22.11.2024

Углекислый газ необходим растениям для: его значение, необходимый уровень концентрации

Содержание

его значение, необходимый уровень концентрации

Автор Станислав Горшков На чтение 6 мин. Просмотров 331 Опубликовано

Углекислый газ является важным для правильного роста и развития растений. В обычных условиях растение потребляет углекислый газ и выделяет кислород. Но, несмотря на кажущееся его обилие в атмосфере, флоре в оранжереях, теплицах и иных условиях искусственного содержания этого мало. Им нужно больше. И есть несколько способов дать «тепличным питомцам» то, чего им не хватает. Для чего же необходимо питание растений углекислым газом, и как правильно проводить такую подкормку?

Каково значение выделения углекислого газа у растений?

Каково значение выделения углекислого газа у растений? С помощью солнечного света всевозможная флора потребляет диоксид углерода и воду, после чего происходит процесс фотосинтеза, в ходе которого она перерабатывает их в кислород, органические вещества, вновь получая воду. В дикой среде им полностью хватает того, что предоставляет природа. При выращивании людьми с увеличением объёма фотосинтеза из-за избытка света возрастает объём потребляемого CO2. К примеру, в тепличном воздухе на площади в один гектар находится двадцать килограмм вещества. Если вы предприниматель и выращиваете на продажу огурцы, этого объёма им будет явно недостаточно. Типичная сельскохозяйственная культура летом потребляет до пятидесяти килограмм, причём за час своего существования. А где нехватка, там и меньше урожайность, что крайне важно для хозяев теплиц. Обеспечение теплиц углекислым газом для профессионалов тепличного бизнеса является проблемой на порядок серьёзнее, чем нехватка питательных веществ в почве – вторая проблема устраняется легко. При критической отметке содержания углекислого газа в 0,01 процента растения прекращают фотосинтез.

От низкого содержания углекислоты не спасёт даже постоянное проветривание теплиц. Не говоря уже о том, что нарушение температурного режима чревато гибелью потенциального урожая. Что ещё можно сделать? Всё верно: внести дефицитное вещество в землю.

Важно помнить: подкормка растений углекислым газом восполняет его недостаток в атмосфере, даёт им возможность нормально расти и развиваться, особенно хорошо достаток углекислоты отражается на молодых корешках, которые активно растут.

Удобрение CO2 для растений

Следует быть осторожным – как говориться, что чрезмерно, то вредно. Это было неоднократно доказано историей, и человеку не стоит существенно вмешиваться во взаимосвязи природы. Чрезмерное повышение концентрации углекислоты в воздухе вредно для тепличных культур, поэтому следует соблюдать разумную осторожность.

Удобрение CO2 для растенийЕсть ещё пара нюансов:

  1. Увеличение углекислого газа может повлечь увеличенную потребность в воде и минеральных веществах для активного роста.
  2. Слишком активное использование CO2 в качестве стимулятора роста флоры вызовет повышение цен и на него, и на выращенные с его помощью овощи и фрукты. В природе существует замкнутый цикл, в теплице он не возникнет.
  3. Избыток диоксида углерода влечёт за собой прекращение фотосинтеза у некоторых культур. И не только прекращение фотосинтеза: могут быть более тяжкие последствия, например, тяжёлый общий ущерб или повышенная уязвимость перед насекомыми-вредителями. В целом же любое продолжительное изменение.
  4. Проблемы с химическим составом – питательная ценность некоторых зерновых, например, резко снижается, а у сои серьёзно меняется химический состав.

К растениям, которым не так сильно грозит мутация или ущерб из-за повышения концентрации CO2, можно отнести аквариумные. Существуют специальные системы, насыщающие воду воздухом и в том числе объектом этой статьи, углекислотой. Это создаёт оптимальные условия для процветания растений и рыб, и также не даёт развиваться водорослям, которые вытесняют остальную водную флору.

Подкормка комнатных цветов

Подкормка комнатных цветовКомнатные растения сложнее «подкормить» CO2, нежели плодовые культуры в теплице, в силу меньшего пространства и нахождения в комнате людей. Но иногда это также необходимо.

Существуют специальные добавки, которые повышают уровень углекислого газа в почве. Так, к ним относятся специальные препараты. Они более известны как «ЭМ» – аббревиатура от «эффективные микроорганизмы». К ним относятся грибки, молочнокислые бактерии, а также дрожжи. К безусловным преимуществам использования данных культур является их естественность и экологическая чистота. Бактерии не чужды природе, в отличие от многих видов удобрений.

В частности, дрожжи были не раз и не два исследованы учёными, и было доказано: они способствуют реминерализации почвы, активизируют микроорганизмы и насыщают почву диоксидом углерода. Разумеется, цветам подобные стимуляторы нужны в меньшем объёме, чем плодовым культурам, но тоже не помешают.

Рецепт дрожжевого удобрения прост: нужно растворить десять грамм дрожжей и столовую ложку сахара в литре еле тёплой воды. Если дрожжи сухие, то нужно взять больше сахара – три столовых ложки. После этого смеси нужно дать выстояться примерно два часа. После разведения водой в пропорции один к пяти можно поливать свои цветы.

Кроссандра: фото цветка, разновидность и уход в домашних условиях

Украсьте свой дом цветком Кросандра: уход в домашних условиях за ним не такой уж и сложный.

Рассада в торфяных таблетках, на сколько эффективен такой способ выращивания, здесь подробнее.

Что любит и от чего беречь цветок Стрептокарпус: https://sazhaem.info/plants/blooming/others/streptokarpus-kak-vyrashhivat.html.

Углекислый газ для растений в теплицах

Можно подкармливать тепличные растения необходимым для прироста урожая газом несколькими разными способами. Наиболее популярны следующие:

  • Баллоны. Этот способ весьма недешёв, но зато наиболее прост. Всё, что требуется – это обычный баллон, наполненный сжиженным углекислым газом. Вещество подаётся к поддонам с землёй с помощью полиэтиленовых труб или резиновых шлангов, которые перфорированы с интервалов в 8 мм с отверстиями диаметром 5 мм.

Углекислый газ для растений в теплицах

  • Диоксид углерода можно подавать в виде сухого льда. Сухой лёд также охлаждает теплицы, что является преимуществом в летний период. Стандартный кусок сухого льда весит от 25 до 35 килограмм. На 1 кубометр теплицы приходиться около двадцати грамм вещества. Для лучшего эффекта его разбивают на куски помельче и равномерно раскладывают по теплице. Лучший эффект будет при подвешивании кусков сухого льда на стеллажи – распределение углекислого газа будет равномернее.
  • Можно сжигать природный газ или керосин в специальных генераторах, а отходные вещества подавать в теплицы. Этот способ не столь экологичен (выделяется ещё и сернистый ангидрид, к счастью, в малых дозах), но зато при должной сноровке можно обеспечить бесперебойный поток углекислоты, только подвози газ вовремя. Но долго ей работать не надо – как и люди, в атмосфере из углекислого газа растения жить не могут.

Как подкормить растения углекислым газом, подробнее на видео:

СО2 необходим растениям для чего? Как доказать необходимость CO2?

Традиционно считается, что для жизни живых организмов необходим кислород. Поэтому достаточно удивительно было прочитать название статьи «СО2 необходим растениям для…». Ответ на эту загадку смотрите ниже.

Карбон диоксид, угольный ангидрит, двуокись углерода — все это названия одного и того же вещества. Это всем известный углекислый газ. При нормальных условиях это вещество находится в газообразном состоянии, при этом оно не имеет цвета и запаха. При понижении температуры воздуха углекислый газ твердеет и приобретает белый цвет. В такой модификации его называют «сухой лед». Это достаточно химически активное вещество. Углекислый газ реагирует с металлами, оксидами и щелочами. Он способен образовывать нестойкое соединение с гемоглобином крови, подобно кислороду. Так осуществляется газообмен при помощи кровеносной системы. Он не является ядовитым веществом, однако при большой концентрации его относят к токсичным газам.

В природе он образуется в результате дыхания живых организмов, гниении и горении. В газообразном состоянии карбон диоксид растворяется в воде. Вот почему, возможно говорить о системах подачи СО2 в аквариумах с растениями и их необходимости для нормальной жизнедеятельности водорослей. Имеет углекислый газ и промышленное значение. Его широко используют в пищевой отрасли в качестве разрыхлителя и консерванта. В сжиженном состоянии им заполняют огнетушители и автоматические системы пожаротушения.

со2 необходим растениям для

Что такое фотосинтез

Прежде всего СО2 необходим растениям для протекания важнейшего процесса, который имеет планетарное значение — фотосинтеза. В его ходе из ряда неорганических веществ образуется углевод глюкоза. Именно его используют растения для питания, роста, развития и других процессов жизнедеятельности. Кроме того, еще одним продуктом данной реакции является кислород — основное условие существования всех живых существ на планете, поскольку он необходим для дыхания. Газообмен в растении возможен благодаря наличию в покровной ткани их листьев особых образований — устьиц. Каждая из них состоит из двух створок. При определенных условиях они смыкаются и размыкаются. Через них происходит поступление и кислорода, и углекислого газа.

газ необходимый растениям для дыхания

Условия протекания фотосинтеза

Фотосинтез происходит только в специализированных структурах основной и покровной ткани листа. Они называются хлоропласты. Их внутренне содержимое представлено тилакоидами гран и стромы, на которых располагается красящее вещество — пигмент хлорофилл. Он придает некоторым частям растения зеленый цвет. В хоропластах фотосинтез происходит только при определенных условиях. Это наличие солнечного света, воды и углекислого газа. А результатом данной химической реакции является образование органического вещества глюкозы и газа кислорода. Первое из них — источник жизни самих растений, второе используют все остальные для осуществления дыхания. Этот процесс имеет планетарное значение.

со2 необходим растениям ответ

Углекислый газ и растения

Как доказать необходимость CO2? Очень просто. Поскольку углекислый газ выделяется в природе в результате дыхания, его недостатка в природе не наблюдается. Однако в аквариумной воде его не так много из-за небольшого видового разнообразия живых организмов. Поэтому если не использовать специальные установки для подачи углекислого газа, через определенное время его количества будет недостаточно для интенсивного протекания процесса фотосинтеза. Ведь СО2 необходим растениям для того, чтобы самостоятельно производить питательные вещества. Своевременная и постоянная подача углекислого газа в воду станет условием, что ваш аквариум наполнится пышными и яркими водорослями.

о системах подачи со2 в аквариумах с растениями

Газ, необходимый растениям для дыхания: важность кислорода

Получается, что в результате своей жизнедеятельности растения выделяют кислород, а не поглощают его. Тогда возникает вопрос: а как же они дышат, и вообще происходит ли у них процесс окисления и расщепления органических веществ? Безусловно, как и все остальные живые организмы, они используют тот самый кислород. Получается, что в растениях одновременно происходят два практически противоположных процесса. Это фотосинтез и дыхание. Каждый из них необходим для нормальной жизнедеятельности растений.

как доказать необходимость со2

Фотосинтез и дыхание: что важнее

Уникальность растений заключается в том, что они единственные из живых существ выделяют и кислород, и углекислый газ практически одновременно. Но это совсем не означает, что они опасны и их нельзя располагать в жилых помещениях. Все дело в том, что кислорода растения выделяют гораздо больше, чем углекислого газа.

Чтобы не нарушать это природное равновесие, необходимо соблюдение условий протекания этих процессов. Например, если в помещение с комнатными растениями не проникает солнечный свет, фотосинтез не происходит. При этом образование глюкозы останавливается. Зато процесс дыхания продолжается. В воздухе накапливается большое количество углекислого газа. И в этом случае растения могут стать опасными. В итоге оба эти процесса жизненно важны. Только за счет кислорода растения дышат, а с помощью углекислого газа производят глюкозу и питаются.

Итак, СО2 необходим растениям для осуществления процесса получения органических веществ — фотосинтеза, который имеет важнейшее значение планетарного масштаба.

Углекислый газ нужен растениям так же, как людям кислород

О том, что тесто поднимается на дрожжах, знают все. На самом же деле оно растет благодаря углекислому газу, который образуется при разложении сахара. При разложении органики также выделяется углекислый газ. И он нужен растениям точно так же, как нам кислород. Ведь этот газ участвует в фотосинтезе и стимулирует раннее и более активное цветение, повышает устойчивость к болезням и вредителям, увеличивает плодоношение. Словом, без углекислого газа растениям нет жизни. Поэтому очень важно, чтобы он постоянно поступал к ним. Его даже называют удобрением. Углерод в его составе — один из важнейших питательных элементов.

При подкормке овощных культур углекислым газом повышается их урожайность.

К слову, настоящий золотой век для растений был несколько миллионов лет тому назад — в эпоху динозавров. Тогда на планете было намного теплее. И, что немаловажно, концентрация углекислого газа в воздухе атмосферы была как минимум в 4 раза выше, чем сейчас.

Европейские овощеводы рассматривают подкормку углекислым газом в период выращивания растений — от появления всходов до прекращения вегетации — как обязательный элемент современной интенсивной технологии выращивания томата, огурца и сладкого перца. Дефицит СО2 — даже более

серьезная проблема, чем дефицит элементов минерального питания. Из воды и углекислого газа растение в среднем синтезирует 94% массы сухого вещества, остальные же 6% получает из минеральных удобрений!

В теплице площадью 1 сотка в воздухе содержится около 200 г углекислого газа. Весной и летом, во время активной вегетации, этого явно недостаточно. Огурцы, например, за 1 час «выкачивают» из воздуха 500 г СО2, а за весь световой день — до 7 кг. Чем больше поверхность листьев и ярче освещение, тем заметнее возрастает дефицит углекислого газа. И его концентрация существенно снижается к полудню. Меньше СО2 — ниже и скорость фотосинтеза. Поэтому, чтобы быть с урожаем, надо повышать его уровень. В замкнутом пространстве (будь то теплица или парник) вполне возможно создать спе-цифическую атмосферу, «добавив» СО2.

Главный естественный источник углекислого газа для растений — воздух. И открывание форточек — простейший способ его подачи. Ночное дыхание растений также наполняет парник газом.

Получают они углекислоту и из грунта. Здесь большую роль играют органические удобрения, вносимые в землю. Чем энергичнее почвенные микроорганизмы, тем активнее разлагается органика. И соответственно тем больше углекислого газа выделяется в припочвенный слой воздуха. Но этого все равно мало — лишь четвертая часть от их суточной потребности, которая образуется в результате разложения содержащихся в ней органических веществ, дыхания корней и микроорганизмов. Органика не только возвращает в почву макро- и микроэлементы, но и обеспечивает растения тем, что не могут дать минеральные удобрения — щедрой порцией углекислого газа.



Этот метод — универсальный как для закрытого, так и для открытого грунта. Но, несмотря на всю пользу такой органической подкормки, есть у нее и свой минус. Сразу после набивки парников биотопливом повышается до опасных пределов концентрация не только С02, но и аммиака. В первые 30 дней в теплице его содержится в 56 раз больше, чем в наружном воздухе. Поэтому рассаду в нее надо высаживать как минимум спустя неделю и только после хорошего проветривания.

Также полезно мульчировать почву компостом, перегноем или другой органикой. После ее разложения активно выделяется СО2. И с поверхности почвы питание поступает в глубь ее, где обитают микроорганизмы, вырабатывающие гумус.

Особенно важна мульча из перегноя для грядок, разбитых на новых неокультуренных участках. Огурцы, укроп и некоторые другие, особенно чувствительные к корневым гнилям, культуры хорошо растут на грядах с мульчей из перегноя. Также углекислый газ выделяется в процессе брожения коровяка.



Заполните емкость на 10% свежим навозом, залейте водой и оставьте бродить, наполняя теплицу углекислым газом. А когда раствор «закипит», его можно будет использовать как азотное удобрение, разбавляя водой 1:10. Можно еще добавить 1 л золы: так подкормка получится еще «вкуснее» и полезнее. Остатки органики — на компостную кучу, а в емкость — новую порцию. Безотходное производство.

Эффективность подобного метода подтверждают и практики. Достоверно известно, что в конце ХIХ века в Тимирязевской сельскохозяйственной академии два года безуспешно пытались вырастить зимой огурцы. Не помогали никакие научно обоснованные приемы — ни регуляция температуры, ни дополнительное освещение. Тогда пригласили огородника из Клина, специализировавшегося на выращивании парниковых огурцов. Ему предложили вырастить в теплицах академии огурцы для себя, но при условии, что он разрешит перенять его технологию. Результат превзошел все ожидания. Секрет же оказался очень прост: клинские огородники ставили в своих теплицах бочки с навозом, разбавленным водой. При брожении этой жижи выделялся углекислый газ, который и совершал «чудо».

Позже экспериментально было установлено, что при непрерывном удобрении огурцов углекислотой в течение светового дня достигается максимальная (54%) величина прироста веса зеленцов.


Огурцам надо больше углекислого газа, чем томатам или фасоли. А вот при выращивании грибов надо учитывать, что СО2 угнетает развитие грибницы, поэтому помещение нужно чаще проветривать, чтобы снизить концентрацию газа. 

Еще один способ получения углекислого газа — брожение крапивы. Для этого емкость на треть наполняют травой (свежей или сушеной) и заливают водой. В течение двух недель смесь ежедневно перемешивают для выхода CO2. А чтобы устранить неприятный запах, в настой можно добавить валериану (1 — 2 ветки) или сверху присыпать его пылью. Перебродившая же крапива — отличная подкормка.

Другой источник углекислого газа — спиртовое брожение. Некоторые садоводы для насыщения воздуха углекислотой между растениями в теплице ставят емкости с забродившими напитками или брагой. А чтобы запахи не были такими резкими, емкости с суслом ставят (как в виноделии) на водяной затвор.


Много углекислого газа, который необходим растениям, выделяют и животные. Поэтому, если в хозяйстве есть ферма, смело пристраивайте к ней теплицу. Но так, чтобы у этих двух помещений была одна общая стена. Подобным образом поступил владелец семейного ЛПХ «Экофония» Николай Матрунчик, соединив общей фрамугой летний перепелятник и теплицу. В итоге пернатые получают кислород, а растения — так необходимый им углекислый газ. Пристенные теплички возле курятника есть и у бизнес-аналитика Андрея Титова на хуторе под Раковом. В них из птичника сделан проход, через который в сезон поступает нужный растениям газ. А поздней осенью и зимой уже куры греются в теплице, копаясь там и заодно удобряя почву.

Доступный, хотя и не очень эффективный источник углекислоты — питьевая газированная вода: в 1 л ее растворено примерно 6 — 8 г углекислого газа. Можно использовать и сухой лед. Ведь он — не что иное, как холодный твердый СО2. Нагреваясь, он выделяет в воздух углекислый газ.

Готовое решение газовой проблемы — минеральный комплекс «Парник»: новое слово в выращивании овощей в закрытом грунте. О нем мне рассказала руководитель минского центра природного земледелия «Сияние» Лидия Петрова. Комплекс — это всего лишь небольшая таблетка. Все, что необходимо, — завернуть ее в бумагу (для лучшего возгорания) и сжечь в железной емкости. В ведре, к примеру. Это необходимо для безопасности: длина пламени достигает 15 см, а температура горения — более 1.500 градусов. Несмотря на то что таблетка горит 30 — 40 секунд, она выделяет большое количество дыма. После ее поджигания нужно быстро выйти из теплицы и плотно закрыть двери, чтобы снизить потери полезного газа. Входить внутрь строения можно не раньше чем через 2 часа.


 — Одной таблетки, —
делится опытом Лидия, — достаточно на 35 — 42 кв. м. В начале сезона достаточно сжигать одну в неделю, а во время созревания плодов — в 4 — 5 дней.

Полезные микроэлементы (бор, кальций, калий, железо, цинк, медь, марганец, молибден), содержащиеся в дыме при сжигании таблетки, повышают иммунитет растений. Плюс этого минерального комплекса еще и в том, что он не увеличивает влажность воздуха внутри теплицы. А это значит, что не могут развиваться и грибковые болезни.


Очень высокий уровень углекислого газа может вызвать головокружение или нарушить координацию. Его переизбыток также токсичен и для тепличных вредителей — белокрылки и паутинного клеща.

Заметно ускоряет появление плодов и повышает урожайность окуривание теплицы или парника тлеющими головешками. Как только у ростков появляются первые листья, в помещение можно (да и надо!) пустить газ. Но — внимание! — самим заходить в теплицу можно только дня через два-три. Угарный газ опасен: при дыхании он попадает в кровь и отравляет организм.

Углекислый газ усваивается растениями тем лучше, чем больше на листе устьиц и чем лучше они раскрыты. Количество же устьиц и их проводимость зависит от освещения и влажности воздуха. Поэтому, если решили повысить концентрацию углекислого газа в теплице, позаботьтесь об ее освещении.

Не менее, чем количество газа, важно и время его подачи. Первую подкормку в течение дня лучше провести утром, примерно через 2 часа после восхода солнца. Именно в утренние часы фотосинтез протекает наиболее активно. И соответственно растения лучше поглощают газ. Вторую подкормку делают вечером, за 2 часа до захода солнца. Поскольку в темноте фотосинтез не протекает, то в ночное время углекислый газ и не нужен.

То, что углекислый газ работает, видно невооруженным глазом. На грядках с рассыпанным слоем перегноя заметно лучше растут растения. Да и рядом с компостной кучей или у бочки с настоем лучше и пышнее растительность, гуще и деревья. В целом же подкормки углекислым газом всегда повышают общую урожайность культур на 15 — 40%, увеличивая количество и массу плодов, и ускоряют их созревание на 5 — 8 дней. И это при неизменном уровне затрат на минеральное питание, орошение и защиту.

[email protected]

Углекислый газ – питание для растений и яд для человека — Сияние


Знаете ли вы, чем больше всего питаются растений? Какой элемент питания является основным? Я опросила много садоводов и получала такие ответы. Больше всего растения потребляют: азота, минеральных элементов, кальция, фосфора и т.д. Практически ни один человек не дал правильный ответ.


А правильный ответ такой – больше всего растениям нужен углерод (С). Он составляют половину всего рациона питания растений. У нас на планете углеродная форма жизни, в наших телах его содержится: 67% в мышцах и 36% в костях. Углерод мы получаем в результате питания растительной и животной пищей. Потому что в состав мяса и растений также входит углерод.


И тут встает вопрос – откуда берут углерод растения? Ведь они другими растениями и животными не питаются? Правильный ответ написан в учебнике по ботанике, который мы все читали во время учебы в школе.


Углерод растения получают в результате питания углекислым газом. В листьях растений есть микроскопические отверстия, который называются устьица. Вот ими растения засасывают воздух, в состав которого входит помимо кислорода углекислый газ СО2. Далее, под действием энергии света в растениях осуществляется процесс фотосинтеза. То есть образования органической материи из углерода, содержащегося в углекислом газе. Вот бы люди так могли – вышел на солнце, подышал воздухом и сыт.


Возможно, вы слышали, что в атмосфере увеличивается концентрация углекислого газа. Шум идет в основном по поводу парникового эффекта и повышения средней температуры воздуха. Глобальное потепление, в толк не возьму, почему Россия с ним борется? Самая холодная страна в мире против потепления!


Но рост концентрации СО2
также и влияет на рост растений. Например, с 1971 по 1990 г., на фоне роста концентрации углекислого газана 9%, отмечалось увеличение содержания биомассы в лесах Европы на 25—30%. За последние десятилетия область южной Сахары и прилежащих территорий заметно позеленела на спутниковых снимках. Обширное исследование, проведенное в штате Мэриленд, выявило ускорение роста деревьев в 2—4 раза за последние 200 лет. Анализ причин ускорения роста растений показал, что главными факторами были рост температуры воздуха и рост концентрации углекислого газа в атмосфере. С 1982 по 2010 г. в зоне полупустынь в целом на планете наблюдался рост зеленой массы растений на 11% при неизменном количестве осадков.


Ученые неоднократно проводили эксперименты по выращиванию растений в атмосфере с разной концентрацией углекислого газа. И обнаружили, что чем выше уровень СО2в воздухе, тем лучше развиваются растения, а их урожайность растет. Но до определенного предела, до 1200 ррм. Причем повышение концентрации СО2дает большую прибавку в урожайности, чем повышение количества внесенных минеральных удобрений.


И тут возникает два вопроса. Первый — как повысить концентрацию углекислого газа? Ставить баллоны на садовом участке не выход, так как подул ветер и все унесло к соседям. К слову, в промышленных теплицах обязательно используют системы снабжения углекислым газом. Потому что без таких устройств растения в теплицах расти особо не будут – за день «съели» весь СО2 и после этого питаться нечем.


Чтобы разобраться в вопросе «что делать», надо посмотреть, а откуда собственно углекислый газ в воздухе берется. Так вот, основными источниками углекислого газа являются: извержения вулканов, пожары, сжигание человеком топлива, дыхание животных и микроорганизмов.


Ну и если мы хотим повысить содержание СО2 на своем садовом участке, то тогда у нас есть следующие способы. Организовать на участке свой собственный вулкан не вариант, да и соседи будут недовольны. Организацией пожаров будет недовольны в МЧС и это будет караться по уголовному кодексу, тоже не вариант. Еще можно все лето топить на участке печку, но есть опасность, что соседи вызовут санитаров. Да и дров не напасешься.


А что там с дыханием животных? Может организовать на участке зверинец? Дорогое удовольствие, да и опять же соседи не захотят жить рядом со слоном.


Остается последний вариант – использовать дыхание микроорганизмов. И это самый простой и экономичный вариант повысить концентрацию углекислого газа на отдельном садовом участке и даже на отдельной грядке.


Для этого надо просто использовать микробиологические удобрения «Сияние», в которых содержатся микроорганизмы (бактерии). Делается все очень просто, в два действия.


Делай раз – вносите в почву органику, которая нужна бактериям для питания, в качестве сырья. Самое просто это мульчировать грядки скошенной газонной травой, выдернутыми сорняками и перепревшим конским навозом.


Делай два – полить грядки раствором микробиологического удобрения «Сияние-1». Это делается раз в неделю. И 2-3 раза в месяц внести в почву сухой субстрат «Сияние-2», обладающее ростостимулирующим эффектом.


Дальше все будут делать микроорганизмы самостоятельно: есть органику и выдыхать углекислый газ. Не нужны вулканы, пожары и ТЭЦ, все делают бактерии. А у нас на садовом участке растения развиваются и плоды наливаются.


Особенно усиленно эти процедуры нужно делать в теплицах и парниках. Потому что там замкнутое пространство и растения быстро потребляют имеющийся в воздухе СО2.


Мы, кстати, провели эксперимент. Взяли три пластиковые герметичные емкости. Измерили уровень СО2 в помещении и емкостях, он оказался около 800 ррм.



Затем в две емкости поставили по одной банке с увлажненным удобрением «Сияние-2» и «Сяние-3», после чего закрыли крышки.



Через три часа проверили концентрацию углекислого газа. В пустой емкости она не изменилась (862), в емкости с удобрением «Сияние-2» уровень стал 984, то есть +15%.



А там, где было «Сияние-3», уровень СО2стал 1390, то есть за три часа увеличение на 61%!



Разница объясняется тем, что в препарате «Сияние-3» содержатся целлюлозоразрушающие бактерии, которые начинают перерабатывать органику быстрее.


Через два дня мы провели новые замеры. В двух емкостях, с удобрением «Сияние-2» и «Сияние-3» уровень углекислого газа оказался выше 3000 ррм! Насколько выше, непонятно, потому что шкала детектора СО2 ограничивается показанием 3000р.



Таким образом, применяя микробиологические удобрения «Сияние» можно локально прямо на грядках увеличить концентрацию углекислого газа, который является питанием для растений.


Но тут знающие школьный курс анатомии зададут вопрос


Второй – углекислый газ в повышенной концентрации вреден для здоровья человека. Повысим, дескать, содержание СО2 на садовом участке, растения будут жировать, а садоводы – загибаться. Зададут этот вопрос и будут правы. Но в этом вопросы мы разобрались и имеем на него ответ.


Углекислый газ, слава тебе…, тяжелее воздуха в 1,5 раза. И поэтому он находится на открытом воздухе в нижнем его слое, толщиной 50 сантиметров, то есть до колена.


Соответственно, если по грядкам не ползать, то и углекислый газ нам не страшен. Кстати, ползают по грядкам в основном сторонники традиционного земледелия (рыхления, прополки), последователи природных методов ходят стоя и работают меньше. К тому же нам помогают растения, для чего все и затевалось. Чуть повысилась концентрация СО2 на грядках, как растения за день излишки и потребили.


Поэтому повышение уровня углекислого газа на садовом участке для людей не страшно. В отличии от замкнутых помещений, о чем у нас разговор будет дальше.


Скажите пожалуйста, замечали ли вы у себя: раздражение слизистых оболочек, сухой кашель, головную боль, снижение работоспособности, воспаление глаз, заложенность носа, воспаление носоглотки, проблемы связанные с дыхательной системой, головокружения, усталость, сложность с концентрацией внимания, бессонницу, апатию, депрессии? Если да, то все это может быть симптомами отравления углекислым газом.


А есть ли у вас астма, ринит, аллергия, диабет, заболевания крови, заболевания сердечно-сосудистой системы, лишний вес, хрупкость костей? Если да, то вполне вероятно, что эти проблемы со здоровьем имеют простую причину отравления углекислым газом.


И где ж меня так угораздило, спросите вы, если я не сижу в полуметровом слое воздуха, где как раз находится углекислый газ? Я вдыхаю воздух на уровне 1,5 метра, а там СО2 в больших количествах нет?


Замечательный вопрос, ответим на него по порядку. Ну, во-первых, дышим стоя мы не весь день, а только его небольшую часть. Минимум 8 часов (а сторонники пассивного образа жизни и больше) мы спим на кровати лежа и находимся в слое воздуха 50-70 см. Значительную часть дня мы сидим на стульях и диванах и дышим воздухом в слое 70-100 см. То есть не так далеко от пола. И тут, во-вторых, в замкнутых помещениях слой воздуха с повышенной концентрацией углекислого газа больше. Он достигает толщины 1,5 метра. А поскольку в дома и на работе мы в основном сидим и лежим, то аккурат оказываемся там, где СО2 больше всего.


Слой воздуха с СО2 в замкнутых помещениях больше по понятным причинам. Когда мы в них находимся, то углекислому газу деться не куда, его концентрация неуклонно растет, покуда в помещении есть люди. Мы вдыхаем воздух, в котором СО2 0,03%, а выдыхаем воздух, в котором СО2 уже 4%, то есть в 133 раза больше.


Кстати, а откуда мы взяли этот СО2 для выдыхания? А из пищи, она вся углеродная. Мы вдохнули воздух, в котором есть кислород О2. В процессе переваривания этой пищи часть углерода идет на построение клеток нашего тела, а часть соединяется с кислородом и выдыхается нами в виде углекислого газа СО2.


Итак, в помещениях мы вдыхаем воздух, забираем из него кислород и выдыхаем углекислый газ. С каждым нашим вдохом кислорода в комнате остается меньше, а углекислого газа больше. Когда мы находимся на улице, то выдыхаемый нами углекислый газ распределяется по большой площади и его концентрация не увеличивается. К тому же дуют ветры и разносят СО2 по весям, да и растения его активно потребляют. А вот в замкнутых помещениях все хуже, для нашего с вами здоровья. Насколько хуже? Для ответа на этот вопрос привлечем математику.


На открытом воздухе концентрация СО2 достигает 35-500 ррм.


Для замкнутых помещений безопасной концентрацией считается уровень до 800 ррм.


Уровень 800-1200 ррм СО2 уже начинает на нас влиять. Сразу мы чувствуем усталость, сонливость и снижение внимание. Если длительное время периодически находиться в помещениях с таким уровнем, то наступают симптомы, перечисленные выше. А если постоянно жить и работать в таких помещениях, то уже наступают болезни (см. выше).


Уровень 1200-3000 ррм считается вредным для здоровья. Симптомы и вредные последствия для здоровья наступают значительно быстрее. А полную потерю работоспособности мы ощущаем практически сразу. «Кто-нибудь откройте форточку, нечем дышать, голова не соображает» — слышали или говорили ли вы такую фразу?


Ну а уровень выше 3000 ррм считается просто опасным для жизни.


И тут возникает очень интересная ситуация. Допустим, у вас возникли вышеупомянутые симптомы, а то даже и болезни. Вы идете к врачу и он вас отправляет сдавать анализы. Врач видит, что какие-то показатели в ваших анализах плохие, например, не тот уровень гемоглобина или повышенный сахар или холестерин. Что начинает делать врач? Правильно, стараться изменить важные показатели в ваших анализах в лучшую сторону! Как? С помощью таблеток или процедур.


Врач не будет устранять причины, он будет бороться со следствиями. Скажите, спрашивал ли у вас когда-нибудь врач об уровне углекислого газа в вашей квартире или на работе? Меня ни разу. Всех знакомых, кого я опросила, тоже никто не спрашивал.


А всего-то надо взять детектор углекислого газа и замерить уровень СО2 в помещениях, где мы живем и работаем. И чтобы не быть голословной, предоставляем рассказать о результатах замеров тех садоводов, кто это сделали.


История 1. «Я взяла детектор и замерила уровень СО2
в зале после совещания на работе. Он составлял 2630 ррм. Всем, кому я показала индикатор прибора и объяснила значение измерений, схватились за голову!»



История 2. «Мы живем с двумя взрослыми детьми в коттедже. Спальни у нас на втором этаже. Я давно заметила, что очень плохо сплю по ночам. Долго не могу заснуть, часто по ночам просыпаюсь. И наверное, часть каждой второй ночи сплю на первом этаже на диване. Дочь тоже страдает от сильной бессонницы, у сына проблемы с кожей и желудком.


Тут мне рассказали о возможной причине этих проблем, связанной с углекислым газом. Я взяла в аренду детектор и стала замерять уровень СО2 в комнатах. В спальне перед сном в разные дни уровень 700-940.



На утро он 1200, то есть часть ночи мы дышим воздухом уровнем СО2 вредным для здоровья. И это при открытой двери, которая находится рядом с лестнице, по которой тяжелый углекислый газ скорее всего «скатывается» на первый этаж!


И в первую же ночь мы с мужем специально спали с закрытой в спальню дверью. Наутро замерили уровень – 1750!



Зачем закрывали дверь? Да потому что так спят дети в своих спальнях. Делаем замеры, у сына 1340, у дочери 2980!


  


Почему у сына меньше? Там просто спальня больше и всю ночь было открыто мансардное окно.


По поводу этих замеров я тут же устроила мужу скандал. Почему мужу? Да просто он был не при чём и подвернулся под руку. На следующий день он пригласил монтажников, которые просверлили в стене спальни отверстие



и вставили в него активную приточную вентиляционную установку с подогревом воздуха.



Мы включили установку и через некоторое время замерили уровень СО2, он составлял 501 ррм, то есть очень даже ничего.


Муж, чтобы не получить второй скандал, поставил какую-то автоматизированную систему контроля уровня СО2 в спальне. Можете посмотреть на графике этой системы, как меняется концентрация углекислого газа в спальне в течение дня. Видно, что на недельном графике уровень то больше (ночь), то меньше (день).


  


На дневном графике видно, что перед сном в спальне уровень был 550, ближе к полуночи стал 750 (надышали), потом стал уменьшаться и к утру стал 600. После этого мы проснулись, вышли из спальни и уровень опустился 490. Потом около 12.00 похоже кто-то зашел в спальню, не знаю, что сделал, но уровень ненадолго повысился до 700. Но потом за день спальня основательно провентилировалась до 400, стало как на открытом воздухе!


Что в итоге? Спать мы точно стали значительно лучше! Засыпаем быстро, среди ночи почти не просыпаемся, на диване первого этажа я спать сразу перестала. Настроение лучше, работоспособность повысилась. Проветривать комнаты, это вам не гемоглобин с помощью таблеток повышать! Или понижать, точно не знаю».


В этом месте обязательно найдутся люди, которые скажут – ну и нечего в коттеджах из кирпича жить, надо строить деревянные дома, в них легче дышится. У меня на это есть еще


История 2. «Мы с мужем, когда задумывали построить дом, решили сделать его из кедра, исключительно по той причине, чтобы легче дышалось. Построили, начали жить, вроде как дышится легко. Со здоровьем относительно в порядке, только дочь-школьница жалуется на усталость и мы ее не можем заставить делать домашние задания.


Тут нам порекомендовали замерять уровень углекислого газа в доме. Я взяла детектор, а сама думаю – чего его мерять, дом из дерева, в нем все должно быть нормально.


Делаю замеры на кухне – 1230, открыла форточку, после проветривания стало 722.



Делаю замеры в спальне перед сном – 1160, открыла форточку, после проветривания стало 642.



Делаю замеры в детской – 1220, открыла форточку, после проветривания стало 568.



После этого мы стали периодически все комнаты проветривать. Но это не вариант, надо делать нормальную вентиляцию. И ведь деревянный дом!»


Еще история жизни в частном доме – «Делаю замеры уровня СО2 в доме. Спальня – 1260, коридор – 1350! Как говорится «здравия желаю». Спускаюсь в подвал в котельную – 725, ну это понятно, там люди не живут. Еду к родителям в квартиру, делаю замер на кухне – 1435! Вот, оказывается, где болезни родителей зарыты».


        


Все ли так плохо в нашей жизни? Нет, вот история жизни в коттедже: кухня 482, подвал 465, прачечная 482, спальня 567, холл 465. Интересуюсь у хозяйки, почему у неё не как у людей. Выясняется, то вопросу вентиляции она уделила все нужное внимание на этапе проектирования и строительства коттеджа. Никаких форточек – центральная система вентиляции, вот и дышится действительно легко.


           


Продолжаем исследовать вопрос влияния концентрации углекислого газа на здоровье. Интересуемся у интернета, ну надо же – по продолжительности жизни наша страна на 110 месте, то есть в середине. В голодающей Кубе люди на 9 лет живут дольше, чем в России. С чего бы это?


Разбираемся дальше, оказывается продолжительность жизни и здоровье по данным Всемирной организации здравоохранения зависят: от образа жизни на 50%, от наследственности на 20%, от экологии на 20% и от медицины на 10%. Обратите внимание, экология важнее в 2 раза, чем уровень медицины.


Думаем дальше, без пищи человек может жить месяц, без воды пять дней, без воздуха три минуты. Значит, качество воздуха важнее, чем качество пищи и воды. А воздух нам загрязняют: промышленные предприятия, автомобили, и, вы не поверите – люди, которые выдыхают углекислый газ и тем самым портят воздух.


Прямо сейчас мы с вами не можем повлиять на предприятия и автомобилей, зато можем проветривать помещения, в которых мы живем и работаем.


Кстати, о России. Положение с углекислым газом усугубляет то, что наша страна самая холодная в мире и поэтому она борется с глобальным потеплением. Мы с вами по климатическим причинам 7 месяцев в году вынуждены большую часть времени находиться в замкнутых помещениях. Тут еще добавляется то, что у нас в стране большая часть городского населения, 74%. Как это влияет, в принципе понятно. В деревне жители частных домов больше времени бывают на свежем воздухе – то в огороде копошатся, то с нег откидывают. А городские жители вынуждены сидеть по квартирам, кроме понятно садоводов, которые летом ездят на дачи.


Итак, что делать.


Первое. Сделайте замеры уровня углекислого газа в своей квартире (доме, коттедже) и на работе. Для этого приходите в садовый центр «Сияние» в своем городе и берете детектор СО2 в аренду. Дома делаете замеры в разных помещениях утром, днем и вечером, показания записываете. Затем проветриваете помещения форточкой, делаете замеры и записываете показания. Измеряете уровень СО2 в спальне утром, когда вы спали с открытой и закрытой дверью.


Имея данные измерения показаний СО2 вы сможете думать, что делать дальше. Это


Второе. Самое простое средство уменьшить концентрацию углекислого газа – это периодически проветривать помещения путем открытия форточек. Самое эффективное средство – сделать центральную систему вентиляции при строительстве коттеджа. Если вы живете в квартире или доме без вентиляции, и не хотите связываться с форточками, то тогда поставьте приточные клапаны в каждой комнате. Более продвинутый вариант, это вместо клапана поставить активные системы вентиляции, с функцией подогрева воздуха и автоматикой.


Вы также можете с начала поставить приточный клапан, попробовать его в действии, а потом установить активную систему. Её вы сможете поставить в то же отверстие самостоятельно.


Свежий воздуха вам в помощь!


А для начала возьмите детектор СО2 в аренду в садовом центре «Сияние» и сделайте замеры в своей квартире.


P.S. После публикации статьи к ней был опубликован комментарий о том, что «у большинства исследователей имеется противоположное мнение: растения никак не отреагировали на увеличение СО2 в воздухе».


Это правда, но не вся. Действительно, со значения 1000-1200 ррм увеличение концентрации в воздухе углекислого газа не приводит к ускорению развития растений (ускорения процесса фотосинтеза).  Вот график, свидетельствующий об этом.



Я его хотела сразу опубликовать в статье, но решила не усложнять её, и, как оказалось, напрасно. Так вот, по графику видно, что повышение концентрации СО2 после 1000 ррм значения не имеет. Зато о 0 до 1000 значение углекислого газа очень даже важное. Когда его в воздухе нет, растения не развиваются: 0% — 0 фотосинтеза. Далее, при повышении концентрации СО2 фотосинтез начинается и ускоряется. После 1000 ррм он стабилизируется.


Тут вроде бы можно сделать вывод — раз после 1000 ррм фотосинтез не ускоряется, значит и уделять внимание повышению концентрации СО2 не нужно. Но это нет так, потому что на открытом воздухе уровень углекислого газа составляет 350-400 ррм. Скорость фотосинтеза при этом имеет значение 25-30. Если увеличить концентрацию СО2 до 1000 ррм, то скорость фотосинтеза увеличится до 40. Это вообще-то на 60% больше! Много это или мало? Будет ли для вас разницей жить в квартире площадьь 25 или 40 кв м Или получать зарплату 25 000 или 40 000 р? Или для тепличного хозяйства получить прибыль 25 млн или 40 млн? Решайте сами.


И тут, возможно, у вас возникнет вопрос — почему стабилизация фотосинтеза происходит именно на 1000 ррм? Ответ крайне простой — большую часть своей истории растения находились в атмосфере именно с таким содержанием углекислого газа. Вот график —



Первые наземные растения появились на планете 470 млн лет назад. Из этого периода 420 млн лет средний уровень углекислого газа в атмосфере составлял 1000 ррм. Физиология растений предназначена для жизни при концентрации СО2 в 1000 ррм. Когда углекислого газа меньше, то и растения развиваются хуже. Попробуйте вместо полноценного обеда выпить стакан компота и весь день разгружать кирпичи. Скорее всего, запаса питания хватит у вас минут на 30. Если же вы плотно пообедаете, вы сможете работать до самого вечера. Но это не значит, что если вы съедите четыре полноценных обеда, то сможете работать также в четыре раза дольше. Ваша пищеварительная система предназначена на прием и переваривания определенного объёма пищи. Если вы съедите меньше, то питания не хватит для работы. А больший объем пищи вы просто не сможете съесть. Также и растения, больше питания чем 1000 ррм СО2 они не состоянии потребить. Это также как через трубу определенного диаметра можно переместить определенный объем жидкости.


Вот по этой причине исследователи не заметили ускорения процесса фотосинтеза при увеличении концентрации углекислого газа ВЫШЕ ЗНАЧЕНИЯ 1000 РРМ.

Со2 для теплицы и гроубокса. Способы подачи, преимущества использования со2 для растений.

Диокси́д углеро́да или двуо́кись углеро́да — бесцветный газ, почти без запаха, с химической формулой CO₂. Незначительный процент углекислого газа всегда содержится в окружающем воздухе. 

Углерод является одним из наиболее распространенных элементов в растениях и чрезвычайно важен для их структуры и роста. Именно он играет немаловажную роль в процессе фотосинтеза, без него невозможно растительному организму производить необходимую энергию для роста и развития. Без углекислого газа развитие растений невозможно.

Растения дышат иначе, чем люди и другие животные. Пока животные вдыхают O2 и выдыхают углекислый газ (CO2), растения делают обратное. Это один из наиболее важных факторов, почему жизнь растений является неотъемлемой частью экосистемы Земли . Без растений уровень CO2 достиг бы удушающего уровня за очень короткое время. CO2 используется растениями для роста, потому что он необходим для фотосинтеза, наряду со светом и водой.

Несмотря на то, что в настоящее время уровень содержания CO2 в атмосфере составляет около 350 ppm, растения сохранили способность потреблять до 1500 ppm CO2, как они это делали давным-давно. Именно такой уровень содержания углекислого газа в атмосфере был сотни тысяч лет назад на нашей планете.

Знание этого чрезвычайно важно, потому что утверждение о том, что рост растений может быть ускорен за счет увеличения потребления CO2, верно.


Пассивная диффузия

Пассивная диффузия Со2


Растения фиксируют углерод из CO2 в воздухе путем пассивной диффузии.  Другими словами, CO2 попадает из области с более высокой концентрацией — воздуха — в область с более низкой концентрацией, в ткани растения. Поскольку растение использует разницу концентраций для поглощения CO2, концентрация CO2 в воздухе очень важна.

После поглощения растением CO2 превращается в сахар, он используется в качестве строительного материала для роста растений. В конечном счете, этот углерод позволяет растениям увеличивать количество новых тканей и оставаться сильными.

Если уровень CO2 в растущей среде падает  ниже примерно 250 ppm, растения прекращают расти.


Компенсация углерода, который удаляют с фермы во время сбора урожая

После того, как растение использует углерод от CO2 для создания растительных тканей, следующим шагом является сбор урожая. Каждый раз, когда вы собираете урожай, вы убираете углерод со своей фермы, тем самым вы удаляете [богатые углеродом] растительные ткани.

Чтобы поддерживать высокий уровень углерода в вашей ферме, растениеводы должны пополнять его с помощью CO2.

Углекислый газ в теплице


Что нужно знать перед началом подачи Co2 в теплицу или гроубокс?

Co2 увеличит концентрацию воды в ваших растениях, что в свою очередь создает большую влажность в закрытом боксе теплицы. Чем больше влаги, тем выше вероятность появления грибка и гнили в теплице или гроубоксе. Более того, если вы не будете регулировать подачу углекислого газа, это может создать токсичную среду для ваших растений и для вас самих. Концентрация Co2 более 2000 ppm может убить ваши растения.

Имейте в виду, что концентрация Со2 менее 250 ppm будет иметь негативное влияние на ваши растения. Допустим, у вас есть шесть растений, растущих в вашем боксе, при этом нет искусственной или естественной вентиляции. В этом случае ваши растения используют весь доступный CO2 в течение нескольких часов. Когда запас CO2 уменьшится, растения перестанут расти. Это одна из причин, почему вы должны постоянно обеспечивать вентиляцию и свежий воздух для ваших растений.

Чтобы избежать этих проблем, вам нужно контролировать уровень ppm, тем самым регулировать скорость роста растений. В большинстве случаев, для контроля уровня Со2 в воздухе используют различные измерители или контроллеры со встроенными или выносными датчиками.

Для вентиляции бокса или теплицы используют вентиляторы и воздуховоды. Некоторые растениеводы используют для этих целей канальные вентиляторы, их соединяют с алюминиевыми воздуховодами и выводят наружу через выпускные отверстия. Другие используют встроенные вентиляторы, которые подключаются непосредственно к воздуховоду и выводят их через выпускные отверстия в теплице или гроубоксе.

Co2 тяжелее кислорода, поэтому он оседает вниз. С помощью внутренних вентиляторов эта проблема решается путем постоянного перемешивания воздуха с подаваемым углекислым газом.

При подаче углекислого газа в теплицу или гроубокс, важно понимать что скорость обменных реакций в растениях увеличивается. Поглощение воды и питательных веществ соответственно также увеличивается, поэтому их подачу нужно тоже компенсировать, увеличивая полив.

Вентиляция (вывод воздуха наружу) должна проводиться в закрытом помещении и только при выключенном освещении, чтобы понизить температуру вашего роста.


5 основных способов подачи СО2 в домашних условиях.


Подкормка растений углекислым газом

co2
  • Углекислота жидкая —  это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
    • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений — срок хранения 2 года.
    • В транспортной бочке ЦЖУ-18 — срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 «Двуокись углерода»
  • Чтобы узнать цены и сроки поставки нажмите подробнее.

    co2


Значение подкормки растений углекислым газом

Рост растений основан на процессе фотосинтеза.
Листья растений на свету с помощью хлорофилла поглощают углекислоту (углекислый газ, СО2) воздуха и вместе с водой перерабатывают ее в органические вещества.
Процесс фотосинтеза можно схематически изобразить так: углекислота + вода + свет = органическое вещество + кислород + вода.
В среднем, растение синтезирует из воды и углекислого газа 94% массы сухого вещества, остальные 6% растение получает из минеральных удобрений.
С повышением освещенности растений, фотосинтез, а значит и рост растений ускоряются. Одновременно, с ускорением фотосинтеза, увеличивается потребление углекислоты.
Для осуществления фотосинтеза растениям необходимы большие количества воздуха, так как атмосферный воздух содержит всего лишь 0,03% углекислого газа, что недостаточно для оптимального роста растений. При выращивании растений в теплицах низкое содержание углекислого газа является фактором, ограничивающим урожайность.
Установлено, что овощные растения на 100 м2 открытой площади ежечасно потребляют из атмосферного воздуха до 350 г углекислого газа, для этого им требуется не менее 500 м3 свежего воздуха в час, что в холодное время года невыполнимо из-за больших потерь тепла при проветривании теплицы.
При недостаточном воздухообмене, содержание СО2 в теплицах в результате его интенсивного поглощения растениями может упасть ниже 0,01% и фотосинтез практически прекращается.
Но даже и при проветривании теплицы содержания углекислого газа в ее воздухе будет недостаточно, так как для оптимального роста растений концентрация СО2 в воздухе теплицы должна быть больше, чем существующая концентрация СО2 в атмосферном воздухе.
Недостаток СО2 становится основным из факторов ограничивающих рост и развитие растений.
Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания.
По нормам технологического проектирования теплиц НТП 10-95 рекомендуемая концентрация СО2 в воздухе для томатов 0,13-0,15%, для огурцов 0,15-0,18%. Из практики оптимальным считается содержание СО2 у редиса 0,1-0,2%, капусты и моркови — 0,2-0,3%, огурца — 0,3-0,6%.
Подкормки СО2 играют очень важную роль в управлении вегетативным и генеративным балансом растения. Повышение активности фотосинтеза углекислотой стимулирует развитие растений. При этом до корневой системы доходит значительно больше питательных веществ, поэтому усиливается рост молодых корней, активизируется поглощение элементов минерального питания, повышается устойчивость растения к неблагоприятным факторам среды.
При добавлении углекислоты в воздух и повышении в нем ее концентрации можно повысить интенсивность фотосинтеза в 1,5-3 раза. На этом основан прием агротехники в условиях закрытого грунта — воздушное удобрение растение подкормкой углекислотой. Дозируя углекислый газ, можно эффективно добиться сокращения продолжительности вегетативной фазы развития растения, что обеспечит получение раннего, самого дорогого урожая овощей. При достаточной обеспеченности элементами минерального питания, эти подкормки всегда повышают общую урожайность этих культур на 15-40%, увеличивая количество и массу плодов, и ускоряют их созревание на 5-8 дней.
Прирост биомассы зеленых культур при подкормках СО2 существенно увеличивается. К примеру, урожайность салата повышается на 40%, созревание ускоряется на 10-15 дней. Подкормка цветочных культур в теплицах также высокоэффективна, поскольку значительно повышает качество, выход продукции увеличивается до 30%.
За счёт увеличения содержания углекислого газа в воздухе теплицы можно добиться снижения содержания нитратов в овощах, выращиваемых в зимнее время. Повышенная концентрация СО2 частично компенсирует недостаток освещённости зимой и при уменьшении светопропускания кровли теплицы, а также способствует более эффективному использованию света ранним утром.
К примеру, недостаток солнечной радиации зимой, который часто приводит к потере первых соцветий у томата, возможно успешно компенсировать увеличением концентрации СО2 до 0,1%. Такой технологический приём увеличивает интенсивность фотосинтеза, способствует более высокой интенсивности выведения ассимилятов из листьев, тем самым восстанавливая завязывание плодов.
В осеннем обороте подкормки углекислым газом являются основным резервом повышения урожайности овощных культур, в первую очередь томата. Ведение светокультуры вообще немыслимо без постоянных подкормок углекислым газом.
Многочисленные опыты показывают, что при подкормке углекислотой вес зелени и плодов увеличивается: у огурцов на 74-103%, у бобов на 112%, у томатов до 124%.
В опытах с сахарной свеклой вес корня увеличился на 19-57%, вес ботвы уменьшился. В других опытах, урожай редиса увеличился на 33-77%, фасоли 17-82%.
Овощи поразному реагируют на подкормку углекислотой. Огурцы требуют наибольшей подкормки, томатам и фасоли достаточно меньшей концентрации СО2. Продолжительность подкормки является фактором, улучшающим возможности прироста урожая. При повторении опытов с подкормкой огурцов в течение 3 месяцев урожай увеличился на 55%.
Количество расходуемой углекислоты должно быть пропорционально площади теплицы. Чем меньше расход углекислоты на единицу площади теплицы, тем хуже результаты по приросту урожая и наоборот.
Полностью покрыть дефицит СО2 в воздухе возможно только за счёт использования технических источников углекислого газа.
В настоящее время существуют три основных группы промышленных технологий подкормки растений в остеклённых и плёночных теплицах, использующие технические источники углекислого газа: прямая газация при помощи пламенных горелок, нагнетание отходящих газов котельной, подача чистого углекислого газа.
Для объективного сравнения этих технологий между собой, необходимо рассмотреть эти инженерные решения.

Прямая газация при помощи пламенных горелок

Прямая газация осуществляется путём использование пламенных горелок на природном газе (метан, очищенный от высших углеводородов (пропан, бутан и т.п.), сернистых и прочих примесей), установленных в помещении теплицы.
Подкормка производится непосредственно продуктами сгорания. На практике, при этом способе, воздух теплицы, одновременно с попаданием в него СО2, загрязняется соединениями, образующимися при сгорании топлива (из-за присутствия в нем микропримесей минеральной пыли, соединений серы и проч.), вредными для растений и человека. Образующийся в продуктах сгорания этилен значительно ускоряет старение растений. Данная технология подкормки сильнейшим образом влияет на агрономический режим в теплице (особенно летом), поскольку горелки нагревают и насыщают водяными парами и фитотоксичными газами воздух в теплице, что небезопасно для растений. Выжигание горелками кислорода из воздуха теплицы создает проблемы для здоровья работающему в ней персоналу. Подкормка прямой газацией огурца и томата применяться не может, из-за сильного влияния на температурно-влажностный режим и присутствия фитотоксичных газов в продуктах сгорания. Для других культур затраты на этот способ не всегда опрадывают его применение.

Нагнетание отходящих газов котельной

При нагнетании отходящих газов котельной, отходящие от котельной газы (дым) очищают с помощью палладиевых катализаторов или водяных скрубберов, охлаждают с отделением водного конденсата и затем подают в теплицу по газопроводам, нередко многократно разбавляя атмосферным воздухом.
По этому способу возможны значительные изменения состава продуктов сгорания, зависящие от режима работы котельной, содержание СО2 в дыме может изменяться. Недостатком данной технологии подкормки также является попадание в воздух теплицы сопутствующих продуктов сгорания топлива: окиси углерода, оксидов азота и серы, этилена и бензапирена. Концентрация в дыме этих токсичных соединений сильно зависит от режимов работы котельной. Степень очистки от тех же оксидов азота с помощью палладиевого катализатора составляет не более 40-75%. Даже при многократном разбавлении дымовых газов воздухом, ПДК токсичных компонентов в воздухе рабочей зоны может многократно превышать предельно допустимые концентрации для растений и человека. Главное требование к горелкам котельной – работать в постоянном режиме, сложно выполнить, из-за меняющейся температуры наружного воздуха. Палладиевые катализаторы для очистки отходящих газов весьма дороги.

Подача привозной жидкой углекислоты

Подача к растениям в теплице чистого углекислого газа, распределяемого по системе пластиковых рукавов малого диаметра – более совершенная на сегодня группа технологий.
Такой комплекс оборудования использует привозную углекислоту в цистернах или в баллонах, из которых газ через устройства подогрева и регулирования подачи нагнетается под собственным давлением в теплицу к растениям по пластиковым рукавам.
Несмотря на удобство и относительную техническую простоту систем, работающих на привозной углекислоте, их эффективное применение осложняется следующим обстоятельством. Подаваемая к растениям углекислота должна иметь высокую чистоту. Подобный высокоочищенный продукт, который подходит для подкормки тепличных растений, стоит достаточно дорого. На практике часты случаи покупки дешёвой жидкой углекислоты из спиртзаводов и химпроизводств, которая плохо очищена и пригодна лишь для технического использования. В ней могут содержаться значительные примеси сивушных масел, сероводорода и аммиака, этаноламинов, которые отрицательно сказываются на продуктивности растений и здоровье людей. Такую углекислоту не следует использовать для подкормки растений.

Питание растений — урок. Окружающий мир, 3 класс.

Мы уже знаем, что растения корнями впитывают из почвы воду, в которой растворены минеральные соли. Но этого для нормального развития мало. Растениям нужны ещё главные питательные вещества — крахмал и сахар. В почве этих веществ нет, но они есть в растениях.

 

Учёные установили, что питательные вещества образуются  в самих растениях, в их листьях.

 

Листья растений — это настоящая «кухня», которая может «приготовить» пищу из углекислого газа и воды.

 

Воду растения получают из почвы благодаря корням. Углекислый газ листья поглощают из воздуха.

 

Но, чтобы эта волшебная «кухня» заработала, нужен солнечный свет. Солнечный свет даёт энергию, без которой ничего не происходит. Энергия нужна для жизни любого живого существа.

Процесс создания питательных веществ из углекислого газа и воды под действием солнечного света называется фотосинтезом.

Фотосинтез происходит в листьях, но в этом процессе принимают участие и другие части растения:

  • корень всасывает из почвы растворы минеральных солей;
  • стебель проводит эти растворы к листьям;
  • листья поглощают из воздуха углекислый газ и образуют сахар и крахмал. 

Органические вещества (сахар и крахмал) поступают во все органы растения. Они используются для разных целей:

  • идут на рост тела;
  • используются при дыхании;
  • расходуются при прорастании семян;
  • откладываются про запас (в плодах, корнях, клубнях).

Учёные сделали ещё одно важное открытие: при фотосинтезе вместе с питательными веществами образуется кислород.  Растения выделяют его в воздух.

При фотосинтезе углекислый газ поглощается, а кислород выделяется.

Больше Двуокись углерода не обязательно полезна для растений.

Больше Двуокись углерода не обязательно полезна для растений.

Размещено 18 апреля 2011 г. автором villabolo

Те, кто отрицают глобальное потепление, вызванное деятельностью человека, приводят аргумент, заключающийся в том, что двуокись углерода, которая выделяется при сжигании ископаемого топлива, на самом деле полезна для окружающей среды. Их аргумент основан на логике, согласно которой, если растениям нужен CO2 для их роста, тем лучше. Мы должны ожидать, что наши посевы станут более обильными, а наши цветы станут выше и расцветут ярче.

Однако философия «чем больше, тем лучше» — не то, как все работает в реальном мире. Есть более старая и мудрая поговорка: «Слишком много хорошего может быть плохим». Например, если врач говорит вам принять одну таблетку определенного лекарства, прием четырех вряд ли вылечит вас в четыре раза быстрее или в четыре раза лучше. Это с большей вероятностью заставит вас заболеть.

Можно помочь увеличить рост некоторых растений с помощью дополнительного CO2 в контролируемых условиях внутри теплиц.Именно на этом основываются утверждения «скептиков». Однако такие утверждения упрощены. Они не принимают во внимание, что, увеличивая одно вещество, необходимое растениям, вы автоматически увеличиваете их потребность в других веществах. Он также не принимает во внимание, что более теплая земля приведет к увеличению пустынь и других засушливых земель, что уменьшит площади, доступные для посева.

Растения не могут жить только на CO2. Они получают свою массу за счет более твердых веществ, таких как вода и органические вещества.Это органическое вещество поступает из разлагающихся растений и животных или из искусственных удобрений. Увеличить количество воды и удобрений и защитить от насекомых в закрытой теплице — простая задача, но как насчет того, чтобы делать это на открытом воздухе, по всей Земле?

Как повлияет увеличение выбросов CO2 на сельское хозяйство и рост растений в целом? Следующие пункты поясняют это.

1. Самая большая проблема, безусловно, заключается в том, что увеличение CO2 приведет к увеличению температуры по всей Земле.Это заставит расти пустыни и другие типы суши. В то время как пустыни увеличиваются в размерах, другие эко-зоны, будь то тропики, леса или луга, будут пытаться мигрировать к полюсам. Однако почвенные условия не обязательно будут способствовать их росту даже при оптимальных температурах.

2. Растениям с повышенным содержанием CO2 потребуется дополнительная вода как для поддержания роста, так и для компенсации большего испарения влаги по мере увеличения тепла. Откуда это будет? Дождевой воды недостаточно для современного сельского хозяйства, и водоносные горизонты, на которые они опираются, иссякают по всей Земле (1, 2).

С другой стороны, как предсказывает Глобальное потепление, мы получаем сильные штормы с увеличивающимся количеством дождей по всему миру. Казалось бы, это должно быть хорошо для сельского хозяйства. К сожалению, когда дождь идет очень быстро, он не успевает впитаться в землю. Вместо этого он накапливается над почвой, а затем наводняет, нанося ущерб посевам. Вода также разливается в ручьи, затем в реки и, наконец, в океан, унося большое количество почвы и удобрений.

3. В отличие от Природы, наш способ ведения сельского хозяйства не предусматривает самооплодотворения путем переработки мертвых растений, животных и их отходов. Вместо этого мы должны постоянно производить искусственные удобрения из природного газа, который со временем начнет заканчиваться. Увеличивая потребность в таких удобрениях, вы сокращаете поставки природного газа, создавая конкуренцию между отоплением наших домов и выращиванием продуктов питания. Это приведет к росту цен на них обоих.

4. Слишком высокая концентрация CO2 вызывает снижение фотосинтеза у некоторых растений.Имеются также свидетельства прошлого о серьезном ущербе, нанесенном большому количеству видов растений в результате внезапного повышения концентрации CO2 (см. Иллюстрации ниже). Более высокие концентрации CO2 также снижают питательную ценность некоторых основных продуктов питания, таких как пшеница.

5. Когда растения действительно получают пользу от повышенного содержания углекислого газа, это происходит только в закрытых помещениях, строго изолированных от насекомых. Однако, когда рост сои ускоряется на открытом воздухе, это вызывает серьезные изменения в ее химическом составе, что делает ее более уязвимой для насекомых, как показано на иллюстрации ниже.

Рис. 1. Защитные силы растений снижаются с повышением уровня углекислого газа, как выяснили исследователи. Соевые бобы, выращенные при повышенном уровне содержания CO2, привлекают гораздо больше взрослых японских жуков, чем растения, выращенные при нынешних уровнях содержания углекислого газа в атмосфере. Science Daily; 25 марта 2008 г. (Фото любезно предоставлено Эваном Делусией)

Рис. 2: Более 55 миллионов лет назад на Земле произошел быстрый скачок глобального уровня углекислого газа, что привело к повышению температуры по всей планете.Теперь исследователи, изучающие растения того времени, обнаружили, что повышение температуры могло стимулировать добычу пищи насекомыми. По мере того, как современные температуры продолжают расти, исследователи полагают, что на планете может увеличиться ущерб урожаю и опустошение лесов. Science Daily; 15 февраля 2008 г.

Рисунок 3: Глобальное потепление снижает продуктивность растений. По мере увеличения углекислого газа растет и растительность в северных широтах. Однако это не компенсирует уменьшение растительности в южных широтах.Общее количество растительности во всем мире сокращается

В заключение, было бы безрассудно продолжать добавлять CO2 в атмосферу. Если предположить, что в краткосрочной перспективе есть какие-либо положительные воздействия на сельское хозяйство, они будут подавлены негативными последствиями изменения климата.

Это просто увеличит размер пустынь и уменьшит количество пахотных земель. Это также увеличит требования к воде и плодородию почвы, а также к повреждению растений насекомыми.

Повышение уровня CO2 будет полезно только в строго контролируемых замкнутых пространствах, таких как теплицы.

.

Почему углерод так важен? | НАСА Climate Kids

Краткий ответ:

Углерод содержится в двуокиси углерода, парниковом газе, который удерживает тепло вблизи Земли. Это помогает Земле удерживать энергию, которую она получает от Солнца, чтобы она не уходила обратно в космос. Если бы не углекислый газ, океан Земли замерз бы.

Почему их называют ископаемым топливом?

Их называют ископаемым топливом , потому что топливо в вашем бензобаке происходит из химических остатков доисторических растений и животных!

Все живые существа на Земле содержат углерод.Даже у вас есть углерод. Очень много. Если вы весите 100 фунтов, 18 фунтов из вас — чистый углерод! А растения почти наполовину состоят из углерода!

Cartoon of boy, with big pile of black stuff next to him. Cartoon tree, with even bigger pile of black stuff next to it.

Вы на 18 процентов состоите из углерода. Растения на 45 процентов состоят из углерода.

Почему при таком большом количестве углерода не все черное и сажистое? Как собаки могут быть белыми, а деревья зелеными? Потому что углерод, элемент, легко соединяется с другими элементами, образуя новые материалы. Новые вещества, называемые соединениями, сильно отличаются от чистого углерода.

Атом — это мельчайшая возможная частица любого элемента, например углерода или кислорода. Атом углерода легко соединяется с двумя атомами кислорода, образуя двуокись углерода.

«C» означает углерод, «O» означает кислород, поэтому диоксид углерода часто называют «CO-2 и пишут« CO 2 ». CO 2 — это газ. Он невидим. CO 2 действительно важно.

Читайте дальше, чтобы узнать, как углерод попадает в живые существа.

Как углерод попадает в живые существа?

Carbon in, water and oxygen out!

Углекислый газ на входе, вода и кислород на выходе.

Растения поглощают CO 2 . Они удерживают углерод и отдают кислород. Животные вдыхают кислород и выдыхают углекислый газ.

Растения и животные зависят друг от друга. Это хорошо работает. Сотни миллионов лет растения и животные жили и умирали. Их останки похоронены глубоко под поверхностью Земли.Итак, на протяжении сотен миллионов лет этот материал сплющивался и подвергался тепловой обработке под сильным давлением и высокой температурой.

Three drawings: Before the dinosaurs, many plants died in swamps. Over millions of years, the plants were buried under water and dirt. Heat and pressure turned the dead plants and animals into coal.

Сотни миллионов лет мертвые растения и животные хоронили под водой и грязью. Тепло и давление превратили мертвые растения и животных в нефть, уголь и природный газ.

Так что же происходит со всеми этими мертвыми растениями и животными? Он превращается в то, что мы называем ископаемым топливом: нефть, уголь и природный газ. Это то, что мы сейчас используем, чтобы зарядить наш мир энергией.Мы сжигаем эти богатые углеродом материалы в автомобилях, грузовиках, самолетах, поездах, электростанциях, обогревателях, скоростных катерах, барбекю и многих других вещах, требующих энергии.

Как углерод выходит из живых существ?

Cartoon showing water and carbon dioxide clouds coming out of a car

При сжигании ископаемого топлива мы в основном получаем три вещи: тепло, воду и CO. 2 . Мы также получаем некоторые твердые формы углерода, такие как сажа и жир.

Вот куда идет весь старый углерод. Весь углерод, накопленный во всех этих растениях и животных на протяжении сотен миллионов лет, возвращается в атмосферу всего за одну-двести лет.

Cartoon lump of coal burning with blue flame.

Знаете ли вы, что при сжигании 6,3 фунта бензина образуется 20 фунтов углекислого газа? Хотите узнать как?

Cartoon of CO2 formula, with question marks all around.

Углерод в воздухе — это хорошо, плохо или просто некрасиво ??

See caption.

Теплица удерживает энергию Солнца внутри и сохраняет растения в тепле.

Вот важная вещь о CO 2 : это парниковый газ. Это означает, что CO 2 в атмосфере удерживает тепло вблизи Земли.Это помогает Земле удерживать часть энергии, которую она получает от Солнца, поэтому энергия не утекает обратно в космос.

Если бы не этот парниковый эффект, океаны Земли замерзли бы. Земля не была бы той красивой сине-зеленой планетой жизни, которой она является.

Oceans would freeze and Earth would no longer be beautiful.

Если бы не парниковый эффект, Земля была бы ледяным шаром.

Итак, CO 2 и другие парниковые газы хороши — до определенной степени.Но CO 2 настолько хорошо удерживает тепло от Солнца, что даже небольшое увеличение CO 2 в атмосфере может привести к тому, что Земля станет еще теплее.

На протяжении всей истории Земли всякий раз, когда количество CO 2 в атмосфере повышалось, температура Земли также повышалась. А когда температура повышается, CO 2 в атмосфере повышается еще больше.

See caption.

На этом графике показано, как температура и углекислый газ увеличивались и уменьшались вместе за последние 400 000 лет. Ссылка: http://www.epa.gov/climatechange/science/pastcc_fig1.html.

Исследовательские спутники НАСА изучают, сколько углерода растения забирают из атмосферы и как углерод перемещается по планете.

Посмотрите на прибор Climate Time Machine , чтобы увидеть, как CO 2 и температура менялись вместе на протяжении истории.

.

Растения не могут жить только на CO2

Что говорит наука …

Выберите уровень … Базовый


Продвинутый

Больше двуокиси углерода в атмосфере не обязательно полезно для растений.

Аргумент тех, кто предпочитает видеть светлую сторону изменения климата, состоит в том, что углекислый газ (CO2), выделяемый при сжигании ископаемого топлива, на самом деле полезен для окружающей среды.Это предположение основано на простой и привлекательной логике: если растениям нужен СО2 для роста, то лучше его больше. Мы должны ожидать, что наши посевы станут более обильными, а наши цветы станут выше и расцветут ярче.

Однако философия «чем больше, тем лучше» — не то, как все работает в реальном мире. Есть старая поговорка: «Слишком много хорошего может быть плохим». Например, если врач говорит вам принять одну таблетку определенного лекарства, из этого не следует, что прием четырех, вероятно, вылечит вас в четыре раза быстрее или сделает вас в четыре раза лучше.Это с большей вероятностью заставит вас заболеть.

Можно увеличить рост некоторых растений с помощью дополнительного CO2 в контролируемых условиях внутри теплиц. Основываясь на этом, «скептики» заявляют о благотворном воздействии растений на мир в целом. В таких заявлениях не учитывается, что увеличение доступности одного вещества, в котором нуждаются растения, требует других изменений в поставках для получения выгод. Он также не принимает во внимание, что на более теплой земле увеличится количество пустынь и других засушливых земель, что уменьшит площади, доступные для посева.

Растения не могут жить только на CO2; полный метаболизм растения зависит от ряда элементов. Увеличить количество воды и удобрений и защитить от насекомых в закрытой теплице — простая задача, но как насчет того, чтобы делать это на открытом воздухе, по всей Земле? Так же, как увеличение количества одного только крахмала в рационе человека не приведет к более крепкому и здоровому человеку, для растений дополнительный CO2 сам по себе не может восполнить недостаток других соединений и элементов.

Как повлияет увеличение выбросов CO2 на сельское хозяйство и рост растений в целом?

1. Растениям с повышенным содержанием CO2 потребуется дополнительная вода как для поддержания роста, так и для компенсации большего испарения влаги по мере увеличения тепла. Откуда это будет? Во многих местах дождевой воды недостаточно для современного сельского хозяйства, и водоносные горизонты, от которых они зависят, пересыхают по всей Земле (1, 2).

С другой стороны, согласно прогнозам климатических исследований, мы переживаем более сильные штормы с увеличением количества осадков во многих частях мира.Казалось бы, это должно быть хорошо для сельского хозяйства. К сожалению, когда дождь идет короткими сильными порывами, он не успевает впитаться в землю. Вместо этого он быстро затапливает ручьи, затем реки и, наконец, в океан, часто унося с собой большое количество почвы и удобрений.

2. В отличие от Природы, наш способ ведения сельского хозяйства не предусматривает самооплодотворения путем переработки мертвых растений, животных и их отходов. Вместо этого мы должны постоянно добавлять искусственные удобрения, производимые энергоемкими процессами, в основном за счет углеводородов, особенно из природного газа, который в конечном итоге будет исчерпан.Увеличение потребности в таких удобрениях ведет к конкуренции за поставки природного газа и нефти, создавая конкуренцию между другими потребностями и производством удобрений. В конечном итоге это приводит к росту цен на продукты питания.

3. Слишком высокая концентрация CO2 вызывает снижение фотосинтеза у некоторых растений. Имеются также свидетельства прошлого о серьезном ущербе, нанесенном большому количеству видов растений в результате внезапного повышения концентрации CO2 (см. Иллюстрации ниже). Более высокие концентрации CO2 также снижают питательную ценность некоторых основных продуктов питания, таких как пшеница.

4. Как подтверждают длительные эксперименты, растения с чрезмерным запасом СО2 сталкиваются с ограниченным количеством других питательных веществ. Эти долгосрочные проекты показывают, что, хотя некоторые растения демонстрируют кратковременный и многообещающий всплеск роста при первоначальном воздействии CO 2, такие эффекты, как «азотное плато», вскоре сокращают это преимущество.

5. Растения, выращенные с повышенным запасом СО2 и строго изолированные от насекомых, ведут себя иначе, чем если бы тот же подход применялся в других естественных условиях.Например, когда рост соевых бобов ускоряется на открытом воздухе, это приводит к изменениям в химии растений, которые делают эти образцы более уязвимыми для насекомых, как показано на рисунке ниже.

Рисунок 1: Защитные силы растений снижаются по мере повышения уровня углекислого газа, как выяснили исследователи. Соевые бобы, выращенные при повышенном уровне содержания CO2, привлекают гораздо больше взрослых японских жуков, чем растения, выращенные при нынешних уровнях содержания углекислого газа в атмосфере. Science Daily; 25 марта 2008 г. (Фото любезно предоставлено Эваном Делусией)

Рисунок 2: Более 55 миллионов лет назад на Земле произошел быстрый скачок глобального уровня углекислого газа, что привело к повышению температуры по всей планете.Теперь исследователи, изучающие растения того времени, обнаружили, что повышение температуры могло стимулировать добычу пищи насекомыми. По мере того, как современные температуры продолжают расти, исследователи полагают, что на планете может увеличиться ущерб урожаю и опустошение лесов. Science Daily; 15 февраля 2008 г.

.

Новый способ получения кислорода без растений

Атмосфера Земли не всегда была наполнена живительным кислородом — когда-то она была удушающей смесью углекислого газа и других газов, больше похожей на атмосферу Марса или Венеры.

Широко распространено мнение, что рост растений превратил этот углекислый газ в кислород в результате химических реакций фотосинтеза в период, называемый Великим событием оксигенации. Но новое исследование предполагает, что может быть другой способ получения кислорода из углекислого газа с использованием ультрафиолетового света.

Полученные данные могут объяснить, как развивалась атмосфера Земли, и намекнуть на способ производства кислорода в космосе, говорят исследователи. [7 теорий происхождения жизни]

Хотя ученые считают, что растения производят большую часть кислорода, присутствующего на Земле, они подозревали, что некоторое количество кислорода могло существовать до появления фотосинтезирующих организмов, сказал Чеук-Ю Нг, физик-химик из Университета Калифорния, Дэвис и соавтор исследования, опубликованного сегодня (2 октября) в журнале Science.

Но считалось, что кислород планеты (O2) образовался из двух атомов кислорода, которые сталкиваются и соединяются на некоторой поверхности, а не потому, что молекулы кислорода отделяются от углекислого газа (CO2), сказал Нг.

Когда свет расщепляет CO2, молекула обычно распадается на окись углерода (CO) и атом кислорода (O). Одна теория предполагала, что углекислый газ потенциально может быть превращен в молекулярный кислород (O2) и углерод (C), но «никто никогда не обнаруживал» такой процесс, сказал Нг Live Science.

Нг и его коллеги создали единственный в своем роде прибор для разделения углекислого газа с использованием ультрафиолетового света в вакууме. Устройство состоит из двух лазеров — одного для расщепления СО2 и одного для обнаружения образовавшихся осколков.

«Эта машина уникальна в мире», — сказал Нг.

Когда исследователи направили первый лазер на двуокись углерода, второй лазер обнаружил молекулы O2 и атомы углерода, предполагая, что небольшое количество двуокиси углерода (около 5 процентов) превратилось в кислород.По словам Нг, этого достаточно, чтобы показать, что из CO2 можно производить кислород небиологическим способом.

По словам исследователей, полученные данные раскрывают возможный путь проникновения кислорода в атмосферу Земли и других планет. Это имеет значение для поиска внеземной жизни, предполагая, что простого обнаружения кислорода в атмосфере другой планеты недостаточно для обозначения присутствия жизни, сказал Нг.

Наконец, исследователи намекнули, что эту технику можно использовать для производства кислорода в космосе или на других планетах.Но сначала необходимы дополнительные исследования, чтобы проверить основы того, как происходит эта реакция, сказали ученые.

Одна из причин, по которой эксперимент не проводилась раньше, заключается в сложности создания интенсивного вакуумного ультрафиолетового света, сказал Нг. Один из способов — использовать ускоритель частиц, называемый синхротроном, но лазер в лаборатории Нг в 10 000–1 миллион раз ярче, чем у существующих синхротронов, сказал он.

Следуйте за Тани Льюис в Twitter и Google+ .Следуйте за нами @livescience , Facebook и Google+ . Оригинальная статья о Live Science.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *