Принцип работы трансформатора. Трансформатор как работает


Как работает трансформатор - Легкое дело

Как работает трансформатор

Трансформаторами в электротехнике называют такие электротехнические устройства, в которых электрическая энергия переменного тока от одной неподвижной катушки из проводника передается другой неподвижной же катушке из проводника, не связанной с первой электрически.

Звеном, передающим энергию от одной катушки другой, является магнитный поток, сцепляющийся с обеими катушками и непрерывно меняющийся по величине и по направлению.

Принцип действия и устройство однофазного трансформатора

На рис. 1а изображен простейший трансформатор, состоящий из двух катушек I и II, расположенных коаксиально одна над другой. К катушке I подводится переменный ток от генератора переменного тока Г. Эта катушка называется первичной катушкой или первичной обмоткой. С катушкою II, называемой вторичной катушкой или вторичной обмоткой, соединяется цепь приемниками электрической энергии.

Принцип действия трансформатора

Действие трансформатора заключается в следующем. При прохождении тока в первичной катушке ею создается магнитное поле, силовые линии которого пронизывают не только создавшую их катушку, но частично и вторичную катушку. Примерная картина распределения силовых линий, создаваемых первичною катушкою, изображена на рисунке.

Как видно из рисунка, все силовые линии замыкаются вокруг проводников катушки, но часть их на рис. 1б силовые линии 1, 2, 3, 4 замыкаются также вокруг проводников катушки. Таким образом катушка I является магнитно связанной с катушкою II при посредстве магнитных силовых линий.

Степень магнитной связи катушек I и II, при коаксиальном расположении их, зависит от расстояния между ними: чем дальше катушки друг от друга, тем меньше магнитная связь между ними, ибо тем меньше силовых линий катушки I сцепляется с катушкою II.

Так как через катушку I проходит, как мы предполагаем, переменный ток, т. е. ток, меняющийся во времени по какому-то закону, например по закону синуса, то и магнитное поле, им создаваемое, также будет меняться во времени по тому же закону.

Например, когда ток в катушке I проходит через наибольшее значение, то и магнитный поток, им создаваемый, также проходит через наибольшее значение; когда ток в катушке I проходит через нуль, меняя свое направление, то и магнитный поток проходит через нуль, также меняя свое направление.

В результате изменения тока в катушке I обе катушки I и II пронизываются магнитным потоком, непрерывно меняющим свою величину и свое направление. Согласно основному закону электромагнитной индукции при всяком изменении пронизывающего катушку магнитного потока в катушке индуктируется переменная электродвижущая сила. В нашем случае в катушке I индуктируется электродвижущая сила самоиндукции, а в катушке II индуктируется электродвижущая сила взаимоиндукции.

Если концы катушки II соединить с цепью приемников электрической энергии (см. рис. 1а), то в этой цепи появится ток; следовательно приемники получат электрическую энергию. В то же время к катушке I от генератора направится энергия, почти равная энергии, отдаваемой в цепь катушкой II. Таким образом электрическая энергия от одной катушки будет передаваться в цепь второй катушки, совершенно не связанной с первой катушкой гальванически (металлически). Средством передачи энергии в этом случае является только переменный магнитный поток.

Изображенный на рис. 1а трансформатор весьма несовершенен, ибо между первичной катушкой I и вторичной катушкой II магнитная связь невелика.

Магнитная связь двух обмоток, вообще говоря, оценивается отношением магнитного потока, сцепляющегося с обеими обмотками, к потоку, создаваемому одной катушкой.

Из рис. 1б видно, что только часть силовых линий катушки I замыкается вокруг катушки II. Другая часть силовых линий (на рис. 1б — линии 6, 7, 8) замыкается только вокруг катушки I. Эти силовые линии в передаче электрической энергии от первой катушки ко второй совершенно не участвуют, они образуют так называемое поле рассеяния.

Для того чтобы увеличить магнитную связь между первичной и вторичной обмотками и одновременно уменьшить магнитное сопротивление для прохождения магнитного потока, обмотки технических трансформаторов располагают на совершенно замкнутых железных сердечниках.

Первым примером выполнения трансформаторов может служить схематически изображенный на рис. 2 однофазный трансформатор так называемого стержневого типа. У него первичные и вторичные катушки c1 и с2 расположены на железных стержнях а — а, соединенных с торцов железными же накладками b — b, называемыми ярмами. Таким образом два стержня а, а и два ярма b, b образуют замкнутое железное кольцо, в котором и проходит магнитный поток, сцепляющийся с первичной и вторичной обмотками. Это железное кольцо называется сердечником трансформатора.

Вторым примером выполнения трансформаторов может служить схематически изображенный на рис. 3 однофазный трансформатор так называемого броневого типа. У этого трансформатора первичные и вторичные обмотки с, состоящие каждая из ряда плоских катушек, расположены на сердечнике образуемом двумя стержнями двух железных колец а и б. Кольца а и б, окружая обмотки, покрывают их почти целиком как бы бронею, поэтому описываемый трансформатор и называется броневым. Магнитный поток, проходящий внутри обмоток с, разбивается на две равные части, замыкающиеся каждое в своем железном кольце.

Применением железных замкнутых магнитных цепей у трансформаторов добиваются значительного снижения потока рассеяния. У таких трансформаторов потоки, сцепляющиеся с первичною и вторичною обмотками, почти равны друг другу. Предполагая, что первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком, мы можем на основании общего закола индукции для мгновенных значений электродвижущих сил обмоток написать выражения:

выражениях w1 и w2 — числа витков первичной и вторичной обмоток, a dФt — величина изменения пронизывающего катушки магнитного потока за элемент времени dt, следовательно есть скорость изменения магнитного потока. Из последних выражений можно получить следующее отношение: e1/e2 = w1/w2

т. е. индиктируемые в первичной, и вторичной катушках I и II мгновенные электродвижущие силы относятся друг к другу так же, как числа витков катушек. Последнее заключение справедливо не только по отношению к мгновенным значениям электродвижущих сил, но и к их наибольшим и действующим значениям.

Электродвижущая сила, индуктируемая в первичной, катушке, будучи электродвижущей силой самоиндукции, почти целиком уравновешивает приложенное к той же катушке напряжение. Если через E1 и U1 обозначить действующие значения электродвижущей силы первичной катушки и приложенного к ней напряжения, то можно написать: Е1 = U1

Электродвижущая сила, индуктируемая во вторичной катушке, равна в рассматриваемом случае напряжению на концах этой катушки.

Если, аналогично предыдущему, через E2 и U2 обозначить действующие значения электродвижущей силы вторичной катушки и напряжения на ее концах, то можно написать: Е2 = U2

Следовательно, приложив к одной катушке трансформатора некоторое напряжение, можно на концах другой катушки получить любое напряжение, стоит только взять подходящее отношение между числами витков этих катушек. В этом и заключается основное свойство трансформатора.

Отношение числа витковпервичной обмотки к числу витков вторичной обмотки называется коэффициентом трансформации трансформатора. Коэффициент трансформации мы будем обозначать kт.

Следовательно можно написать: Е1/Е2 = U1/U2 = w1/w2 = kт

Трансформатор, у которого коэффициент трансформации меньше единицы, называется повышающим трансформатором, ибо у него напряжение вторичной обмотки, или так называемое вторичное напряжение, больше напряжения первичной обмотки, или так называемого первичного напряжения. Трансформатор, у которого коэффициент трансформации больше единицы, называется понижающим трансформатором, ибо у него вторичное напряжение меньше первичного.

Работа однофазного трансформатора под нагрузкою

При холостой работе трансформатора магнитный поток создается током первичной обмотки или, вернее, магнитодвижущей силой первичной обмотки. Так как магнитная цепь трансформатора выполняется из железа и потому имеет небольшое магнитное сопротивление, а число витков первичной обмотки берется обычно большим, то ток холостой работы трансформатора невелик, он составляет 5—10% нормального.

Если замкнуть вторичную обмотку на какое-либо сопротивление, то с появлением тока во вторичной обмотке появится и магнитодвижущая сила этой обмотки.

Согласно закону Ленца магнитодвижущая сила вторичной обмотки действует против магнитодвижущей силы первичной обмотки

Казалось бы, что магнитный поток в этом случае должен уменьшаться, но если к первичной обмотке подведено постоянное по величине напряжение, то уменьшения магнитного потока почти не произойдет.

В самом деле, электродвижущая сила, индуктируемая в первичной обмотке, при нагрузке трансформатора почти равна приложенному напряжению. Эта электродвижущая сила пропорциональна магнитному потоку. Следовательно, если первичное напряжение постоянно по величине, то и электродвижущая сила при нагрузке должна остаться почти той же, какой она была при холостой работе трансформатора. Это обстоятельство имеет следствием почти полное постоянство магнитного потока при любой нагрузке.

Работа однофазного трансформатора под нагрузкоюИтак, при постоянном по величине первичном напряжении магнитный поток трансформатора почти не меняется с изменением нагрузки и может быть принят равным магнитному потоку при холостой работе.

Магнитный поток трансформатора может сохранить свою величину при нагрузке лишь потому, что с появлением тока во вторичной обмотке увеличивается и ток в первичной обмотке и при том настолько, что разность магнитодвижущих сил или ампервитков первичной и вторичной обмоток остается почти равной магнитодвижущей силе или ампервиткам при холостой работе. Таким образом появление во вторичной обмотке размагничивающей магнитодвижущей силы или ампервитков сопровождается автоматическим увеличением магнитодвижущей силы первичной обмотки.

Так как для создания магнитного потока трансформатора требуется, как было указано выше, небольшая магнитодвижущая сила, то можно сказать, что увеличение вторичной магнитодвижущей силы сопровождается почти таким же по величине увеличением первичной магнитодвижущей силы.

Следовательно, можно написать: I2w2 = I1w1

Из этого равенства получается вторая основная характеристика трансформатора, а именно, отношение: I1/I2 = w2/w1 = 1/kт, где kт — коэффициент трансформации.

Таким образом, отношение токов первичной и вторичной обмоток трансформатора равно единице, деленной на его коэффициент трансформации.

Итак, основные характеристики трансформатора заключаются в отношениях Е1/Е2 = w1/w2 = kт и I1/I2 = w2/w1 = 1/kт

Если перемножить левые части отношений между собой и правые части между собой, то получим I1E1/I2E2 = 1 и I1E1 = I2E2

Последнее равенство дает третью характеристику трансформатора, которую можно выразить словами так: отдаваемая вторичной обмоткой трансформатора мощность в вольт-амперах, почти равна мощности, подводимой к первичной обмотке также в вольт-амперах.

Если пренебречь потерями энергии в меди обмоток и в железе сердечника трансформатора, то можно сказать, что вся мощность, подводимая к первичной обмотке трансформатора от источника энергии, передается вторичной обмотке его, причем передатчиком служит магнитный поток.

http://howitworks.iknowit.ru

legkoe-delo.ru

Как работает трансформатор напряжения? | Проект Заряд

Для начала стоит отметить, что представляет собой трансформатор. Это электромагнитный статический механизм, который предназначен для преобразования напряжения, задействованного в сетях переменного тока. В данном случае речь может идти как о повышении, так и о понижении напряжения.

Кстати, впервые идея трансформации переменного тока, а затем уже и первая модель трансформатора появились в 1876 году благодаря русскому ученому П.Н.Яблочкину, который спустя еще десять лет предложил миру передавать электроэнергию на более длинные расстояния, используя при этом высокое напряжение переменного тока.

 

Что представляет собой трансформатор?

 

Трансформатор напряжения – это устройство, в котором на сердечник намотаны две обмотки. Первая (первичная) подключается к источнику энергии с напряжением, а ко второй (вторичной) подсоединяется потребитель с напряжением. Кстати, сердечник трансформатора собран из пластин электротехнической высококачественной стали.

В процессе протекания тока от источника энергии по первичной обмотке в сердечнике возникает переменный магнитный поток, который создает во вторичной обмотке электродвижущую силу. Стоит отметить, что трансформатор работает в режиме, который близок к режиму холостого хода. Это происходит из-за того, что сопротивление реле и параллельных катушек приборов довольно-таки значительное, а ток, который ими потребляется, достаточно невелик. Кроме того, отношение напряжений на первичной и вторичной обмотке при холостом ходе, на котором работает трансформатор, приблизительно равны отношению числа витков обмоток. Это отношение принято называть коэффициентом трансформации, и сегодня данный коэффициент является одним из важнейших параметров любого трансформатора напряжения.

Подводя итог вышесказанному, следует сказать, что токи в обмотках обратно пропорциональны их напряжениям, а значит, и числу возможных витков. Значит, обмотка с более высоким напряжением имеет большее число витков, а потому изготавливается из провода меньшего сечения. Обмотка с низким напряжением, наоборот, имеет меньшее число витков, а ее провод обладает большей площадью сечения. Существует также такой параметр, как угловая погрешность трансформатора. Для ее уменьшения принято уменьшать число витков первичной обмотки, а для компенсации нужно применять специальные компенсирующие обмотки.

 

zaryad.com

Принцип работы трансформатора

Для того, чтобы в домашних условиях самостоятельно повысить эффективность работы многих устройств и напряжение в электрической сети, часто используются регулирующие устройства. Предлагаем, в связи с этим, рассмотреть принцип работы трансформатора тока понижающего, повышающего, импульсного, Тесла, а также автотрансформатора.

Принцип работы и классификация трансформаторов

Принцип работы измерительного трансформатора (как и разделительного), очень прост. Он подчиняется закону Фарадея электромагнитной индукции. На самом деле взаимная индукция между двумя или более обмотками отвечает за действия преобразования в электрическом трансформаторе.

В соответствии с этим, закон Фарадея гласит: «скорость изменения потокосцепления по времени прямо пропорциональна наведенной ЭДС в проводнике или катушки».

Основы теории трансформатора

Скажем, у нас трансформатор с одной обмоткой, которая соединена с переменным электрическим источником тока. Переменный ток через обмотку производит постоянно меняющийся поток, который окружает катушку. Если любая другая обмотка приближена к предыдущей, определенная часть потока соединяется с ней. Этот поток постоянно меняется в амплитуде и направлении, но в этих случаях должно происходить изменение потокосцепления во вторую обмотку или обмотки.

Согласно закону Фарадея электромагнитной индукции, должно быть ЭДС, которое индуцируется раз в секунду. Если цепь последней обмотки закрыта, то через неё должен проходить электрический ток. Это простейший принцип работы электрического силового или сварочного трансформатора и это основной принцип работы трансформатора.

Схема силового трансформатора

Всякий раз, когда мы используем движение переменного тока к электрической катушки, поток энергии окружает эту обмотку. Поток тока будет неравномерным, и скорость его постоянно изменяется. Естественно ЭКГ будет производиться в нем, как в законе Фарадея, где говорится о явлении электромагнитной индукции. Это наиболее фундаментальное понятие теории трансформатора

Обмотка, которая принимает электрическую мощность от источника, как правило, известна как первичная обмотка трансформатора.

Обмотка, что дает требуемое выходное напряжение из-за взаимной индукции в трансформаторе, называется вторичной обмоткой трансформатора.

Основные конструкционные части трансформатора

Существует три основные части трансформатора:

 

1. Первичная обмотка трансформатора – производит магнитный поток, когда подключена к электрическому источнику.2. Магнитный сердечник трансформатора — магнитный поток, создаваемый первичной обмоткой, создает замкнутую магнитную цепь.3. Вторичная обмотка трансформатора – намотана на сердечник.

Как работает силовой или сварочный трансформатор

Электрический силовой трансформатор является статическим устройством, которое преобразует электрическую энергию от одной схемы к другой без непосредственного соединения, с помощью взаимной индукции между своих обмоток. Он преобразует энергию от одной схемы к другой, не меняя свою частоту, но может работать в разных уровнях напряжения, например если сварщик поменял флюс, или произошел сбой генератора при сварке.

Трехфазный трансформатор

Работа однофазного трансформатора напряжения

Принцип работы однофазного трансформатора не слишком отличается от трехфазного понижающего прибора. Когда электрический ток проходит в первичной обмотке, она создает МП, у которого достаточно мощные силовые линии. Они пронизывают первичную катушку полностью, и вторичную частично. Все эти линии замкнуты вокруг проводников катушек, но их часть замкнута непосредственно на проводниках.

Видео: наглядный урок, который рассказывает о принципе работы трансформатора

Согласно закону о магнитной связи, чем ближе объекты друг к другу, тем сильнее эта связь, но чем они дальше расположены — тем она слабее, и так пока не станет нулевой. Это объясняется тем, что при расположении коаксиального типа, чем обмотки расположены дальше, тем меньше сцепление силовых линий и их проникновение в трансформаторные катушки.

Схема: однофазный трансформатор

Нужно понимать, что в однофазном трансформаторе сила магнитного поля также зависит от тока. Скачки переменного электрического тока могут значительно снизить силу МП, или наоборот. Это еще называется законом электродвижущей силы. Т.е. в первой обмотке производится самоиндукция, а во вторичной – взаимоиндукция.

Как только концы этих обмоток соединятся – устройство, которому необходимо получить результаты работы трансформатора, станет снабжаться электрическим током, принцип работы будет запущен, в определенной последовательности катушки начнут работать.

Работа автотрансформатора

Чаще всего в домашних условиях используется трансформатор не с двумя обмотками, а с одной. Рассмотрим принцип работы электронного автотрансформатора (вольтодобавочного трансформатора), и его характеристики. Данные устройства относятся к трансформаторам специального использования, т.к. их обмотка низкого напряжения у обычных трансформаторов, является обмоткой высокого напряжения, те они связаны между собой не только магнитным полем, но и гальваническим.

Схема: автотрансформатор

Переключая обмотки при желании можно получить либо высокое, либо низкое напряжение. Подключая источник переменного тока к сердечнику, мы получим переменное магнитное поле. И между точками сердечника возникнет, и будет усиливаться ЭДС. Благодаря тому, что сердечник выполнен особенным образом, в нем протекает очень малое количество тока, которое создает достаточно сильное МП. Т.е. при экономии материалов мы получаем разное по необходимости, напряжение.

Автотрансформаторы целесообразнее использовать в областях, где нужно совсем незначительное изменение напряжения и РПН, но на продолжительный отрезок времени. Это лаборатории, небольшие предприятия или домашние хозяйства.

Бывают еще и узкоспециализированные лабораторные трансформаторы, у них несколько иная схема:

Обмотка выполнена из специального ферромагнитного материала, которая сводит вероятность резонансного движения к минимуму. Основные отличия от обычного прибора – это:

  1. Кроме ферромагнетика они обмотаны медным проводом;
  2. Низкие допустимые параметры — максимальная мощность до 7 кВА;
  3. Здесь работает система строчного ролика – на поверхности трансформатора имеется дорожка, по которой передвигается контактирующий ролик или щетка.

Но у такого обмоточного трансформатора есть свои недостатки:

  • нужно изолировать вторичные и первичные цепи, т.к. они имеют достаточно сильную электрическую связь;
  • нельзя использовать дл защиты в мощных сетях, допустим предел от 6 до 10 кВ;
  • ремонт и содержание требует значительных вложений.

Работа гидротрансформатора

Каждый водитель бульдозера либо другой машины, знаком с принципом работы трансформатора АКПП или гидротрасформатора, но какое его назначение. На самом деле, данный прибор является модернизированной муфтой, которая вращается не один раз, а два, газовое оборудование требует установки даже нескольких таких приборов.

Его необходимо установить между двигателем и трансмиссией, чтобы получить вращательное движение, которое после перейдет на колеса. Внешне механизм напоминает бублик, за что и получил такое «прозвище» от автослесарей, но у нег достаточно сложная конструкция:

По краю с обеих сторон встроены насосы, а в центре установлен мини реактор. Последний прибор должен передавать жидкость (масло, к примеру), на турбинное колесо, которое в свою очередь распределяет её равномерно по всей поверхности трансформатора.

Переднее колесо жестко соединено с главным валом машинного двигателя, захватывая жидкость, передает её далее по механизму. Но реактор при необходимости блокирует это движение и выводит колесо из работы.

Помимо блокировки вращающегося момента, конструкция масляного трехобмоточного трансформатора позволяет ему выполнять функции демпфинирования. Т.е., если авто достигло своего предела, скажем, 80 км/час, то для предотвращения несчастного случая вращающийся момент начинает передаваться уже через демпфинирующие пружины. Таким образом, производится защита от холостого хода и резкой остановки двигателя.

Таким образом и можно объяснить принцип работы трансформатора, как видите, все очень похоже, но есть некоторые нюансы у разных моделей в зависимости от области применения и конструкции.

 

www.wikitransformer.ru

Как работает трансформатор тока

Содержание:
  1. В каком режиме работает трансформатор тока
  2. В каком режиме работает измерительный трансформатор напряжения
  3. Видео

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Такая возможность позволяет выполнять безопасные измерения, производить моделирование определенных процессов в электроустановках. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей.

В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

electric-220.ru

Принцип работы трансформатора | Онлайн журнал электрика

electrical transformer

Трансформатор — это статический (т. е. без передвигающихся ча­стей) электрический аппарат однофазовый либо трехфазный, в каком явление взаимоиндукции употребляется для преобразо­вания электронной энергии. Трансформатор конвертирует пере­менный ток 1-го напряжения в переменный ток той же частоты, но другого напряжения.

Трансформатор имеет несколько электронных, изолированных одна от другой обмоток: однофазный более 2-ух, трехфазный более 6. Обмотки, соединенные с источником электроэнер­гии, называются первичными; другие обмотки, отдающие энергию во наружные цепи, именуются вторичными. На рис. схематически показаны первичная и вторичная обмотки од­нофазного трансформатора; они снабжены общим замкнутым сердечником, собранным из листовой электротехнической стали.

Механизм работы трансформатора

Ферромагнитный сердечник служит для усиления магнитной связи меж обмотками, т. е. для того, чтоб большая часть магнитного потока первичной обмотки сцеплялась с витками вторичной обмотки.

На рис. показан сердечник и 6 обмоток трехфазного трансформатора. Эти обмотки соединяются по схеме звезды либо треугольника.

Для улучшения критерий остывания и изоляции трансформа­тор помещается в бак, заполненный минеральным маслом (про­дуктом перегонки нефти). Это так именуемый масляный трансформатор.

При частотепеременного тока приблизительно выше 20 кгц приме­нение железного сердечника в трансформаторах нецелесообразно из-за огромных утрат в стали от гистерезиса и вихревых токов.

Для больших частот используются трансформаторы без фер­ромагнитных сердечников — воздушные трансформа­торы

// ]]>

Если напряжение на зажимах первичной обмотки — первич­ное напряжение U1 меньше вторичного напряжения U2, то транс­форматор именуется повышающим, если же первичное на­пряжение больше вторичного, то — понижающим (U1>(U2). В согласовании с относительной величиной номинального напря­жения принято различать обмотку высшего на­пряжения (ВН) и обмотку низшего напряжения (НН).

Познакомимся коротко, с работой однофазового 2-ух обмоточного трансфор­матора со железным сердеч­ником. Его рабочий процесс и электронные соотноше­ния, можно считать харак­терными в главном для всех видов трансформато­ров.

Напряжение u1 приложенное к зажи­мам первичной обмотки, делает в этой обмотке пе­ременный ток i1.Ток воз­буждает в сердечнике транс­форматора переменный маг­нитный поток Ф. Вследствие повторяющегося конфигурации этого потока в обеих обмотках трансформатора – индуктируются э. д. с.

Трансформаторы

е1= – w1 (?ф : ?t) и e2= – w2 (?ф :?t)

Тут w1 и w2 — числа витков той и другой обмоток.

Таким макаром, отношение э. д. е., индуктируемых в обмотках,       равно отношению чисел витков этих обмоток:

 е1 : e2 = w1 : w2

это коэффициент трансформации трансформатора.

Коэффициент полезного деяния трансформатора относи­тельно очень высок — в среднем порядка 98%, что позволяет при номинальной нагрузке считать приближенно схожими пер вичную

мощность, получаемую трансформатором, и вторичную мощность, им отдаваемую, т. е. p1 ? p2 либо u1i1 ? u2i2, и на основании чего

i1 : i2? u2 : u1? w 2 : w 1

Это отношение моментальных значений токов и напряжений справедливо и для амплитуд и для действующих значений:

L1: l2? w 2 : w 1?u2 : u1

т. е. отношение токов в обмотках трансформатора (при нагрузке, близкой к номинальной) можно считать оборотным отношению напряжений и чисел витков соответственных обмоток. Чем меньше нагрузка, тем больше оказывает влияние ток холостого хода и приведенное приближенное соотношение токов нарушается.

При работе трансформатора совсем различна роль э. д, с. в его первичной и вторичной обмотках; э. д. с. ей индуктируемая в первичной обмотке, появляется как противодействие цепи изменению в ней тока i1. По фазе эта э. д. с. практически обратна напряжению.

// ]]>

Как в цепи, содержащей индуктивность, ток в первичной о б м о тке  трансформатора

i1=(u1 + e1) : r1

где г 1 — активное сопротивление первичной обмотки.

Отсюда получаем уравнение для моментального значения первичного напряжения:

u1, = —e1 + i1r1 = w t(?ф : ?t) + i1r1

которое можно прочесть как условие электронного равновесия: приложенное к зажимам первичной обмотки напряжение u1, всегда уравновешивается э. д. с. и падением напряжения в активном сопротивлении обмотки (2-ой член относительно очень мал).

Другие условия имеют место во вторичной цепи. Тут ток i2 создается э. д. с. e1,  играющей роль э. д. с. источника тока, и при активной нагрузке r/н во вторичной цепи этот ток

Дифференциальная защита силового трансформатора

i2= l2 : (r2 +r/н)

где r2— активное сопротивление вторичной обмотки.

В первом приближении воздействие вторичного тока i2 на первичную цепь трансформатора, можно обрисовать последующим образом.

Ток i2, проходя по вторичной обмотке, стремится сделать в сердечнике трансформатора магнитный поток, определяемый намагничивающей силой (н. с.) i2w2. Согласно принципу Ленца этот поток обязан иметь направление, оборотное направлению головного потока: по другому можно сказать, что вторичный ток стре­мится ослабить индуктирующий его магнитный поток. Но такое уменьшение головного магнитного потока Фт нарушило бы электронное равновесие:

u1 = (-е1) + i1r1

потому что e1 пропорционально магнитному сгустку. Создается пре­обладание первичного напряжения U1, потому сразу с возникновением вторичного тока возрастает первичный ток, при­том так, чтоб восполнить размагничивающее дей­ствие вторичного тока и, таким макаром, сохранить электронное равновесие. Как следует, всякое изменение вторичного тока должно вызвать соответственное изменение первичного тока; при всем этом фактически ток вторичной обмотки благодаря отно­сительно малому значению составляющей i1r1 практически не оказывает влияние на амплитуду и нрав конфигураций во времени головного магнитно­го потока трансформатора, как следует, амплитуду этого по­тока Фт можно считать фактически неизменной. Такое постоян­ство Фт типично для режима трансформатора, у которого поддерживается постоянным напряжение U1, приложенное к зажимам первичной обмотки.

elektrica.info

Что такое трансформатор? | Компьютер и жизнь

Приветствую, друзья!

Мы с вами уже знакомились с тем, как работают некоторые «кирпичики», из которых состоит современный компьютер.

Вы уже знаете, как работают диоды, а также полевые и биполярные транзисторы.

Сегодня мы с вами узнаем, как устроен еще один такой «кирпичик» — трансформатор.

Он не просто жужжит или гудит, но выполняет очень важные функции!

Если бы не изобрели эту штуку, у нас не было бы ничего – не телевидения, ни радио, ни компьютеров, ни электрического света в домах.

Мы не будем рассматривать подробно всё многообразие трансформаторов (их много), но ограничимся тем, что имеет отношения к компьютеру и периферийным устройствам.

Что такое трансформатор?

Слово «трансформатор» происходит от латинского transformo (преобразовывать). Мы рассмотрим трансформаторы — преобразователи напряжения, как наиболее нас интересующие.

Бывают еще другие трансформаторы, например, тока.

Трансформатор напряжения позволяет получить напряжение одной величины из напряжения другой величины. Все вы видели высоковольтные линии с высокими опорами, по которым передается высокое напряжение 6000, 35 000, 110 000, 220 000 или 500 000 Вольт.

В домашней же электрической сети и присутствует напряжения 220 вольт (В). Преобразование высокого напряжения в 220 В осуществляется с помощью здоровенных трансформаторов в тонны весом, которые находятся в трансформаторных подстанциях.

Из напряжения 220 В мы можем получить дома более низкое напряжение нужной величины с помощью небольшого трансформатора. Удобно, не правда ли?

Как устроен трансформатор

Низкочастотный трансформатор содержит в себе сердечник из сплава на основе железа и размещенные на нем обмотки из провода. В упрощенном виде трансформатор содержит две обмотки — первичную и вторичную. Они изолированы друг от друга и не имеют электрического контакта.

На первичную обмотку подается преобразуемое напряжение, со вторичной снимается напряжение, нужное нам.

Это и отражено в символическом изображении трансформатора в электрических схемах. Обмотки изображают в виде волнистых линий с отводами, сердечник — одной (или несколькими, зависит от стандарта) прямой линией.

При подаче переменного тока в первичную обмотку в ней возникает переменное магнитное поле.

Магнитное поле характеризуется такой числовой величиной, как магнитный поток.

Чем больше ток в первичной обмотке и чем больше там витков, тем сильнее возникающий магнитный поток.

Это магнитный поток наводит (генерирует) переменное напряжение во вторичной обмотке.

Если подключить к вторичной обмотке нагрузку, по ней потечет переменный ток. Следует отметить, что частота переменного напряжение во вторичной обмотке будет равна частоте напряжения в первичной обмотке.

Что будет, если первичную обмотку подключить к источнику постоянного напряжения? Появится ли постоянное напряжение на вторичной обмотке, ведь при протекании тока в первичной обмотке в ней генерируется магнитный поток?

Нет, не появится! Напряжение во вторичной обмотке находится только при переменном магнитном потоке, а при постоянном токе он постоянен.

Роль сердечника заключается в том, что он почти полностью концентрирует в себе магнитный поток.

Без сердечника магнитная связь обмоток было бы слабее.

И мощность, отдаваемая вторичной обмоткой в нагрузку, было бы гораздо меньше.

Полная теория трансформатора довольно сложна.

Чтобы исчерпывающим образом описать его работу, необходимо применять математический аппарат с интегралами, производными и прочими сложными понятиями.

Мы не будем здесь этого делать, но приведем несколько базовых соотношений, имеющих практическую пользу.

Габаритная мощность и КПД трансформатора

Для начала отметим, что, чем больше поперечное сечение сердечника (или магнитопровода) трансформатора, тем большую мощность можно получить на вторичных обмотках.

Именно поэтому большие трансформаторы, установленные в трансформаторных подстанциях и питающие несколько многоэтажек, имеют большой вес и габариты.

Маломощные трансформаторы, отдающие мощность в несколько Ватт (Вт), умещаются на ладони.

Трансформатор характеризуется габаритный мощностью, т.е. суммарной мощностью, отдаваемой всеми вторичными обмотками.

Как известно, мощность Р2 = U2 * I2, где U2, I2 – соответственно, напряжение и ток вторичной обмотки трансформатора.

Отметим, что не вся мощность, потребляемая первичной обмоткой от источника передается во вторичную. Часть мощности идет на нагрев проводов и сердечника. Кроме того, некоторая часть магнитного потока, создаваемого первичной обмоткой, рассеивается в пространстве и не участвуют в наведении напряжения во вторичных обмотках.

Именно поэтому, КПД (коэффициент полезного действия) трансформатора, т.е. отношение мощности вторичной обмотки P2 к мощности первичной обмотки P1 меньше 100%.

КПД: η = P2 / P1

В общем случае, чем больше габаритная мощность трансформатора, тем больше его КПД.

КПД маломощных трансформаторов может составлять величину 60 – 80%. КПД мощных трансформаторов в распределительных подстанциях может иметь величину 99% .

Провода в обмотках нагреваются потому, что они имеют не нулевое сопротивление. Прохождения тока по проводнику, обладающему сопротивлением, вызывает, по закону Джоуля-Ленца, его нагрев.

Именно поэтому обмотки трансформатора выполняют из меди, как материала, обладающего низким удельным сопротивлением.

Количество витков на вольт и сечение магнитопровода трансформатора

Напряжение на вторичной обмотке пропорционально количеству витков провода в ней. Чем больше витков, тем больше напряжение на ней.

Маломощный трансформатор характеризуется такой вспомогательной величиной, как количество витков на вольт.

Она связана достаточно сложной зависимостью с сечением магнитопровода трансформатора.

Для маломощных однофазных трансформаторов c сердечником из отдельных пластин приближённая формула имеет вид:

w = 50/S, где S — сечение магнитопровода в кв. сантиметрах, w – количество витков на вольт.

Таким образом, если сечение магнитопровода имеют величину, скажем 4 кв. см, то для него w = 50/4 = 12,5.

Если первичная обмотка рассчитана на напряжение 220 вольт количество витков в ней должно быть: w1 = 220*12,5 = 2750. А если нам надо, например, иметь 15 вольт на вторичной обмотке, надо намотать w2 = 15*12,5 = 188 витков.

В заключение первой части рассмотрим, что такое коэффициент трансформации.

Коэффициент трансформации трансформатора

Трансформатор характеризуется ещё такой величиной, как коэффициент трансформации. Коэффициент трансформации k — это отношение напряжения вторичной обмотки к напряжению первичной обмотки: k = U2/U1. Если имеется несколько вторичных обмоток разными напряжениями, то для каждой будет свой коэффициент трансформации.

Из вышесказанного видно, что коэффициент трансформации определяется соотношением витков вторичной и первичной обмоток: k = w2/w1.

Для приведенных выше цифр в примере k = 15/220 = 188/2750 = 0,068

Для понижающего трансформатора коэффициент трансформации будет меньше единицы, для повышающего – больше.

Бывают трансформаторы с коэффициентом трансформации, равным единице.

В этом случае трансформатор служит для гальванической развязки разных частей схемы.

Во второй части мы продолжим знакомство с этой интересной штуковиной.

Можно еще почитать:

Как устроен компьютерный блок питания. Часть 1.

Как устроен компьютерный блок питания. Окончание.

vsbot.ru

Как работает трансформатор.

Статьи о промышленности

По сути, трансформатор это статическое электромагнитное устройство имеющих две или более индуктивно связанных обмоток. Что бы понять, как работает трансформатор нужно знать его назначение. Основное назначение это преобразование с использованием электромагнитной индукции одну систему переменного тока в другую.

После того как происходит преобразование в другую систему переменного тока параметры этого тока могут быть различными. Например, может быть различные напряжения, число фаз, формы кривой напряжения, частотой. Все это зависит работы трансформатор и его конструктивных особенностей.

Наиболее распространены в промышленности силовые трансформаторы. Используют их для того чтобы изменить величину напряжения и тока. Тем не менее, число фаз, напряжения и частота остаются неизменными при преобразовании тока.

Рассмотрим простейшую схему, которая представлена на рисунке ниже, что бы понять, как работает трансформатор.

Самый простейший силовой трансформатор имеет в составной части магнитопровод. Другими словами сердечник, который изготовлен из ферромагнитных материалов. Также в состав простого трансформатора входит две обмотки, которые расположены на стержни магнитопровода.

Первая обмотка подсоединена к источнику переменного тока, которая называется первичная. Ко второй обмотке подключен потребитель, соответственно ее называем вторичная.

Сам принцип работы трансформатора основывается на явление электромагнитной индукции. Суть данного явления сводится к тому, что при подключении первичной обмотки к источнику переменного тока начинает протекать переменный ток, который создает в магнитопроводе переменный магнитный поток. Таким образом, такое нехитрое устройство индуктирует в катушки  эдс. Это что касается вопроса, как работает трансформатор.

Существует как повышающий трансформатор, так и понижающий. Различие заключается в том что напряжение на входе у понижающих выше чем на выходе. Соответственно для повышающих трансформаторов наоборот напряжение на входе ниже, чем напряжение на выходе.

 

 

 

nelv.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.