Удельная электропроводность металлов таблица — Морской флот
Дата публикации: 26 марта 2013 .
Категория: Электротехника.
При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.
Электрическое сопротивление
Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.
На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.
Рисунок 1. Условное обозначение электрического сопротивления |
Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.
Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.
Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.
Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.
Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.
За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).
При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.
Видео 1. Сопротивление проводников
Удельное электрическое сопротивление
Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).
В таблице 1 даны удельные сопротивления некоторых проводников.
Удельные сопротивления различных проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Ртуть Нихром (сплав никеля, хрома, железа и марганца) | 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,94 1,1 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.
Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Значения температурного коэффициента для некоторых металлов
Медь
Железо
Вольфрам
Платина
0,0040
0,0066
0,0045
0,0032
Никелин
Константан
Нихром
Манганин
0,0003
0,000005
0,00016
0,00005
Из формулы температурного коэффициента сопротивления определим rt:
Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.
Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.
Электрическая проводимость
До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.
Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.
Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.
Электрическая проводимость измеряется в (1/Ом) или в сименсах.
Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.
Если r = 20 Ом, то
Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,
Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)
Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
2.1. Свойства проводниковых материалов
Проводниковые свойства проявляют металлы, металлические сплавы, графит (модификация углерода) и электролиты. Металлы относятся к проводникам с электронной проводимостью. В электролитах (растворы кислот, солей, щелочей) перенос электрических зарядов осуществляют ионы.
2.1.1. Физическая природа электропроводности металлов
Металлы имеют кристаллическое строение: в узлах кристаллической решетки находятся положительно заряженные ионы, окруженные коллективизированными электронами (электронным газом).
Современные представления об электронном строении металлов, распределении электронов по энергетическим состояниям, их взаимодействии с другими элементарными частицами и кристаллической решеткой дает квантовая теория, основы которой были разработаны советским ученым Я.И.Френкелем и немецким физиком А.Зоммерфельдом.
Свободные электроны хаотически перемещаются по кристаллу со средней тепловой скоростью и = 10 5 м/с. В электрическом поле напряженностью Е электроны получают добавочную скорость упорядоченного движения v – скорость дрейфа, благодаря чему и возникает электрический ток. Плотность тока зависит от скорости дрейфа, заряда электрона е и концентрации свободных электронов n .
Скорость дрейфа в реальных условиях существенно меньше скорости теплового движения электронов v u . Так, в медном про-
воднике при плотности тока j = 1 А/мм 2 скорость дрейфа составляет v = 1 . 10 -4 м/с.
За время τ между столкновениями с узлами кристаллической решетки на длине свободного пробега l , электроны, двигаясь с уско-
рением a = e E , приобретают скорость дрейфа: m e
Приравнивая аналитическое выражение закона Ома (1.1) к выражению (2.1) с учетом (2.2), получим формулу для удельной проводимости
Выразим произведение m e . и через концентрацию свободных электронов, используя квантовую статистику, базирующуюся на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон, а на каждом энергетическом уровне – не более двух (с антипараллельными спинами). Тогда при температуре абсолютного нуля ( Т = 0 К) половина из общего числа свободных электронов в кристалле ( n /2) займет наиболее низкие энергетические уровни.
В квантовой теории вероятность заполнения электронами энергетических состояний с энергией уровня Э определяется функцией Ферми
где Э F – энергия Ферми, т.е. максимальная энергия, которую может иметь электрон в металле при температуре абсолютного нуля.
Из формулы (2.4) следует, что при Э = Э F , вероятность заполнения электронами уровня Ферми равна 0,5. Энергия Ферми для большинства металлов составляет от 3 до 15 эВ. Уровни, расположенные ниже уровня Ферми ( Э Э F ), с вероятностью >0,5 заполнены электронами, а уровни, ле
Электрическая проводимость металлов таблица
Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.
Материал проводника | Удельное сопротивление ρ в Ом |
---|---|
Серебро | 0.015 |
Медь | 0.0175 |
Золото | 0.023 |
Латунь | 0,025. 0,108 |
Хром | 0,027 |
Алюминий | 0.028 |
Натрий | 0.047 |
Иридий | 0.0474 |
Вольфрам | 0.05 |
Цинк | 0.054 |
Молибден | 0.059 |
Никель | 0.087 |
Бронза | 0,095. 0,1 |
Железо | 0.1 |
Сталь | 0,103. 0,137 |
Олово | 0.12 |
Свинец | 0.22 |
Никелин (сплав меди, никеля и цинка) | 0.42 |
Манганин (сплав меди, никеля и марганца) | 0,43. 0,51 |
Константан (сплав меди, никеля и алюминия) | 0,44-0,52 |
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца) | 0.5 |
Титан | 0.6 |
Ртуть | 0.94 |
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси) | 1.01 |
Нихром (сплав никеля, хрома, железа и марганца) | 1,05. 1,4 |
Фехраль | 1,15. 1,35 |
Висмут | 1.2 |
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо) | 1,3. 1,5 |
Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².
В связи с тем, что существует два типа электрических сопротивлений —
В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.
Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).
Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.
В международной системе единиц удельное сопротивление ρ выражается формулой:
Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.
Таблица удельных сопротивлений проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль | 0,015 0,0175 0,023 0,025. 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095. 0,1 0,1 0,103. 0,137 0,12 0,22 0,42 0,43. 0,51 0,5 0,6 0,94 1,05. 1,4 1,15. 1,35 1,2 1,3. 1,5 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм 2 .
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Значения температурного коэффициента для некоторых металлов
Металл | α | ||
Серебро Медь Железо Вольфрам Платина | 0,0035 0,0040 0,0066 0,0045 0,0032 | Ртуть Никелин Константан Нихром Манганин | 0,0090 0,0003 0,000005 0,00016 0,00005 |
Из формулы температурного коэффициента сопротивления определим rt:
Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.
Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.
Электрическая проводимость
До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.
Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.
Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.
Электрическая проводимость измеряется в (1/Ом) или в сименсах.
Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.
Если r = 20 Ом, то
Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,
Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)
Материалы высокой проводимости
К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).
Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:
- малое удельное сопротивление;
- достаточно высокая механическая прочность;
- удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
- хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
- относительная легкость пайки и сварки.
Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.
В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.
Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.
В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.
Алюминий
Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.
Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.
Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.
Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.
Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.
Железо и сталь
Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.
В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.
Натрий
Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.
В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы скорости тока и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.
Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда — ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер — это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.
Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).
Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.
Наиболее высокой электропроводностью обладают проводники электрического тока, и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) — перемещением ионов — частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.
Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.
Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.
Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.
Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив — имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от напряженности электрического поля, а вот скорость распространения электрического тока по проводнику как раз равна скорости света.
Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля — от соседа к соседу.
Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.
Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.
Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном — намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.
Единица изменения сопротивления — Ом. Сопротивление R = 1 Ом — это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом — столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.
Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность — это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.
Единица измерения электропроводности G (проводимости) — Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.
Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие удельное электрическое сопротивление, величина которого «р» характеризует проводящие свойства того или иного вещества.
Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью ?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.
Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м — для удельного сопротивления, и См*м/мм2 — для удельной электропроводности.
Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.
Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.
Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.
Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.
При понижении температуры — наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других — сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.
Температурный коэффициент сопротивления ? позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.
Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.
Популярные металлы | Медь |
   Вопросы и ответы |
Часто во время осуществления сварки или пайки металлов и их сплавов возникают неожиданные проблемы. О многих из них мы и поговор |
электропроводность, свойства, особенности и применение
Во многих отраслях современной промышленности очень широко используется такой материал, как медь. Электропроводность у этого металла очень высокая. Этим и объясняется целесообразность его применения прежде всего в электротехнике. Из меди получаются проводники с отличными эксплуатационными характеристиками. Конечно же, используется этот металл не только в электротехнике, но и в других отраслях промышленности. Объясняется его востребованность в том числе и такими его качествами, как стойкость к коррозионным разрушениям в ряде агрессивных сред, тугоплавкость, пластичность и т.д.
Историческая справка
Медь является металлом, известным человеку с глубокой древности. Объясняется раннее знакомство людей с эти материалом прежде всего его широкой распространенностью в природе в виде самородков. Многие ученые считают, что именно медь была первым металлом, восстановленным человеком из кислородных соединений. Когда-то горные породы просто нагревали на костре и резко остужали, в результате чего они растрескивались. Позднее восстановление меди начали производить на кострах с добавлением угля и поддувом мехами. Совершенствование этого способа в конечном итоге привело к созданию Еще позже этот металл начали получать методом окислительной плавки руд.
Медь: электропроводность материала
В спокойном состоянии все свободные электроны любого металла вращаются вокруг ядра. При подключении внешнего источника воздействия они выстраиваются в определенной последовательности и становятся носителями тока. Степень способности металла пропускать сквозь себя последний и называется электропроводностью. Единицей ее измерения в Международной СИ является сименс, определяемый как 1 См = 1 Ом -1 .
Электропроводность меди очень высока. По этому показателю она превосходит все известные на сегодня неблагородные металлы. Лучше нее ток пропускает только серебро. Показатель электропроводности меди составляет 57х104 см -1 при температуре в +20 °С. Благодаря такому своему свойству этот металл на данный момент является самым распространенным проводником из всех используемых в производственных и бытовых целях.
Медь отлично выдерживает постоянные электрические нагрузки и к тому же отличается надежностью и долговечностью. Помимо всего прочего, этот металл характеризуется и высокой температурой плавления (1083,4 °С). А это, в свою очередь, позволяет меди долгое время работать в нагретом состоянии. По распространенности в качестве проводника тока конкурировать с этим металлом может только алюминий.
Влияние примесей на электропроводность меди
Конечно же, в наше время для выплавки этого красного металла используются гораздо более совершенные методики, чем в древности. Однако и сегодня получить совершенно чистый Cu практически невозможно. В меди всегда присутствуют разного рода примеси. Это могут быть, к примеру, кремний, железо или бериллий. Между тем, чем больше примесей в меди, тем меньше показатель ее электропроводности. Для изготовления проводов, к примеру, подходит только достаточно чистый металл. Согласно нормативам, для этой цели можно использовать медь с количеством примесей, не превышающем 0.1 %.
Очень часто в этом металле содержится определенный процент серы, мышьяка и сурьмы. Первое вещество значительно снижает пластичность материала. Электропроводность меди и серы сильно различается. Ток эта примесь совершенно не проводит. То есть является хорошим изолятором. Однако на электропроводность меди сера не влияет практически никак. То же самое касается и теплопроводности. С сурьмой и мышьяком наблюдается обратная картина. Эти элементы электропроводность меди способны снижать значительно.
Сплавы
Разного рода добавки могут использоваться и специально для повышения прочности такого пластичного материала, как медь. Электропроводность ее они также снижают. Но зато их применение позволяет значительно продлить срок службы разного рода изделий.
Чаще всего в качестве повышающей прочность меди добавки используется Cd (0.9 %). В результате получается кадмиевая бронза. Ее проводимость составляет 90 % от проводимости меди. Иногда вместо кадмия в качестве добавки используют также алюминий. Проводимость этого металла составляет 65 % от этого же показателя меди. Для повышения прочности проводов в виде добавки могут применяться и другие материалы и вещества — олово, фосфор, хром, бериллий. В результате получается бронза определенной марки. Соединение меди с цинком называется латунью.
Характеристики сплавов
Зависеть может не только от количества имеющихся в них примесей, но и от других показателей. К примеру с повышением температуры нагрева способность меди пропускать сквозь себя ток снижается. Оказывает влияние на электропроводность такой проволоки даже способ ее изготовления. В быту и на производстве могут использоваться как мягкие отожженные медные проводники, так и твердотянутые. У первой разновидности способность пропускать сквозь себя ток выше.
Однако больше всего влияют, конечно же, используемы
Материал | Проводимость | Сопротивление | |
(% IACS) | (Сименс/м) | (Ом*м) | |
Железо и чугун | |||
Железо чистое | 18.00 | 1.044*107 | 9.579*10-8 |
В слитке Iron Ingot (непр.назв.ignot) (99.9% Fe) | 15.60 | 9.048*106 | 1.105*10-7 |
Низкоуглеродистый белый чугун | 3.25 | 5.300*10-7 | |
Мартенситное хромо-никелевое (стое) железо /martensitic nickel-chromium iron
| 2.16 | 8.000*10-7 | |
Высококремнистый чугун / high-silicon iron | 3.45 | 5.000*10-7 | |
Железо-никелевые сплавы/ h igh-nickel iron | 1.0-1.2 | 1.4*10-6—1.7*10-6 | |
Хромо-никелевое кремнистое железо / nickel-chromium-silicon iron | 1.0-1.2 | 1.5*10-6—1.7*10-6 | |
Алюминиево-железные сплавы/ high-aluminum iron | 0.72 | 2.400*10-6 | |
Кремнистый чугун/ medium-silicoon ductile iron | 2.0-3.0 | 5.8*10-7—8.7*10-7 | |
Ниель-железные сплавы / high-nickel ductile (20% Ni) | 1.69 | 1.020*10-6 | |
Углеродистые и низколегированные стали. AISI | |||
1008 (Отожженная) | 11.81 | 1.460*10-7 | |
1010 | 12.06 | 1.430*10-7 | |
1015 (Отожженная) | 10.84 | 1.590*10-7 | |
1016 (Отожженная) | 10.78 | 1.600*10-7 | |
1018 (Отожженная) | 10.84 | 1.590*10-7 | |
1020 | 10.84 | 1.590*10-7 | |
1022 (Отожженная) | 10.84 | 1.590*10-7 | |
1025 (Отожженная) | 10.84 | 1.590*10-7 | |
1029 (Отожженная) | 10.78 | 1.600*10-7 | |
1030 (Отожженная) | 10.39 | 1.660*10-7 | |
1035 (Отожженная) | 10.58 | 1.630*10-7 | |
1040 (Отожженная) | 10.78 | 1.600*10-7 | |
1042 (Отожженная) | 10.08 | 1.710*10-7 | |
1043 (Отожженная) | 10.58 | 1.630*10-7 | |
1045 (Отожженная) | 10.64 | 1.620*10-7 | |
1046 | 10.58 | 1.630*10-7 | |
1050 (Отожженная) | 10.58 | 1.630*10-7 | |
1055 | 10.58 | 1.630*10-7 | |
1060 | 9.58 | 1.800*10-7 | |
1065 | 10.58 | 1.630*10-7 | |
1070 | 10.26 | 1.680*10-7 | |
1078 (Отожженная) | 9.58 | 1.800*10-7 | |
1080 | 9.58 | 1.800*10-7 | |
1095 | 9.58 | 1.800*10-7 | |
1137 | 10.14 | 1.700*10-7 | |
1141 | 10.14 | 1.700*10-7 | |
1151 | 10.14 | 1.700*10-7 | |
1524 | 8.29 | 2.080*10-7 | |
1524 (Отожженная) | 10.78 | 1.600*10-7 | |
1552 | 10.58 | 1.630*10-7 | |
4130 (Закаленная и отпущенная) | 7.73 | 2.230*10-7 | |
4140 (Закаленная и отпущенная) | 7.84 | 2.200*10-7 | |
4626 (Нормализованная и отпущенная) | 8.62 | 2.000*10-7 | |
4815 | 6.63 | 2.600*10-7 | |
5132 | 8.21 | 2.100*10-7 | |
5140 (Закаленная и отпущенная) | 7.56 | 2.280*10-7 | |
Холоднодеформированные нержавеющие стали отожженные AISI
| |||
201 | 2.50 | 6.900*10-7 | |
202 | 2.50 | 6.900*10-7 | |
301 | 2.39 | 7.200*10-7 | |
302 | 2.39 | 7.200*10-7 | |
302B | 2.39 | 7.200*10-7 | |
303 | 2.39 | 7.200*10-7 | |
304 | 2.39 | 7.200*10-7 | |
302Cu | 2.39 | 7.200*10-7 | |
304N | 2.39 | 7.200*10-7 | |
304 | 2.50 | 1.450*106 | 6.897*10-7 |
304 | 2.50 | 1.450*106 | 6.897*10-7 |
305 | 2.39 | 7.200*10-7 | |
308 | 2.39 | 7.200*10-7 | |
309 | 2.21 | 7.800*10-7 | |
310 | 2.21 | 7.800*10-7 | |
314 | 2.24 | 7.700*10-7 | |
316 | 2.33 | 7.400*10-7 | |
316N | 2.33 | 7.400*10-7 | |
316 | 2.30 | 1.334*106 | 7.496*10-7 |
317 | 2.33 | 7.400*10-7 | |
317L | 2.18 | 7.900*10-7 | |
321 | 2.39 | 7.200*10-7 | |
329 | 2.30 | 7.500*10-7 | |
330 | 1.69 | 1.020*10-6 | |
347 | 2.36 | 7.300*10-7 | |
347 | 2.40 | 1.392*106 | 7.184*10-7 |
384 | 2.18 | 7.900*10-7 | |
405 | 2.87 | 6.000*10-7 | |
410 | 3.02 | 5.700*10-7 | |
414 | 2.46 | 7.000*10-7 | |
416 | 3.02 | 5.700*10-7 | |
420 | 3.13 | 5.500*10-7 | |
429 | 2.92 | 5.900*10-7 | |
430 | 2.87 | 6.000*10-7 | |
430F | 2.87 | 6.000*10-7 | |
431 | 2.39 | 7.200*10-7 | |
434 | 2.87 | 6.000*10-7 | |
436 | 2.87 | 6.000*10-7 | |
439 | 2.74 | 6.300*10-7 | |
440A | 2.87 | 6.000*10-7 | |
440C | 2.87 | 6.000*10-7 | |
444 | 2.78 | 6.200*10-7 | |
446 | 2.57 | 6.700*10-7 | |
PH 13-8 Mo | 1.69 | 1.020*10-6 | |
15-5 PH | 2.24 | 7.700*10-7 | |
17-4 PH | 2.16 | 8.000*10-7 | |
17-7 PH | 2.08 | 8.300*10-7 | |
Холоднодеформированные и спеченные суперсплавы (супераллои, супералои) | |||
Elgiloy | 1.73 | 9.950*10-7 | |
Hastelloy Хастеллой «A» | 1.40 | 8.120*105 | 1.232*10-6 |
Hastelloy Хастеллой»B» и «C» | 1.30 | 7.540*105 | 1.326*10-6 |
Hastelloy Хастеллой»D» | 1.50 | 8.700*105 | 1.149*10-6 |
Hastelloy Хастеллой»X» | 1.50 | 8.700*105 | 1.149*10-6 |
Haynes 150 | 2.13 | 8.100*10-7 | |
Haynes 188 | 1.87 | 9.220*10-7 | |
Haynes 230 | 1.38 | 1.250*10-6 | |
Incoloy 800 Инкаллой | 1.74 | 9.890*10-7 | |
Incoloy 825 | 1.53 | 1.130*10-6 | |
Incoloy 903 | 2.83 | 6.100*10-7 | |
Incoloy 907 | 2.47 | 6.970*10-7 | |
Incoloy 909 | 2.37 | 7.280*10-7 | |
Inconel 600 Инконель | 1.70 | 9.860*105 | 1.014*10-6 |
Inconel 600 | 1.67 | 1.030*10-6 | |
Inconel 601 | 1.45 | 1.190*10-6 | |
Inconel 617 | 1.41 | 1.220*10-6 | |
Inconel 625 | 1.34 | 1.290*10-6 | |
Inconel 690 | 11.65 | 1.480*10-7 | |
Inconel 718 | 1.38 | 1.250*10-6 | |
Inconel X750 | 1.41 | 1.220*10-6 | |
L-605 | 1.94 | 8.900*10-7 | |
M-252 | 1.58 | 1.090*10-6 | |
MP35N | 1.71 | 1.010*10-6 | |
Nimonic? 263 | 1.50 | 1.150*10-6 | |
Nimonic 105 | 1.32 | 1.310*10-6 | |
Nimonic 115 | 1.24 | 1.390*10-6 | |
Nimonic 75 | 1.39 | 1.240*10-6 | |
Nimonic 80A | 1.36 | 1.270*10-6 | |
Nimonic 90 | 1.46 | 1.180*10-6 | |
Nimonic PE.16 | 1.57 | 1.100*10-6 | |
Nimonic PK.33 | 1.37 | 1.260*10-6 | |
Rene 41 | 1.32 | 1.308*10-6 | |
Stellite 6B Стеллит, стелит | 1.89 | 9.100*10-7 | |
Udimet 500 | 1.43 | 1.203*10-6 | |
Waspaloy | 1.39 | 1.240*10-6 |
Проводимость меди и алюминия: удельная проводимость
Электрическая проводимость или электропроводность — это способность тела проводить электрический ток. Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества. Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.
Достоинства и недостатки медных проводов
Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.
В таблице дано удельное электрическое сопротивление стали и других металлов
Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:
- Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
- Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
- Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.
Медь лишь немного уступает серебру
Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:
- Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
- Цена: алюминий в несколько раз дешевле;
- Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Какое удельное сопротивление стали
Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.
Стальные провода отличаются невысокой проводимостью
Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей. Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения. Такая защита нужна, если кабель проходит под дорогой или на нестабильном грунте, если есть риск резко дернуть провод.
Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.
Из стали производят провод ПНСВ
Сравнение проводимости разных видов стали
Характеристики стали зависят от ее состава и температуры:
- Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
- Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
- Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
- Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
- Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.
Из стали часто делают оцинкованную оплетку
Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.
Электропроводность металлов: таблица и расчеты — Металлургия
Электрическая проводимость металлов — это способность элементов и тел проводить через себя определенное количество негативно заряженных частиц. Само проведение электрического тока объясняется достаточно просто — в результате воздействия электромагнитного поля на проводниковый металл, электрон настолько ускоряет свое движение, что теряет связь с атомом.
В Международной системе измерения единиц электропроводность значится буквой S и измеряется в сименсах.
Классическая теория электропроводности металлов. Электрический ток генерируется в результате взаимодействие магнита на катушку проводника (Правило правой руки). В результате того, что валентные частицы имеют слабые связи с ядрами родных атомов. Под действием возникшего магнитного поля они полностью освобождаются. Для возникновения движения по проводнику им нужен только вектор движения, создающийся «северным» и «южным» полями.
То, насколько будет высока плотность тока в проводящем металле, напрямую зависит от значения удельной проводимости. Рассчитывается плотность тока простой формулой.
где
Q -значение удельной проводимости
— значение направления плотности тока
— значение направления напряженности электрического поля.
При ударе о другие частицы электрон теряет часть свой энергии, из-за чего возникает явление сопротивляемости. Вполне естественным явлением является нагрев металлов в результате различных столкновений частиц при прохождении всего пути. Сила сопротивления в этом случае возрастает.
Уравнение движения электрона
Где m – масса электронной частицы, d — диаметр проводникового метала, Vдр – скорость дрейфа электронной частицы, t – время прохождения единицы расстояния.
Само значение
Где n – количество электронов, е – масса, r (лямбда) – пробег негативно заряженных частиц, m – масса.
В таблице подаются основные значения, проводимости тока для различных металлов.
Электропроводность металлов (таблица 1)
Металл | См/м |
Ag | 62 555 |
Cu | 58 1 55 |
Au | 45 555 |
Al | 37 055 |
Mg | 22 755 |
Ir | 21 155 |
Mo | 18 555 |
W | 18 255 |
Zn | 16 955 |
Ni | 11 555 |
Fe | 10 33 |
Pt | 9, 3533 |
Sn | 8, 3333 |
Hg | 1, 0433 |
Применение электрической проводимости металлов. В сущности, все отрасли современной промышленности, от добывания полезных ископаемых по переработки и производства продукции работают благодаря проводимости металлов. И это потому, что современное производство во всех своих сферах электрифицировано в большей своей части уже более ста лет. То же можно сказать и про бытовые условия, создание на основе коммуникационных систем электроснабжения. Именно поэтому электрическая проводимость металлов активно изучается в школах, средних и высших специальных учебных заведениях.
Теплопроводность металлов и сплавов
В этой статье представлены данные теплопроводности для ряда металлов и сплавов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.
Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.
Теплопроводность материалов требуется для анализа сетей теплового сопротивления при исследовании теплопередачи в системе.
Дополнительную информацию см. В статье «Значения теплопроводности для других распространенных материалов».
В следующих таблицах показана теплопроводность некоторых металлов и сплавов при различных температурах.
Материал | Температура | Теплопроводность | Температура | Теплопроводность |
---|---|---|---|---|
Адмиралтейство Латунь | 20 | 96.1 | 68 | 55,5 |
100 | 103,55 | 212 | 59,8 | |
238 | 116,44 | 460 | 67,3 | |
Алюминий | 20 | 225 | 68 | 130 |
100 | 218 | 212 | 126 | |
371 | 192 | 700 | 111 | |
Сурьма | 20 | 18.3 | 68 | 10,6 |
100 | 16,8 | 212 | 9,69 | |
Бериллий | 20 | 139 | 68 | 80,1 |
100 | 212 | 76,2 | ||
371 | 109 | 700 | 63,0 | |
Латунь | -165 | 106 | -265 | 61,0 |
20 | 144 | 68 | 83.0 | |
182 | 177 | 360 | 102 | |
Бронза | 20 | 189 | 68 | 109 |
Cadmiuim | 20 | 92,8 | 68 | 53,6 |
100 | 90,3 | 212 | 52,2 | |
Медь | 20 | 401 | 68 | 232 |
100 | 377 | 212 | 218 | |
371 | 367 | 700 | 212 | |
Золото | 20 | 317 | 68 | 183 |
Германий | 20 | 58.8 | 68 | 34,0 |
Инконель X | -3 | 13,2 | 27 | 7,62 |
20 | 13,7 | 68 | 7,90 | |
577 | 25,5 | 1070 | 14,7 | |
Железо | 20 | 71,9 | 68 | 41,6 |
100 | 65,7 | 212 | 38,0 | |
371 | 44.6 | 700 | 25,8 | |
Чугун (кованый) | 20 | 60,4 | 68 | 34,9 |
100 | 59,9 | 212 | 34,6 | |
Чугун (литье) | 53 | 48,0 | 127 | 27,7 |
Свинец | 0 | 35,1 | 32 | 20,3 |
20 | 34,8 | 68 | 20.1 | |
260 | 30,3 | 500 | 17,5 | |
Магний | 20 | 170 | 68 | 98,5 |
100 | 167 | 212 | 96,3 | |
188 | 163 | 370 | 93,9 | |
Молибден | 0 | 137 | 32 | 79,0 |
20 | 136 | 68 | 78.4 | |
427 | 115 | 800 | 66,7 | |
Монель | -250 | 20,73 | -418 | 11,98 |
20 | 27,5 | 68 | 15,86 | |
800 | 46,9 | 1472 | 27,1 | |
Никель | 20 | 62,4 | 68 | 36,0 |
100 | 58.0 | 212 | 33,5 | |
293 | 47,5 | 560 | 27,4 | |
Палладий | 20 | 67,5 | 68 | 39,0 |
Платина | 20 | 71,0 900 | 68 | 41,0 |
100 | 70,6 | 212 | 40,8 | |
427 | 69,2 | 800 | 40,0 | |
Плутоний | 20 | 8.65 | 68 | 5,00 |
Родий | 20 | 152 | 68 | 88,0 |
Серебро | 20 | 419 | 68 | 242 |
100 | 405 | 212 | 234 | |
316 | 366 | 600 | 211 | |
Сталь, 1% углерода | 20 | 45,3 | 68 | 26.2 |
100 | 44,8 | 212 | 25,9 | |
SS ANSI 301, 302, 303, 304 | 35 | 14,0 | 95 | 8,08 |
100 | 15,0 | 212 | 8,69 | |
900 | 28,0 | 1652 | 16,2 | |
SS ANSI 310 | 0 | 11,9 | 32 | 6,85 |
20 | 12.3 | 68 | 7,11 | |
900 | 32,0 | 1652 | 18,5 | |
SS ANSI 314 | 30 | 17,3 | 86 | 10,0 |
100 | 17,6 | 212 | 10,2 | |
300 | 18,4 | 572 | 10,6 | |
900 | 22,6 | 1652 | 13,1 | |
SS ANSI 316 | -50 | 13.0 | -58 | 7,51 |
20 | 13,9 | 68 | 8,04 | |
950 | 26,1 | 1742 | 15,1 | |
SS ANSI 321, 347, 348 | — 70 | 14,3 | -94 | 8,25 |
20 | 15,7 | 68 | 9,06 | |
900 | 29,4 | 1652 | 17,0 | |
SS ANSI 403, 410, 416 , 420 | -70 | 26.0 | -94 | 15,0 |
20 | 26,0 | 68 | 15,0 | |
1000 | 26,0 | 1832 | 15,0 | |
SS ANSI 430 | 50 | 21,8 | 122 | 12,6 |
900 | 25,0 | 1652 | 14,4 | |
SS ANSI 440 | 100 | 22,1 | 212 | 12.8 |
500 | 27,5 | 932 | 15,9 | |
SS ANSI 446 | 0 | 22,4 | 32 | 13,0 |
20 | 22,7 | 68 | 13,1 | |
1000 | 38,0 | 1832 | 22,0 | |
SS ANSI 501, 502 | 30 | 37,0 | 86 | 21,4 |
100 | 36.2 | 212 | 20,9 | |
830 | 27,8 | 1526 | 16,0 | |
Тантал | 20 | 55,0 | 68 | 31,8 |
Таллий | 0 | 50 | 32 | 29,0 |
Торий | 20 | 29,4 | 68 | 17,0 |
100 | 30,5 | 212 | 17.6 | |
299 | 33,3 | 570 | 19,3 | |
Олово | 20 | 62,1 | 68 | 35,9 |
100 | 58,8 | 212 | 33,9 | |
Титан | 20 | 15,6 | 68 | 9,00 |
100 | 15,3 | 212 | 8,86 | |
299 | 14.7 | 570 | 8,50 | |
Вольфрам | 20 | 159 | 68 | 92,0 |
100 | 154 | 212 | 89,2 | |
299 | 142 | 570 | 82,0 | |
Уран | 20 | 24,2 | 68 | 14,0 |
100 | 26,0 | 212 | 15,0 | |
770 | 40.6 | 1418 | 23,4 | |
Ванадий | 20 | 34,6 | 68 | 20,0 |
Цинк | 20 | 112 | 68 | 64,9 |
100 | 111 | 212 | 63,9 | |
Цирконий | 0 | 19,0 | 32 | 11,0 |
Статья Создана: 5 ноября 2013 г.
Теги статьи .
* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд.Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из Справочника по химии и физике CRC. Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными. Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое делает пенополиуретан одним из лучших изоляторов. NIST опубликовал программу численного приближения для расчета теплопроводности полиуретана на сайте http: // cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана с фреоновым наполнением плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК. Индекс | Таблицы Ссылка .
. Теплопроводность выбранных материалов и газовТеплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как «количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния» Теплопроводность единицы — [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер. См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды Теплопроводность для обычных материалов и продуктов:
Пример — Проводящая теплопередача через Алюминиевый горшок и горшок из нержавеющей стали
Кондуктивная теплопередача через стенку горшка может быть рассчитана как q = (k / s) A dT (1) или, альтернативно, q / A = (к / с) dT где q = теплопередача (Вт, БТЕ / ч) A = площадь поверхности (м 2 , фут 2 ) q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 )) k = среднеквадратичная проводимость (Вт / мК, БТЕ / (час фут · ° F) ) dT = t 1 — t 2 = разница температур ( o C, o F) s = толщина стенки (м, фут) Калькулятор теплопроводности k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) ) s = толщина стенки (м, фут) A = площадь поверхности (м 2 , фут 2 ) dT = t 1 — t 2 = разница температур ( o C, или F) Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм — разность температур 80 o CТеплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C) = 8600000 (Вт / м 2 ) = 8600 (кВт / м 2 ) Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80 o CТеплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C) = 680000 (Вт / м 2 ) = 680 (кВт / м 2 ) . |