3.1.2 Соединение в треугольник. Схема, определения. Треугольник в электрической схеме
Схема соединения треугольник - Всё о электрике в доме
Соединение фаз источников и приемников электрической энергии в треугольник и звезду
Для уменьшения количества проводов, необходимых для соединения нагрузки с источником питания, или же для уменьшения количества пульсаций в выпрямителях. или же повышения передаваемой мощности без повышения напряжения сети используют разные схемы соединения обмоток, как нагрузки, так и источника. Наиболее распространенными схемами соединения являются треугольник и звезда.
Соединения звездой
При соединении звездой концы обмоток фаз соединяются вместе в одной точке (в нашем случае показаны как x,y,z), которая носит название нейтральной точки или нуля, и обозначается буквой N. Также нейтральная точка (нейтраль) или ноль может быть соединена с нейтралью источника, а может быть и не соединена. В случае, когда нейтрали источника и приемника электрической энергии соединены, такая система будет называться четырехпроводной, а в случае если не соединены – трехпроводной.
Соединение треугольником
А вот при соединении в треугольник концы обмоток не соединяются в общую точку, а соединяются с началом следующей обмотки. А именно, конец обмотки фазы А (на схеме указан х) соединяется с началом фазы В, а конец фазы (y) соединяется с началом фазы С, и, как вы наверно уже догадались, конец фаз С (z) с началом фазы А. Также следует помнить, что если при соединении в звезду система может быть как трехпроводной, так и четырехпроводной, то при соединении в треугольник система может быть только трехпроводной.
Может сложится впечатление, что при таком соединении в контурах может начать протекать электрический ток даже в случае когда будет отключена нагрузка. Однако это обманчивое впечатление, поскольку при симметричной системе ЭДС будет выполнятся равенство Еа + Еb + Ес = 0.
Фазные и линейные напряжения и токи
В трехфазных электрических сетях существуют два вида напряжений и токов — линейные и фазные.
Под фазным напряжением понимают напряжение между началом и концом отдельной фазы электроприемника, а под фазным током – ток, протекающий в одной из фаз электроприемника.
При использовании соединения в звезду (см. рисунки выше) фазными напряжениями будут U / a. U / b. U / c. и, соответственно токами Ia. Ib. Ic. При использовании соединения обмоток генератора или же нагрузки треугольником фазными напряжениями, соответственно, будут U / a. U / b. U / c. а токами Iac. Iba. Icb .
Линейными напряжениями будут напряжения между началами фаз или же между линейными проводами. Линейным током будет называться ток, который протекает в проводах линейных между источником питания и соответствующей нагрузкой.
При использовании соединении в звезду токи линейные будут с фазными равны, а линейные напряжения с таким типом соединения будут равны Uab. Ubc, Uca. При использовании соединения в треугольник ситуация противоположна – линейные и фазные напряжения равны, а токи линейные будут равны Ia. Ib. Ic .
При расчете и анализе трехфазных цепей не последнее значение имеет положительное направление ЭДС токов и напряжений, так как от направления этих ЭДС напрямую зависит знак в уравнениях, которые составляются по закону Кирхгофа, и, как следствие, соотношение на векторных диаграммах между векторами.
Post navigation
Соединение звездой и треугольником генераторных обмоток
Автор Человек March 6, 2016
При создании любого прибора важно не только подобрать необходимые детали, но и верно их все соединить. И в рамках данной статьи будет рассказано про соединение звездой и треугольником. Где это применяется? Как схематически данное действие выглядит? На эти, а также другие вопросы и будут даны ответы в рамках статьи.
Что собой представляет трёхфазная система электроснабжения?
Она является частным случаем многофазных систем построения электрических цепей для переменного тока. В них действуют созданные с помощью общего источника энергии синусоидальные ЭДС, обладающие одинаковой частотой. Но при этом они сдвинуты относительно друг друга на определённую величину фазового угла. В трехфазной системе он равняется 120 градусам. Шестипроводная (часто ещё называемая многопроводной) конструкция для переменного тока была изобретена в своё время Николой Теслой. Также значительный вклад в её развитие внёс Доливо-Добровольский, который первым предложил делать трёх- и четырепроводные системы. Также он обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Что же собой представляют схемы включения?
Схема звезды
Так называют соединение, при котором концы фаз обмоток генератора соединяют в общую точку. Её называют нейтралью. Концы фаз обмоток потребителя также соединяются в одну общую точку. Теперь к проводам, которые их соединяют. Если он находится между началом фаз потребителя и генератора, его называют линейным. Провод, который соединяет нейтрали, обозначают как нейтральный. Также от него зависит название цепи. Если есть нейтральный, схема называется четырёхпроводной. В ином случае она будет трёхпроводной.
Треугольник
Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.
Как можно понять из рисунков, существует довольно много вариантов реализации включения деталей. Сопротивления, которые возникают в таких случаях, называют фазами нагрузки. Выделяют пять видов соединений, по которым может быть подключен генератор к нагрузке. Это:
- Звезда–звезда. Вторая используется с нейтральным проводом.
- Звезда-звезда. Вторая используется без нейтрального провода.
- Треугольник-треугольник.
- Звезда-треугольник.
- Треугольник-звезда.
А что это за оговорки в первом и втором пунктах? Если вы уже успели задаться этим вопросом, прочитайте информацию, которая идёт к схеме звезды: там есть ответ. Но здесь хочется сделать небольшое дополнение: начала фаз генераторов обозначаются с применением заглавных букв, а нагрузки – прописными. Это относительно схематического изображения. Теперь по опыту использования: когда выбирают направление протекания тока, в линейных проводах делают так, чтобы он был направлен со стороны генератора к нагрузке. С нулевыми поступают полностью наоборот. Посмотрите, как выглядит схема соединения звезда-треугольник. Рисунки очень хорошо наглядно показывают, как и что должно быть. Схема соединения обмоток звезда/треугольник представлены в разных ракурсах, и проблем с их пониманием быть не должно.
Преимущества
Каждая ЭДС работает в определённой фазе периодического процесса. Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Говоря про трехфазные системы, обычно выделяют такие их преимущества:
- Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
- Малая материалоёмкость трехфазных трансформаторов.
- Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
- Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
- Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
- В одной установке можно получить два рабочих напряжения – фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
- Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.
Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.
Заключение
Данные системы соединения являются самыми популярными благодаря своей эффективности. Но следует помнить, что работа идёт с высоким напряжением, и необходимо соблюдать крайнюю осторожность.
Похожие статьи
Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей.
Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах.
Схема звезды
Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.
Схема треугольника
При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.
В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.
Фазные и линейные величины
В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.
При применении схемы звезды фазными напряжениями являются Ua. Ub, Uc. а фазными токами являются I a. I b. I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв. Ubс. Ucа. фазные токи – I ac. I bс. I cа .
Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.
В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab. Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a. I b. I c .
Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.
Особенности схем
Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.
Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.
Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.
Для этого можно применить некоторые методы:
Подключить на запуск электродвигателя реостат . дроссель, либо трансформатор .
Изменить вид соединения обмоток ротора электродвигателя.
В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.
В электромоторах целесообразно применение сразу двух схем: звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.
Достоинства схем
Соединение по схеме звезды имеются важные преимущества:
- Плавный пуск электрического мотора.
- Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
- Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
- При эксплуатации корпус электродвигателя не перегреется.
Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. При этом целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.
При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.
Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.
Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях
Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.
Обмотки генератора и трансформатора
При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.
При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.
Лампы освещения
При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.
Похожие темы:Источники: http://elenergi.ru/soedinenie-faz-istochnikov-i-priemnikov-elektricheskoj-energii-v-treugolnik-i-zvezdu.html, http://www.syl.ru/article/234330/new_soedinenie-zvezdoy-i-treugolnikom-generatornyih-obmotok, http://electrosam.ru/glavnaja/jelektrotehnika/zvezda-i-treugolnik/
electricremont.ru
§61. Схема соединения «треугольником»
При соединении фазных обмоток источника трехфазного тока «треугольником» (рис. 211, а) конец первой фазы АВ соединяется с началом второй фазы ВС, конец второй фазы соединяется с началом третьей фазы СА и конец третьей фазы — с началом первой АВ. Три линейных провода 1, 2 и 3, идущих к приемникам электрической энергии, присоединяются к началам А, В и С этих фаз. Точно так же могут соединяться и отдельные группы приемников ZAB, ZBC, ZCA (фазы нагрузки). При этом каждая фаза нагрузки присоединяется к двум линейным проводам, идущим от источника, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением. Таким образом, в схеме «треугольник» фазные напряжения Uф равны линейным Uл и не зависят от сопротивлений ZAB, ZBC, ZCA фаз нагрузки.
Как следует из формулы (77), при соединении «треугольником» трех фазных обмоток генератора или другого источника переменного тока сумма э. д. с, действующая в замкнутом контуре, образованном этими обмотками, равна нулю. Поэтому в этом контуре при отсутствии нагрузки не возникает тока. Но каждая из фазных э. д. с. может создавать ток в цепи своей фазы.Линейные токи в схеме «треугольник» согласно первому закону Кирхгофа для узлов А, В и С соответственно:
iA = iAB – iCA; iB = iBC – iAB; iC = iCA – iBC
Переходя от мгновенных значений токов к их векторам, получим:
?A = ?AB – ?CA; ?B = ?BC – ?AB; ?C = ?CA – ?BC
Следовательно, линейный ток равен векторной разности соответствующих фазных токов.
По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму (рис. 211,б), которую можно преобразовать в диаграмму (рис. 211, в), из которой
Рис. 211. Схема «треугольник» (а) и векторные диаграммы токов для этой схемы при равномерной нагрузке (б и в)
видно, что при равномерной нагрузке фаз векторы линейных токов ?А, ?B, ?C образуют равносторонний треугольник ABC, внутри которого расположена трехлучевая звезда векторов фазных токов ?АВ, ?BC и ?СА. Отсюда по аналогии с диаграммой рис. 207,б следует, что
Iл = 2Iф cos 30° = 2Iф ?3 / 2 = ?3 Iф
т. е. при равномерной нагрузке фаз в схеме «треугольник» линейный ток больше фазного тока в ?3 раз.
Следовательно, при переключении приемников со «звезды» на «треугольник» фазные токи возрастают в ?3 раз, а линейные токи — в 3 раза. Возможность включения одних и тех же приемников по схеме «звезда» или «треугольник» расширяет область их применения. Например, если приемник рассчитан на фазное напряжение 220 В, то при соединении по схеме «треугольник» он может быть включен в сеть с линейным напряжением 220 В, а при соединении по схеме «звезда» — в сеть с линейным напряжением 220?3 = 380 В. Приемники, рассчитанные на фазное напряжение 127 В, могут работать в сетях с линейными напряжениями 127 и 127?3= 220 В.
Особенности подвода трехфазного тока к приемникам. В трех-проводной трехфазной сети (при схемах «звезда без нулевого провода» и «треугольник») алгебраическая сумма мгновенных значений линейных токов в любой момент времени равна нулю, поэтому такие токи совместно не создают магнитного поля. Это позволяет прокладывать три линейных провода в одной общей металлической трубе или в кабеле с металлической оболочкой без опасности образования вихревых токов. Не допускается прокладка линейных проводов по отдельности в металлических трубах, так как возникающие вихревые токи вызывали бы сильный нагрев металла. То же самое происходило бы при прокладке в кабеле с металлической оболочкой или в трубе трех линейных проводов при схеме «звезда с нулевым проводом», так как сумма токов в них не равна нулю.
electrono.ru
3.1.2 Соединение в треугольник. Схема, определения
Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 5 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 5, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы Uл = Uф
Рис. 5. Трехфазная цепь, соединенная треугольником
Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с:
или
Следовательно, при симметричной нагрузке Iл = √3 Iф
Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда".
3.2 Расчёт симметричных режимов работы трёхфазных цепей
Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в комплексной форме в полной мере распространяются на них.
Трёхфазный приемник и вообще трёхфазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. ZA = ZB = ZC. В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 6 является симметричным, а на рис. 7 – нет.
Рис. 6. Рис. 7.
Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной фазы, в качестве которой обычно принимают фазуА. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля. Так для симметричного режима работы цепи на рис. 8
Рис. 8.
при известных линейном напряжении и сопротивлениях фаз ZAB = ZBC = ZCA = Z можно записать
где угол фазового сдвига φ между напряжением и током определяется характером нагрузки Z.
Тогда на основании вышесказанного токи в других двух фазах равны:
Комплексы линейных токов можно найти с использованием векторной диаграммы, из которой следует
Пример расчёта симметричного режима работы трёхфазной цепи приведён в приложении 3.
4. Электрические цепи периодического несинусоидального тока
Периодические несинусоидальные токи и напряжения в электрических цепях возникают в случае действия в них несинусоидальных ЭДС или наличия в них нелинейных элементов. Реальные ЭДС, напряжения и токи в электрических цепях синусоидального переменного тока по разным причинам отличаются от синусоиды. В энергетике появление несинусоидальных токов или напряжений нежелательно, т.к. вызывает дополнительные потери энергии. Однако существуют большие области техники (радиотехника, автоматика, вычислительная техника, полупроводниковая преобразовательная техника), где несинусоидальные величины являются основной формой ЭДС, токов и напряжений.
Рассмотрим краткие теоретические сведения и методику расчёта линейных электрических цепей при воздействии на них источников периодических несинусоидальных ЭДС.
4.1.Разложение периодической функции в тригонометрический ряд
Как известно, всякая периодическая функция, имеющая конечное число разрывов первого рода и конечное число максимумов и минимумов за период,
может быть разложена в тригонометрический ряд (ряд Фурье):
Первый член ряда называется постоянной составляющей, второй член – основной или первой гармоникой. Остальные члены ряда называются высшими гармониками.
Если в выражении раскрыть синусы суммы каждой из гармоник, то оно примет вид :
где
В случае аналитического задания функции f (ωt) коэффициенты ряда могут быть вычислены с помощью следующих выражений:
После чего производится расчёт амплитуд и начальных фаз гармонических составляющих ряда:
Коэффициенты ряда Фурье большей части периодических функций, встречающихся в технике, приводятся в справочных данных или в учебниках по электротехнике.
studfiles.net
Вид элемента | Код |
Генератор | G |
Синхронный компенсатор | GC |
Трансформатор (автотрансформатор) | Т |
Выключатели в силовых цепях: | Q |
-автоматический | QF |
-нагрузки | QW |
-обходной | - |
-секционный | QB |
-шиносоединительный | QA |
Электродвигатель | М |
Сборные шины | - |
Отделитель | QR |
Короткозамыкатель | QN |
Разъединитель | QS |
Рубильник | QS |
Разъединитель заземляющий | QSG |
Линия электропередачи | W |
Разрядник | FV |
Плавкий предохранитель | F |
Реактор | LR |
Аккумуляторная батарея | G |
Конденсаторная силовая батарея | СВ |
Зарядный конденсаторный блок | CG |
Трансформатор напряжения | TV |
Трансформатор тока | ТА |
Электромагнитный стабилизатор | TS |
Промежуточный трансформатор: | TL |
-насыщающий трансформатор тока | TLA |
-насыщающий трансформатор напряжения | TLV |
Измерительный прибор: | Р |
-амперметр | РА |
-вольтметр | РV |
-ваттметр | PW |
-частотомер | PF |
-омметр | PR |
-варметр | PVA |
-часы, измеритель времени | PT |
-счетчик импульсов | РС |
-счетчик активной энергии | PI |
-счетчик реактивной энергии | PK |
Регистрирующий прибор | PS |
Резисторы: | R |
-терморезистор | RK |
-потенциометр | RP |
- шунт измерительный | RS |
-варистор | RU |
-реостат | RR |
Преобразователи неэлектрических величин в электрические: | В |
-громкоговоритель | ВА |
-датчик давления | ВР |
-датчик скорости | BR |
-датчик температуры | ВТ |
-датчик уровня | BL |
-сльсин-датчик | ВС |
-тахогенератор | BR |
-пьезоэлемент | BQ |
-фотоприемник | BL |
-тепловой датчик | BK |
-детектор ионизирующих элементов | BD |
-микрофон | ВМ |
-звукосниматель | BS |
Синхроноскоп | PS |
Комплект защит | АК |
Устройство блокировки | АКВ |
Устройство автоматического повторного включения | АКС |
Устройство сигнализации однофазных замыканий на землю | АК |
Реле: | К |
-блокировки | КВ |
-блокировки от многократных включений | KBS |
-блокировки от нарушений цепей напряжения | KBV |
-времени | КТ |
-газовое | KCG |
-давления | KSP |
-импульсной сигнализации | KLN |
-команды “включить” | КСС |
-команды “отключить” | КСТ |
-контроля | KS |
-сравнения фаз | KS |
-контроля сигнализации | KSS |
-контроля цепи напряжения | KSV |
-мощности | KW |
-тока | КА |
-напряжения | KV |
-указательное | КН |
-частоты | KF |
-электротепловое | КК |
-промежуточное | KL |
-напряжения прямого действия с выдержкой времени | KVT |
-фиксация положения выключателя | KQ |
-положения выключателя “включено” | KQC |
-положения выключателя “отключено” | KQT |
-положение разъединителей повторительное | KQS |
-фиксация команды включения | KQQ |
-расхода | KSF |
-скорости | KSR |
-сопротивления, дистанционной защиты | KZ |
-струи, напора | KSH |
-тока, с насыщающимся трансформатором | КАТ |
-тока с торможением, балансное | KAW |
-уровня | KSL |
Контактор, магнитный пускатель | КМ |
Устройства механические с электромагнитным приводом: | Y |
Электромагнит: | YA |
-включения | YAC |
-отключения | YAT |
-тормоз с электромагнитным приводом | YB |
-муфта с электромагнитным приводом | YC |
-электромагнитный патрон или плита | YH |
-электромагнитный ключ блокировки | YAB |
-электромагнитный замок блокировки: | |
-разъединителя | Y |
-заземляющего ножа | YG |
-короткозамыкателя | YN |
-отделителя | YR |
-тележки выключателя КРУ | YSQ |
Фильтр реле: | |
- напряжения | KVZ |
-мощности | KWZ |
-тока | KAZ |
Устройства коммутационные в цепях управления, сигнализации и измерительных: | S |
-рубильники в цепях управления | S |
-ключ цепей управления (выключатель или переключатель) | SA |
-ключ переключатель режима | SAC |
-выключатель кнопочный | SB |
-переключатель блокировки | SAB |
-выключатель автоматический | SF |
-переключатель синхронизации | SS |
выключатель срабатывающий от различных воздействий | |
-от уровня | SL |
-от давления | SP |
-от положения (путевой) | SQ |
-от частоты вращения | SR |
-от температуры | SK |
-переключатель измерений | SN |
Вспомогательный контакт выключателя | SQ |
Вспомогательный контакт разъединителя | SQS |
Испытательный блок | SG |
Устройства индикаторные и сигнальные: | Н |
-прибор звуковой сигнализации | НА |
-прибор световой сигнализации | HL |
-индикатор символьный | HG |
-табло сигнальное | HLA |
Приборы электровакуумные полупроводниковые: | V |
-диод | VD |
-стабилитрон | VD |
-выпрямительный мост | VS |
-тиристор | VS |
-транзистор | VT |
-прибор электровакуумный | VL |
-лампа осветительная | EL |
-лампа сигнальная: | HL |
*с белой линзой | HLW |
*с зеленой линзой | HLG |
*с красной линзой | HLR |
Конденсатор | С |
Индуктивность | L |
Сопротивление (для эквивалентных схем): | |
-полное | Z |
-активное | R |
-реактивное | X |
-емкостное | ХC |
-индуктивное | XL |
Устройства разные | А |
Устройство зарядное | А |
Устройство связи | AU |
Усилитель | А |
Устройство комплектное (низковольтное) | А |
пуска асцилолграфа | АК |
Преобразователи электрических величин в электрические: | U |
-модулятор | UB |
-демодулятор | UR |
-дискриминатор | UI |
-преобразователь частоты, инвертор, генератор частоты, выпрямитель | UZ |
Схемы интегральные, микросборки: | D |
-схема интегральная аналоговая | DA |
-схема интегральная цифровая, логический элемент | DD |
-устройство хранения информации | DS |
-устройство задержки | DT |
Соединения контактные: | Х |
-токосъемник, контакт скользящий | XA |
-штырь | ХР |
-гнездо | XS |
-соединение разборное | ХТ |
-соединитель высокочастотный | XW |
Элементы разные: | Е |
-нагревательный элемент | ЕК |
-пиропатрон | ЕТ |
Фильтр тока обратной последовательности | ZA2 |
Фильтр напряжения обратной последовательности | ZV2 |
Шинки вторичных цепей: | |
-напряжения (идущие от трансформатора напряжения) | EV |
-питания электромагнитов включения масляных выключателей | +EY -EY |
-управления | +ЕС -ЕС |
-“мигание”ламп сигнализации положения выключателей | +ЕР -ЕР |
*сигнализации | +ЕН -ЕН |
-проверки ламп сигнальных табло | EHL |
-звуковой сигнализации отключения | ЕНА |
-звуковой предупреждающей сигнализации | ЕНР |
-вызова на секцию КРУ СН 6кВ при неисправности на секции (N-номер секции) | EAN |
-вспомогательной сигнализации | ЕА |
-съема “мигания” ламп сигнализации положения выключателей | EPD |
treugoma.ru
Соединение в треугольник. Схема, определения
Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.
Uл = Uф
IA, IB, IC - линейные токи;
Iab, Ibc, Ica- фазные токи.
Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.
Рис. 7.3
Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.
Рис. 7.4
Из векторной диаграммы видно, что
,
Iл = √3 Iфпри симметричной нагрузке.
Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.
Похожие статьи:
poznayka.org
Соединение потребителей электрической энергии в треугольник
При соединении фаз электроприемников в треугольник каждая фаза будет подключена к двум линейным проводам, как показано на рисунке ниже:
Поэтому при таком типе соединения, обратно звезде, независимо от характера и значения сопротивления приемника каждое фазное напряжение будет равно линейному, то есть UФ = UЛ. Если не брать во внимание сопротивления фазных проводов, то можно предположить, что напряжения источника и приемника электрической энергии равны.
На основании приведенной выше схемы и формулы можно сделать вывод, что соединение фаз приемников электрической энергии в треугольник следует применять тогда, когда каждая фаза трехфазного или двухфазного потребителя электрической энергии рассчитана на линейное напряжение сети.
В отличии от соединения звездой, где фазные и линейные токи равны, при соединении треугольником они равны не будут. Применив первый закон Кирхгофа к узловым точкам a, b, c получим соотношение между фазными и линейными токами:
Имея векторы фазных токов, используя данное соотношение, не трудно построить векторы линейных токов.
Симметричная нагрузка при соединении приемников треугольником
В отношении любой фазы можно применять формулы, которые справедливы для однофазных цепей:
Очевидно, что при симметричной нагрузке:
Векторная диаграмма фазных (линейных) напряжений и токов при активно-индуктивной симметричной нагрузке показана ниже:
В соответствии с формулой (1) были построены векторы линейных токов. Также стоит обратить внимание на то, что при построении векторных диаграмм для соединения треугольник вектор линейного напряжения Uab принято направлять вертикально вверх.
Векторы линейных токов часто изображают соединяющими векторы фазных токов, как это показано на рисунке b):
На основании данной векторной диаграммы можно записать: . Такое же соотношение справедливо и для других фаз. Исходя из этого, можно вывести формулу зависимости между фазным и линейным током для соединения фаз потребителей треугольником при симметричной нагрузке .
Пример
Трехфазная сеть имеет линейное напряжение UЛ = 220 В. К ней необходимо подключить трехфазный электроприемник с фазным напряжением в 220 В и содержащим последовательно подключенные активное rф = 8,65 Ом и индуктивное xф = 5 Ом сопротивления.
Решение
Поскольку линейные и фазные напряжения в этом случае будут равны, то выбираем способ соединения обмоток потребителя в треугольник.
Линейные и фазные токи, а также полные сопротивления фаз будут равны:
Активная, реактивная и полная мощности электроприемника любой фазы будут равны:
Векторные диаграммы приведены выше.
Несимметричная нагрузка при соединении приемников треугольником
В случае несимметричного сопротивления фаз, как и при соединении в звезду, для подключения к сети электроприемники разбивают на три примерно одинаковые по мощности группы. Подключение каждой группы производится к двум фазным проводом, у которых есть отличия по фазе:
В пределах каждой группы подключение приемников производится параллельно.
После замены сопротивления нескольких приемников в одной фазе на одно эквивалентное получим такую схему:
Углы сдвига между напряжением и током, мощности и фазные токи можно найти из формулы (2). В случае несимметричной нагрузки (в нашем случае схема выше) фазные мощности, токи, а также углы сдвига (cos φ) не будут равны. Векторная диаграмма для случая, когда фаза ab имеет активную нагрузку, bc – активно-индуктивную, ca – активно-емкостную, показана ниже:
Для определения суммарной мощности всех фаз нужно применять выражение:
Пример
Дана несимметричная электрическая цепь, включенная по схеме выше, с параметрами: UЛ = 220 В, rab = 40 Ом, xLbc = 10 Ом, rbс = 17,3 Ом, xcа = 5 Ом, rCcа = 8,65 Ом. Нужно определить линейные и фазные токи, а также мощности.
Решение
Воспользовавшись выражением для определения комплексных значений получим:
Комплексные значения полных сопротивлений фаз: Zab = 40 Ом, Zbс = 17,3 + j10 Ом, Zbс = 8,65 – j5 Ом.
Комплексные и действующие значения линейных и фазных токов:
Дольше можно проводить расчеты, не прибегая к комплексному методу:
Общие активные и реактивные мощности:
Углы сдвига между токами и напряжениями:
Векторная диаграмма для несимметричного треугольника приводилась выше.
elenergi.ru
Содержание:
В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей. Основные типы и принцип действия трансформаторовСуществуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения. Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе. Схематическое обозначение трансформаторовИзображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ. Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:
Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой . В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5). Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.
Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:
Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике. |
electric-220.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.