий трансформатор необходим в ламповых усилителях с двухтактным выходным каскадом.

Эксплуатация

Срок службы

Срок службы трансформатора может быть разделен на две категории:

  1. Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.
  2. Технический срок службы

Работа в параллельном режиме

Параллельная работа трансформаторов нужна по очень простой причине. При малой нагрузке мощный трансформатор имеет большие потери холостого хода, поэтому вместо него подключают несколько трансформаторов меньшей мощности, которые отключаются, если в них нет необходимости.

При параллельном подключении двух и более трансформаторов требуется следующее[20]:

  1. Параллельно могут работать только трансформаторы, имеющие одинаковую угловую погрешность между первичным и вторичным напряжениями.
  2. Полюса с одинаковой полярностью на сторонах высокого и низкого напряжения должны быть соединены параллельно.
  3. Трансформаторы должны иметь примерно тот же самый коэффициент передачи по напряжению.
  4. Напряжение полного сопротивления короткого замыкания должно быть одинаковым, в пределах ±10 %.
  5. Отношение мощностей трансформаторов не должно отклоняться более чем 1:3.
  6. Переключатели числа витков должны стоять в положениях, дающих коэффициент передачи по напряжению как можно ближе.

Другими словами, это значит, что следует использовать наиболее схожие трансформаторы. Одинаковые модели трансформаторов являются лучшим вариантом. Отклонение от вышеприведенных требований возможны при использовании соответствующих знаний.

Частота

При одинаковых напряжениях первичной обмотки трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При этом необходимо принять во внимание, что возможно потребуется заменить навесное электрооборудование. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышенный нагрев магнитопровода и обмотки, приводящие к ускоренному старению и разрушению изоляции.

Регулирование напряжения трансформатора

В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети.[21]

Диагностика причин неисправности

Вид неисправностиПричина
ПерегревПерегрузка
ПерегревНизкий уровень масла
ПерегревЗамыкания
ПерегревНедостаточное охлаждение
ПробойПерегрузка
ПробойЗагрязнение масла
ПробойНизкий уровень масла
ПробойСтарение изоляции витков
ОбрывПлохое качество пайки
ОбрывСильные электромеханические деформации при КЗ
Повышенное гудениеОслабление прессовки шихтованного магнитопровода
Повышенное гудениеПерегрузка
Повышенное гудениеНесимметричная нагрузка
Повышенное гудениеКЗ в обмотке
Появление воздуха в газовом реле (с термосифонным фильтром)Заглушен термосифонный фильтр, воздух появляется в газовом реле через заглушку

Перенапряжения трансформатора

Виды перенапряжений

В процессе использования трансформаторы могут подвергаться напряжению, превосходящему рабочие параметры. Данные перенапряжения классифицируются по их продолжительности на две группы:

  • Кратковременное перенапряжение — напряжение промышленной частоты относительной продолжительности, колеблющейся в пределах менее 1 секунды до нескольких часов.
  • Переходное перенапряжение — кратковременное перенапряжение в пределах от наносекунд до нескольких миллисекунд. Период нарастания может колебаться от нескольких наносекунд до нескольких миллисекунд. Переходное перенапряжение может быть колебательным и неколебательным. Они обычно имеют однонаправленное действие.

Трансформатор также может быть подвергнут комбинации кратковременных и переходных перенапряжений. Кратковременные перенапряжения могут следовать сразу за переходными перенапряжениями.

Перенапряжения классифицируются на две основные группы, характеризующих их происхождение:

  • Перенапряжения, вызванные атмосферными воздействиями. Чаще всего переходные перенапряжения возникают вследствие грозовых разрядов вблизи высоковольтных линий передач, подсоединенных к трансформатору, однако иногда грозовой импульс может поразить трансформатор или саму линию передачи. Пиковая величина напряжения зависит от тока грозового импульса, является статистической переменной. Зарегистрированы токи грозового импульса свыше 100 кА. В соответствии с измерениями, проведенными на высоковольтных линиях электропередач в 50 % случаях пиковая величина токов грозового импульса находится в пределах от 10 до 20 кА. Расстояние между трансформатором и точкой воздействия грозового импульса влияет на время нарастания импульса, поразившего трансформатор, чем короче расстояние до трансформатора, тем короче время.
  • Перенапряжения, сформированные внутри силовой системы. Данная группа охватывает как кратковременные так и переходные перенапряжения, возникшие вследствие изменения условий эксплуатации и обслуживания силовой системы. Данные изменения могут быть вызваны нарушением процесса коммутации или поломкой. Временные перенапряжения вызваны коротким замыканием на землю, сбросом нагрузки или феноменом низкочастотного резонанса. Переходные перенапряжения возникают в случаях, когда часто отключаются или подключаются к системе. Также они могут возникнуть при возгорании внешней изоляции. При переключении реактивной нагрузки, переходное напряжение может возрасти до 6-7 p.u. вследствие многочисленных прерываний тока переходного процесса в автоматическом прерывателе с временем нарастания импульса до нескольких долей микросекунд.
Способность трансформатора выдерживать перенапряжения

Трансформаторы должны пройти определённые испытания электрической прочности изоляции перед выпуском с завода. Прохождение данных испытаний свидетельствуют о вероятности бесперебойной эксплуатации трансформатора.

Испытания описаны в международных и национальных стандартах. Трансформаторы, прошедшие испытания, подтверждают высокую надёжность эксплуатации.

Дополнительным условием высокой степени надёжности является обеспечение приемлемых ограничений перенапряжения, так как трансформатор в процессе эксплуатации может быть подвергнут более серьёзным перенапряжениям по сравнению с условиями тестовых испытаний.

Необходимо подчеркнуть чрезвычайную важность планирования и учёта всех типов перенапряжений, которые могут возникнуть в силовой системе. Для нормального выполнения данного условия необходимо понимание происхождения различных типов перенапряжений. Величина различных типов перенапряжений является статистической переменной. Способность изоляции выдерживать перенапряжения также является статистической переменной.

См. также

Примечания

  1. 1 2 3 4 Харламова Т. Е. История науки и техники. Электроэнергетика. Учебное пособие.-СПб: СЗТУ, 2006. 126 с.
  2. 1 2 Кислицын А. Л. Трансформаторы: Учебное пособие по курсу «Электромеханика».- Ульяновск: УлГТУ, 2001. — 76 с ISBN 5-89146-202-8
  3. Силовые трансформаторы: основные вехи развития к.т. н. Савинцев Ю.М. Доступно на 25.01.2010
  4. Силовой трансформатор: этапы эволюции. Д.т. н., проф. Попов Г. В. на transform.ru. Доступно на 02.08.2008
  5. 1 2 История трансформатора на energoportal.ru. Доступно на 02.08.2008
  6. Winders Power Transformer Principles and Applications. — P. 20–21.
  7. Толмачёв — лекция 8
  8. История Трансформатора
  9. Flanagan William M. Handbook of Transformer Design and Applications. — McGraw-Hill Professional. — P. Chap. 1, p. 1–2. — ISBN 0070212910
  10. В случае достаточной индуктивности трансформатора и частоты тока.
  11. 1 2 http://model.exponenta.ru/electro/0070.htm Дубовицкий Г. П. Трансформаторы
  12. Словарь Бензаря
  13. ГОСТ 30030-93 Трансформаторы разделительные и безопасные разделительные трансформаторы. Технические требования (МЭК 742-83)
  14. Ассоциативное запоминающее устройство — статья из Большой советской энциклопедии (3-е издание)
  15. Не стоит путать с «трансфлюктором», который выполняет роль фильтра.
  16. 1 2 ГОСТ 16110-82. ТРАНСФОРМАТОРЫ СИЛОВЫЕ. Термины и определения
  17. ABB Transformer Handbook
  18. ГОСТ 11677-85. ТРАНСФОРМАТОРЫ СИЛОВЫЕ: Общие технические условия
  19. Кацман М.М. Электрические машины и трансформаторы. Учебник для техникумов для электротехнических и энергетических специальностей. М., «Высшая школа», 1971, 416с.
  20. IEC 60076-8. Силовые трансформаторы — Руководство по применению, пункт 6, страницы 81-91.
  21. Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63

Нормативные документы

Литература

  1. Основы теории цепей, Г. И. Атабеков, Лань, С-Пб.,-М.,-Краснодар, 2006.
  2. Электрические машины, Л. М. Пиотровский, Л., «Энергия», 1972.
  3. Силовые трансформаторы. Справочная книга/Под ред. С. Д. Лизунова, А. К. Лоханина. М.:Энергоиздат 2004. — 616 с ISBN 5-98073-004-4
  4. Электрические машины: Трансформаторы: Учебное пособие для электромех. спец. вузов/Б. Н. Сергеенков, В. М. Киселёв, Н. А. Акимова; Под ред. И. П. Копылова. — М.: Высш. шк., 1989—352 с ISBN 5-06-000450-3
  5. Электрические машины, А. И. Вольдек, Л., «Энергия», 1974.
  6. Электромагнитные расчеты трансформаторов и реакторов. — М.: Энергия, 1981—392 с.
  7. Конструирование трансформаторов. А. В. Сапожников. М.: Госэнергоиздат. 1959.
  8. Расчёт трансформаторов. Учебное пособие для вузов. П. М. Тихомиров. М.: Энергия, 1976. — 544 с.
  9. Расчёт и оптимизация тороидальных трансформаторов. С. В. Котенев, А. Н. Евсеев. — М.: Горячая линия — Телеком, 2011. — 287 с.

Ссылки

Трансформатор

Виды трансформаторов

 

принцип действия, разновидности, из чего состоит и хараткрестики

Трансформатор – это прибор, который пропускает через себя электрический ток, меняя его характеристики. Без этого аппарата не обходится почти никакое электрическое или электронное устройство. Энергетические системы и подстанции любого масштаба обязательно включают в себя различные виды трансформаторов.

3-х фазный силовой трансформатор

История

В первой половине XIX века английский физик Фарадей проводил многочисленные опыты с электричеством. В результате экспериментов им было открыто такое явление, как электромагнитная индукция. 29 августа 1831 года учёный в своём дневнике описал результат своих исследований в этом направлении.

На кольцо из железа ø 150 мм и толщиной 20 мм были намотаны 2 медных провода длиной 150 мм и 180 мм. При подключении гальванической батареи к одной обмотке на зажимах другого проводника гальванометр фиксировал статическое напряжение. Так появился первый трансформаторный прототип.

Французский механик Румкорф в 1848 году сделал первую индукционную катушку. Она давала представление о том, что это такое трансформатор. В 1872 году профессор московского университета Столетов разработал теорию петли гистерезиса, а также обосновал доменную структуру ферритового сердечника.

30 ноября 1876 г. считается датой изобретения трансформатора переменного тока. В этот день был выдан патент на это изобретение знаменитому российскому физику Павлу Николаевичу Яблочкову. Прибор состоял из разомкнутого сердечника с двумя обмотками.

Устройство, изобретённое венгерскими инженерами в 1885 г., уже представляло собой прибор с замкнутым магнитопроводом. С тех пор сердечники стали делать из отдельных стальных листов. Приборы стали помещать в сосуды, заполненные маслом. Далее последовали различные усовершенствования конструкции преобразования тока. К этому приложили руку инженеры Эдисона, великий Никола Тесла, российские, английские и немецкие учёные.

Современные трансформаторы – это устройства, предназначенные для доставки потребителю электроэнергии с заданными характеристиками.

Базовые принципы действия

Определение преобразователя напряжения базируется на двух принципах действия:

  1. Электромагнетизм. Изменяясь в определённом временном промежутке, ток создаёт изменяющееся магнитное поле.
  2. Электромагнитная индукция. Проходящий магнитный ток через вторичную обмотку возбуждает в ней электродвижущую силу (ЭДС).

Закон Фарадея

Электромагнитная индукция вызывает электрический ток в замкнутом контуре во время изменения магнитного потока, проходящего сквозь площадь этого контура.

Закон Фарадея объясняет прямую пропорциальную зависимость ЭДС от скорости изменения магнитного потока. Эту зависимость отражает формула закона электромагнитной индукции:

Формула закона Фарадея

  • ЭДС – индукция в контуре;
  • ∆Ф – величина магнитного потока;
  • ∆t – временной промежуток.

Важно! Минус в формуле закона Фарадея – это корректировка выражения, предложенная русским учёным Ленцем. Знак « – » означает, что индукционный ток в ограниченном контуре направлен на препятствование изменению магнитного потока.

Уравнение идеального трансформатора

Направлять электрический ток с изменёнными параметрами в электрические цепи или определённую область электронной схемы – для чего служат трансформаторы. Идеальный трансформатор – это прибор, который не несёт потерь на гистерезисе, вихревых токах и рассеивании обмотками энергии.

В идеальном устройстве мощности обеих обмоток равны. Электрический поток, проходя через первичную катушку, преобразуется в магнитный поток, который, в свою очередь, превращается в ЭДС вторичной цепи.

Что делает идеальный трансформатор, можно выразить следующим выражением:

P1 = I1U1 = P2 = I2U2,

где:

  • P1 – одномоментная мощность первичной цепи;
  • P2 – одномоментная мощность вторичной обмотки.

Преобразуя оба произведения силы и тока в соотношения, получают математическое определение идеального трансформатора:

U2/U1 = I1 /I2 = n,

где n – коэффициент трансформации.

Модель реального трансформатора

От идеального исполнения конструктивного решения прибора реальная модель трансформатора отличается такими признаками, как:

  1. Наличие ненулевого тока холостого хода;
  2. Возникновение ёмкостей;
  3. Нелинейная кривая намагниченности.
Ненулевой ток холостого хода

Обмотки реального трансформатора вместе с пластинами сердечника представляют собой магнитоэлектрическую систему, где по её контуру циркулирует вектор напряжения магнитного поля, равный полному току внутри этого контура.

Все типы действующих трансформаторов при включении без нагрузки испытывают всплески первичного тока. Это явление называют ненулевым током холостого хода. При расчётах защиты преобразовательных устройств проводят сравнение между действительными и идеальными сдвигами токов двух обмоток. Разницу между углами этих сдвигов называют углом погрешности. Этот показатель учитывают при определении класса приборов, особенно в тех моделях, которые предназначены для работы в системах учёта энергопотребления.

Возникновение ёмкостей

Проводники с разделительным диэлектрическим материалом провоцируют возникновение паразитных ёмкостей между обмотками, их слоями и витками. Благодаря им, из первичной катушки проникают во вторичную обмотку помехи высокой частоты. В расчёты характеристик приборов вводят теоретические величины эквивалентных ёмкостей. Это делается с целью резкого снижения риска проявления таких негативных явлений, как возникновение продольных и поперечных ёмкостей.

Нелинейная кривая намагниченности

Ферритовые сердечники трансформаторов содержатся в большинстве разновидностей преобразователей напряжения. Добиваясь этим большой величины ЭДС во вторичных обмотках, получают крайне нелинейную характеристику намагничивания. Соответственно, индуктивность тоже принимает нелинейный характер.

В результате создаётся феррорезонансный режим, при котором возникает риск выхода из строя преобразователя напряжения. Происходит чрезмерный нагрев магнитопровода, что вызывает потребность в охлаждении устройства.

Обратите внимание! Для гашения сопровождающих вихревых токов сердечники собирают из шихтованных ферромагнитных пластин с высоким удельным сопротивлением. Их делают из специальной кремнистой тонкой стали.

Режимы работы трансформаторов

Трансформаторы предназначены для работы в трёх режимах:

  • холостой ход;
  • нагрузка;
  • короткое замыкание.

Режим холостого хода

Холостым ходом называют такое состояние прибора, когда вторичная обмотка разомкнута, и потребитель не получает выходной энергопоток. В первичной катушке протекает ЭДС, которую называют током холостого хода. В этом режиме определяют КПД прибора, коэффициент трансформации и потери в магнитопроводе.

Режим нагрузки

Это стандартное рабочее состояние оборудования, когда первичная цепь подключена к источнику тока, а вторичная обмотка находится под нагрузкой. Характеристика нагрузки в основном определяет применение нужного вида трансформатора.

Состояние короткого замыкания

Выводы вторичной обмотки замыкают напрямую с целью выявления потерь на нагрев катушек в цепи устройства. Единственной нагрузкой остаётся собственное сопротивление витков вторичной обмотки.

Теория трансформаторов

Теоретические обоснования того, что делают трансформаторы, включают в себя несколько разделов:

  1. Уравнения линейного трансформатора;
  2. Т-образная схема замещения;
  3. Потери;
  4. Габаритная мощность;
  5. КПД.

Уравнения линейного трансформатора

Линейные уравнения отображают взаимосвязь между величинами характеристик трансформатора. К ним относятся:

  1. U1 = L1(di1/dt) +L1,2(di2/dt) + I1 R1;
  2. L2(dI2/dt) + L1.2 + I2R2 = – I2RH,

где:

  • U1 – мгновенное напряжение в первичной катушке;
  • I1 и I2 – сила тока в обмотках;
  • RH – сопротивление в нагрузке;
  • L1,2 – взаимная индуктивность обмоток;
  • L1, R1, и L2, R2 – индуктивность и сопротивление обеих катушек.

Т-образная схема замещения

Для тестирования электрической цепи какого-либо устройства трансформатор замещают Т-образной схемой, состоящей из элементов, указанных на нижнем рисунке.

Т-образная схема замещения

Потери

Специалисты разделяют потери на траты в стали и меди. Потери в стали происходят в сердечнике, утрата части энергии в меди относится к медным виткам обмоток.

В стали

Утрата части энергии происходит по причине потерь в магнитопроводе и обмотках. Величина потерь в стали связана с конструкцией сердечника, качеством электротехнической стали. Траты энергии уходят на нагрев, гистерезис и образование вихревых токов.

Магнитопроводы, сделанные из трансформаторного железа с добавлением кремния, значительно уменьшают потери и повышают удельное сопротивление стали. Конструкцию сердечника улучшают промежуточным лакированием соприкасающихся поверхностей пластин.

В меди

Потери в обмотках вызваны ненулевым вектором активного сопротивления в катушках преобразователя напряжения. Потери в меди сопровождаются нагревом проводов в обмотках. Часто они вызваны несоответствием количества витков напряжению в обмотках.

Габаритная мощность

Габаритную мощность трансформатора рассчитывают следующей формулой:

Pgab = (P1 + P2)/2 = (U1I1 + U2I2)/2.

Этот параметр можно определить ориентировочно по сечению сердечника. Величина габаритной мощности зависит от ряда показателей, таких как качество и толщина листов магнитопровода, размер проёма, степень индукции, общее сечение проводов обмоток и качество диэлектрических слоёв между пластинами.

Дополнительная информация. Ещё один фактор влияет на габаритную мощность трансформатора – это его стоимость. Чем дешевле устройство, тем меньше этот показатель.

КПД трансформатора

Коэффициент полезного действия приборов можно рассчитать по нескольким формулам. Три из них представлены ниже:

Формула 1

Формула 2

Формула 3

Конструкция

Конструкция устройства базируется на 4-х основных элементах. Вот из чего состоят трансформаторы:

  1. Магнитопровод;
  2. Обмотки;
  3. Схемы соединения обмоток 3-х фазных трансформаторов;
  4. Бак.

Магнитопровод

Магнитная секция прибора делается из нескольких видов материалов: электротехническая сталь, пермаллой и ферромагнетики. Конструктив устройства обычно выглядит в виде рамки, на боковых сторонах (стержнях) которой помещаются обмотки. Части рамки, свободные от катушек, называют ярмом. Встроенные преобразователи зачастую оснащаются магнитопроводами тороидальной формы.

В зависимости от пространственного положения стержней магнитопровода, магнитные системы бывают плоскими, пространственными, симметричными и несимметричными конструкциями. В трансформаторах переменного тока сердечники образуют замкнутый контур. В приборах постоянного тока магнитопроводы делаются с зазором.

Отдельные виды магнитопроводов

Обмотки

Катушки магнитопроводов состоят из множества витков провода. Витки располагаются параллельно относительно друг друга в строго последовательном порядке. Проводники тока, покрытые изоляционным лаком либо бумагой, охватывают спиралью стержни магнитопровода.

Первичная обмотка под напряжением создаёт вокруг себя магнитное поле, которое воздействует на витки второй катушки. В результате в ней индуцируется выходной электрический ток.

Схемы соединения обмоток 3-х фазных трансформаторов

В 3-х фазных трансформаторах обмотки соединяют тремя способами.

Звезда

Три обмотки сходятся одними своими концами в нейтральной точке. Бывают звёздные соединения с выводом из общей точки и без него.

Треугольник

Соединённые последовательно три обмотки образуют треугольник. У обмоток, соединённых треугольником, усложняется конструкция переключателя контактов из-за высокого напряжения.

Зигзаг

При такой схеме все три обмотки располагаются отдельно на 3 стержнях магнитопровода. Соединения катушек осуществляются встречно последовательно.

Бак

Баки, заполненные трансформаторным маслом, помимо опорной функции, обеспечивают защиту от перегрева силового оборудования. Перед заправкой герметичного бака маслом из него откачивают воздух. Ёмкости могут содержать различные добавки, активно поглощающие рассеивающий магнитный поток, не давая ему распространиться наружу.

Виды трансформаторов

В этом пункте раскрыта тема, какие разные бывают трансформаторы.

Силовой

Тип силового трансформатора переменного тока используют в сетях электроснабжения и в специальных установках. Название «Силовой» обозначает то, что оборудование обладает большой мощностью. Потребность в таком оборудовании объясняется согласованием различных величин напряжений линий электропередач.

Автотрансформатор

Его первичная и вторичная обмотки соединены напрямую, за счёт чего обеспечивается электромагнитная и электрическая связь. Достоинством автотрансформатора является высокий показатель КПД. Вторичная обмотка имеет несколько выводов, что позволяет варьировать несколькими величинами выходного напряжения. Прибор может фиксировать напряжение на уровне 220 вольт. Поэтому приборы популярны в быту, предохраняя лампы осветительных приборов, домашнее электрическое и электронное оборудование от скачков напряжения сетевого тока.

Трансформатор тока

Такой вид, как трансформатор тока, применяется в измерительных цепях, защитном оборудовании. Устройство используется как средство управления и различной сигнализации. Первичная катушка подсоединяется к источнику питания тогда, когда вторичная обмотка включается в схему измерительных, исполнительных, индикаторных и релейных приборов.

Трансформатор напряжения

Основное назначение – это преобразование тока высокого напряжения в низковольтное питание измерительных цепей и различных приборов. Понижающее оборудование применяют в логических защитных системах.

Импульсный

Импульсные преобразователи используются для передачи пульсирующего тока. Это необходимая часть видеотехники для обеспечения отсутствия искажений в трансформируемых видеосигналах.

Сварочный

Трансформаторы обеспечивают ток нужной характеристики для различных видов сварки. Регулировка сварочного тока происходит за счёт изменения индуктивного сопротивления и холостого хода вторичной обмотки. Сварочный трансформатор работает от сети напряжением 220 или 380 вольт.

Разделительный

Трансформаторы оснащены раздельными обмотками. Их применяют в цепях защитных систем. Они чутко реагируют на несанкционированное заземление и отключают электричество в аварийных случаях.

Согласующий

Трансформатор используется для согласования сопротивлений каскадов электронного оборудования с минимальным искажением сигналов. Также его применяют для гальванической развязки между различными частями электронных схем.

Пик-трансформатор

Преобразует синусоидальное напряжение в импульсы пикообразной формы. Применяется для управления газоразрядным оборудованием, таким как тиратроны, ртутные выпрямители и тиристоры.

Сдвоенный дроссель

Отличается от других видов преобразователей напряжения наличием двух абсолютно одинаковых обмоток. Основная функция – встречный индуктивный фильтр. По своим характеристикам значительно превосходит дроссель стандартной конструкции.

Трансфлюксор

Обладает большой степенью остаточной намагниченности сердечника. Этот вид трансформаторов используется как элемент блока памяти электронных устройств.

Вращающийся трансформатор

Передаёт сигналы на вращающиеся магнитные головки видеозаписывающей аппаратуры. Магнитопровод разделён на две части, одна из которых вращается с минимальным зазором относительно другой части сердечника. Обеспечивает качественный съём сигналов при большой скорости вращения.

Воздушный и масляный трансформаторы

Отличаются друг от друга способом охлаждения магнитопровода с обмотками. Масляный преобразователь напряжения погружён в герметичный бак, заполненный трансформаторным маслом с активными добавками. Воздушные приборы охлаждаются за счёт естественной или принудительной вентиляции внутреннего пространства корпуса трансформатора.

Трёхфазный

Этот вид оборудования относится к силовым трансформаторам, обладающим большой мощностью. Магнитопровод состоит из трёх стержней с обмотками. Стержень каждой из трёх фаз оснащён двумя катушками повышающего и понижающего напряжения.

Обозначение на схемах

На схематичном изображении трансформаторов обмотки представляют волнистыми линиями по обе стороны вертикального стержня. На нижнем рисунке видны одна первичная и две вторичные обмотки, разделённые вертикальной линией магнитопровода.

Обозначение трансформатора на схемах

Сферы применения

В источниках электропитания

Основное предназначение трансформаторов – это изменение характеристик тока, поступающего от источника тока.

Другие

Кроме понижения и повышения напряжения, трансформаторы используются как разделительные, импульсные устройства, релейная защита автоматики. Также отдельные виды приборов выполняют измерительную и силовую функцию.

Эксплуатация

Срок службы

При правильном и своевременном обслуживании трансформаторное оборудование может прослужить до тех пор, пока морально не устареет. Срок службы зависит от условий эксплуатации, частоты возникновения аварийных ситуаций на участке электросети, где установлено оборудование.

Работа в параллельном режиме

Параллельный режим работы позволяет временно подменять мощное силовое оборудование трансформаторами средней или малой мощности. Это происходит тогда, когда на линии электропередачи падает нагрузка, что позволяет сокращать траты энергии при работе на холостом ходу.

Частота

При одинаковом напряжении частота тока может быть различной. Первичная обмотка, рассчитанная на частоту тока 50 Гц, без помех принимает входной ток частотой 60 Гц. В обратном случае трансформатор не будет полноценно исполнять свои функции. При меньшей номинальной частоте возрастает показатель индукции в сердечнике, что, как правило, вызывает резкое увеличение силы тока холостого хода. Если ток в сети имеет частоту, превышающую номинальную величину, то возникают паразитные токи в магнитопроводе. Сердечник и обмотки сильно перегреваются.

Регулирование напряжения трансформатора

Изменение напряжения в сети отображается на аналоговом экране или цифровом дисплее. Маломощные трансформаторы снабжены светодиодной индикацией уровня напряжения. С помощью органов управления устанавливается нужный уровень выходного напряжения в ручном или автоматическом режиме.

Изоляция трансформатора

Из-за частых перегревов обмоток и магнитопроводов изоляция может потерять свои диэлектрические свойства. Для осуществления контроля состояния изоляции проводятся регулярные испытания электрооборудования.

Перенапряжения трансформатора

В процессе интенсивной эксплуатации трансформаторы часто подвергаются перенапряжению. Оно бывает кратковременным и переходным.

Кратковременное превышение рабочих параметров оборудования происходит в течение от 1 секунды до нескольких часов. Переходное перенапряжение может набирать время, измеряемое в мили и наносекундах.

Перед тем, как покинуть завод-изготовитель, трансформаторы проходят тестовые испытания, в ходе которых создаются различные ситуации на грани потери работоспособности. В результате некондиция отсеивается от партии готовой продукции.

При установке того или иного трансформаторного оборудования нужно тщательно взвесить его возможности и состояние источника питания. Также принимают во внимание требуемые характеристики выходного напряжения для определённых потребителей.

Видео

из чего состоит и зачем нужен, принцип работы и применение

Даже непрофессионалы знают, что существует такое устройство, как трансформатор. О нем также снимают мультфильмы. Да, да. Какой малыш не знает о трансформерах? Правда, это сильно измененная и одушевленная форма, но суть остается та же. В автомобилестроении есть такое понятие, как гидротрансформатор — устройство, передающее силу двигателя на коробку передач. Однако речь пойдет об устройстве — электротрансформаторе.

Назначение составных частей

Само слово «трансформация» указывает на преобразование чего-то одного в другое. Трансформатор устроен таким образом, что позволяет производить такую рекомбинацию. Это электромагнитный прибор, он состоит из двух основных компонентов:

  • обмотки;
  • сердечника.

Обмотка как основа устройства

Обмотка изготавливается из проволоки, как правило, она медная. Для того чтобы не было короткого замыкания, проволока покрывается электроизоляционным лаком. Затем она равномерно наматывается на бумажный (картонный) каркас и надевается на сердечник. В другом исполнении обмотка наматывается непосредственно на сердечник, но предварительно на него накладывается электроизоляционный материал. Витки должны плотно прилегать друг к другу, тогда катушка будет меньше занимать места.

Обмоткой называют отдельно взятый провод, намотанный на каркас. Их должно быть не менее двух. Причем ту, к которой подводится напряжение, называют первичной, а с которой снимают — вторичной. Первичная используется одна, а вот вторичных может быть сколько угодно, в разумных, конечно, пределах. Вторичные катушки могут располагаться как рядом, так и в виде бутерброда, ложась друг на друга. В этом случае обмотки разделяются друг от друга изоляцией. В этой роли могут выступать промасленная бумага, пленка или ткань.

Первичную пытаются максимально отделить от вторичной обмотки, чтобы исключить гальваническую связь, исключением является автотрансформатор. У него первичная и вторичная обмотки электрически связаны, т. е. вывод одной соединен с выводом другой. Гальваническая развязка позволяет защищать людей от поражения электрическим током, а оборудование от серьезного повреждения, если не сработает защита.

Виды сердечников

Это второй основной компонент. По своей конструкции сердечник должен быть изготовлен из ферромагнитного материала и иметь жесткую конструкцию. Он исполняет роль магнитопровода и каркаса. По внешнему виду сердечники бывают трех видов:

  • броневой;
  • стержневой;
  • тороидальный.

Вид сердечника никак не влияет на электрические показатели, и выбор зависит от производителя, как ему удобнее изготавливать. Способ изготовления броневого или стержневого сердечника может быть следующим:

  • набором пластин;
  • прессованием;
  • намоткой ленты;
  • сбором «подков».

При использовании броневой системы обмотки «защищены» сердечником и их почти не видно. При использовании стержневого вида, обмотки почти полностью закрывают сердечник, видны только верхние и нижние ярма. В тороидальных трансформаторах сердечник выполняется в виде кольца и проволока полностью его закрывает.

Роль трансформатора в электроприборах

Сегодня применение трансформатора очень разнообразно, он есть и дома, и почти в каждом электронном устройстве. Когда использовались ламповые телевизоры (электронные динозавры, кто их сегодня помнит?), то электротрансформатор или автотрансформатор был его неотъемлемой частью. Сегодня он перекочевал внутрь телевизора и сильно изменился, превратившись в импульсный прибор. В зарядных устройствах используются понижающие трансформаторы. Даже в компьютерных колонках он присутствует, повышай звук. Чтобы понять, для чего служит трансформатор, необходимо понять принцип его работы.

По определению трансформатор — это электромагнитное устройство, значит, в его работе используются магнитные силы, создаваемые электрическим полем. Электрическое поле образуется вокруг проводника, по которому течет ток. Если рядом с ним находится другой проводник, то на него будет влиять это электромагнитное поле, создавая в нем электрический ток. Поскольку поле действует перпендикулярно проводнику, то при намотке провода на сердечник, э. д. с. будет параллельно ему.

Чтобы понять, что делает трансформатор, можно посмотреть его работу. К примеру, возьмем стержневой сердечник. Первичная обмотка находится на одной стороне сердечника, вторичная — на другой. По первичной обмотке проходит ток, создается электромагнитное поле, передается по сердечнику на вторичную обмотку и в ней появляется ток.

Однако то, что преобразует трансформатор, должно видоизмениться. На самом деле количество витков в первичной и вторичной обмотках разное. Логично, что чем меньше витков подвергается воздействию электромагнитного поля, тем меньше напряжение. Получается, что с помощью трансформатора можно менять напряжение.

Но не только. От первичной катушки передается определенная мощность на вторичную. По закону Ома ничто не пропадает. Тогда, если уменьшается напряжение, значит, должен увеличиваться ток, что и происходит. Получается, что происходит трансформация и тока. Теперь понятно, зачем нужны трансформаторы — с их помощью можно получить нужный ток или напряжение.

Originally posted 2018-07-04 08:12:00.

Трансформатор это устройство предназначенное для

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Вид уличного силового трансформатора

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:

  • По выполняемой задаче . Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
  • По числу фаз . Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
  • По количеству обмоток . Двухобмоточные и трехобмоточные.
  • По месту монтажа . Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:

  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора

Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:

  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W

Трансформатор

| Определение, типы и факты

Трансформатор , устройство, которое передает электрическую энергию из одной цепи переменного тока в одну или несколько других цепей, увеличивая (повышая) или понижая (понижая) напряжение. Трансформаторы используются для самых разных целей; например, для снижения напряжения обычных силовых цепей для управления низковольтными устройствами, такими как дверные звонки и игрушечные электропоезда, и для повышения напряжения от электрических генераторов, чтобы электроэнергия могла передаваться на большие расстояния.

Британская викторина

Гаджеты и технологии: факт или вымысел?

Виртуальная реальность используется только в игрушках? Использовались ли когда-нибудь роботы в бою? В этой викторине вы узнаете о гаджетах и ​​технологиях — от компьютерных клавиатур до флэш-памяти.

Трансформаторы изменяют напряжение за счет электромагнитной индукции; я.е., когда магнитные силовые линии (силовые линии) нарастают и схлопываются с изменениями тока, проходящего через первичную катушку, ток индуцируется в другой катушке, называемой вторичной. Вторичное напряжение рассчитывается путем умножения первичного напряжения на отношение количества витков вторичной катушки к количеству витков в первичной катушке, величина, называемая отношением витков.

Трансформаторы с воздушным сердечником предназначены для передачи радиочастотных токов, т. Е. Токов, используемых для радиопередачи; они состоят из двух или более катушек, намотанных вокруг твердого изоляционного материала или на изоляционной катушке.Трансформаторы с железным сердечником выполняют аналогичные функции в звуковом диапазоне.

Трансформаторы согласования импеданса используются для согласования импеданса источника и его нагрузки для наиболее эффективной передачи энергии. Изолирующие трансформаторы обычно используются из соображений безопасности для изоляции части оборудования от источника питания.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.
Подпишитесь сегодня

Что такое импульсный трансформатор?

Импульсные трансформаторы — это трансформаторы, которые проводят и направляют электрические токи в импульсном ритме, поднимаясь и падая волнами с постоянной амплитудой.Эти пульсирующие волны иногда также называют прямоугольными импульсами из-за их формы вверх-вниз при нанесении на карту; они больше похожи на прямоугольники, чем на холмы импульсов от таких вещей, как, например, человеческое сердце. Большинство трансформаторов, используемых для питания таких объектов, как городские сети и стандартные электрические сети, обеспечивают более или менее постоянный или плоский ток. Пульсирующие прямоугольные волны обычно не используются в этих сценариях, но есть несколько ситуаций, в которых они идеальны, если не требуются.К ним относятся определенные телекоммуникационные схемы и ситуации с цифровой логикой, а также некоторые ситуации освещения, такие как вспышки фотокамер в сложном фотооборудовании. Некоторые радиолокационные системы также используют их. Обычно существует два основных типа сигналов, а именно сигнал и мощность . У каждого свой темп, но обычно они имеют очень низкий допуск по распределенной емкости и индуктивности рассеяния, а также высокую индуктивность холостого хода. Сборка импульсного трансформатора любого типа обычно является сложной задачей, но сборочные комплекты доступны во многих местах для мастеров-самоделок или любителей электроники.

Человек с дрелью

Основное назначение

Как правило, трансформаторы проводят электричество и фильтруют сигналы к различным станциям управляемым расчетным способом.Импульсные трансформаторы ничем не отличаются, но их отличает способ регулирования выходной мощности. Прямоугольные электрические импульсы имеют быстрое время спада и нарастания и важны для приложений, которые включают такие вещи, как переключающие элементы или необходимый сброс энергии. Самые маленькие модели часто бывают очень маленькими и используются в портативной электронике и многих цифровых приложениях. Трансформаторы большего размера часто необходимы, помимо прочего, для управления потоком в мощных полупроводниках.

Типы сигналов

Размер устройства и, как следствие, общая конструкция трансформатора определяют его функции.Существует два основных типа импульсных трансформаторов: сигнальные и силовые. Типы сигналов, которые представляют собой трансформаторы меньшего размера, работают с относительно низкими уровнями мощности и выдают серию импульсов или импульсных сигналов. Они используются в ситуациях, когда требуется всего несколько вольт на несколько микросекунд, например, в телекоммуникационных схемах и приложениях с цифровой логикой. Даже в некоторых осветительных приборах используются небольшие импульсные трансформаторы.

Модели импульсов мощности

Другой основной тип импульсного трансформатора — это силовой импульсный трансформатор.Эти устройства требуют низких емкостей связи, что критично для защиты цепей на первичной стороне от мощных переходных процессов от электрической нагрузки. Модели Power также нуждаются в высоком пробивном напряжении и сопротивлении изоляции, чтобы работать эффективно. Они должны иметь адекватную переходную характеристику, чтобы сохранять прямоугольную форму импульса, потому что импульсы с менее чем оптимальным временем нарастания и спада имеют тенденцию вызывать потери переключения в большинстве силовых полупроводников.

В таких устройствах, как контроллеры для вспышек фотокамер или другие схемы управления питанием, часто используется так называемый импульсный трансформатор средней мощности.Более крупные модели используются в отрасли распределения электроэнергии, где они облегчают взаимодействие между цепями низкого напряжения и затворами высокого напряжения, используемыми в силовых полупроводниках. Некоторые специальные версии используются в радиолокационных системах и других приложениях, требующих импульсов большой мощности.

Высоковольтные трансформаторы

Существуют также устройства, аналогичные по функциям обычному импульсному трансформатору, и они называются высоковольтными импульсными трансформаторами.В отличие от традиционных трансформаторов, эти трансформаторы имеют открытую конструкцию и обычно используются в изоляционном масле высокого напряжения. Типичные импульсные выходные напряжения составляют от 100 до 500 киловольт. Длительность импульса может варьироваться от 0,25 микросекунды до 50 микросекунд.

Сборочные комплекты и другие инструменты оптимизации

Сборки для этих трансформаторов включают полный набор инструментов и оборудования, которые могут оптимизировать работу любого трансформаторного устройства.Помимо импульсного трансформатора, блок обычно включает в себя датчик тока и напряжения, байпасные конденсаторы и трансформатор нагревателя. Отводная сеть, розетка клистрона и система водяного охлаждения также являются частью сборки. Все эти компоненты являются частью схемы, которая обеспечивает постоянную передачу импульсов и низкий уровень искажений. Конкретные измерения для каждой сборки, такие как количество киловольт, мегаватт и длина импульса в микросекундах, указаны на веб-сайте компании или на этикетке продукта.

Transformers — документация transformers 3.5.0

В настоящее время библиотека содержит реализации PyTorch и Tensorflow, предварительно обученные веса моделей, сценарии использования и
утилиты преобразования для следующих моделей:

  • ALBERT (от Google Research и Технологического института Toyota в Чикаго) выпущен
    с докладом «АЛЬБЕРТ: облегченный BERT для самостоятельного изучения языковых представлений» Чжэньчжун Лан, Минда Чен, Себастьян Гудман, Кевин Гимпель, Пиюш
    Шарма, Раду Сорикут.

  • BART (из Facebook) выпущен с бумагой BART: Denoising Sequence-to-Sequence
    Предварительная подготовка по созданию, переводу и пониманию естественного языка, проведенная Майком Льюисом, Йинханом Лю, Наманом Гоялом, Марджаном Газвининеджадом, Абдельрахманом
    Мохамед, Омер Леви, Вес Стоянов и Люк Зеттлемойер.

  • BERT (от Google) выпущен с бумагой BERT: предварительное обучение Deep Bidirectional
    Трансформеры для понимания языка, Джейкоб Девлин, Мин-Вей Чанг,
    Кентон Ли и Кристина Тутанова.

  • BERT For Sequence Generation (от Google) выпущен с бумажным использованием
    Предварительно обученные контрольные точки для задач создания последовательности Саша Роте, Шаши
    Нараян, Алиаксей Северин.

  • Blenderbot (от Facebook) выпущен с бумажными рецептами для создания
    чат-бот с открытым доменом от Стивена Роллера, Эмили Динан, Намана Гояла, Да Джу, Мэри
    Уильямсон, Иньхан Лю, Цзин Сюй, Майл Отт, Курт Шустер, Эрик М. Смит, И-Лан Буро, Джейсон Уэстон.

  • CamemBERT (из Inria / Facebook / Sorbonne) выпущен с бумагой CamemBERT: a Tasty
    Модель французского языка Луи Мартина *, Бенджамина Мюллера *, Педро Хавьера Ортиса
    Суарес *, Йоанн Дюпон, Лоран Ромари, Эрик Виллемонте де ла Клержери, Джаме Седдах и Бенуа Саго.

  • CTRL (от Salesforce) выпущен с бумажным CTRL: язык условного преобразователя
    Модель управляемой генерации Нитиш Шириш Кескар *, Брайан Макканн *,
    Лав Р. Варшней, Кайминг Сюн и Ричард Сохер.

  • DeBERTa (от Microsoft Research) выпущен с бумагой DeBERTa: Decoding-Enhanced
    BERT с раскрытым вниманием Пэнчэн Хэ, Сяодун Лю, Цзяньфэн Гао,
    Weizhu Chen.

  • DialoGPT (от Microsoft Research) выпущен с бумагой DialoGPT: Large-Scale
    Генеративный предварительный тренинг для генерации разговорного ответа Ижэ Чжан,
    Сици Сун, Мишель Галлей, Йен-Чун Чен, Крис Брокетт, Сян Гао, Цзяньфэн Гао, Цзинцзин Лю, Билл Долан.

  • DistilBERT (от HuggingFace), выпущенный вместе с бумагой DistilBERT, a
    дистиллированная версия BERT: меньше, быстрее, дешевле и легче от Victor
    Сань, Лисандра Дебют и Томас Вольф. Тот же метод был применен для сжатия GPT2 в DistilGPT2, RoBERTa в DistilRoBERTa, Multilingual BERT в
    DistilmBERT и немец
    версия DistilBERT.

  • DPR (от Facebook) выпущен с бумагой Dense Passage Retrieval for Open-Domain
    Ответы на вопрос: Владимир Карпухин, Барлас Одуз, Севон Мин, Патрик
    Льюис, Леделл Ву, Сергей Эдунов, Данки Чен и Вэнь-тау Йих.

  • ELECTRA (из Google Research / Стэнфордский университет) выпущен с бумагой ELECTRA:
    Предварительное обучение кодировщиков текста как дискриминаторов, а не генераторов, Кевин
    Кларк, Минь-Тханг Луонг, Куок В. Ле, Кристофер Д. Мэннинг.

  • FlauBERT (от CNRS) выпущен с бумагой FlauBERT: Unsupervised Language Model
    Предварительное обучение французскому языку Ханг Ле, Лоик Виаль, Джибриль Фрей, Винсент Сегонн,
    Максимин Коаву, Бенджамин Лекуто, Александр Аллозен, Бенуа Краббе, Лоран Безасье, Дидье Шваб.

  • Funnel Transformer (из CMU / Google Brain), выпущенный вместе с бумажным Funnel-Transformer:
    Фильтрация последовательной избыточности для эффективной обработки языка с помощью
    Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

  • GPT (от OpenAI) выпущен с документом «Улучшение понимания языка с помощью генеративного
    Предварительная подготовка: Алек Рэдфорд, Картик Нарасимхан, Тим Салиманс
    и Илья Суцкевер.

  • GPT-2 (от OpenAI), выпущенный с бумажной версией языковых моделей, является неконтролируемой многозадачностью
    Учащиеся Алек Рэдфорд *, Джеффри Ву *, Ревон Чайлд, Дэвид
    Луан, Дарио Амодей ** и Илья Суцкевер **.

  • LayoutLM (от Microsoft Research Asia) выпущен с бумажным LayoutLM: предварительное обучение
    текста и макета для понимания изображения документа — Ихэн Сюй, Минхао Ли,
    Лэй Цуй, Шаохань Хуан, Фуру Вэй, Мин Чжоу.

  • Longformer (от AllenAI) выпущен с бумагой Longformer: The Long-Document
    Трансформеры Из Бельтаги, Мэтью Э. Питерс, Арман Коэн.

  • LXMERT (из UNC Chapel Hill) выпущен с бумагой LXMERT: Learning Cross-Modality
    Представления кодировщика от трансформаторов для ответов на вопросы в открытой области
    Хао Тан и Мохит Бансал.

  • MarianMT Модели машинного перевода, обученные с использованием данных OPUS
    Йорг Тидеманн. Marian Framework разрабатывается Microsoft
    Команда переводчиков.

  • MBart (от Facebook) выпущен с бумагой Multilingual Denoising Pre-training для
    Нейронный машинный перевод Иньхан Лю, Цзятао Гу, Наман Гоял, Сиань Ли,
    Сергей Едунов, Марьян Газвининежд, Майк Льюис, Люк Зеттлемойер.

  • Pegasus (от Google) выпущен с бумагой PEGASUS: Pre-training with Extracted
    Предложения с пробелами для абстрактного обобщения> Цзинцин Чжан, Яо Чжао,
    Мохаммад Салех и Питер Дж.Лю.

  • ProphetNet (от Microsoft Research) выпущен с бумагой ProphetNet: Predicting
    Будущая N-грамма для предварительного обучения от последовательности к последовательности Ю Янь, Вэйчжэнь Ци,
    Еюнь Гун, Дайихэн Лю, Нань Дуань, Цзюшэн Чен, Руофэй Чжан и Мин Чжоу.

  • Reformer (от Google Research) выпущен с бумажным Reformer: The Efficient
    Трансформер от Никиты Китаева, Лукаша Кайзера, Ансельма Левской.

  • RoBERTa (от Facebook), выпущенный вместе с бумагой Robustly Optimized BERT
    Предтренировочный подход Иньхан Лю, Майл Отт, Наман Гоял, Цзинфэй Ду, Мандар
    Джоши, Данки Чен, Омер Леви, Майк Льюис, Люк Зеттлемойер, Веселин Стоянов.многоязычный BERT в DistilmBERT и немецкую версию
    DistilBERT.

  • SqueezeBert выпущен с бумагой SqueezeBERT: чему компьютерное зрение может научить НЛП
    про эффективные нейронные сети? Форрест Н. Иандола, Альберт Э. Шоу, Рави
    Кришна и Курт В. Койцер.

  • T5 (от Google AI) выпущен с бумагой Exploring the Limits of Transfer Learning with a
    Унифицированный преобразователь текста в текст от Колина Раффеля, Ноама Шазира и Адама
    Робертс, Кэтрин Ли, Шаран Наранг, Майкл Матена, Янки Чжоу, Вэй Ли и Питер Дж.Лю.

  • Transformer-XL (от Google / CMU) выпущен с бумажным Transformer-XL:
    Модели внимательного языка вне контекста фиксированной длины, Цзихан Дай *,
    Жилин Ян *, Имин Ян, Хайме Карбонелл, Куок В. Ле, Руслан Салахутдинов.

  • XLM (от Facebook) выпущен вместе с бумажной кросс-языковой моделью языка
    Предварительная подготовка Гийома Лампле и Алексиса Конно.

  • XLM-ProphetNet (от Microsoft Research), выпущенный с бумагой ProphetNet:
    Предсказание будущей N-граммы для предварительного обучения от последовательности к последовательности Ю Янь,
    Вэйчжэнь Ци, Еюнь Гун, Дайхэн Лю, Нань Дуань, Цзюшен Чен, Руофей Чжан и Мин Чжоу.

  • XLM-RoBERTa (из Facebook AI), выпущен вместе с газетой Unsupervised
    Масштабное обучение кросс-языковой репрезентации, Алексис Конно *, Картикай
    Ханделвал *, Наман Гоял, Вишрав Чаудхари, Гийом Вензек, Франсиско Гусман, Эдуард Грейв, Майл Отт, Люк
    Зеттлемойер и Веселин Стоянов.

  • XLNet (от Google / CMU) выпущен с бумагой XLNet: Generalized Autoregressive
    Предварительная подготовка к пониманию языка, проведенная Чжилин Ян *, Цзихан Дай *, Имин
    Ян, Хайме Карбонелл, Руслан Салахутдинов, Куок В.Le.

  • Другие модели сообщества, предоставленные сообществом.

  • Трансформаторы Трансформатор — это устройство для увеличения или уменьшения

    Презентация на тему: «Трансформаторы. Трансформатор — это устройство для увеличения или уменьшения» — стенограмма презентации:

    1

    Трансформаторы Трансформатор — это устройство для увеличения или уменьшения
    a.c. вольтаж.

    2

    Конструкция трансформатора

    3

    Условное обозначение трансформатора

    4

    Как работает трансформатор Сердечник из ламинированного мягкого железа Выходное напряжение (перем. Ток)
    Входное напряжение (a.c.) Первичная катушка Вторичная катушка

    5

    Сердечник из многослойного железа — магнитно связывает две катушки.
    Все трансформаторы состоят из трех частей: Первичная катушка — входящее напряжение Vp (напряжение на первичной катушке) подключается к этой катушке. Вторичная катушка — обеспечивает выходное напряжение Vs (напряжение на вторичной катушке) на внешнюю цепь. Ламинированный железный сердечник — он магнитно связывает две катушки.Обратите внимание, что между двумя катушками нет электрического соединения, которые построены с использованием изолированного провода.

    6

    Два типа трансформатора
    Повышающий трансформатор увеличивает напряжение — на вторичной обмотке больше витков, чем на первичной. Понижающий трансформатор снижает напряжение — на вторичной обмотке меньше витков, чем на первичной. Чтобы повысить напряжение в 10 раз, на вторичной катушке должно быть в 10 раз больше витков, чем на первичной.Соотношение витков говорит нам, на какой коэффициент будет изменяться напряжение.

    7

    Формула для трансформатора
    Где Vp = первичное напряжение Vs = вторичное напряжение Np = количество витков в первичной обмотке Ns = количество витков во вторичной обмотке.

    8

    Рабочий пример №1 На схеме показан трансформатор
    Рабочий пример №1.1 На схеме изображен трансформатор. Рассчитайте напряжение на вторичной обмотке этого трансформатора. Повышающий трансформатор!

    10

    Рабочий пример № 2 Трансформатор с 1380 витками в первичной обмотке должен использоваться для преобразования сетевого напряжения 230 В для работы лампочки 6 В. Сколько витков должна иметь вторичная обмотка этого трансформатора? VP = 230 В NP = 1380 VS = 6 В NS =? Очевидно, понижающий трансформатор !!

    Силовой трансформатор Модуль изолированного источника питания переменного и постоянного тока 85 ~ 265В переменного тока в 12В постоянного тока Устройство преобразования мощности |

    Силовой трансформатор Модуль изолированного источника питания постоянного и переменного тока 85 ~ 265 В переменного тока в 12 В постоянного тока Устройство преобразования мощности

    Характеристика:

    1.Одноканальный выход стабилизации напряжения, более стабильный.
    2. Интегрирован с выходом перегрузки по току, функцией защиты от короткого замыкания.
    3. Вход и выход изолированы друг от друга, более безопасны в использовании.
    4. Применяя технологию высокочастотного переключения PWM, он имеет преимущества широкого диапазона выходного напряжения и хорошей надежности.
    5. Широко используется в умном доме, приборостроении, промышленности и других областях.

    Спецификация:

    Тип товара: Модуль питания
    Выходное напряжение: 85 ~ 265 В
    Номинальная мощность: 3 Вт
    Выходное напряжение: 12 В
    Выходной ток: 250 мА

    Список пакетов:

    1 х модуль

    1) Мы принимаем Alipay, West Union, TT.Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

    2) Оплата должна быть произведена в течение 3 дней с момента заказа.

    3)
    Если вы не можете оформить заказ сразу после закрытия аукциона, подождите
    несколько минут и повторите попытку. Платежи должны быть завершены в течение 3 дней.

    О доставке

    1. ДОСТАВКА ПО ВСЕМУ МИРУ. (За исключением некоторых стран и APO / FPO)
    2. Заказы обрабатываются своевременно после подтверждения оплаты.
    3. Мы отправляем только на подтвержденные адреса заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.
    4. Представленные изображения не являются фактическим товаром и предназначены только для справки.
    5.
    ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ предоставляется перевозчиком и не включает выходные.
    и праздники. Время доставки может меняться, особенно во время отпуска.
    сезон.
    6. Если вы не получили посылку в течение указанного срока,
    пожалуйста свяжитесь с нами. Мы отследим доставку и свяжемся с вами как
    как можно скорее с ответом.Наша цель — удовлетворение клиентов!
    7.
    Из-за наличия на складе и разницы во времени мы выберем для вас доставку
    товар с нашего первого доступного склада для быстрой доставки.

    8. Мы, продавец, не несем ответственности за импортные пошлины, покупатель несет за это ответственность. Любые споры, вызванные этим, необоснованны.

    9. Покупатель BR, пожалуйста, предоставьте cpf или cnpj, вам будет лучше получить его быстрее. Благодарность

    Возврат и возврат

    1.У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его с даты
    был получен. Если этот предмет находится в вашем распоряжении более 7 дней, он
    считается использованным, и МЫ НЕ ВЫДАЕМ ВАМ ВОЗВРАТ ИЛИ ЗАМЕНУ.
    НИКАКИХ ИСКЛЮЧЕНИЙ! Стоимость доставки оплачивается как продавцом, так и покупателем.
    в половине.
    2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке и
    Вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретная причина
    за возврат, и ваш po #.
    3. Мы вернем ВАШУ ПОЛНУЮ ВЫИГРЫШНУЮ СТАВКУ.
    СУММА, при получении товара в исходном состоянии и
    упаковка со всеми включенными компонентами и аксессуарами ПОСЛЕ ОБА ПОКУПАТЕЛЯ
    и продавец отменяет транзакцию с aliexpress. ИЛИ вы можете выбрать
    иметь замену.
    4. Мы будем нести всю стоимость доставки, если товар (ы) не соответствует рекламе.

    О обратной связи

    Мы
    поддерживать высокие стандарты качества и стремиться к 100% -ному клиенту
    удовлетворение! Обратная связь очень важна, мы просим вас связаться с нами
    немедленно, прежде чем вы оставите нам нейтральный или отрицательный отзыв, чтобы мы
    может удовлетворительно решить ваши проблемы.
    Невозможно решить проблемы, если мы о них не знаем!


    Трансформаторный ответвитель

    — это … Что такое трансформаторный ответвитель?

  • кран трансформатора — transformatoriaus atšaka statusas T sritis automatika atitikmenys: angl. трансформаторный кран вок. Transformatoranzapfung, f rus. отпайка трансформатора, f pranc. Prize de transformateur, f… Automatikos terminų žodynas

  • Ответвитель (трансформатор) — Эта статья о ответвлениях в трансформаторах.Чтобы узнать о других значениях, см. Tap. Отвод трансформатора — это точка соединения вдоль обмотки трансформатора, которая позволяет выбрать определенное количество витков. Это значит, трансформатор с переменным числом оборотов…… Wikipedia

  • TAP — может относиться к: * Tap (клапан), контролирует выпуск жидкости или газа * Tap или Flap согласный звук, тип согласного звука * Телефонное прослушивание, мониторинг телефонных разговоров третьим лицом * Tap (трансформатор), промежуточное звено…… Википедия

  • Типы трансформаторов — Условные обозначения цепей Трансформатор с двумя обмотками и железным сердечником.Понижающий или повышающий трансформатор. Этот символ показывает, какая обмотка имеет больше витков, но обычно не… Wikipedia

  • Преобразователь ответвлений — Преобразователь ответвлений представляет собой разновидность циклоконвертора, изобретенного в 1981 году инженером-электриком из Нью-Йорка Мелвином Сэндлером и усовершенствованного в 1982–1984 годах аспирантами Мариушем Вжесневски, Брюсом Дэвидом Вилнером и Эдди Фунгом. В то время как… Википедия

  • Трансформатор — Эта статья про электрическое устройство.Для франшизы игрушечной линии см Трансформеры. Для использования в других целях, см Трансформатор (значения). Распределительный трансформатор с центральным ответвлением вторичной обмотки. Этот тип трансформатора…… Wikipedia

  • Конструкция трансформатора — Эта страница в первую очередь посвящена проектированию электрических трансформаторов. Для определения, функции и истории см. Трансформатор. В электротехнике практическое проектирование трансформатора требует знания электрических принципов, материалов и…… Wikipedia

  • кран — кран1 существительное 1》 устройство, с помощью которого можно управлять потоком жидкости или газа из трубы или контейнера.2》 инструмент для вырезания резьбового отверстия в материале. 3》 устройство, подключенное к телефону, для тайного прослушивания разговора. 4》 (также…… Словарь новых терминов английского языка

  • устройство РПН — существительное: устройство или приспособление для автоматического переключения ответвлений трансформатора на обычное напряжение системы… Полезный английский словарь

  • Центральный ответвитель — В электронике центральный ответвитель — это соединение, выполненное с точкой на полпути вдоль обмотки трансформатора или катушки индуктивности, либо вдоль элемента резистора или потенциометра.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *