21.10.2024

Устройство сварочного инвертора и принцип работы: Принцип работы сварочного инвертора: устройство и характеристики

Содержание

Принцип работы сварочного инвертора с пояснениями на схеме преобразователя

Сварочные инверторы всё более уверенно занимают нишу производственного сварочного оборудования, приходя на смену традиционной трансформаторной технике. В том, что этот тренд носит глобальный характер, сомневаться не приходится.

Инверторное оборудование объективно успешней справляется со стоящими перед ним задачами.

Преимущества инверторной техники

Превосходство сварочных инверторов над классическими преобразователями трансформаторного типа просматривается как в технологическом, так и в экономическом аспекте.

Если вкратце перечислить преимущества, приобретаемые при внедрении инвертора, получится примерно следующее:

  • более высокий коэффициент полезного действия, превышающий 90%, что предопределяет само устройство сварочного инвертора, характеризуемое отсутствием магнитных потерь в стальном сердечнике трансформатора, присущим «классике»;
  • способность работать в условиях изменения уровня питающего напряжения в широких пределах, не снижая при этом технологических параметров;
  • возможность очень точной установки тока сварки с цифровой индикацией его величины и жёстким поддержанием уровня в процессе сварки;
  • кардинально сниженные габаритные размеры и вес конструкции;
  • целый ряд совершенно новых возможностей, присущих только инверторным аппаратам, вот только некоторые из них.

К новым возможностям относится наличие специфических функций, среди которых hot start, anti sticking, arc force, и других, делающих процесс сварки доступным даже новичку. Есть возможность использования электродов, предназначенных для сварки, как переменным, так и постоянным током.

Что касается обычно называемых недостатков, присущих данному виду оборудования, то в первую очередь, речь идёт о сравнительно высокой цене этих приборов.

По этому поводу можно сказать следующее. Вспомните, как изменялись цены компьютерных и мобильных новинок буквально в течение нескольких лет. Дальнейшее совершенствование технологии и увеличение массовости производства неизбежно приведут к значительному снижению цен на сварочные инверторы.

Пояснения на схеме

Принцип работы сварочного аппарата, построенного на основе инвертора, иллюстрирует схема.

Структурная схема инвертора для сварки начинается с обозначения входящего тока и выпрямителя. Сетевое напряжение выпрямляется мостом из мощных диодов, установленных на радиаторы для рассеивания выделяющегося тепла.

Форма выпрямленного напряжения, имеющая ярко выраженные пульсации, схематически изображена в квадрате схемы, соответствующем выпрямителю.

Перед входом в инвертор, в общем-то, представляющем собой преобразователь напряжения, пульсации фильтруются с помощью конденсаторов большой ёмкости (на структурной схеме не показаны).

В инверторе, поступающее постоянное напряжение преобразуется в переменное, имеющее высокую частоту. Преобразование осуществляется за счёт переключения с большой частотой мощных ключевых полевых транзисторов, созданных по IGBT технологии.

При работе транзисторов выделяется большая мощность, поэтому их монтируют на массивных алюминиевых радиаторах. В свою очередь, работой транзисторов управляет высокочастотный генератор, основу которого составляет микросхема контроллера, работающего по принципу широтно-импульсного модулирования.

В этой части, принципиальная схема сварочного инвертора повторяет схемы импульсных блоков питания, используемых в радиоэлектронной аппаратуре с прошлого века.

Полученные в результате инвертирования высокочастотные импульсы поступают на трансформатор, где происходит снижение их амплитуды до уровня, на котором будет осуществляться сварка.

Далее, трансформированное высокочастотное напряжение окончательно фильтруется конденсаторами и поступает на выходные клеммы сварочного инвертора.

Частота генерируемого при работе инвертора тока достигает значения нескольких десятков килогерц. Именно высокая частота лежит в основе принципа работы аппарата инверторной сварки.

Благодаря принципу высокочастотного преобразования удалось добиться снижения веса и уменьшения размеров сварочных аппаратов в несколько раз.

В основном это обусловлено очень малой массой и габаритами высокочастотных трансформаторов, конденсаторов и дросселей.

Управление током

Регулирование сварочного тока инвертора производится посредством электронного регулятора с обратной связью, изображённого на схеме. С помощью потенциометра, расположенного на лицевой панели сварочного инвертора, выбирается требуемая величина тока сварки.

При вращении ручки потенциометра, устанавливается некий уровень опорного напряжения на входе логических элементов, построенных на операционных усилителях.

Сигнал, поступающий по линии обратной связи с датчика тока, расположенного на выходе аппарата, сравнивается компаратором с уровнем заданного регулирующим потенциометром напряжения.

При несовпадении уровней напряжения задающей цепи и сигнала датчика тока, происходит изменение амплитуды управляющего импульса, поступающего на контроллер.

При этом происходит изменение скважности импульсов, генерируемых контроллером, что вызывает изменение режима переключения транзисторов и в конечном итоге, величины тока сварки.

То есть, принцип регулирования заключается в том, что схема всегда стремится поддерживать соответствие между значениями заданного и фактического тока, что обеспечивает его стабильность.

В качестве контроллера, формирующего регулируемые сигналы широтно-импульсной модуляции, обычно применяется микросхема TL494, производимая американской фирмой Texas Instruments, либо её аналоги.

Приведённая структурная схема показывает только принцип работы и взаимодействия отдельных функциональных блоков. Детализованная электросхема каждого типа инверторов может иметь индивидуальные особенности.

Автоматические функции сварочного оборудования

Чтобы понять, как работают инверторные сварочные аппараты в различных ситуациях, следует ознакомиться с принципом работы некоторых их функций.

ARC FORCE

Эта функция призвана осуществлять форсирование дуги. В процессе работы сварщика иногда капля расплавленного электрода, не оторвавшись вовремя и не попав в сварочную ванну, зависает, уменьшая зазор.

Это может грозить прилипанием электрода к детали. Принцип работы arc force заключается в кратковременном увеличении тока, который «сдувает» каплю металла.

ANTI STICK

В начале работы, в процессе розжига дуги, электрод может прилипнуть к заготовке. Принцип функции anti stick состоит в том, что в этот момент происходит резкое снижение сварочного тока. После отрыва электрода режим работы аппарата возвращается к норме.

HOT START

Работа этой опции помогает легко зажечь электрическую дугу. Принцип данной автоматической функции прост. При разжигании дуги, в момент отрыва электрода от заготовки, происходит кратковременное увеличение значения сварочного тока, что способствует более надёжному розжигу дуги.

Все функции способствуют более быстрой и надежной работе инвертора, что в итоге приводит к высокому качеству сварного шва.

устройство аппарата, из чего состоит и как работает?


На чтение 10 мин. Просмотров 2.3k. Опубликовано
Обновлено

Сварка относится к самым эффективным методам, позволяющим надежно соединять металлические детали. Достигнуть наиболее качественных результатов в создании разнообразных конструкций из металла можно с помощью инвертора.

Данный инструмент широко применяется не только в производственных целях, но и в бытовых условиях. Поэтому важно понимать принцип работы .

Устройство и основные характеристики инверторов

Еще совсем недавно подобные агрегаты были достаточно простыми по схеме работы. Со временем аппарат был существенно модернизирован и дополнен электроникой.

В результате такие характеристики инверторных аппаратов, как его эффективность и функциональность существенно повысились. А самое главное, в процессе подобных модификаций, устройство не стало стоить дороже.

Как показывают современные тенденции, цена на аппарат, наоборот, снизилась, что не может не радовать сварщиков.

Устройство сварочного инвертора очень схоже с блоками питания, используемыми в компьютерах.

графикВольт амперная характеристика инвертора для сварки.

Их схожесть заключается в принципе преобразования энергии, которое осуществляется в соответствии со следующими основными этапами:

  • выпрямление переменного напряжения электросети 220 В;
  • преобразование напряжения в переменное высокой частоты;
  • снижение высокочастотного U;
  • выпрямление пониженного напряжения.

Выше лишь кратко перечислены основные действия данного прибора. Как видно, импульсные блоки питания персональных компьютеров выполняют такие же операции, что известно даже чайникам.

Раньше главным узлом являлся мощный трансформатор. Он также позволял понижать входное напряжение и снимать со вторичной обмотки большие токи, величина которых могла достигать сотен ампер. Данных параметров было вполне достаточно, чтобы осуществлять сварку.

Недостатком такого агрегата является слишком большой вес, делающий мобильность инструмента минимальной. С целью уменьшения габаритов и веса были разработаны инверторы.

[box type=”info”]Из чего состоит данный узел? Главными элементами тут являются транзисторы, подключенные к понижающему трансформатору. Они переключаются со значительно большей частотой вплоть до 80 кГц. Это позволяет уменьшить размеры трансформатора до минимума. В то же время их мощность остается такой же высокой, как и у больших собратьев.[/box]

Однако напряжение в сварочном инверторе должно быть постоянным. В этих целях используется выпрямитель, представленный диодным мостом и конденсаторами, работающими на сглаживание выходного напряжения.

Принцип работы устройства

Принцип работы сварочного аппарата с инвертором основан на преобразовании токов высокой частоты до необходимой величины. Это и есть основное отличие от традиционного трансформаторного устройства.

В следствие того, что токи преобразуются непосредственно перед процедурой сварки, подобные устройства отличаются относительно малыми габаритами и весом.

Всем известно, в бытовой электросети величина напряжения составляет 220 вольт, а частота переменного тока – 50 Гц. Такие значения не подходят для проведения сварочных работ.

Аппарат инверторного типа позволяет обеспечить необходимые значения, подходящие для розжига дуги и поддержания ее горения.

Важным моментом является возможность инверторной обеспечивать указанные величины питания в широком диапазоне значений, что позволяет сваривать металлы в различных условиях.

схема преобразований напряжения для сварки инверторомПринцип работы инвертора для сварки.

Внутреннее устройство прибора предполагает наличие выпрямителя. Он запитывается от обычной бытовой электросети. Его главная задача: преобразование переменного тока в постоянный. Во время данного процесса напряжение не изменяется. Далее блок устройства выполняет обратное преобразование.

В результате указанных операций, частота тока значительно увеличивается. Вместо стандартного значения в 50, оно повышается до нескольких десятков тысяч герц. Такие большие величины достигаются благодаря использованию тиристоров и транзисторов.

В результате, на трансформатор поступает напряжение с высокой частотой. Далее происходит увеличение силы тока за счет снижения напряжения. Трансформаторы, позволяющие осуществить такой переход, отличаются незначительным весом и размерами.

В результате сварочные аппараты стали более мобильными. Такие устройства проще использовать в бытовых целях, например, в маленькой мастерской, на даче или даже дома.

Стоит отметить, что современные устройства отличаются высоким коэффициентом полезного действия, вплоть до 90 процентов.

Раньше данные приборы имели более простое устройство, очень близкое к описанному выше. Однако современные конструкции предусматривают наличие дополнительной электроники, повышающей функциональность инструмента.

Достаточно часто используются различные электронные узлы, на основе микропроцессоров. В результате осуществляется контроль напряжения и тока. Если их значения отклоняются от оптимальных, тогда они корректируются.

Таким образом, оборудование может функционировать без сбоев, а также повышается диапазон выбора параметров сварки.

https://youtu.be/DqRvaDfc7xE

Технические параметры

Итак, как работает инверторный сварочный аппарат – понятно. Данный принцип остается неизменным для всех типов таких устройств. Тем не менее на рынке доступно большое количество различных моделей, представленных как отечественным производителем, так и зарубежными компаниями.

Хотя принцип действия инверторных сварочных аппаратов остается неизменным, некоторые характеристики все же отличаются, а именно:

  • величина сварочного тока может варьироваться в широком диапазоне значений: профессиональным устройствам свойственны широкие интервалы, а вот бытовым вариантам более узкие;
  • продолжительность включения, показывающая длительность работы на выбранном токе без перерывов.
  • холостой ход;
  • напряжение электросети.

Таким образом, характеристики будут зависеть от параметров выходного выпрямителя, а также преобразователя частоты тока.

Еще к немаловажным критериям относится мощность прибора. В промышленных агрегатах она может быть очень высокой и достигать двадцати киловатт. Конечно же, использовать подобное оборудование в бытовых целях невозможно. Простая электросеть попросту не рассчитана на подобные нагрузки.

таблица характеристикХарактеристики сварочного инвертора.

Стоит понимать: стоимость инструмента будет зависеть от мощности. Чем она выше, тем больше придется заплатить.

Практически все современные типы подобных устройств способны осуществлять следующие :

  • полуавтоматическая в среде инертных или активных газов, так называемая MIG/MAG;
  • ручная дуговая с применением электродов;
  • аргонодуговая в среде защитного газа.

В случае использования устройств в последнем типе сварки, инверторы могут комплектоваться дополнительными функциями. К таким относится возможность постепенного снижения силы тока, бесконтактное зажигание дуги, сварка в импульсном режиме, регулировка длительности обдува поверхности газом и т.д.

Процесс сварки в ручном режиме становится более простым и комфортным из-за наличия функции форсажа дуги – ее розжига простым касанием поверхности соединяемых металлических частей конструкции.

[box type=”fact”]В инверторах могут быть реализованы и другие функции. Все они призваны сделать процесс сварки более простым. Тут важно понимать: количество «наворотов» устройства неукоснительно ведет к увеличению его стоимости.[/box]

Работа в среде инертных газов также может быть облегчена некоторыми дополнительными возможностями агрегата.

Среди них:

  • «мягкий финиш» – автоматическое дожигание проволоки после окончания ее подачи;
  • «синергетика» – автоматическое «подстраивание» параметров сварки под значения, заранее заданные мастером;
  • «2/ такта» – возможность переключения подачи проволоки с автоматического режима на ручной и обратно;
  • «индуктивность» – позволяет понизить количество разбрызгиваемого металла, а также контролировать ширину шва и стабильность дуги.

Плюсы и минусы инверторной сварки

Устройство инверторного обладает рядом несомненных преимуществ. Благодаря им данный тип оборудования получил широкое распространение как в промышленности, так и в домашнем использовании.

Как известно, все, что необходимо от сварщика – это плавное перемещение электрода над линией соединения без соприкосновения с поверхностью детали. Электрод должен находиться на расстоянии в несколько миллиметров от изделия.

На первый взгляд кажется, что подобная операция достаточно легка. На деле же этот простой процесс превращается в невероятно тяжелую процедуру. Это связано с особенностями работы в маске, в которую постоянно летят искры, не дающий контролировать процесс соединения с высокой точностью.

Применения простого трансформатора сопровождено некоторыми рисками, описанными ниже.

таблица сварочных токовТаблица силы тока для сварки инвертором.

Так, например, касание электрода поверхности изделия приведет к короткому замыканию. Если подобное произойдет, то оторвать его будет достаточно тяжело. Придется приложить приличные усилия, в противном случае сработает теплозащита или, что еще хуже, загорится обмотка трансформатора.

В инверторе такой недостаток попросту отсутствует. Случайное прикосновение электрода к поверхности не повлечет за собой катастрофических последствий. Микропроцессор практически мгновенно отреагирует на падение напряжения и подплавит электрод. В результате оторвать его от детали не составит труда.

Если же соприкосновения не происходит, но электрод находится достаточно близка к поверхности конструкции, процессор распознает такой сценарий действий и прекратит поступление выходного напряжения. Это позволит избежать перегрева трансформатора.

Технологические достоинства

Устройство и принцип работы сварочного инвертора обладает рядом преимуществ по сравнению со своими традиционными аналогами, работающими по трансформаторной схеме, а именно:

  • достаточно большая , соизмеримая с низкочастотными трансформаторами;
  • маленький вес и габариты, позволяющие без труда перемещать оборудование по цеху, мастерской или дому;
  • широкие возможности по настройке параметров сварки;
  • низкий расход электродов;
  • высокая эффективность;
  • возможность осуществления сварочного процесс в различных пространственных положениях;
  • совместимость с разными типами электродов.

[box type=”fact”]Выше перечислены лишь основные плюсы. На деле, каждый откроет для себя еще больше положительных сторон использования подобного инструмента.[/box]

В любом случае повышенный комфорт сварки и возможность выполнения более качественной работы по достоинству оценит любой сварщик.

https://youtu.be/5RmnsgUOL14

Недостатки

Как показано выше, обладает множеством положительных моментов. В таком случае возникает вопрос: почему же многие сварщики до сих пор используют традиционные трансформаторные приборы?

таблица характеристикПараметры сварочных инверторов.

Главной причиной такого положения вещей является высокая стоимость оборудования. Инверторы минимум в два раза дороже. Данный факт относится к ключевым при ответе не поставленный вопрос.

Еще одним недостатком сварочного инвертора является высокий процент выхода устройств из строя. Достаточно лишь загрязниться электронике – и аппарат может сломаться.

В связи с отмеченной проблемой возникает необходимость в постоянной чистке «внутренностей» с применением сжатого воздуха.

Маленькие размеры инструмента также не относятся только к плюсам. Есть и обратная сторона медали. Наличие большого количества электронных систем ограничивает возможность работы с устройством на открытой местности во время дождя или при повышенной влажности.

Плохая погода может попросту поломать прибор, а ряд дешевых устройств и вовсе не будет функционировать при отрицательных температурах. Работа в пыльных условиях также сопряжена с риском поломки.

Со сваркой тоже не все так гладко, как может показаться на первый взгляд. В первую очередь это относится к резке толстого металла. Если напряжение на выходе сварочного аппарата будет нестабильным, что связано с перепадами в сети, характерными для сельской местности, то преобразующий узел выйдет из строя.

[box type=”warning”]Один из самых больших минусов – это дорогой ремонт. В основе работы прибора заложен транзисторный блок, стоимость которого может достигать четверти стоимости самого инструмента. Таким образом, окончание срока гарантийного обслуживания сопряженно со значительными тратами в случае поломки.[/box]

Подобные агрегаты сильно востребованы в сельской местности, где постоянно появляются задачи, связанные с соединением тех или иных металлических изделий.

Высокая мобильность позволяет без труда использовать их во дворе, перенося устройство с одного места на другое. Однако отсутствие сервисных центров станет большой проблемой в случае выхода аппарата из строя.

Итог

Принцип работы сварки с использованием инвертора вместо трансформатора обладает рядом достоинств. Благодаря им подобное оборудование широко применяется и в промышленности и бытовых условиях.

В данной статье достаточно детально рассмотрено устройство такого аппарата. Эта информация позволит не только разобраться с основами работы инвертора, но и поможет при выборе и покупке инверторной сварки.

Устройство сварочного инвертора: принцип работы, схема

Все чаще для сварки стали использовать не трансформаторные сварочные аппараты, а инверторные. Они не просаживают сеть, ими легче варить. Это обусловлено тем, что устройство сварочного инвертора значительно отличается от трансформаторного сварочного аппарата.

Содержание статьи

Чем сварочный инвертор лучше трансформатора

Начнем с того, что такое инверторный сварочный аппарат. Это устройство для ручной или полуавтоматической сварки, работающее от сетевого напряжения. Есть аппараты, которые подключают к сети 220 В, есть на 380 В. Вне зависимости от количества фаз, сварочный ток (который идет на электрод) постоянный. Так что варить инверторным сварочным аппаратом легче — дуга стабильна и не скачет. Кроме того, есть такие опции как «антизалипание» и защита от перегрева. Но это не все его плюсы.

Сварочный инверторный аппарат намного меньше и легче трансформаторного. Это важно, особенно, если надо таскать его по участку. Еще одно преимущество — он не «садит» сеть, не «дает» скачков напряжения.

В чем же дело, чем отличается инверторный аппарат от трансформаторного? Весь секрет в тройном преобразовании напряжения. Сначала переменное напряжение преобразуют в постоянное, а затем снова в переменное, но уже очень высокой частоты. Его затем на вторичном выпрямителе снова преобразуют в постоянный ток. Он и используется при сварке. Это и есть вкратце принцип работы сварочного инвертора.

Благодаря современной схемотехнике, качественные сварочные инверторы обладают высокой надежностью.

Как работает инверторный сварочный аппарат: блок-схема

Принципиальные схемы инверторных сварочников разных фирм отличаются, как отличается и элементная база. Но состоят все они из тех же блоков, так как принцип работы у всех одинаковый.

В первичном НЧ (низкочастотном) выпрямителе сетевое напряжение преобразуется в постоянное, которое подается на вход инвертора. Инвертор преобразует постоянное напряжение частотой 50 Гц в переменное напряжение высокой частоты (десятки кГц). Высокочастотный трансформатор понижает напряжение и увеличивает ток, который может превышать 250 А. Именно сила тока нужна при сварке. Вторичный выпрямитель преобразует переменное напряжение в постоянное, а дроссель завершает преобразование и на электрод уходит постоянный ток.

Основные узлы сварочного инвертора

Блок-схема сварочного инверторного аппарата

Это общий принцип работы инверторного сварочного инвертора. Как видите, он называется так потому что инвертор — ключевой элемент схемы.

Инвертор — это устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Большая часть инверторных сварочных аппаратов имеет еще контроллеры и устройства поддержания заданных параметров. Выполнены они обычно на базе процессоров, хотя есть и электромеханические модели.

Для чего нужны все эти преобразования и почему инверторный сварочный аппарат такой маленький и легкий

Для чего столько ступеней преобразования? Для того чтобы получить на выходе ток в сотни ампер и не перегрузить при этом электрическую сеть. Вторая задача — получить постоянный ток, так как варить на «постоянке» проще. Дуга стабильна, ее проще контролировать.

В простейших трансформаторных сварочных аппаратах выпрямление происходило на трансформаторе и, после некоторой стабилизации (несколько конденсаторов), сразу шло на электрод. Для преобразования сетевого напряжения частотой 50 Гц трансформатор требуется большой по размеру, так как диаметр проволоки должен быть большим. И это определяло размеры самого аппарата и его вес.

Как работает сварочный инвертор

Принцип работы сварочного инвертора: ступени преобразования напряжения и тока

В инверторах путем преобразований частоту увеличивают до нескольких десятков килогерц (может быть 50-80 кГц) и уже после этого преобразуют в постоянное. Высокочастотное переменное напряжение преобразуется в постоянное на трансформаторе малого размера. Он в разы меньше и легче. Именно поэтому инверторные сварочники такие компактные и легкие. Но так как ступеней преобразования много, требуется контроль и согласование работы всех блоков. Поэтому инверторные сварочные аппараты при малых размерах и весе стоят больше. Хоть, вроде, налицо экономия материалов. А дело в том, что есть еще контролеры, которые стоят немало.

Устройство сварочного инвертора: описание работы и назначение блоков на базе схемы РЕСАНТА САИ 140

У каждого производителя принципиальные схемы инверторных сварочных аппаратов разные. Мало того, даже разные линейки одного и того же производителя могут существенно отличаться. Но устройство сварочного инвертора имеет общие черты. Блоки те же. Просто собраны смогут быть по-разному. Это входной выпрямитель на базе мощного диодного моста и сглаживающих конденсаторов, инвертор — на ключевых транзисторах (тип IGBT или MOSFET) и выходной выпрямитель на базе высокочастотного понижающего трансформатора и диодного моста с выходным конденсаторным фильтром.

Схема сварочного инвертора РЕСАНТА САИ 140

Принципиальная схема инверторного сварочного аппарата РЕСАНТА САИ 140

Далее рассмотрим, как работает сварочный аппарат, основываясь на схеме инверторного сварочного аппарата РЕСАНТА САИ 140. Он не лучше и не хуже остальных, просто есть его схемы.

Первичный выпрямитель и конденсаторный фильтр

Задача первичного выпрямителя — преобразовать синусоиду частотой в 50 Гц в постоянный ток. В реалии он получается не совсем постоянным, а с некоторой пульсацией, но это уже явно не синусоида. Реализуется это обычным диодным мостом, который «переворачивает» нижнюю полуволну синусоиды.

Входной выпрямитель в аппарате Ресанта САИ 140

Как работает сварочный инвертор: первая ступень преобразования напряжения в Ресанта САИ 140

Сетевое напряжение через входную стабилизирующую группу попадает на конденсаторы С1 и С2. Основная задача —  снятие статического напряжения на землю. Именно поэтому включать инверторную сварку крайне желательно в розетку с действующим заземлением, а не просто с имеющимся контактом.

Далее, диодный мост «переворачивает» нижнюю полуволну. На его выходе получается пульсирующее напряжение. Для сглаживания пульсаций ставят конденсаторы (в приведенной схеме это конденсатор С8 ёмкостью 1 микрофарад на напряжение 400 В ). На их выходе напряжение уже постоянное. Конденсаторы стоят с солидным запасом по напряжению — 400 Вольт и выше, так как на выходе диодного моста напряжение уже больше чем сетевое — порядка 320-350 В. А если учесть еще возможные скачки… вот и ставят с запасом — на 400 В.

И конденсаторы, и диоды при работе сильно греются. Для лучшего отвода тепла их монтируют на алюминиевые радиаторы. Часто еще делают дополнительный обдув — ставят вентилятор. Если вы хотите, чтобы сварочный аппарат прослужил долго, следите за тем, чтобы кулер был в рабочем состоянии.

Инвертор

Блок инвертора преобразует постоянное выпрямленное напряжение низкой частоты в переменное напряжение высокой частоты. Реализуется обычно на ключевых транзисторах, которые открываются и закрываются с большой частотой. Именно они формируют переменное напряжение с частотой в десятки килогерц. Управляет их переключением контроллер.

Блок инвертора сварочного аппарата - один из вариантов (схемотехника)

Силовые транзисторы G30N60, при помощи которых преобразуется постоянный ток в высокочастотный переменный

G30N60 — биполярный транзистор с изолированным затвором (IGBTs).

На выходе инвертора получаем не синусоиду, а практически прямоугольные импульсы. Но для дальнейшего выпрямления это не проблема. Зато частота высокая, что значит, что вторичный выпрямитель можно сделать на небольшом по размеру трансформаторе.

Выпрямление и стабилизация

Полученное высокочастотное напряжение подается на высокочастотный трансформатор. Напряжение на нем понижается, ток увеличивается. Через его первичную обмотку протекает высокое напряжение небольшой силы тока, а со вторичной снимается более низкое напряжение, но сила тока уже порядка 150-220 ампер — в зависимости от мощности и класса аппарата.

Как работает сварочный инвертор

Выходное преобразование напряжения перед подачей на электрод

Для получения постоянного напряжения на выходе трансформатора стоит диодный мост. Он выдает уже практически постоянное напряжение, которое «доглаживается» выходными конденсаторами и идет на сварочный электрод. Диоды на выходном мосту стоят особые — с высокой скоростью срабатывания (не более 40-55 наносекунд). Они должны сглаживать напряжение частотой в десятки килогерц, так что скорость срабатывания должна быть очень высокой. Если в процессе ремонта возникла необходимость их замены, то надо подбирать именно с высоким быстродействием. Иначе работать аппарат не будет.

STTH6003CW — диод быстродействующий 300В, 30А, 55нс.

Остальные блоки на схеме — это как раз управление, «дополнительные опции» типа защит от перегрева и залипания электрода.

На что обратить внимание при выборе сварочного инвертора

Речь пойдет не о характеристиках, а о выборе марок и производителей. Ситуация на рынке со сварочными инверторами не лучше и не хуже, чем с остальными инструментами или бытовой техникой. Очень много товара из Поднебесной.  Ценовая категория — от самого дешевого, до среднего. Есть также российские аппараты, украинские и белорусские. Они, в основном, в среднем ценовом диапазоне, хотя есть и более дорогие линейки. «Европейцев» в последние годы очень мало и цена далеко не «средняя».

Выбор сварочного инвертора - это не столько выбор параметров, сколько производителей

Как работает сварочный инвертор — это одно. Надо еще, чтобы он был ремонтопригодным. Схемотехника может существенно различаться

Так что же выбрать? Оптимально — нормальный Китай и аппараты производства стран СНГ. И будьте осторожны. Очень много дешевых китайских подделок, которые имитируют российские, украинские или белорусские марки или даже «нормальный» товар из Поднебесной. В «фирменных» приборах заявленные параметры соответствуют реальным. И, если вы выставили ток, скажем, 130 ампер, на выходе вы получите именно 130 ампер плюс-минус пару процентов. В дешевых же поделках приходится потом «опытным» путем переписывать цифры на регуляторах. Потому что при положении регулятора 150 А, но на выходе может быть всего 90 А. В лучшем случае — 110-120 А, что явно не радует.

Ремонт и сервис

Второй момент, на который надо обратить внимание при выборе сварочного инверторного аппарата — его ремонтопригодность и доступность элементной базы. Производители разделились на два лагеря. У одних компоненты для ремонта стоят недорого, легкодоступны. Следовательно, ремонт быстрый, без особых проблем и недорого. Вторая группа производителей исходит из того, что нечего ремонтировать — покупайте новый аппарат. Элементная база подбирается особая, просто так ее не найти, приходится заказывать. Поставляет ее тот же производитель по очень высоким ценам. Так что действительно, часто получается дешевле купить новый аппарат, чем ремонтировать вышедший из строя.

Характеристики сварочного инвертора МС-160МЕ

Важно чтобы заявленные характеристики совпадали с реальными

Как ни странно, сварочные инверторы «второй группы» обычно работают нормально и довольно долго. Так что отзывы о работе обычно положительные. Но вот ремонт… Это проблема.

Ну, и следует обратить внимание на наличие сервисных центров в вашем регионе. И на то, на какой срок дают гарантию. Не только производители, но и сервисники. Может получиться так, что гарантия на аппарат солидная — несколько лет. А на ремонтные работы — всего месяц-два-три. Скажем, вам не повезло, ваш сварочник сломался очень быстро. Отвезли в мастерскую, они отремонтировали, а на отремонтированный аппарат дают гарантию два месяца. И все. Дальше «за свои деньги».

Устройство и принцип работы сварочного инвертора, полуавтомата

Техника постоянно развивается и оборудование для сварки не стало исключением. В последнее время на рынке становится все больше аппаратов инверторного типа, которые уже практически вытеснили сварочные трансформаторы во всех сегментах. Конкуренция еще может оставаться только на самом простом уровне, который необходим для использование ручной дуговой сварки, так как более сложные технические процедуры, для которых нужны специальные функции, сейчас выполняются преимущественно инвертерами. Многие специалисты уже смогли на практике оценить все преимущества данных изделий, не говоря уже о том, что в частной сфере они стали практически незаменимы. Это простые в использовании и многофункциональные аппараты. Устройство и принцип работы сварочного инвертора обеспечивает надежное горение дуги, а также формирование качественных и надежных швов.

Внешний вид сварочного инвертора

Внешний вид сварочного инвертора

В последние годы появляется все больше различных моделей, от достаточно миниатюрных аппаратов, которые могут использоваться для переносной сварки и питаться от автономных источников, до больших многофункциональных изделий, применяемых в частной сфере. Большое разнообразие производителей также способствует данному увеличению количества моделей. Компоновка сварочного полуавтомата, простого аппарата и других разновидностей может меняться в зависимости от конкретной модели, но основные принципы сохраняются изменения сильно задевают дополнительные функции, так как для них создаются отдельные блоки. Все это в целом обеспечивает отличные возможности для легкого выполнения сложных операций, благодаря чему оборудование и заслужило высокую популярность у современных специалистов. Но здесь имеются не только сплошные преимущества, так как встречаются и недостатки.

Преимущества сварочного инвертора

  • Устройство сварочного полуавтомата инверторного типа, а также обыкновенного аппарата позволяет уменьшить размеры корпуса оборудования, так как все комплектующие оказываются более компактными;
  • За счет снижения габаритов корпуса, снижается и общий вес, который в современных моделях может достигать всего 3-4 кг;
  • Оборудование не сильно чувствительно к перепадам напряжения, так как встроенная электроника помогает поддерживать стабильность горения дуги и подстраиваться под скачки электричества в сети;
  • Стабильное горение дуги не позволяет металлу сильно разбрызгиваться;
  • Устройство сварочного инвертора позволяет дополнять технику дополнительными функциями, которые были недоступны и которые помогают улучшить качество сварного шва;
  • Техника может работать от обыкновенной бытовой сети, так что здесь не требуется подключение к трехфазной сети;
  • Затраты электроэнергии на работу инвертора значительно меньше, чем при работе трансформатором.

Недостатки сварочного инвертора

  • Стоимость техники заметно выше, чем у предыдущего поколения, особенно заметно это становится с ростом мощности и количества функций;
  • Устройство инверторного сварочного аппарата оказывается сильно чувствительным к перегревам, поэтому, его не рекомендуют использовать для длительных и беспрерывных работ;
  • Аппарат может создавать высокий уровень электромагнитных помех вокруг себя, что может повлиять на другие виды техники, находящиеся рядом;
  • Здесь также присутствует большая чувствительность к вибрациям, ударам встряскам и так далее, так как внутри присутствует электроника, которая может выйти из строя.

Принцип работы сварочного инвертора

Основной функцией данной техники является преобразование тока из сети в те параметры, которые необходимы для сваривания металла. Для этого ток проходит через сложную систему преобразований. Эта схема выглядит следующим образом:

  • Первым делом все поступает на выпрямитель инвертора. Переменный ток из обыкновенной розетки входит в выпрямитель и становится постоянным на выходе.
  • Затем происходит снижение напряжения. В сети оно подается с параметрами в 220 В, а специальный инверторный блок понижает его до требуемого значение, заданного настройками. Здесь же постоянный ток снова переходит в переменный, но на этот раз специальный блок повышает его частоту.
  • После этого все переходит на трансформатор. Здесь напряжение снова понижается до требуемого значения. Благодаря понижению силы высокочастотного напряжения, начинает возрастать сила высокочастотного тока.
  • На последнем этапе преобразованный высокочастотный ток поступает на вторичный выпрямитель, где он снова становится постоянным. Здесь же происходит окончательная регулировка его параметров, которые будут соответствовать заявленным на датчиках характеристикам.

Схема работы сварочного инвертора

Схема работы сварочного инвертора

Таким образом, принцип работы сварочного инвертора помогает четко контролировать его параметры и повышать частоту тока и напряжения. Благодаря этому улучшается возможность работы с тугоплавкими и сложно свариваемыми металлами. Сюда относится сварка нержавейки, алюминия и прочих разновидностей.

Схема инвертора

Схема сварочного инвертора

Схема сварочного инвертора

Устройство

Устройство каждой модели может иметь ряд особенностей, но в целом многие технические узлы повторяются. В основном плата техники состоит из следующих частей:

  • Радиатор выходного выпрямителя – это одна из наиболее объемных деталей, которая служит для вторичного выпрямителя сварочного тока;
  • Радиаторы транзисторов – несколько радиаторов, которые в целом своем объеме занимают около четверти платы;
  • Кулер – обязательное для инверторов устройство охлаждения, так как здесь большая чувствительность к перегреву;
  • Сетевой выпрямитель – первичное устройство для выпрямления поступаемого из сети тока перед последующим его преобразованием;
  • Датчик тока – датчик, показывающий параметры получаемого тока;
  • Реле мягкого пуска – устройство, помогающее обеспечить легкий старт во время сварочного процесса;
  • Интегральный стабилизатор – дополнительный блок, который помогает стабилизировать параметры электричества, даже если идут скачки в сети;
  • Помеховый фильтр;
  • Конденсаторы помехового фильтра.

Сварочный инвертор без корпуса

Сварочный инвертор без корпуса

Режимы

Принцип работы инверторного сварочного аппарата позволяет ввести несколько дополнительных функций, которые помогут сделать работу более простой.

  • Горячий старт. Данная функция помогает увеличить сварочный ток в тот момент, когда электрод касается заготовки. После этого сила тока возвращается на те параметры, которые указаны на датчике. Количество добавленных Ампер зависит от изначальной силы тока, так как она показывается в относительном соотношении, от 5 до 100%. Некоторые модели обладают только фиксированной величиной добавки. С помощью данной функции легче поджигать плохие электроды.
  • Форсаж дуги. Данная функция становится незаменимой при сваривании тонких листов металла во время формирования и продвижения сварочной ванны она уберегает электрод от залипания и от прожигания. Здесь постоянно добавляется и убавляется количество тока, чтобы дуга горела стабильно. Принцип действия очень похож на «Горячий старт», но при этом регулировка идет постоянно. Здесь также может присутствовать фиксированное значение или регулируемое.
  • Антизалипание. Данная функция не обеспечивает постоянное горение дуги, как это было в предыдущих случаях. Это одно из наиболее ранних и простых нововведений, которые были реализованы в инверторах. В то время, когда электрод залипает, образуется короткое замыкание, нагревающее аппарат и воздействующее на него прочими негативными свойствами. Чтобы избежать этого, при включенной функции антизалипания техника просто отключит подачу питания. Таким образом, ей не будет нанесено никакого вреда и можно будет спокойно продолжить сварку. При желании ее можно отключить или отрегулировать.

Принцип работы сварочного инвертора

Принцип работы сварочного инвертора

Один из способов создания неразъемных соединений из металла – это электродуговая сварка.

В течение множества лет для выполнения этой операции применяли генераторы трансформаторного типа.

Главный их недостаток – габаритно-весовые характеристики.

С развитием полупроводникового оборудования и появлением таких элементов, как тиристоры, были созданы устройства, которые обладают всеми характеристиками, как и трансформаторы, но весят в разы меньше.

Электродуговая сварка

Устройство и основные характеристики инверторов

Инверторные устройства имеют совершенно другую электрическую схему, основанную на использовании полупроводниковых приборов диодов, тиристоров, транзисторов.

Принцип работы инвертора

В основе работы аппаратов этого типа лежит принцип сдвига напряжения. Такое решение позволяет поднять силу и частоту тока.

Устройство инвертора содержит довольно сложную схему, внутри которой реализуются нижеприведенные процессы:

  1. Переменный ток, подаваемый на инвертор, преобразуют в постоянный. Изменение параметров тока происходит в устройстве, который собирают с применением диодного моста.
  2. Полученный ток передается на инвертор, который играет роль генератора высокочастотных импульсов. В транзисторном блоке, происходит обратное преобразование постоянного тока в переменный. Но получаемый ток, обладает существенно большей частотой, чем тот, который поступает из сети питания.
  3. Ток высокой частоты поступает на трансформатор. Это устройство снижает напряжение и одновременно повышает силу тока. Так как трансформатор, который используют для работы с токами высокой частоты, имеет небольшие габариты, все это сказывается на габаритно-весовых характеристиках инвертора.
  4. После прохождения трансформатора, переменный ток, с новыми параметрами поступает на выпрямитель, где он снова трансформируется в постоянный, который и используют для сварки.

Сварка инвертором для начинающих

Надо отметить, что инверторные устройства, в отличие от устройств трансформаторного типа потребляет в два раза меньшее количество энергии. Кроме этого, параметры тока, который поступает из устройства, гарантируют то, что сварочная дуга будет иметь стабильный розжиг и горение во время сварки.

Технические параметры устройств

Сварочные инверторы имеют ряд определенных характеристик, по которым можно судить о его технологических свойствах.

К ним относят следующие параметры:

  1. Вид тока, который формируется на выходе из выпрямителя.
  2. Размер напряжения, которое используется для электроснабжения. Производители выпускают изделия, которые работают от 380 и от 220 в. Первые применяют для профессиональной сварки, вторые для работы в домашних условиях.
  3. Размер тока, этот параметр оказывает прямое влияние на размер электрода, который будет использоваться для выполнения сварки.

Технические параметры сварочного инвертора

  1. Мощность агрегата, этот параметр дает информацию о том, ток, какой силы будет формировать сварочную дугу.
  2. Напряжение на холостом ходу, этот параметр показывает, как быстро будет получена сварочная дуга.
  3. Диапазон размеров электродов, которые будут использованы для производства сварки.
  4. Габаритно-весовые характеристики инверторного сварочного аппарата и размер сварочного тока на выходе. Чем ниже последний показатель, тем меньше аппарат, но и соответственно такое устройство обладает меньшими эксплуатационными характеристиками.

Плюсы и минусы инверторной сварки

Инверторные устройства показывают КПД в пределах 85 – 95%, надо сказать, что это высокий показатель среди электронной аппаратуры. Используемая схема позволяет выполнять регулировку уровня сварочного тока от нескольких ампер, до сотен, а то и тысяч.

Например, инвертор марки ММА, он составляет 20 – 220 А. Инверторы могут работать длительное время. Управление источником питания можно выполнять дистанционно. К несомненным преимуществам инверторов можно отнести их малые габаритно-весовые характеристики, позволяющие перемещать устройство на месте выполнения сварки. В конструкции аппаратов использована двойная изоляция, обеспечивающая электрическую безопасность.

Технологические достоинства

Применение инверторов позволяет использовать электроды любой марки, которые работают и с постоянным и переменным током. Устройства этого типа могут быть использованы для сварки с неплавящимся электродом в среде защитного газа. Кроме того, конструкция этого оборудования позволяет легко автоматизировать сварочные процессы.

Сварка может быть выполнена с применением короткой дуги, таким образом, снижаются энергопотери и повышается качество сварного шва, в частности, на поверхности свариваемых деталей практически не образуются брызги от выполнения сварки. Кстати, применение инверторов позволяет получать швы в любой пространственной конфигурации.

Микропроцессор

В управлении современными сварочными инверторами применяют микропроцессоры, и это обеспечивает стабильную связь между напряжением, током.

Минусы, которым обладают инверторы

Инверторы ремонтировать несколько сложнее, чем традиционные трансформаторные агрегаты. Если из строя выйдут некоторые элементы управления, размещенные на плате, то ремонт может встать примерно в треть от стоимости нового сварочного инвертора.

Инверторы, в отличие от оборудованиях других типов, очень боится пыли. То есть такие аппараты должны чаще обслуживаться. Работа инверторным сварочным аппаратом ограничена и низкими температурами. Кроме того, существуют некоторые ограничения на хранение инвертора при минусовых температурах. Это чревато образованием конденсата, который может привести к короткому замыканию на плате.

Как работает сварочный инвертор

Схема сварочного инвертора состоит из двух основных частей: силовой и управляющей.

Силовая схема сварочного инвертора

Принципиальная схема приведена на рисунке.

Электронный силовой блок состоит из следующих узлов:

  • сетевой выпрямитель;
  • помехозащитный фильтр;
  • инвертор;
  • выходной выпрямитель.

Сетевой выпрямитель

Выпрямитель состоит из:

  • двухполупериодного диодного моста;
  • сглаживающего фильтра из двух параллельных электролитических конденсаторов.

Через диодный мост протекают большие токи, и он нагревается. Для рассеяния тепла его устанавливают на охлаждающий радиатор. С целью предотвращения перегрева и выхода из строя диодного моста, на радиаторе установлен элемент защиты — термопредохранитель. Он отключает питание при превышении температуры радиатора выше 90 °С. Постоянное напряжение после выпрямителя и фильтра подаётся на инвертор.

Помехозащитный фильтр

Мощный инвертор в процессе работы создаёт высокочастотные помехи. Что бы исключить их попадание в электросеть, перед выпрямителем устанавливается фильтр ЭМС (электромагнитной совместимости). Фильтр состоит из конденсаторов и дросселя (в приведённой схеме — на тороидальном магнитопроводе).

Инвертор

Инвертор собран по схеме «косого моста» на двух мощных ключевых полупроводниковых приборах. В качестве последних могут быть транзисторы типов «IGBT» и «MOSFET». Оба ключевых транзистора монтируются на радиаторы для охлаждения.

На первичную обмотку импульсного понижающего трансформатора поступает напряжение со входного выпрямителя, прошедшее преобразование на ключевых транзисторах и ставшее высокочастотным. С одной из вторичных обмоток снимается уже значительно меньшее по амплитуде напряжение (рабочее значение, необходимое для сварки). Эта обмотка выполнена несколькими витками ленточного медного провода в изоляции, что позволяет производить сварку током 120…130 А.

Выходной выпрямитель

С вторичной обмотки импульсного трансформатора переменный ток высокой частоты поступает на высокочастотные мощные диодные выпрямители. Они собираются на базе сдвоенных диодов по схеме с общим катодом. Диоды обладают высоким быстродействием (время восстановления trr < 50 ns). С выхода этого выпрямителя снимается электрический ток с нужными для сварки параметрами.

Управляющая схема сварочного инвертора

Принципиальная схема приведена на рисунке.

Электронный управляющий блок состоит из следующих узлов:

  • ШИМ-контроллер;
  • цепи регулировки и контроля:
  • блоки контроля напряжения сети и выходного напряжения.

ШИМ-контроллер

«Мозгом» сварочного инвертора является микросхема ШИМ-контроллера (здесь и далее – обозначения по схеме: U1). Она, управляя работой мощных ключевых транзисторов, задаёт «ритм» работы всего преобразователя. Микросхема ШИМ-контроллера, посредством полевого N-канального MOSFET транзистора (Q4), передаёт на первичную обмотку разделительного трансформатора (T1) прямоугольные импульсы с высокой частотой — до 50 КГц. С вторичной его обмотки снимаются сигналы для управления работой ключевых транзисторов.

Защиту от возможного, в процессе управления, превышения допустимого напряжения между затвором и эмиттером ключевых транзисторов осуществляют стабилитроны (D16, D17, D29, D30).

Цепи регулировки и контроля

К цепям регулировки и контроля относятся:

  • трансформатор тока (Т2). Этот узел является основой анализатора-ограничителя тока. Снимаемое с него напряжение, после выпрямления и ограничения, участвует в работе схемы, формирующей сварочный ток, и генератора импульсов на ШИМ-контроллере;
  • узел контроля напряжения сети. Он состоит из элементов операционного усилителя, собранного на двух микросхемах (U2A и U2B). На резисторных делителях, установленных в цепях входного выпрямителя, выделяется напряжение электросети (завышенное или заниженное) и поступает на сумматор операционного усилителя. Последний вырабатывает результирующий сигнал и выдаёт его на задающий генератор импульсов – ШИМ-контроллер. При обнаружении напряжения ниже допустимого, он блокирует генератор, а, следовательно, и всю схему;
  • схема контроля выходного напряжения. Последнее снимается с выходов «OUT+», «OUT-» и через оптрон (ISO1), поступает в схему контроля (U2A и U2B). Таким образом, выполняется отслеживание параметров выходного напряжения.

Одновременно с отключением инвертора включается жёлтый светодиод (D12), который указывает на то, что в схеме неисправность или есть проблемы с сетевым питанием (отсутствует или ниже нижнего предела).

Преимущества инверторного агрегата

  • Инверторы имеют небольшой вес и габариты, что очень важно при выполнении сварочных работ, вес аппарата всего 4-4,5 кг.
  • Высокий КПД и электробезопасность, которая обеспечивается большим количеством схем защиты — перегрев, перегрузка или электрическое перенапряжение.
  • Низкий уровень электропотребления, инверторы потребляют в 1,5-3 раза меньше, чем привычные сварочные аппараты. Такая особенность позволяет использовать агрегат даже при напряжении в сети в 180В. При включении он создает минимальные электромагнитные помехи в сети.
  • Плавное и легкое управление силой тока.
  • В итоге получаются качественные сварные швы, такой высокий результат достигается благодаря легкому зажиганию электрической дуги с ее устойчивым горением. В процессе работы не наблюдается большого разбрызгивания сварного металла.
  • Можно использовать различные электроды.
  • Есть система быстрого зажигания электродов — Hot Start.

Недостатки

  • Может произойти неисправность, которая проявляется в выходе из эксплуатации микропроцессора, это обусловлено нарушением условий хранений или применения. Если устройство находится или применяется в запыленном месте, то его необходимо чаще продувать и чистить.
  • Высокую стоимость агрегата можно отнести к минусам, его нельзя использовать при очень низких температурах, так -15оС является крайней отметкой в работе.
  • Длина используемого кабеля не должна превышать 2,5 метра.

Сфера применения инверторного аппарата

Высокие технические возможности агрегата позволили найти ему широкое применение.

  • Их можно использовать в качестве обычных электрических трансформаторов для дуговой сварки с постоянным током.
  • Также инвертор применим для аргонодуговой сварки с неплавкими электродами.
  • В полуавтоматической сварке инверторы используются с присадочной проволокой.
  • Агрегаты нашли применение в работах плазменной резки.

Качество и удобство

Дуговая сварка является очень ответственной работой и чтобы ее удачно выполнить сварщик должен иметь определенные знания и опыт. С помощью инвертора можно выполнить сварку более просто, не имея больших навыков в работе.

Поджигание дуги можно назвать одним из главных преимуществ, поскольку в старых агрегатах невозможно было из-за перепадов напряжения в сети поджечь дугу, электроды сразу залипают. Когда ток добавляется, то происходит обратный процесс — начинается пережигаться металл. Принцип работы инверторов позволяет не зависеть от напряжения в сети. В данных устройствах сварочный ток держится на входе неизменным от напряжения в сети.

Работая обычным сварочным аппаратом можно «пережечь» или «недожечь» металл, отчего шов получится некачественным, он будет ослаблен, из-за чего образуются отверстия. У нового типа агрегатов остается ток неизменным, он устанавливается потенциометром на шкале сварочного тока.

Сварочные инверторы могут поддерживать выбранный ток в заданных пределах, и он будет все это время постоянным. Это позволяет не брать во внимание длину дуги, что только облегчает работу специалисту. Здесь даже новичок сможет овладеть «прихватками», благодаря устройству нового типа.

Те, кто уже не первый день работает сварочным инвертором, уже смогли оценить его возможности. Они значительно облегчают поджигание, контролируют дугу, устраняют залипание электродов. Такие агрегаты очень выгодны для применения в частном и профессиональном строительстве.

Электрическая дуга

Температуру в тысячи градусов Цельсия обеспечивает электрическая дуга, по сути являющаяся коротким замыканием между двумя электродами, расположенными достаточно близко друг от друга. Напряжение, которое подается на электроды, увеличивается, пока не будет пробоя воздуха, являющегося изолятором.

Пробой — эмиссия электронов катода. Разогреваемые током электроны выходят и направляются к ионизированным атомам анода. Затем появляется разряд, ионизируется воздух зазора, образовывается плазма, снижается сопротивление воздушной прослойки, ток усиливается, дуга разогревается, и став проводником замыкает цепь. Процесс получил название «розжиг» дуги. Стабилизируется дуга путем установления требуемого расстояния между электродами и поддержанием характеристик энергоснабжения.

Сваривание металлов

Выбор хорошего электрода и способа сварки крайне важен, так как от него зависит, будут ли его механические свойства аналогичны свойствам основного металла.

Сварочная ванна должна быть защищенной от воздействия воздуха для исключения окисления металла.

С этой целью в рабочей зоне создается особая среда, что достигается двумя способами:

  • Технология MIG-MAG, когда аргон, гелий или CO2 подается из специального баллона.
  • Сжигание обмазки электрода и образование при этом защитного шлакового или шлакогазового «купола».

В процессе горения электродные покрытия связывают и выводят из шва кислород. Вдобавок вещества, содержащиеся в них, помогают ионизировать дугу, рафинируют и легируют металл шва.

В плане стабильности электроснабжения сварка — процесс довольно капризный, ведь требуемый температурный режим находится в прямой зависимости от параметров тока. Должна быть обеспечена устойчивость электрической дуги. Лишь стабильная дуга предотвратит появления дефектов шва, особенно при розжиге и затухании.

Чем свариваемые детали массивнее, тем более глубоким должно быть плавление, большего диаметра применяется электрод, больше силы и мощности требуется для работы. Определить силу тока оператор зачастую может лишь опытным путем, порой ее регулируют в процессе сварки, а иногда жестко фиксируют. Горение дуги от источника постоянного тока стабильнее, без прерываний.

При потреблении постоянного тока отсутствует полярность, образуется меньшее количество брызг металла, а шов получается качественнее. Сварка с переменным током несколько сложнее, потому что для поддержания дуги рабочий должен иметь серьезные навыки, высокого качества сварки в этом случае добиться сложно. Переменным током рекомендуется варить алюминий и его сплавы.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Устройство инверторного сварочного аппарата

Чтобы правильно подобрать оборудование для сварки, нужно знать устройство сварочного инвертора, его принцип работы. Если в этом хорошо разбираться, тогда можно не только работать данным инструментом, но и самостоятельно производить его ремонт.

Сегодня на рынке строительной техники в наличии довольно большое количество моделей инверторов. Это предоставляет возможность выбирать наиболее подходящие инструменты, учитывая собственные финансовые возможности, с потребными для работы функциями. При большом желании сэкономить, даже можно сделать сварочное устройство инверторного типа своими руками.

О конструкции

Инверторный агрегат отличается от традиционного сварочного трансформатора, привычного для каждого сварщика. Процедура изменения типа тока в инверторе осуществляется иначе, она состоит из нескольких этапов, для чего используется мини-трансформатор, немного большего размера, чем пачка сигарет.

Еще инструмент такого типа отличается наличием электронной системы управления, которая существенно упрощает сварочные работы. Также, благодаря данной системе, соединительные швы получаются более качественными. Большинство пользователей инверторной сваркой оставляют исключительно положительные отзывы, в первую очередь, из-за качественного шва, компактности инструмента.

Электрическая схема

В устройство сварочного инвертора входят следующие компоненты:

  • Генератор импульсов высокой частоты – инверторный блок, в конструкцию которого входят транзисторы высокого качества.
  • Выпрямитель переменного тока, подаваемого от стандартной электросети.
  • Выпрямитель переменного тока высокой частоты.
  • Трансформатор, повышающий высокочастотный ток, уменьшающий высокочастотное напряжение.
  • Рабочий шунт.
  • Электронный блок управления аппаратом.
  • Пускозарядное устройство.

Какими бы свойствами ни обладала конкретная модель инверторного устройства, принцип работы одинаков. Он основан на применении импульсного преобразователя повышенной частоты.

Устройство инверторного сварочного аппарата

Блок управления

Основное преимущество инверторного прибора – наличие блока управления оборудованием. Электроника имеет довольно большое значение в процессе эксплуатации аппарата, так как за счет нее происходит обратная связь. Она позволяет осуществлять в полном объеме контроль над электрической дугой, то есть удерживать ее необходимые рабочие параметры.

Выходной выпрямитель

Чтоб на выходе образовался ток постоянного типа, для полуавтоматической сварки используют качественные выходные выпрямители. В основании подобной схемы заложены двойные диоды с общим катодом. Подобные компоненты характеризуются повышенной рабочей скоростью, они моментально открываются, закрываются. Период реакции диодов такого типа составляет порядка пятидесяти наносекунд. Скорость имеет значение в работе.

Электронная система

Такая система с зарядным устройством от пятнадцати вольтовых стабилизаторов напряжения, которые смонтированы на радиаторах. Напряжение подает главный выпрямитель. При подаче напряжения, которое в данный момент растет, нужно заряжать в первую очередь конденсаторы.

Диодная сборка защищена ограничительной схемой, оснащенной мощным резистором. После полноценной зарядки конденсаторов зарядным устройством сварка начнет работать. Замыкаются реле контакты, при этом резистор участия не принимает.

Дополнительные элементы

  • Система управления, драйверы. Здесь основной элемент – это микросхема ШИМ-контролера, которая обеспечивает управление транзисторами большой мощности.
  • Контрольные, регулировочные цепи разной конфигурации. Основной компонент в данном случае – трансформатор, задача которого – контроль параметров тока.
  • Пусковое устройство из сварочного агрегата.
  • Блок контроля напряжения, параметров тока в электросети. Эта система включает операционный усилитель, выполненный на основе микросхемы. Основное предназначение блока – пуск аварийной защиты при острой ситуации. Также система следит за исправностью электроблока, отслеживает его работу.

Принцип работы прибора

Устройство инверторного сварочного аппарата предполагает работу оборудования следующим образом:

  • Переменный ток электросети меняется постоянным. При этом напряжение равно 220В. Постоянный ток, поступивший от подающего устройства, снова меняется переменным, но уже высокочастотным.
  • Напряжение переменного тока повышенной частоты уменьшается. Это существенно повышает силу тока.
  • Образовавшийся высокочастотный электроток с пониженным напряжением, большей силой сменяется постоянным, на котором осуществляются сварочные работы.

Основным видом сварочных устройств, применяемых раньше, были трансформаторные аппараты, которые увеличивали сварочный ток, уменьшая напряжение. Основные недостатки подобных инструментов, находящихся в эксплуатации по сегодняшний день — это низкий КПД (большие затраты электроэнергии на нагревание железа), значительная масса, габариты оборудования.

Изобретение полуавтомата инверторного типа, в котором регулировка силы сварочного тока осуществляется абсолютно по другой технологии, предоставило возможность существенно уменьшить массу агрегата, сделать его более компактным. Благодаря высокой частоте осуществляется эффективная регулировка тока. Чем частота больше, тем размеры устройства могут быть меньше.

Преимущества инверторных установок

Если сравнивать такие агрегаты для сварки с трансформаторными установками, то можно выделить следующие преимущества инверторов:

  • Надежность
  • Универсальность
  • Удобство, простота управления
  • Небольшая масса, размеры прибора
  • Возможность применения в бытовых условиях.

Подводим итог

Благодаря вышеперечисленным характеристикам инверторные агрегаты пользуются сегодня у профессиональных сварщиков огромным спросом. С компактным, легким инструментом намного комфортнее осуществлять монтажные работы разного типа. Аппарат, масса которого составляет всего порядки пяти килограмм, можно повесить через плечо и спокойно выполнять сварочные работы, при этом стоя на лестнице.

Это универсальное оборудование прекрасно подойдет для молодых, еще не имеющих достаточного опыта сварщиков, так как легкий розжиг, стабильность горения обеспечивает электронная система управления, которой оснащены инверторы. По данным критериям в сравнении не идут даже трансформаторы высокого качества.

Принцип работы сварочного аппарата

Дачнику, собственнику частного дома или гаража, вполне доступно выполнять сварочные работы самостоятельно. Выбор типа бытового сварочного аппарата зависит от того, что и как требуется надежно соединить.

Консультации и советы продавцов, конечно, помогут сориентироваться в многообразии коммерческих предложений. Однако личная осведомленность покупателя и самые элементарные знания помогут задать правильные вопросы и понять ответы на них.

В этой статье вы найдете для себя базовую информацию о том, что такое сварка и на чем основан принцип работы сварочного аппарата.

Что такое сварка?

Процесс неразъемного соединения нескольких деталей в единое целое посредством нагрева, деформирования и применения присадочных материалов (электродов) называется сваркой.

Материалы твердых соединяемых компонентов нагреваются до состояния, когда возникают межмолекулярные или межатомные связи в месте сварки. Аналогичного эффекта можно достичь, оказывая давление на поверхности в месте желаемого соединения.

Сочетание давления и нагрева позволяет оптимизировать и регулировать процесс сварки. Причем чем выше температура, тем меньшее требуется давление. При достижении температур плавления материалов соединяемых деталей потребность в давлении на них и вовсе исчезает.

Способ сварки, будучи зависимым от ряда факторов, влияет на выбор сварочного оборудования.

В этой статье мы говорим не о промышленных, а о бытовых сварочных аппаратах, которые можно купить в магазинах. Поэтому ограничимся описанием оборудования, в котором реализуется принцип электродуговой сварки, и сварочных полуавтоматов, для сварки которыми необходима газовая среда.

Принцип работы сварочного трансформатора

Сварочные аппараты этого типа работают на переменном токе, сила которого регулируется путем изменения напряжения с помощью понижающего трансформатора. В итоге обеспечивается надежное питание сварочной дуги, температура которой может составлять несколько тысяч градусов по Цельсию.

В большинстве конструкций понижение напряжения до требуемого для поддержки стабильности сварочной дуги уровня достигается за счет перемещения одной из обмоток по магнитопроводу-сердечнику. Полученное рабочее напряжение, как правило, не превышает 80В при исходных уровнях 220-380В. Индуктивное сопротивление обмоток изменяется и таким образом регулируется величина сварочного тока.

Кроме этой применяются также конструкции с подвижным магнитным шунтом или тиристорами.

Принцип работы сварочного инвертора

Сварочный инвертор преобразует напряжение и обычный переменный ток (частота 50 Гц, напряжение сети 220В) до значений, необходимых для возникновения и поддержания сварочной электродуги.

Схематично это происходит так:

  • Сначала переменный ток трансформируется в постоянный с помощью первичного выпрямителя. Для понижения напряжения с 220В до необходимого уровня служит инверторный блок, в котором постоянный ток становится снова переменным, но высокочастотным, как и напряжение.
  • В трансформаторе полученное высокочастотное напряжение понижается до оптимального значения. В результате этих преобразований сила тока значительно повышается.
  • После оптимизации напряжения высокочастотный переменный ток во второй раз преобразуется в постоянный. Далее его сила регулируется до требуемых величин.

Таким образом, в сварочном инверторе ток и напряжение четко контролируются. Это позволяет плавно регулировать их уровни и выполнять широкий диапазон сварочных работ для соединения деталей даже из самых тугоплавких металлов и сплавов.

Принцип работы сварочного полуавтомата

Электроды тут не нужны. Потому что в сварочном полуавтомате применяется специальная сварочная проволка, которая плавится в газовой среде.

Для облегчения понимания, что такое сварочный полуавтомат, достаточно знать, что это – установка, в которую входят:

  • Источник питания, которым может быть сварочный инвертор или сварочный выпрямитель
  • Устройство подачи сварочной проволоки
  • Сварочная горелка
  • Система управления
  • Соединительные кабели и шланги

Сварочная проволка через специальное устройство плавно и корректно поступает в сварочную горелку. В место сварки также подается чистый углекислый газ или его смесь с аргоном.

Так что к вышеперечисленным компонентам установки логично добавить и специальные газосодержащие емкости, а также катушки с намотанной сварочной проволокой.

Информация о том, на чем основан принцип работы сварочного аппарата, в зависимости от его типа, надеемся, поможет лучше разобраться в потребительских характеристиках этого необходимого в быту оборудования и сделать оптимальный выбор.

Устройство и принцип работы трансформатора

Назначение и виды трансформатора.

Трансформатор представляет собой статическое электромагнитное устройство, преобразующее преобразование переменного напряжения. Т.е. эта машина позволяет опускать или поднимать. Устанавливаемые на силовые трансформаторы осуществляют междугороднюю передачу электроэнергии высоким напряжением до 1150кВ. А непосредственно в местах потребления идет падающее напряжение в пределах 127-660В. При таких значениях обычно бывают различные электрические компоненты, которые устанавливаются на заводах, фабриках и в жилых домах.Электроизмерительные приборы, электросварка и другие элементы в цепи высокого напряжения также требуют применения трансформатора. Они бывают одно-, трехфазными, двух- и многообмоточными.

Существует несколько типов трансформаторов, каждый из которых определяется своими функциями и назначением. Силовой трансформатор преобразует электрическую энергию в сетях, которые предназначены для использования и приема этой энергии. Трансформатор тока предназначен для измерения больших токов в устройствах электрических систем.Трансформатор напряжения преобразует высокое напряжение в низкое. Автотрансформаторная электрическая и электромагнитная связь, за счет прямого соединения первичной и вторичной обмоток. Импульсный трансформатор преобразует импульсные сигналы. Разделительный трансформатор отличается тем, что первичная и вторичная обмотки электрически не соединены друг с другом. Одним словом, во всех видах принцип работы трансформатора очень похож. Еще можно выбрать гидротрансформатор, принцип которого заключается в передаче крутящего момента на трансмиссию от двигателя.Это устройство позволяет плавно изменять скорость вращения и крутящий момент.

Рекомендовано

The origin of the Slavs. The influence of different cultures

Происхождение славян. Влияние разных культур

Славяне (под этим именем), по мнению некоторых исследователей, появились в повести только в 6 веке нашей эры. Однако язык национальности несет в себе архаичные черты индоевропейского сообщества. Это, в свою очередь, говорит о том, что происхождение у славян ч …

Устройство и принцип действия трансформатора.

Принцип работы трансформатора — это проявление электромагнитной индукции. Это устройство состоит из магнитопровода и двух расположенных на нем обмоток. Один — электричество, второй — подключение потребителей. Как упоминалось выше, эти обмотки называются первичной и вторичной соответственно. Магнитопровод из листа электротехнической стали, элементы которого изолированы лаком. Часть, в которую входит катушка, называется сердечником. Причем такая конструкция была более распространенной, так как имела ряд преимуществ — простая изоляция обмоток, простота ремонта, хорошие условия охлаждения.Как видно, принцип работы трансформатора не так уж и сложен.

Трансформаторы имеют конструкцию брони, значительно уменьшающую их габариты. Чаще всего встречаются однофазные трансформаторы. В таком оборудовании боковые ярма выполняют защитную роль обмотки от механических повреждений. Это очень важный фактор, потому что небольшие трансформаторы не имеют корпуса и размещаются с другим оборудованием в общем пространстве. Трехфазные трансформаторы обычно изготавливаются с тремя стержнями.Конструкция банистерия также используется в трансформаторах большой мощности. Хоть это и увеличивает стоимость электроэнергии, но позволяет уменьшить высоту магнитопровода.

Трансформаторы различают по типу шатунов: стыковые и ламинированные. В стыках шатунов и коромысла отдельно собраны и соединены опорные детали. И ламинированные листы накладываются внахлест. Ламинированные трансформаторы находят большее применение, потому что они имеют гораздо более высокую механическую прочность.

Принцип работы трансформатора также зависит от цилиндрических, круглых и концентрических обмоток.Оборудование на большую и среднюю мощность имеет газовое реле.

.

Оптимальная конструкция контроллера тока для инвертора, подключенного к сети, для повышения качества электроэнергии и тестирования коммерческих фотоэлектрических инверторов

Инверторы, подключенные к сети, играют решающую роль в выработке энергии, подаваемой в сеть. Фильтр обычно используется для подавления гармоник частоты коммутации, создаваемых инвертором, он является пассивным, а также L- или LCL-фильтром. Последний имеет меньшие размеры по сравнению с L-фильтром. Но выбрать оптимальные значения LCL-фильтра сложно из-за резонанса, который может повлиять на стабильность.В этой статье представлена ​​простая конструкция инверторного контроллера с L-фильтром. Топология управления проста и легко применяется с использованием традиционной теории управления. Анализ быстрого преобразования Фурье используется для сравнения различных топологий управления инверторами, подключенными к сети. Смоделированный инвертор, подключенный к сети, с предлагаемым контроллером соответствует стандарту IEEE-1547, и полное гармоническое искажение выходного тока смоделированного инвертора составило всего 0,25% с улучшенной формой выходного сигнала. Затем представлена ​​экспериментальная работа над коммерческим фотоэлектрическим инвертором, включая влияние сильного и слабого подключения к сети.Представлено влияние инвертора на резистивную нагрузку, подключенную в точке общей связи. Результаты показывают, что напряжение и ток резистивной нагрузки при отключении сети увеличиваются, что может вызвать отказ или повреждение подключаемых устройств.

1. Введение

Понимание требований правил сети очень важно для инвертора, подключенного к сети. Инвертор, подключенный к сети, — это солнечная система, которая работает параллельно с сетью [1]. Электроэнергия, вырабатываемая фотоэлектрическими панелями, может быть экспортирована в сеть или использована местной нагрузкой.Хранилище, использующее, например, батареи, не включено, что дает очевидные преимущества по затратам по сравнению с автономными установками возобновляемой энергии. Фотоэлектрическая генерация становится все более распространенной. По мнению авторов [1, 2], солнечная фотоэлектрическая система является третьей по важности возобновляемой энергией после гидро- и ветровой энергии. В 2011 году мировые фотоэлектрические мощности составляли примерно 70 ГВт. Европа является крупнейшим производителем фотоэлектрической энергии с мощностью 51 ГВт, за ней следуют Япония (5 ГВт), а затем США (4,4 ГВт), Китай (3,1 ГВт), Австралия (1.3 ГВт) и Индии (0,466 ГВт) [1, 2]. Фотоэлектрическая генерация была внедрена во многих развивающихся странах. Эти регионы имеют большой пояс и могут иметь установленную мощность 1100 ГВт к 2030 году [3]. По мере увеличения мощности фотоэлектрической генерации потребуются руководящие принципы или стандарты для регулирования импорта и экспорта электроэнергии в сеть и из нее, и их важность будет возрастать. Многие организации имеют дело с фотоэлектрическими кодами и стандартами безопасности, такими как стандарт Института электротехники и электроники (IEEE-1547) и стандарт Международной электротехнической комиссии (IEC-61727).В этой статье инвертор, подключенный к сети, используется для подключения солнечных панелей к сети. Другими словами, инверторы образуют решающее звено в системах возобновляемой энергии между генерирующими компонентами, такими как ветряные турбины, солнечные фотоэлектрические установки и остальной частью сети. Топологии полного моста постоянного / переменного тока обычно используются в инверторах, подключенных к сети, с высокой частотой переключения (например, 15000 Гц). Однако гармоники, генерируемые высокой частотой коммутации, ограничивают эффективность инверторов, подключенных к сети.LCL-фильтр обычно используется для смягчения ограничений и удовлетворения требуемых сетевых стандартов [4]. Однако виртуальный импеданс сетевой сети и взаимодействие между основными элементами LCL-фильтра затрудняют разработку эффективного контроллера из-за высокого пикового усиления на резонансной частоте. Были разработаны некоторые способы и методы, чтобы преодолеть эту проблему и улучшить устойчивое состояние и переходные характеристики инвертора сеток соединены, включая контроль повтора, пропорциональные резонансные и апериодическое управление [4-7].Чаннеговда и Джон [8] использовали демпфирующий резистор для уменьшения резонанса LCL-фильтра; хотя это было успешным, потери мощности в демпфирующем резисторе были достаточно высокими, чтобы повлиять на эффективность инвертора. В результате на момент подключения LCL-фильтр в этом приложении все еще имеет плохие динамические характеристики. Фотоэлектрические инверторы

должны иметь определенные конструктивные особенности, такие как отслеживание максимальной точки мощности (MPPT), анти-островок, коррекция коэффициента мощности, снижение гармоник и устранение неисправностей [4].Солнечная фотоэлектрическая генерация предлагает явные экологические преимущества, поскольку почти полностью исключает загрязнение в момент генерации и, в отличие от некоторых других форм возобновляемой генерации, является бесшумной, что делает ее в высшей степени подходящей для жилых районов [1]. Распределенная генерация с использованием фотоэлектрической системы также выгодна в странах, где нет традиционной инфраструктуры мощных сетей. Требования к малым распределенным системам производства электроэнергии — это низкая стоимость, высокая эффективность и устойчивость к широкому диапазону изменений входного напряжения.Инвертор может быть одноступенчатым или многоступенчатым. Одноступенчатые инверторы преобразуют постоянный ток напрямую в переменный без промежуточного каскада. Двухступенчатые инверторы представляют собой преобразователь постоянного тока, за которым следует инвертор постоянного тока в переменный [9–12]. Одноступенчатые инверторы имеют простую структуру и низкую стоимость, но многоступенчатые инверторы могут работать в более широком диапазоне входных напряжений. Для инверторов с несколькими ступенями (например, DC / DC и DC / AC преобразователь) сложность и стоимость увеличиваются, а эффективность ниже [1, 9].

L-фильтр подходит для инвертора с высокой частотой коммутации, это фильтр первого порядка с общей частотой 20 дБ / декада.Динамическое взаимодействие между инверторами, использующими L-фильтры, меньше, чем между инверторами с LC- или LCL-фильтрами. Кроме того, изменение условий окружающей среды может привести к генерации несинусоидального тока в сети, который может вызвать падение напряжения и искажение в ней. Liang et al. представлен анализ искажений напряжения [13]; однако их исследование не включало анализ тока в точке общего соединения (PCC). Фотоэлектрические инверторы ограничены несколькими факторами, включая слабое подключение к сети, подключение в автономном режиме и взаимодействие между различными фотоэлектрическими инверторами.Подключение в автономном режиме может быть опасным для коммунальных работников и может помешать интерфейсу коммунального предприятия с защитой G59 повторно подключить сеть к фотоэлектрической системе. Это требует разработки подключения в режиме защиты от островков, чтобы прекратить подачу электроэнергии в основную сеть. Однако подключение в режиме анти-островного режима может вызвать события перебоев в подаче электроэнергии (отключение электроэнергии). Резервный инвертор может преодолеть это ограничение. Резервный инвертор используется для питания критической нагрузки и не питает сеть. Это связано с тем, что служебный интерфейс с защитой G59 содержит обнаружение мониторинга напряжения (например,г., VMD460) реле, которое представляет собой внешнюю сеть и систему защиты. Это реле используется для отключения электросети общего пользования от фотоэлектрического генератора в случае недопустимых пороговых значений. Реле VMD460 — это устройство, которое контролирует напряжение и частоту сети, и когда напряжение и частота источника энергии находятся в допустимом пороге, реле VMD460 позволяет повторно подключаться к сети общего пользования. Однако взаимодействие может возникнуть, если подключено несколько фотоэлектрических инверторов. Таким образом, мини-сеть переменного тока может использоваться для повышения производительности системы, которая включает в себя несколько фотоэлектрических инверторов.Гармонические помехи большого количества инверторов были проанализированы Enslin et al. [14]. Обсуждается резонанс между фотоэлектрическим инвертором и существующими сетевыми компонентами. Было обнаружено, что выходной импеданс инвертора должен быть высоким, поскольку он является функцией частоты и дает незагрязненную синусоидальную форму волны тока. В исследовании предполагалось, что большинство бытовых приборов будут иметь емкостные нагрузки, а они, как правило, индуктивные. Xue et al. предоставил обзор будущих тенденций развития инверторов [15].В этом случае потребуются улучшения надежности. Было упомянуто, что в будущем фотоэлектрические инверторы потребуются для питания вспомогательных служб в распределительной сети. В общем, критерии проектирования фотоэлектрических инверторов будут включать в себя подавление мерцания, компенсацию несбалансированной нагрузки, активную балансирующую мощность, активный фильтр, фильтрацию гармоник, падение напряжения и управляющее напряжение для подавления выбросов. Обнаружение антиостровов также было определено как проблема, и должна быть возможность отличить постоянные отключения электроэнергии от кратковременных падений и обеспечить соответствующий ответ в каждом случае.Ограничения этих исследований были представлены в критических обзорах Algaddafi et al. [16]. Новый метод определения выходного импеданса инвертора и импеданса сети был представлен Sun [3], который утверждал, что высокое выходное сопротивление инвертора, подключенного к сети, позволяет успешно работать с более широким диапазоном импедансов сети. Другие вопросы, которые также будут важны, включают управление параллельным сетевым инвертором, выходной фильтр и демпфирование, метод синхронизации с сетью и оптимизацию выходного импеданса.

Недавно He et al. Смоделировали многократный инвертор, использующий эквивалентные схемы Нортона. [17], обсуждая взаимодействие параллельных инверторов. Система Micro-Grid на основе нескольких фотоэлектрических инверторов представила более сложную картину, где взаимодействие фотоэлектрических инверторов вызовет сложный резонанс на различных частотах, поэтому выходной ток будет искажаться, даже если конструкция управления и схема фильтра точно разработаны для одного инвертора. .

Физическая фотоэлектрическая матрица имеет несколько ограничений, поскольку она зависит от погодных условий для испытаний на открытом воздухе и требует большого пространства и системы охлаждения для испытаний в помещении.Эмулятор фотоэлектрической матрицы (PVAE) с быстрым откликом предлагает потенциальное решение. Доступные в настоящее время силовые электронные PVAE имеют низкое время отклика. Это можно преодолеть, используя серийный регулятор с надежным управлением. Нелинейность генератора кривых тока-напряжения ( I В ) и мощности-напряжения ( P В ) генератора PVAE также является сложной задачей, и его характеристики будут меняться в зависимости от солнечной инсоляции, окружающей среды. температура и выходное напряжение [12].Это можно преодолеть с помощью аналоговой вычислительной схемы, представленной в [18]. Однако PVAE, представленный в [18], требует системы охлаждения, где при высокой нагрузке или высокой мощности система может быть нестабильной, и производительность PVAE ухудшится. Следовательно, PVAE не подходит для работы с Sunny Boy (SB 1700E) в настоящее время, даже если он может использоваться с малой мощностью, такой как инвертор Sunny Boy 700. Для простоты и доступности коммерческий фотоэлектрический инвертор, которым является инвертор SB 1700E, был первоначально протестирован с источником Thevenin в этой статье.Работа однофазного инвертора описывается как эквивалентная схема инвертора, подключенного к сети, что помогает понять поведение фотоэлектрического инвертора. На сегодняшний день динамическая модель инвертора не обсуждается должным образом. Уравнение (1) обычно используется для изучения поведения фотоэлектрического инвертора и определения фазового угла [19], где — падение напряжения на катушке индуктивности, — напряжение инвертора, — напряжение сети и — угол нагрузки. На рисунке 1 показана эквивалентная схема инвертора, подключенного к основной сети, и векторная диаграмма инвертора, подключенного к сети.Векторная диаграмма используется для объяснения работы схемы фотоэлектрического инвертора. Когда угол нагрузки равен нулю, напряжение сети равно выходному напряжению инвертора. Таким образом, активная мощность будет равна нулю. Следовательно, амплитуда напряжения инвертора должна быть выше напряжения электросети. Угол нагрузки используется для управления активной мощностью () и реактивной мощностью (), вводимой в сеть согласно пунктам (2) и (3) ниже [20], где — реактивное сопротивление катушки индуктивности, подключенной между сетью и инвертором.Коэффициент мощности (PF), то есть, зависит от трех элементов, включая угол нагрузки, напряжение инвертора и падение напряжения на катушке индуктивности.

; если коэффициент мощности приближается к единице, известной как единичный коэффициент мощности, выходное напряжение и выходной ток будут в фазе. Этот анализ предполагает отсутствие потерь в коммутационной силе электроники, что означает идеальные переключатели. Многие инверторы намерены работать при единичном коэффициенте мощности. Коэффициент модуляции можно рассчитать путем деления выходного напряжения инвертора на входное постоянное напряжение.Индекс модуляции () определяется как отношение основных составляющих напряжения инвертора () и входного постоянного напряжения инвертора (). Это можно определить как [18] Разность фаз между и — это угол. Напряжение инвертора и угол нагрузки можно оценить с помощью (6) и (7), соответственно, при условии работы инвертора при единичном коэффициенте мощности [18]. Этот математический подход и теория помогут спроектировать инвертор, подключенный к разомкнутой сети. . Подводя итог, в целом, гармонические составляющие необходимо фильтровать, используя пассивный или активный фильтр.Последний использует дополнительные переключатели и может принести дополнительные потери, а также является сложным [21–23]. Пассивными фильтрами могут быть L-фильтр, LC-фильтр, LCL-фильтр и LLCL-фильтр. Более высокий порядок, такой как LCL-фильтр или LLCL-фильтр, может страдать от резонансных колебаний [21, 24–26]. Таким образом, чтобы преодолеть указанные выше ограничения, в данной статье представлен простой метод разработки оптимального управления инвертором, подключенным к сети, с L-фильтром. Он организован следующим образом: конфигурация и численное моделирование инвертора, подключенного к сети, с оптимальным управлением проектированием обсуждаются в разделе 2.Кроме того, в разделе 2 представлены моделирование и экспериментальная установка для исследования инвертора, подключенного к сети, для слабой сети по сравнению с сильной сетью. В разделе 3 обсуждаются полученные численные и экспериментальные результаты. В последнем разделе делаются выводы и дальнейшая работа.

2. Конфигурация и моделирование инвертора, подключенного к сети

Необходимо учитывать требования сети и то, как один подключенный инвертор взаимодействует с ней. Было разработано математическое моделирование сетевого преобразователя, за которым последовала разработка оптимального контроллера для улучшения общего качества электроэнергии.Эксперименты для этой работы проводились с использованием коммерческого инвертора PV; в данном случае использовался инвертор Sunny Boy 1700E.

2.1. Часть моделирования

Раздел моделирования включает в себя численную модель инвертора, подключенного к сети, с разомкнутым контуром, а затем проектирование оптимального контроллера той же цепи инвертора, подключенного к сети.

2.1.1. Инвертор, подключенный к сети в цепи разомкнутого контура

Инвертор может быть сконфигурирован как автономный инвертор, обеспечивающий локальную нагрузку, подключенный к сети или двунаправленный инвертор.В данной статье рассматривается инвертор, подключенный к сети. Инженерная сеть определяется как бесконечная шина, которая имеет постоянное напряжение и постоянную частоту. Синхронизация сети очень необходима для инвертора, подключенного к сети. Этого можно добиться с помощью фазовой автоподстройки частоты [4]. В этом исследовании желаемый ток приведен в разделе Управление разомкнутым контуром инвертора, подключенного к сети, было смоделировано теоретически и смоделировано в Simulink в соответствии с предположениями, перечисленными в таблице 1, с теорией, описанной в предыдущем разделе.Падение напряжения на катушке индуктивности L рассчитывалось по (4). Индекс модуляции определялся делением напряжения инвертора на входное напряжение постоянного тока согласно (5). Напряжение инвертора оценивалось по (6). Угол нагрузки рассчитывался по (7). Результаты этих уравнений следующие: индекс модуляции = 0,658, угол нагрузки

.

Обзор сдвоенных преобразователей: работа, режимы и типы

В предыдущем руководстве мы увидели, как устроена схема двойного источника питания, теперь мы узнаем о сдвоенных преобразователях , которые могут преобразовывать переменный ток в постоянный и постоянный в переменный. в то же время. Судя по названию, Dual Converter имеет два преобразователя: один преобразователь работает как выпрямитель (преобразует переменный ток в постоянный), а другой преобразователь работает как инвертор (преобразует постоянный ток в переменный). Оба преобразователя подключены друг к другу с общей нагрузкой, как показано на рисунке выше.Чтобы узнать больше о выпрямителях и инверторах, перейдите по ссылкам.

Dual Converter Block Diagram

Почему мы используем сдвоенный преобразователь? Если только один преобразователь может питать нагрузку, тогда почему мы используем два преобразователя? Эти вопросы могут возникнуть, и вы получите ответ в этой статье.

Здесь у нас есть два конвертера, соединенных спина к спине. Благодаря такому типу подключения данное устройство может быть рассчитано на четырехквадрантный режим . Это означает, что и напряжение нагрузки, и ток нагрузки становятся обратимыми.Как возможна четырехквадрантная работа в сдвоенном преобразователе? Это мы увидим далее в этой статье.

Как правило, сдвоенные преобразователи используются для реверсивных приводов постоянного тока или приводов постоянного тока с переменной скоростью . Он используется для приложений большой мощности.

Четырехквадрантная работа в двойном преобразователе

Первый квадрант: напряжение и ток положительные.

Второй квадрант: напряжение положительное, а ток отрицательное.

Третий квадрант: напряжение и ток отрицательны.

Четвертый квадрант: напряжение отрицательное, а ток положительное.

Four Quadrant Operation in Dual Converter

Из этих двух преобразователей первый преобразователь работает в двух квадрантах в зависимости от значения угла зажигания α. Этот преобразователь работает как выпрямитель, когда значение α меньше 90˚ . В этой операции преобразователь вырабатывает положительное среднее напряжение нагрузки и ток нагрузки и работает в первом квадранте .

Когда значение α больше 90˚, этот преобразователь работает как инвертор . В этой операции преобразователь выдает отрицательное среднее выходное напряжение, и направление тока не изменяется. Поэтому ток нагрузки остается положительным. При работе в первом квадранте энергия передается от источника к нагрузке, а в работе в четвертом квадранте энергия передается от нагрузки к источнику.

Operation in Dual Converter

Точно так же второй преобразователь работает как выпрямитель, когда угол включения α меньше 90 °, и он работает как инвертор, когда угол включения α больше 90 ° .Когда этот преобразователь работает как выпрямитель, среднее выходное напряжение и ток отрицательны. Итак, он работает в третьем квадранте , и поток мощности идет от нагрузки к источнику. Здесь двигатель вращается в обратном направлении. Когда этот преобразователь работает как инвертор, среднее выходное напряжение положительное, а ток — отрицательное. Итак, он работает во втором квадранте , и поток мощности идет от нагрузки к источнику.

Когда поток энергии идет от нагрузки к источнику, двигатель ведет себя как генератор, и это делает возможным рекуперативное отключение .

Принцип двойного преобразователя (идеальный двойной преобразователь)

Чтобы понять принцип работы двойного преобразователя, мы предполагаем, что оба преобразователя идеальны. Это означает, что они вырабатывают чистое выходное напряжение постоянного тока, на выходных клеммах нет пульсаций. Упрощенная эквивалентная схема сдвоенного преобразователя показана на рисунке ниже.

Principle of the Dual Converter

На приведенной выше принципиальной схеме преобразователь рассматривается как управляемый источник постоянного напряжения, и он включен последовательно с диодом.Угол открытия преобразователей регулируется цепью управления. Таким образом, напряжения постоянного тока обоих преобразователей равны по величине и противоположны по полярности. Это позволяет пропускать ток в обратном направлении через нагрузку.

Преобразователь, работающий как выпрямитель, называется преобразователем положительной группы, а другой преобразователь, работающий как инвертор, называется преобразователем отрицательной группы.

Среднее выходное напряжение зависит от угла зажигания. Для однофазного инвертора и трехфазного инвертора среднее выходное напряжение составляет в форме приведенных ниже уравнений.

  E  DC1  = E  макс  Cos⍺  1  
  E  DC2  = E  макс  Cos⍺  2   

Где α 1 и α 2 — угол включения преобразователя-1 и преобразователя-2 соответственно.

Для однофазного сдвоенного преобразователя,

  E  макс  = 2E  м  / π  

Для трехфазного сдвоенного преобразователя,

  E  макс  = 3√3E  м  / π  

Для идеального преобразователя,

  E  DC  = E  DC1  = -E  DC2  
  E  max  Cos⍺  1  = -E  max  Cos⍺  2  
  Cos⍺  1  = -Cos⍺  2  
  Cos⍺  1  = Cos (180⁰ - ⍺  2 ) 
   1  = 180 -  2  
   1  + ⍺  2  = 180  

Как обсуждалось выше, среднее выходное напряжение является функцией угла включения.Это означает, что для получения желаемого выходного напряжения нам необходимо контролировать угол зажигания. Схема управления углом зажигания может использоваться так, что при изменении управляющего сигнала E c угол открытия α 1 и α 2 будет изменяться таким образом, что он будет соответствовать приведенному ниже графику.

Dual Converter Firing Angle Graph

Практичный сдвоенный преобразователь

На практике мы не можем рассматривать оба преобразователя как идеальный преобразователь. Если угол открывания конвертеров установлен таким образом, что 1 + ⍺ 2 = 180⁰.В этом состоянии среднее выходное напряжение обоих преобразователей одинаковое по величине, но противоположной полярности. Но из-за пульсаций напряжения мы не можем получить точно такое же напряжение. Таким образом, существует мгновенная разница напряжений на выводах постоянного тока двух преобразователей, которые создают огромный c промежуточный ток между преобразователями, который протекает через нагрузку.

Следовательно, в практическом двойном преобразователе необходимо контролировать циркулирующий ток.Есть два режима управления циркулирующим током.

1) Работа без циркуляционного тока

2) Работа с циркулирующим током

1) Работа с двумя преобразователями без циркулирующего тока

В этом типе сдвоенного преобразователя только один преобразователь находится в проводящем состоянии, а другой преобразователь временно заблокирован. Таким образом, одновременно работает один преобразователь и реактор между преобразователями не требуется. В конкретный момент, допустим, преобразователь-1 действует как выпрямитель и обеспечивает ток нагрузки.В этот момент преобразователь-2 блокируется удалением угла зажигания. В режиме инверсии преобразователь 1 блокируется, а преобразователь 2 обеспечивает ток нагрузки.

Импульсы на преобразователь-2 подаются после времени задержки. Время задержки составляет около от 10 до 20 мс . Почему мы применяем время задержки между сменой операции? Обеспечивает надежную работу тиристоров. Если преобразователь-2 сработает до того, как преобразователь-1 полностью отключится, между преобразователями будет протекать большой циркулирующий ток.

Существует множество схем управления для создания угла зажигания для работы двойного преобразователя без циркуляционного тока. Эти схемы управления предназначены для работы очень сложных систем управления. Здесь одновременно находится только один преобразователь. Следовательно, можно использовать только одну единицу угла открытия. Ниже перечислены несколько основных схем.

A) Выбор преобразователя по полярности сигнала управления

B) Выбор преобразователя по полярности тока нагрузки

C) Выбор преобразователя по управляющему напряжению и току нагрузки

2) Работа с двумя преобразователями с циркулирующим током

In без преобразователя циркулирующего тока требует очень сложной системы управления, а ток нагрузки непостоянен.Чтобы преодолеть эти трудности, существует двойной преобразователь, который может работать с циркулирующим током. Токоограничивающий дроссель подключен между выводами постоянного тока обоих преобразователей. Угол зажигания обоих преобразователей установлен таким образом, чтобы через реактор протекал минимальный циркулирующий ток. Как обсуждалось в идеальном инверторе, циркулирующий ток равен нулю, если 1 + ⍺ 2 = 180⁰.

Dual Converter Operation with Circulating Current

Допустим, угол включения конвертера-1 составляет 60 °, тогда угол открытия конвертера-2 должен поддерживаться на уровне 120 °.В этой операции преобразователь-1 будет работать как выпрямитель, а преобразователь-2 будет работать как инвертор. Таким образом, в этом режиме работы оба преобразователя одновременно находятся в проводящем состоянии. Если ток нагрузки меняется на противоположное, преобразователь, который работает как выпрямитель, теперь работает как инвертор, а преобразователь, который работает как инвертор, теперь работает как выпрямитель. В этой схеме оба преобразователя проводят одновременно. Итак, требуется два блока генератора угла зажигания.

Преимущество этой схемы в том, что мы можем получить плавную работу преобразователя в момент инверсии.Время отклика схемы очень быстрое. Нормальный период задержки составляет от 10 до 20 мсек в случае исключения работы без циркулирующего тока.

Недостатком схемы является то, что размеры и стоимость реактора велики. Из-за циркулирующего тока коэффициент мощности и КПД низкие. Для управления циркулирующим током требуются тиристоры с высокими номинальными токами.

В зависимости от типа нагрузки используются однофазные и трехфазные сдвоенные преобразователи .

1) Однофазный двойной преобразователь

Принципиальная схема сдвоенного преобразователя показана на рисунке ниже. В качестве нагрузки используется двигатель постоянного тока с независимым возбуждением. Клеммы постоянного тока обоих преобразователей соединены с выводами обмотки якоря. Здесь два однофазных полных преобразователя соединены спиной друг к другу. Оба преобразователя обеспечивают общую нагрузку.

Single-Phase Dual Converter

Угол открытия конвертера-1 составляет α 1 , а α 1 меньше 90˚ .Следовательно, преобразователь-1 действует как выпрямитель. Для положительного полупериода (0 Итак, эта операция известна как движение вперед, и преобразователь работает в первом квадранте.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *