Нормы, правила и ГОСТы по молниезащите
Необходимость обустройства качественных систем молниезащиты жилых и промышленных зданий особенно остро возникла в начале прошлого столетия во времена всеобщей индустриализации и электрификации, актуальна она и в настоящее время. Сегодня ежедневно на планете Земля наблюдается около 44-45 тысяч гроз, которые могут привести к выходу электроприборов из строя, повреждению целостности зданий и построек, пожарам и гибели людей.
Для создания работоспособных, эффективных и оптимальных для каждого объекта систем разработаны общепризнанные нормативы проектирования и организации молниезащиты. Существуют международные и отечественные стандарты и правила. Кроме того, в России различают отраслевые и корпоративные стандарты (например, Газпрома, МОЭК и т.п.). В основу всех норм, регламентирующих проектирование молниезащиты, положен многолетний опыт человечества по организации электробезопасности жилых домов и промышленных предприятий, а также особенности современных построек.
Российские нормативы в области молниезащиты
Создание отечественной нормативной базы по проектированию комплекса мер для обеспечения молниезащиты берет начало в 30-х годах минувшего века. Первоначально были разработаны требования и правила для производственных зданий и сооружений, а также линий электропередач. В 50-х годах прошлого столетия эти требования начали использоваться для частных домов. Позже с учетом многолетних наблюдений и исследований электромагнитной обстановки во время удара молнии на территории бывших союзных республик Министерство энергетики СССР ввело Инструкцию по обустройству молниезащиты зданий и сооружений РД 34.21.122-87. Эта инструкция, как наследие, действует до сих пор. Однако она давно устарела, поэтому для создания современных систем громоотводов пользуются международными стандартами, установленными Международной электротехнической комиссией (МЭК) и российскими инструкциями более поздних редакций.
В России специалисты и сейчас для создания ряда мер молниезащиты ориентируются на требования и нормы, изложенные в советской инструкции РД 34. 21.122-87 (скачать в pdf>>). Данный норматив является первичным документом, на который опираются профессионалы при выборе схемы конструкции громоотводов на этапе проектирования зданий и сооружений. Она дает толкование всех важных терминов и понятий, описывает требования к органзации защиты от молний и к конструкциям громоотводов, а также расчет молниеотводов. Именно она классифицирует здания и позволяет определить необходимый уровень защиты. К недостатком РД 34.21.122-87относят отсутствие описаний нормативов по организации молниезащиты для склада взрывчатых веществ и пороха, а также в ней нет рекомендаций по выбору материалов для заземлений и т.д. Дополнить и обновить положения советского документа попытались в «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО-153-34.21.122-2003 (скачать в pdf>>). Она включает нормы грозозащиты в коммуникациях.
Седьмая редакция ПУЭ (Правила устройства электроустановок 7-е издание, Главы 2. 4, 2.5, 4.2) разработана с учетом всех видов и типов электрического оснащения и агрегатов. В этом издании собраны все базовые требования электробезопасности и заземления, используемые при обустройстве защиты от удара молнией промышленных и бытовых объектов. Подвести российские стандарты к мировым требованиям IEC в декабре 2011 года позволили первая и вторая часть ГОСТа Р МЭК 62305-1-2010 «Защита от молнии», а также ГОСТ Р 50571-4-44-2011 «2011 Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от скачков напряжения и электромагнитных помех» (действует с 01.07.2012). Этот документ регламентирует основные нормы по организации безопасности низковольтных установок при появлении отклонений напряжения и электромагнитных помех. Этот стандарт не действует на системы распределения электричества населению, на промышленные объекты и на системы для генерирования и выдачи электроэнергии для них.
Требования к механизмам защиты электрических сетей и электрооборудования при прямом или косвенном влиянии грозовых или иных переходных перегрузок для коммутации к силовым цепям переменного тока (частотой 50 — 60 Гц), постоянного тока и к оснащению с номинальным напряжением до 1000 В (действующее значение) или 1500 В постоянного тока подробно изложены в ГОСТе Р 51992-2011 (МЭК 61643-1-2005) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» (с 01.07.2012).
Принципы подбора, монтирования и координации устройств грозозащиты от импульсных перенапряжений, предназначенных для подсоединения к силовым цепям переменного тока (частотой 50-60 Гц) или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока описаны в ГОСТ Р МЭК 61643-12-2011 «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и использования» (с 01.01.2013).
Все основные требования при прямом или косвенном воздействии грозовых или прочих переходных перенапряжений к устройствам для защиты телекоммуникационных и сигнализационных сетей с обозначенными напряжениями системы до 1000 В переменного тока и 1500 В постоянного тока регламентируются ГОСТом Р 54986-2012 (МЭК 61643-21: 2009) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. УЗИП для систем телекоммуникации и сигнализации (информационных систем). Требования к работоспособности и методы испытаний» (с 01.07.2013).
Группа стандартов МЭК (IEC) и их связь
Развитие науки и электротехники не стоит на месте. Наиболее полно, детально и качественно современные мероприятия по грозозащите отображены во всемирных нормативах МЭК «Защита от воздействия молнии МЭК 62305:2010».
Стандарт «Защита от воздействия молнии МЭК 62305:2010» определяет базовые правила защиты от порчи молнией любых построек, живущих в них животных и людей, разных инженерных коммуникаций и систем и иных конструкций относящихся к ним, кроме железнодорожной системы, автотранспорта, воздушных и водных транспортных средств, подземных трубопроводов повышенного давления и т.п.
Нормативы МЭК включают стандарт, определяющий общие положения и описывающий потенциально возможные последствия и опасность молний 62305-1. Потребность организации защиты определяется в соответствии с системой расчета риска и с учетом материального эффекта от установки мер защиты от ударов молнии описывает стандарт 62305-2. Третья часть МЭК 62305:2010 посвящена описанию мер безопасности, требуемых для снижения показателей аварий в постройках и сведения к минимуму уровня опасности для жизни и здоровья людей, находящихся внутри. В четвертой части данного стандарта описан комплекс мер для понижения числа отказов электросистем, приборов и устройств внутри зданий.
Взаимосвязь группы правил МЭК 62305:2010 определяется уровнем опасности поражения молнией объекта и риском возникновения возможных повреждений. При повышенном риске прямого попадания молнии и необходимости обустройства внешней защиты от прямых ее ударов в строения пользуются требованиями стандарта 62305-3:2010. При повышенной опасности поражения электрооборудования и порчи электросетей от вторичного воздействия молнии актуален стандарт 62305-4:2010.
Сравнение отечественных стандартов и МЭК
Современные специалисты, занимающиеся вопросами проектировки и создания молниезащиты современных построек любого назначения, отмечают, что требования МЭК гораздо строже в сравнении с инструкцией советских времен и даже более поздними российскими изданиями ГОСТов. Как правило, если российские Инструкции не дают полный объем необходимой информации для правильного и эффективного создания защиты от молний, профессионалы используют признанные в мире стандарты МЭК.
Наиболее ярким отличием, например инструкции РД 34.21.122-87 от норм IEC при создании внешней защиты является, отсутствие подробного описания организации молниеприемной сети для сложных рельефных крыш, а также отсутствие рекомендаций по рекомендуемым к использованию материалов для заземлений и т.д. При обустройстве внутренней системы защиты стандарты МЭК детально описывают применение разрядников без искровых промежутков для предотвращения пожаров, выхода из строя бытовой техники, промышленного оборудования и внутренних сетей.
Более подробно о сравнении стандартов IEC и DIN и отчественных нормативов читайте в статье «Анализ нормативно-технического обеспечения молниезащиты».
Интересные материалы по этой теме:
Нормативные требования к молниезащите
Еще раз коротко самое главное о стандартизации.
Состав системы молниезащиты по стандартам IEC (МЭК)
Кратко о том, что входит в состав комплекса мероприятий по защите от молний и гроз по мнению Международной электротехнической комиссии, а также взаимосвязанные решения в области внешней и внутренней молниезащиты.
Требования к элементам внешней молниезащиты
Какие испытания проходят элементы молниеприемные системы, соединительные компоненты, проводники, заземляющие электроды? Описание методик проверки, имитирующих воздействие естественных атмосферных условий и воздействие коррозии на компоненты.
СО 153-34.21.122-2003 «Инструкция по устройствумолниезащиты зданий, сооружений и промышленных коммуникаций», часть 1
МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
УТВЕРЖДЕНО
приказом Минэнерго России
от 30.06.2003 № 280
УДК 621.316(083.13)
Часть 1
ОГЛАВЛЕНИЕ
Часть 1
1. ВВЕДЕНИЕ
2. ОБЩИЕ ПОЛОЖЕНИЯ
2.1. Термины и определения
2.2. Классификация зданий и сооружений по устройству молниезащиты
2.3. Параметры токов молнии
Часть 2
3. ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ
3.1. Комплекс средств молниезащиты
3.2. Внешняя молниезащитная система
3.3. Выбор молниеотводов
Часть 3
4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ
4.1. Общие положения
4.2. Зоны защиты от воздействия молнии
4.3. Экранирование
4.4. Соединения
4.5. Заземление
4.6. Устройства защиты от перенапряжений
4.7. Защита оборудования в существующих зданиях
РЕКОМЕНДАЦИИ ПО ЭКСПЛУАТАЦИОННО-ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ, ПОРЯДКУ ПРИЕМКИ В ЭКСПЛУАТАЦИЮ И ЭКСПЛУАТАЦИИ УСТРОЙСТВ МОЛНИЕЗАЩИТЫ
1. Разработка эксплуатационно-технической документации
2. Порядок приемки устройств молниезащиты в эксплуатацию
3. Эксплуатация устройств молниезащиты
Инструкция распространяется на все виды зданий, сооружений и промышленных коммуникаций независимо от ведомственной принадлежности и формы собственности.
Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий, сооружений и промышленных коммуникаций.
Для руководителей и специалистов проектных и эксплуатационных организаций.
1. ВВЕДЕНИЕ
Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (далее — Инструкция) распространяется на все виды зданий, сооружений и промышленные коммуникации независимо от ведомственной принадлежности и формы собственности.
Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий, сооружений и промышленных коммуникаций.
В случае, когда требования отраслевых нормативных документов являются более жесткими, чем в настоящей Инструкции, при разработке молниезащиты рекомендуется выполнять отраслевые требования. Также рекомендуется поступать, когда предписания Инструкции нельзя совместить с технологическими особенностями защищаемого объекта. При этом используемые средства и методы молниезащиты выбираются исходя из условия обеспечения требуемой надежности.
При разработке проектов зданий, сооружений и промышленных коммуникаций, помимо требований Инструкции, учитываются дополнительные требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.
При нормировании молниезащиты за исходное принято положение, что любое ее устройство не может предотвратить развитие молнии.
Применение норматива при выборе молниезащиты существенно снижает риск ущерба от удара молнии.
Тип и размещение устройств молниезащиты выбираются на стадии проектирования нового объекта, чтобы иметь возможность максимально использовать проводящие элементы последнего. Это облегчит разработку и исполнение устройств молниезащиты, совмещенных с самим зданием, позволит улучшить его эстетический вид, повысить эффективность молниезащиты, минимизировать ее стоимость и трудозатраты.
2. ОБЩИЕ ПОЛОЖЕНИЯ
2.1. Термины и определения
Удар молнии в землю — электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока.
Точка поражения — точка, в которой молния соприкасается с землей, зданием или устройством молниезащиты. Удар молнии может иметь несколько точек поражения.
Защищаемый объект — здание или сооружение, их часть или пространство, для которых выполнена молниезащита, отвечающая требованиям настоящего норматива.
Устройство молниезащиты — система, позволяющая защитить здание или сооружение от воздействий молнии. Она включает в себя внешние и внутренние устройства. В частных случаях молниезащита может содержать только внешние или только внутренние устройства.
Устройства защиты от прямых ударов молнии (молниеотводы) — комплекс, состоящий из молниеприемников, токоотводов и заземлителей.
Устройства защиты от вторичных воздействий молнии — устройства, ограничивающие воздействия электрического и магнитного полей молнии.
Устройства для выравнивания потенциалов — элементы устройств защиты, ограничивающие разность потенциалов, обусловленную растеканием тока молнии.
Молниеприемник — часть молниеотвода, предназначенная для перехвата молний.
Токоотвод (спуск) — часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.
Заземляющее устройство — совокупность заземлителя и заземляющих проводников.
Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.
Заземляющий контур — заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности.
Сопротивление заземляющего устройства — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
Напряжение на заземляющем устройстве — напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.
Соединенная между собой металлическая арматура — арматура железобетонных конструкций здания (сооружения), которая обеспечивает электрическую непрерывность.
Опасное искрение — недопустимый электрический разряд внутри защищаемого объекта, вызванный ударом молнии.
Безопасное расстояние — минимальное расстояние между двумя проводящими элементами вне или внутри защищаемого объекта, при котором между ними не может произойти опасного искрения.
Устройство защиты от перенапряжений — устройство, предназначенное для ограничения перенапряжений между элементами защищаемого объекта (например, разрядник, нелинейный ограничитель перенапряжений или иное защитное устройство).
Отдельно стоящий молниеотвод — молниеотвод, молниеприемники и токоотводы которого расположены таким образом, чтобы путь тока молнии не имел контакта с защищаемым объектом.
Молниеотвод, установленный на защищаемом объекте — молниеотвод, молниеприемники и токоотводы которого расположены таким образом, что часть тока молнии может растекаться через защищаемый объект или его заземлитель.
Зона защиты молниеотвода — пространство в окрестности молниеотвода заданной геометрии, отличающееся тем, что вероятность удара молнии в объект, целиком размещенный в его объеме, не превышает заданной величины.
Допустимая вероятность прорыва молнии — предельно допустимая вероятность Р удара молнии в объект, защищаемый молниеотводами.
Надежность защиты определяется как 1 — Р.
Промышленные коммуникации — силовые и информационные кабели, проводящие трубопроводы, непроводящие трубопроводы с внутренней проводящей средой.
2.2. Классификация зданий и сооружений по устройству молниезащиты
Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.
Непосредственное опасное воздействие молнии — это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов — радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.
Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.
Рассматриваемые объекты могут подразделяться на обычные и специальные.
Обычные объекты — жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.
Специальные объекты:
объекты, представляющие опасность для непосредственного окружения;
объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы)
прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.
В табл. 2.1 даны примеры разделения объектов на четыре класса.
Таблица 2.1
Примеры классификации объектов
Объект | Тип объекта | Последствия удара молни |
Обычный | Жилой дом | Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом |
Ферма | Первоначально — пожар и занос опасного напряжения, затем — потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д. | |
Театр; школа; универмаг; спортивное сооружение | Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий | |
Банк; страховая компания; коммерческий офис | Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных | |
Больница; детский сад; дом для престарелых | Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям | |
Промышленные предприятия | Дополнительные последствия, зависящие от условий производства — от незначительных повреждений до больших ущербов из-за потерь продукции | |
Музеи и археологические памятники | Невосполнимая потеря культурных ценностей | |
Специальный с ограниченной опасностью | Средства связи; электростанции; пожароопасные производства | Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов |
Специальный, представляющий опасность для непосредственно го окружения | Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков | Пожары и взрывы внутри объекта и в непосредственной близости |
Специальный, опасный для экологии | Химический завод; атомная электростанция; биохимические фабрики и лаборатории | Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды |
При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 2.2.
Таблица 2.2
Уровни защиты от ПУМ для обычных объектов
Уровень защиты | Надежность защиты от ПУМ |
I II III IV | 0,98 0,95 0,90 0,80 |
Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.
По желанию заказчика в проект может быть заложен уровень надежности, превышающий предельно допустимый.
2.3. Параметры токов молнии
Параметры токов молнии необходимы для расчета механических и термических воздействий, а также для нормирования средств защиты от электромагнитных воздействий.
2.3.1. Классификация воздействий токов молнии
Для каждого уровня молниезащиты должны быть определены предельно допустимые параметры тока молнии. Данные, приведенные в нормативе, относятся к нисходящим и восходящим молниям.
Соотношение полярностей разрядов молнии зависит от географического положения местности. В отсутствие местных данных принимают это соотношение равным 10 % для разрядов с положительными токами и 90 % для разрядов с отрицательными токами.
Механические и термические действия молнии обусловлены пиковым значением тока I, полным зарядом Qполн, зарядом в импульсе Qимп и удельной энергией W/R. Наибольшие значения этих параметров наблюдаются при положительных разрядах.
Повреждения, вызванные индуцированными перенапряжениями, обусловлены крутизной фронта тока молнии. Крутизна оценивается в пределах 30 %-ного и 90 %-ного уровней от наибольшего значения тока. Наибольшее значение этого параметра наблюдается в последующих импульсах отрицательных разрядов.
2.3.2. Параметры токов молнии, предлагаемые для нормирования средств защиты от прямых ударов молни
Значения расчетных параметров для принятых в табл. 2.2 уровней защищенности (при соотношении 10 % к 90 % между долями положительных и отрицательных разрядов) приведены в табл. 2.3.
Таблица 2.3
Соответствие параметров тока молнии и уровней защиты
Параметр молнии | Уровень защиты | ||
I | II | III, IV | |
Пиковое значение тока I, кА | 200 | 150 | 100 |
Полный заряд Qполн, Кл | 300 | 225 | 150 |
Заряд в импульсе Qимп, Кл | 100 | 75 | 50 |
Удельная энергия W/R, кДж/Ом | 10000 | 5600 | 2500 |
Средняя крутизна di/dt30/90%, кА/мкс | 200 | 150 | 100 |
2. 3.3. Плотность ударов молнии в землю
Плотность ударов молнии в землю, выраженная через число поражений 1 км2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте размещения объекта.
Если же плотность ударов молнии в землю Ng неизвестна, ее можно рассчитать по следующей формуле, 1 / (км2·год)
Ng = 6,7·Тd / 100,(2.1)
где Тd — средняя продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности
2.3.4. Параметры токов молнии, предлагаемые для нормирования средств защиты от электромагнитных воздействий молнии
Кроме механических и термических воздействий ток молнии создает мощные импульсы электромагнитного излучения, которые могут быть причиной повреждения систем, включающих оборудование связи, управления, автоматики, вычислительные и информационные устройства и т. п. Эти сложные и дорогостоящие системы используются во многих отраслях производства и бизнеса. Их повреждение в результате удара молнии крайне нежелательно по соображениям безопасности, а также по экономическим соображениям.
Удар молнии может содержать либо единственный импульс тока, либо состоять из последовательности импульсов, разделенных промежутками времени, за которые протекает слабый сопровождающий ток. Параметры импульса тока первого компонента существенно отличаются от характеристик импульсов последующих компонентов. Ниже приводятся данные, характеризующие расчетные параметры импульсов тока первого и последующих импульсов (табл. 2.4 и 2.5), а также длительного тока (табл. 2.6) в паузах между импульсами для обычных объектов при различных уровнях защиты.
Таблица 2.4
Параметры первого импульса тока молнии
Параметр тока | Уровень защиты | ||
I | II | III, IV | |
Максимум тока I, кА | 200 | 150 | 100 |
Длительность фронта T1, мкс | 10 | 10 | 10 |
Время полуспада Т2, мкс | 350 | 350 | 350 |
Заряд в импульсе Qсум*, Кл | 100 | 75 | 50 |
Удельная энергия в импульсе W/R**, МДж/Ом | 10 | 5,6 | 2,5 |
___________________
* Поскольку значительная часть общего заряда Qсум приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенной величине.
** Поскольку значительная часть общей удельной энергии W/R приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенной величине.
Таблица 2.5
Параметры последующего импульса тока молнии
Параметр тока | Уровень защиты | ||
I | II | III, IV | |
Максимум тока I, кА | 50 | 37,5 | 25 |
Длительность фронта T1, мкс | 0,25 | 0,25 | 0,25 |
Время полуспада Т2, мкс | 100 | 100 | 100 |
Средняя крутизна а, кА/мкс | 200 | 150 | 100 |
Таблица 2.6
Параметры длительного тока молнии в промежутке между импульсами
Параметр тока | Уровень защиты | ||
I | II | III, IV | |
Заряд Qдл*, Кл | 200 | 150 | 100 |
Длительность Т, с | 0,5 | 0,5 | 0,5 |
___________________
* Qдл — заряд, обусловленный длительным протеканием тока в период между двумя импульсами тока молнии.
Средний ток приблизительно равен Qдл / Т.
Форма импульсов тока определяется следующим выражением:
i(t) = [I (t / τ1)10·exp (-t / τ2)] / h·[1 + (t / τ1)10], (2.2)
где I — максимум тока;
h — коэффициент, корректирующий значение максимума тока;
t — время;
τ1 — постоянная времени для фронта;
τ2 — постоянная времени для спада
Значения параметров, входящих в формулу (2.2), описывающую изменение тока молнии во времени, приведены в табл. 2.7.
Таблица 2.7
Значения параметров для расчета формы импульса тока молнии
Параметр | Первый импульс | Последующий импульс | ||||
Уровень защиты | Уровень защиты | |||||
I | II | III, IV | I | II | III, IV | |
I, кА | 200 | 150 | 100 | 50 | 37,5 | 25 |
h | 0,93 | 0,93 | 0,93 | 0,993 | 0,993 | 0,993 |
τ1, мкс | 19,0 | 19,0 | 19,0 | 0,454 | 0,454 | 0,454 |
τ2, мкс | 485 | 485 | 485 | 143 | 143 | 143 |
Длительный импульс может быть принят прямоугольным со средним током I и длительностью Т, соответствующими данным табл. 2.6.
Памятка по правилам устройства заземления и молниезащиты. — Меры безопасности при ухудшении погодных условий
Главное управление МЧС России по Тамбовской области.
Уважаемые коллеги!
Памятка по правилам устройства заземления и молниезащиты.
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями Правилами устройства электроустановок (ПУЭ).
Требования ПУЭ обязательны для всех организаций независимо от форм собственности иорганизационно-правовых форм, а также для физических лиц, занятых предпринимательской деятельностью без образования юридического лица.
Так, например, в числе прочего ПУЭ распространяется на установки электрического освещения зданий, помещений и сооружений наружного освещения городов, посёлков и сельских населённых пунктов, территорий предприятий и учреждений, на установки оздоровительного ультрафиолетового облучения длительного действия, установки световой рекламы, световые знаки и иллюминационные установки.
Молниезащи́та — это комплекс технических решений и специальных приспособлений для обеспечения безопасности здания, а также имущества и людей находящихся в нем. На земном шаре ежегодно происходит до 16-и миллионов гроз, то есть около 44 тысяч за день. Прямой удар молнии очень опасен для здоровья людей, нередки случаи смертельного исхода. Для зданий и сооружений угрозами вследствие непосредственного контакта канала молнии с поражаемыми объектами являются возможность возгорания либо разрушения, а также повреждение чувствительного оборудования вследствие сопутствующего молнии импульсного электромагнитного поля.
Молниезащита зданий разделяется на внешнюю и внутреннюю.
Внешняя молниезащита представляет собой систему, обеспечивающую перехват молнии и отвод её в землю, тем самым, защищая здание (сооружение) от повреждения и пожара. Система внешней молниезащиты, организованная по принципу молниеприёмной сетки, проектируется индивидуально под каждое конкретное здание. В момент прямого удара молнии в строительный объект правильно спроектированное и сооруженное молниезащитное устройство должно принять на себя ток молнии и отвести его по токоотводам на заземление. Прохождение тока молнии должно произойти без ущерба для защищаемого объекта и быть безопасным для людей, находящихся как внутри, так и снаружи этого объекта.
Состав внешней молниезащиты:
Молниеотво́д (молниеприёмник, громоотвод) — устройство, перехватывающее разряд молнии. Выполняется из металла (нержавеющая либо оцинкованная сталь, алюминий, медь)
Токоотво́ды (спуски) — часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.
Заземли́тель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.
Внутренняя система молниезащиты
Внутренняя молниезащита должна уменьшать электромагнитные эффекты воздействия тока молнии на людей, инсталляции и оборудование, находящееся внутри строительных объектов. В дальнейшей части работы будут представлены только основные вопросы внутренней молниезащиты, касающиеся: Уравнивания потенциалов инсталляций, входящих в строительный объект Уравнивание потенциалов внутри строительного объекта Подбора и размещения устройств, ограничивающих перенапряжения и защищающих электрическую инсталляцию, системы передачи сигналов, а также устройства от прямого воздействия части тока молнии
Основные принципы уравнивания потенциалов содержатся в нормах молниезащиты строительных объектов. В соответствии с этими принципами следует уравнивать потенциалы всех проводящих инсталляций входящих в объект. Уравнивание потенциалов следует выполнить при помощи соединений с низким импедансом: Непосредственных — между проводящими инсталляциями и устройствами, на которых не возникает постоянно электрический потенциал, Ограничивающих — между устройствами, заземленными и изолированными от земли, а также находящимися под напряжением проводами электрических устройств.
Линии электропередачи и распределительные устройства электрических сетей защищаются от перенапряжений при ударе молнии с помощью защитных аппаратов: вентильных разрядников или ОПН (ограничитель перенапряжения нелинейный), устанавливаемых машинах или на входе в подстанции.
Пресс-служба ГУ МЧС России
по Тамбовской области
8 (4752) 72 99 50
виды, классификация, нормы, типы зон
Атмосферные явления с образованием молний, сопровождаемых яркими вспышками света, громом, называют грозами. Молнии – это грозовые разряды электричества, возникающие между облаками и Землей; внутри облаков.
Попадание молнии в дом
Опасность для жизни людей, сохранности промышленных, общественных строений, высотных инженерных сооружений – дымовых труб, антенн телевидения, радиосвязи, включая сотовую; вышек, опор электрических сетей; технологического оборудования, расположенного на открытых промышленных площадках, например, для ректификационных колонн предприятий нефтепереработки представляют молнии первого типа.
Необходимость устройства молниезащиты связана с тем, что напряжение при грозовых разрядах достигает 50 млн. В, а сила тока – до 100 тыс. А; с выделением огромного количества световой, звуковой и тепловой энергии. Грозовые разряды являются электрическими взрывами, сходными с детонацией, наносящими разрушения строениям, ломающими деревья, послужившие им источниками заземления; травмируют, контузят людей, что нередко приводит к их гибели.
Молниезащитой называют комплекс технических решений, что надежно обеспечивают безопасность людей, предохранение строений различного назначения, высотных объектов; технологического, инженерного оборудования производственных объектов; коммуникаций инфраструктуры населенных пунктов, линий электропередач как от прямых ударов грозовых разрядов, электромагнитной, электростатической индукции, так и от передачи электротока через металлоконструкции, коммуникации.
Заземление и молниезащита – это то, чем согласно нормам должны быть оборудованы промышленные здания, инженерные коммуникации, а также другие объекты. Кроме того, пункт 4 статьи 50 Федерального закона РФ №123-ФЗ предписывает в качестве одного из способов исключения источников зажигания устраивать защиту от молний для зданий, оборудования для повышения уровня пожарной безопасности на объектах.
Нормы устройства молниезащиты
Учитывая, что строения, сооружения, технологические установки, коммуникации довольно сильно отличаются по своему устройству, исполнению разработаны государственные, ведомственные, корпоративные нормы; стандарты, правила проектирования для организации оптимальной, эффективной защиты от грозовых разрядов для каждого типа объектов – от производственных объектов, где она впервые стала применяться, до жилых домов.
В основе норм, что регламентируют создание технической защиты от молний, опыт организации электрической безопасности строений разного вида, назначения, с учетом особенностей, присущих современным постройкам, сооружениям и коммуникациям инфраструктуры, связи.
Требования к молниезащите изложены во многих официальных документах. Проектирование, расчет молниезащиты ведется на основании следующей нормативно-технической базы:
- «Правил устройства электроустановок». В настоящее время действует седьмое и некоторые главы шестого издания этого основополагающего документа, без знания требований которого невозможно проектирование любых видов, типов электрических установок, оборудования, аппаратуры защиты от поражения электротоком, включая молниезащиту. Промышленная безопасность защищаемых объектов с категориями по взрывопожарной опасности помещений, зданий также невозможна без этого вида защиты от высоковольтных разрядов электрического тока. Это учитывают требования по организации, исполнению молниезащиты для различных видов строений, инженерных сооружений, электрических коммуникаций, указанные в нескольких главах ПУЭ. Главы 2.4, 2.5 – для воздушных линий электропередач с рабочим напряжением меньше и больше 1 кВ соответственно, включая карту районирования территории России с указанием длительности гроз в году, что необходимо при проектировании систем, устройств молниезащиты. Глава 4.2 – для распределительных устройств, электрических подстанций напряжением больше 1 тыс. В. Глава 4.3 – для преобразовательных подстанций, установок.
- РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий, сооружений». Ее предназначение видно из названия. Несмотря на то что документ утвержден еще Министерством энергетики Советского Союза, по согласованию с Госстроем, он действует и сегодня.
- Некоторые ее положения неизбежно устарели, не успевая за научно-техническим прогрессом, поэтому при проектировании современных технических систем, устройств защиты от грозовых разрядов пользуются российскими ГОСТ, идентичными стандартам Международной электротехнической комиссии; а также отечественными инструкциями по молниезащите, вышедшими в свет позднее.
- Один из этих документов СО 153-34.21.122-2003, разработанный тем же коллективом ученых, регламентирует устройство молниезащиты как строений, так и инфраструктурных коммуникаций.
- ГОСТ Р МЭК 62305-1-2010, ГОСТ Р МЭК 62305-2-2010, представляющие собой две части одного национального стандарта о менеджменте рисков при защите объектов от грозовых разрядов. В первой части сформулированы общие принципы, во второй – методики оценки рисков гибели, получения травм от поражения электротоком людей; полного/частичного разрушения объектов, общественных коммуникаций; экономических потерь от попадания молний.
- Важно, что при этом рассматриваются такие факторы, как пожарная безопасность, так как в расчетах учитываются пространства с огнеопасной средой – воздушной смесью паров горючих жидкостей, газов, пыли.
- ГОСТ Р МЭК 62561.1-2014. Это первая часть национального стандарта об элементах систем защиты от молний, касающаяся требований к их частям, соединениям.
- ГОСТ Р МЭК 62561.2-2014 – к проводникам, электродам заземления.
- ГОСТ Р МЭК 62561.3-2014 – к распределительным разрядникам.
- ГОСТ Р МЭК 62561.4-2014 – к элементам крепления.
- ГОСТ Р МЭК 62561.5-2014 – к смотровым колодцам, уплотнителям электродов заземления.
Требования к проектированию, устройству заземления, защиты от молний электроустановок, оборудования зданий, линий электропередач в СССР также устанавливал СНиП 3.05.06-85 об электротехнических устройствах. Сегодня действует свод правил, выпущенный как его актуализированная версия – СП 76.13330.2016.
Помимо норм, действующих на территории РФ, следуют упомянуть сходные требования к системам защиты от грозовых зарядов, применяемые в союзных государствах. В Республике Казахстан – это СП РК 2.04-103-2013 об устройстве молниезащиты объектов, вышедший взамен аналогичной инструкции СН РК 2.04-29-2005; в Республике Беларусь – технический кодекс ТКП 336-2011 о защите от молний объектов, инженерных коммуникаций.
Тип зон молниезащиты
Под системами защиты от молний объектов, инженерных, коммуникаций и технологического оборудования понимают внешние и внутренние технические устройства, позволяющие защитить их как от прямого воздействия ударов молний, так и от вторичных воздействий – электрических, электромагнитных полей, сопровождающий грозовой разряд.
Различают активные и пассивные системы защиты от молний.
Пассивная, способная перехватить молнию до ее разряда на конструкции строительного объекта, корпуса оборудования или части инженерного, коммуникационного сооружения, и отвести заряд в землю, состоит из следующих элементов:
- Приемника молний.
- Молниеотводов.
- Заземляющих устройств.
В активной системе к этим неотъемлемым элементам добавляются устройства, генерирующие восходящий поток ионов, притягивающий к себе грозовой разряд.
Проектируются, монтируются несколько видов систем молниезащиты – стержневая, тросовая, которые по результатам проведенных расчетов, в зависимости от количества стержней/тросов, их расстановки/расположения, конфигурации площади защиты, могут создавать два типа зон молниезащиты:
- А. Степень надежности защиты – от 99, 5%.
- Б – от 95%.
Виды систем молниезащиты
На практике, если строительный объект, технологическая установка, вышка, столб, антенна инженерных коммуникаций полностью находится в зоне защиты от попадания молний, вероятность их поражения грозовым электрическим разрядом стремится к нулю.
Классификация зданий и сооружений по устройству молниезащиты
Существуют следующие категории молниезащиты строительных объектов, зависящие от назначения, значимости, класса пожарной опасности и возможности взрыва; пожарной нагрузки – наличия, количества, вида взрывопожароопасных материалов; региональной частотности грозовых разрядов; зафиксированных попаданий молний:
- I категория, имеющая наивысший уровень защиты от возможного прямого попадания молний в объект. Это производственные объекты с наличием взрывоопасных зон классов опасности В-I, II. Тип зоны защиты – А.
- II категория. Это здания производственного, складского назначения, открытые площадки как с хранением ЛВЖ, ГЖ, так и с установленным на них технологическим оборудованием, где они обращаются; а также взрывоопасные производства, наружные установки классом опасности ниже В-Iа. Тип зоны защиты для технологического оборудования, установленного на открытых промышленных площадках – Б; для объектов – А или Б в зависимости от прогнозируемого количества грозовых разрядов в год.
- III категория. К ней относятся строительные объекты различного назначения III–V степеней стойкости к огню в районах, где годовая продолжительность гроз больше 20 часов. Основной тип молниезащиты – Б.
Определить все основные параметры системы защиты от попадания молний для любого конкретного объекта можно по таблице 1 РД 34.21.122.
Виды молниезащиты
Система молниезащиты в зависимости от категории объектов может быть нескольких видов:
- Защищающая от прямых ударов. Устройства, используемые для этого, называют молниеотводами, состоящими из несущей опоры, в качестве которой может служить сам строительный объект, приемника разряда, токоотвода и заземлителя. Применяют как стержневые, тросовые молниеотводы, так и металлическую сетку, уложенную на кровлю защищаемого объекта. Для воздушных линий электропередач используют грозозащитные тросы, принимающие разряд молнии.
- От электростатической индукции. Осуществляется путем подсоединения всего электрооборудования к системе заземления объекта.
- От электромагнитной индукции. Для этого в местах соединений устраиваются токопроводящие перемычки между участками трубопроводов, эстакад.
- От заноса электрического потенциала, вызванного грозовым разрядом. Для этого все входящие в здания, сооружения коммуникации, включая металлическую оболочку электрических кабелей напряжением до 1 тыс. В, заземляются. Воздушные линии электропередач на подходах к объекту оборудуют грозозащитными тросами, а на опорах монтируют разрядники, ограничители перенапряжения.
Средства и способы молниезащиты
К средствам защиты от грозовых разрядов электричества относят:
- стержневые приемники молний;
- грозозащитные тросы;
- сетчатые молниеприемники;
- токоотводы;
- контуры заземления строительных объектов.
Варианты исполнения молниезащиты бывают двух видов:
- Внешний, защищающий от прямого воздействия высокопотенциального электрического разряда, способного вызвать разрушения, взрывы и пожары, за счет его отвода в землю для рассеивания энергии.
- Внутренний. Для защиты от вторичных факторов прямого или близкого к защищаемому объекту удара молнии. Для этого используют различные типы специальных приборов, называемых УЗИП – устройствами защиты от импульсных перенапряжений.
Молниезащита здания
Установка молниезащиты, испытание молниезащиты по окончании монтажных работ производится организациями, выполняющими электротехнические работы.
Эксплуатация молниезащиты не требует дополнительных затрат, рассчитана на длительный период. Но, осмотр молниезащиты на предмет обнаружения механических повреждений приемников разряда, токоотводящих, заземляющих элементов, связей между ними все же обязателен.
Проверка молниезащиты позволяет собственникам объектов, руководству предприятий, организаций быть уверенными, что она не подведет в опасный грозовой период.
Основные документы | |||
1 | РД 34.21.122-87 | «Инструкция по устройству молниезащиты зданий и сооружений» | Скачать |
2 | СО 153-34. 21.122-2003 | «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» | Скачать |
3 | Разъяснение Управления по надзору в электроэнергетике Ростехнадзора о порядке использования «Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций» | Скачать | |
4 | Правила устройства электроустановок (ПУЭ). Седьмое издание. | Скачать | |
Государственные стандарты Российской Федерации | |||
1 | ГОСТ Р МЭК 62561.1-2014 | «Компоненты систем молниезащиты. Часть 1. Требования к соединительным компонентам» | Скачать |
2 | ГОСТ Р МЭК 62561.2-2014 | «Компоненты систем молниезащиты. Часть 2. Требования к проводникам и заземляющим электродам» | Скачать |
3 | ГОСТ Р МЭК 62561.3-2014 | «Компоненты систем молниезащиты. Часть 3. Требования к разделительным искровым разрядникам» | Скачать |
4 | ГОСТ Р МЭК 62561. 4-2014 | «Компоненты систем молниезащиты. Часть 4. Требования к устройствам крепления проводников» | Скачать |
5 | ГОСТ Р МЭК 62561.5-2014 | «Компоненты систем молниезащиты. Часть 5. Требования к смотровым колодцам и уплотнителям заземляющих электродов» | Скачать |
6 | ГОСТ Р МЭК 62305-1-2010 | «Менеджмент риска. Защита от молнии. Часть 1. Общие принципы» | Скачать |
7 | ГОСТ Р МЭК 62305-2-2010 | «Менеджмент риска. Защита от молнии. Часть 2. Оценка риска» | Скачать |
8 | ГОСТ Р 50571.5.54-2013 (МЭК 60364-5-54:2011) | «Электроустановки низковольтные. Часть 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов» | Скачать |
9 | ГОСТ Р 50571.22-2000 (МЭК 60364-7-707-84) | «Требования к специальным электроустановкам. Раздел 707. Заземление оборудования обработки информации» | Скачать |
10 | ГОСТ 12. 1.030-81 | «Электробезопасность. Защитное заземление, зануление.» | Скачать |
11 | ГОСТ 12.1.038-82 | «Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.» | Скачать |
12 | ГОСТ Р МЭК 60050-195-2005 | «Заземление и защита от поражения электрическим током. Термины и определения.» | Скачать |
13 | ГОСТ 464-79 | «Межгосударственный стандарт. Заземления для стационарных установок проводной связи, радиорелейных станций, радиотрансляционных узлов проводного вещания и антенн систем коллективного приема телевидения. Нормы сопротивления» | Скачать |
14 | ГОСТ Р МЭК 61643-12-2011 | «Национальный стандарт Российской Федерации. Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения» | Скачать |
15 | ГОСТ Р 54986-2012 (МЭК 61643-21:2009) | «Национальный стандарт Российской Федерации. Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. Устройства защиты от импульсных перенапряжений в системах телекоммуникации и сигнализации (информационных системах). Требования к работоспособности и методы испытаний» | Скачать |
16 | ГОСТ Р 55630-2013 | «Перенапряжения импульсные и защита от перенапряжений в низковольтных системах переменного тока. Общие положения» | Скачать |
17 | ГОСТ 28298-89 | «Заземление шахтного электрооборудования. Технические требования и методы контроля» | Скачать |
Технические циркуляры | |||
1 | Технический циркуляр №11/2006 | «Технический циркуляр о заземляющих электродах и заземляющих проводниках» | Скачать |
2 | Технический циркуляр №26/2010 | «О защитном заземлении и уравнивании потенциалов во взрывоопасных зонах» | Скачать |
3 | Технический циркуляр №30/2012 | «О выполнении молниезащиты и заземления ВЛ и ВЛИ до 1 кВ» | Скачать |
Руководящие документы | |||
1 | РД 78. 145-93 | Пособие к руководящему документу «Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ. Глава 14» | Скачать |
2 | РД 153-34.3-35.125-99 | «Руководство по защите электрических сетей 6 — 1150 кВ от грозовых и внутренних перенапряжений.» | Скачать |
3 | РД 45.091.195-90 | «Инструкция по проектированию комплексов электросвязи. Общие требования и нормы по заземлению оборудования, кабелей и металлоконструкций» | Скачать |
4 | РД 45.155-2000 | «Заземление и выравнивание потенциалов аппаратуры ВОЛП на объектах проводной связи» | Скачать |
Стандарты организаций | |||
1 | ВСП 22-02-07 МО РФ | «Нормы по проектированию, устройству и эксплуатации молниезащиты объектов военной инфраструктуры» | Скачать |
2 | СТО Газпром 2-1.11-170-2007 | «Инструкция по устройству молниезащиты зданий, сооружений и коммуникаций ОАО Газпром» | Скачать |
3 | СТО 70238424.29.240.99.005-2011 | «Устройства защиты от перенапряжений электрических станций и сетей. Условия поставки. Нормы и требования» | Скачать |
4 | СТО 70238424.29.240.99.006-2011 | «Устройства защиты от перенапряжений электрических станций и сетей. Организация эксплуатации и технического обслуживания. Нормы и требования» | Скачать |
5 | СТО 56947007-29.130.15.114-2012 | «Руководящие указания по проектированию заземляющих устройств подстанций напряжением 6-750 кВ» | Скачать |
6 | СТО 56947007-29.240.02.001-2008 | «Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кв от грозовых перенапряжений» | Скачать |
7 | N ЦЭ-191 ОАО «РЖД» | «Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах» | Скачать |
8 | N 2871р ОАО «РЖД» | «Концепция комплексной защиты технических средств и объектов железнодорожной инфраструктуры от воздействия атмосферных и коммутационных перенапряжений и влияний тягового тока» | Скачать |
Прочие документы | |||
1 | Приказ Ростехнадзора от 06.11.2012 N 625 | «Об утверждении Федеральных норм и правил в области промышленной безопасности «Инструкция по устройству, осмотру и измерению сопротивления шахтных заземлений» | Скачать |
2 | СО 153-34.20.501-2003 | «Правила технической эксплуатации электрических станций и сетей Российской Федерации» | Скачать |
3 | Приказ Минэнерго РФ от 13.01.2003 N 6 | «Об утверждении Правил технической эксплуатации электроустановок потребителей» | Скачать |
4 | СНиП 3.05.06-85 | «Электротехнические устройства» | Скачать |
5 | РМ 14-11-95 | «Заземление электрических сетей управления и автоматики. Практическое пособие» | Скачать |
6 | PM4-249-91 | «Пособие по устройству сетей заземления систем автоматизации технологических процессов» | Скачать |
Молниезащита ГРПШ: расчет молниезащиты, устройство молниеотвода
Согласно СП 62.13330.2011, по опасности ударов молнии ГРП, ГРПБ и ШРП следует относить к классу специальных объектов, представляющих опасность для непосредственного окружения при размещении их в населенных пунктах и на территориях газопотребляющих предприятий, или к классу объектов с ограниченной опасностью в остальных случаях. При применении в ГРП и ГРПБ системы автоматизации должна быть создана защита от вторичных проявлений молнии.
Молниезащита ГРП и ГРПБ должна отвечать требованиям, предъявляемым к объектам II категории.
В систему молниезащиты ГРПШ должно входить:
1. Молниеотвод;
2. Заземление;
3. Уравнивание потенциалов;
4. Защита от статического электричества.
Предлагаем ознакомиться с примерами организации молниезащиты ГРПШ.
Пример расчета молниезащиты ГРПШ
Проектом предусматривается молниезащита ГРП. Молниезащита защищаемого объекта выполнена одиночным стержневым молниеотводом.
Выбор типа и высоты молниеотвода производится исходя из значений требуемой надежности РЗ.
Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h0<h, вершина которого совпадает с вертикальной осью молниеотвода. Габариты зоны определяются двумя параметрами: высотой конуса h0 и радиусом конуса на уровне земли r0.
Согласно СО 153-34.21.122-2003 п. 2.2 объект классифицируется как специальный с ограниченной опасностью. По таблице 3.4 определяется высота молниеотвода h, высота конуса h0 и радиус конуса на уровне земли r0.
Для зоны защиты требуемой надежности радиус горизонтального сечения rХ на высоте hХ определяется по формуле (3.1) rХ=r0(h0-hХ)/h0.
Высота конуса h0 определяется геометрическим построением для РЗ=0,99 и для высоты молниеотвода.
h=0-30 м.
h=h0/0,8=8,0/0,8=10,0 м;
r0=0,8h=0,8х10,0=8,0 м;
rХ=8,0(8,0-4,0)/8,0=4,0 м.
Расчет зоны защиты ГРПШ молниеотводом
Рис.1 Расчет зоны молниезащиты ГРПШ. Вид в профиль
Согласно ПУЭ 7.3.43 пространство у наружных установок, содержащих горючие газы или ЛВЖ, относятся к зонам класса В-1г.
Для обеспечения защиты от статического электричества проектом предусматривается заземляющее устройство сопротивлением 4 Ом, к которому присоединяется корпус ГРП, технологические трубопроводы. К этому же заземляющему устройству присоединяется молниеприемник грозозащиты.
Рис.2 Расчет зоны молниезащиты ГРПШ. Вид сверху
Примечание:
1. Сварка производится электродом Э-46 ГОСТ9367-75 двусторонним швом.
2. Длина сварного шва не менее 40 мм.
3. Высота сварного шва — 4 мм.
В качестве защитных мероприятий проектом необходимо предусматривать: молниезащиту, заземление, уравнивание потенциалов, защиту от статического электричества. Проектом необходимо выполнить комбинированное заземляющее устройство, состоящее из вертикальных электродов (уголок 40х40х4), соединённых горизонтальным электродом (полоса 4х20).
Сопротивление искусственного заземлителя, объединённого с естественным заземлителем в любое время года не должно превышать 4 Ом. Места сварных соединений стыков заземляющего устройства после сварки покрыть битумным лаком. Место входа токоотвода (полоса 4х20) в грунт гидроизолировать при помощи гидроизоляционных лент с пропиткой их горячим битумом. Токоотвод следует прокладывать на расстоянии от фундамента не менее, чем 10 мм.
Уравнивание потенциалов
Система дополнительного уравнивания потенциалов объединяет, одновременно доступные к прикосновению, открытые токопроводящие части, сторонние проводящие части, а также нулевые защитные проводники всего оборудования, включая штепсельные розетки. Делается система дополнительного уравнивания потенциалов (ДУП) в зонах с опасной окружающей средой.
Рис.3 Схема уравнивания потенциалов в системе молниезащиты ГРПШ
Устройство заземления ГРПШ
Соединение заземляющих проводников между собой производится сваркой по ГОСТ 5264-80. Длина сварного шва равна двойной ширине при прямоугольном сечении токоотвода. Заземление выполняется присоединением всех металлических нетоковедущих частей оборудования к заземляющему устройству. Защита от вторичных проявлений молнии, статического электричества и с целью уравнивания потенциалов выполняется присоединением, металлического корпуса технологического шкафа к системе уравнивания потенциалов.
В соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003) установка должна быть защищена от прямых ударов молнии, вторичных её проявлений и заноса высокого потенциала через наземные и подземные металлические коммуникации. Молниезащита ГРП осуществляется установкой молниеприемников высотой 10м.
Рис.4 Схема заземления в системе молниезащиты ГРПШ
Молниеотвод подключается к комбинированному заземляющему устройству, состоящему из горизонтальных (полоса 4х20) и вертикальных заземлителей (уголок 40х40х4).
Все металлические элементы выше поверхности земли покрыть краской БТ 177 по ГОСТ 5631-79* в два слоя по грунту ГФ 017 по ТУ 6-27-7-89.
Молниеотвод (h=10м) запроектирован из стальных труб по ГОСТ 10704-91. Фундамент под молниеотвод — монолитный железобетонный из бетона кл. В15, W4, F50, рабочая арматура класса А III, конструктивная- класса А I. Сводные конструктивные решения приведены в графической части ниже.
Схема устройства молниезащиты ГРПШ
Рис.5 Общая схема молниезащиты ГРПШ
Заземление и молниезащита
Введение
Это дополнение к Руководству по установке на крыше, где мы обсуждаем установку антенны на крыше. Конечно, устанавливая на крышу металлический столб, вы создаете громоотвод! Молния может быть очень опасной, поэтому мы должны быть уверены, что защитили ее. Важно отметить, что если ваш дом или строение не является самым высоким в районе — например, если рядом есть высокие деревья или есть другие более высокие здания вокруг, — ваш риск действительно быть пораженным молнией составляет чрезвычайно малый .Помните об этом и не паникуйте по поводу установки антенной мачты! Если вы выполните несколько из этих шагов, вы сможете защитить себя от повреждения дома или электроники. Хотя молния опасна, в нее вряд ли удастся поразить. Более распространенная проблема — накопление статического электричества в воздухе во время грозы. Этот статический заряд может привести к стеканию заряда по кабелям с крыши и повреждению оборудования в вашем доме. Мы хотим направить этот заряд на землю, а не на вашу электронику!
К чему заземлить?
Прежде чем мы поговорим о том, что устанавливать, мы должны поговорить о том, что считается заземлением.Вариантов много, но есть три безопасных:
- Существующий заземляющий стержень, привязанный к вашей электрической панели.
- Водопроводная труба, которая входит в здание.
- Новый стержень заземления, который вы водите самостоятельно.
Использование существующего заземляющего стержня
У вас уже должен быть заземляющий стержень внутри или снаружи вашего дома. Он будет очень близко к вашей электрической панели — либо под ним в полу подвала, либо за пределами дома, где электрический кабель входит от сети.Вы можете использовать этот заземляющий стержень, если он находится относительно близко к антенной мачте, которую вы устанавливаете. Если мачта находится на другой стороне дома или на расстоянии более 20 футов или около того от земли, другая точка заземления может быть лучше.
Использование трубы холодной воды
Если водопроводная труба в вашем доме сделана из меди или другого металла, вы можете использовать ее в качестве заземления. Скорее всего, единственный способ получить доступ к этой трубе — это в подвале или в подвале вашего дома.Обычно они не заходят в дом над землей, чтобы предотвратить замерзание труб. Обычно счетчик воды устанавливается сразу после того, как эта труба входит в дом — на ближайшей к улице стороне дома. Ваша электрическая панель может быть уже заземлена на эту трубу — вы можете проследить за медным проводом, выходящим из нижней части панели. Опять же, вы можете использовать эту трубу в качестве заземляющего проводника, если он находится рядом с антенной мачтой на крыше.Если он находится на другой стороне дома, это может не сработать.
Установка нового стержня заземления
(Примечание: для этого вам понадобятся два человека, небольшая лестница с А-образной рамой и небольшой кувалда.) Если у вас нет других вариантов, вам нужно будет вбить новый стержень заземления. Выберите место на земле прямо под антенной мачтой. Чтобы вам было легче, это должна быть более мягкая почва, а не каменистая, и, конечно же, не бетон или асфальт. Убедитесь, что вы начали, по крайней мере, на фут или 18 дюймов от края дома — бетонный или кирпичный нижний колонтитул дома иногда может простираться почти так далеко.Если вы хотите, чтобы новый стержень заземления был скрыт от глаз, выкопайте небольшую яму, в которую вы собираетесь положить стержень. Когда вы закончите, вы можете засыпать стержень землей. Выберите место на земле, куда вы хотите поставить удочку, и попросите напарника держать удочку в вертикальном положении. Поскольку заземляющие стержни обычно имеют длину 8 футов, вам понадобится небольшая лестница, чтобы добраться до вершины стержня. Затем осторожно (чтобы не ударить партнера!) Забейте верхнюю часть удилища пятифунтовым молотком или небольшой кувалдой. Поскольку штанга опущена вниз, вам может потребоваться спуститься по лестнице под наилучшим углом для ее движения.Как только удочка окажется на расстоянии нескольких дюймов от земли, вы можете остановиться.
К чему НЕ заземляться?
Есть несколько вещей, к которым нельзя приставать дома:
- Газовая труба, или счетчик газа.
Газопровод от инженерной сети плохой грунт, верить нельзя.
Даже если к счетчику идет медный провод, не используйте его — этот провод предназначен только для соединения с реальной землей в другом месте здания.
- Металлические балки или открытая металлическая арматура.
Обычно они сделаны из железа или стали, и очень сложно определить, обеспечивают ли они основу, поэтому им нельзя доверять.
Так что мне действительно нужно?
Существует несколько вариантов установки молниезащиты: провод от крепления антенны к источнику заземления (описан ниже) или разрядник для защиты от перенапряжения.
Как решить? Как правило, если у вас есть металлическое крепление для антенны на крыше высотой более 5 футов, вам нужно заземлить его с помощью длинного медного провода.Если крепление короче или не поднимается над линией крыши, можно просто использовать разрядник. Даже если вы не заземляете оборудование на крыше, а просто используете разрядник для защиты от перенапряжения, этот разрядник необходимо заземлить. Обычно это проще, так как это можно сделать на уровне земли и рядом с существующим заземлением, чтобы упростить электромонтаж.
Установка ограничителя перенапряжения
Вероятно, вы уже использовали разрядник для защиты от перенапряжений — иногда он встраивается в несколько разветвителей питания.Они работают, предотвращая скачок (быстрое накопление) электрической энергии от попадания в ваши приборы. Вместо этого скачок напряжения шунтируется или направляется на землю — либо через большой круглый штырь на сетевой вилке (в случае удлинителя), либо с помощью медного или алюминиевого провода, если вы заземляете наружное оборудование. Вам нужно будет установить разрядник на кабель Ethernet, который соединяет беспроводной маршрутизатор на крыше с вашей внутренней точкой доступа или компьютером. Для этого нам на самом деле потребуется создать два кабеля Ethernet: один, который проходит от маршрутизатора на крыше к разряднику для защиты от перенапряжения, а другой — от разрядника к внутреннему блоку.Разрядник для защиты от перенапряжений заземляется путем пропуска медного или алюминиевого провода №10 AWG от металлического наконечника внутри ОПН к одному из заземляющих соединений, упомянутых выше. Доступно множество моделей разрядников для защиты от перенапряжений, но, к сожалению, их вряд ли можно будет найти в местных магазинах бытовой техники. Нам нужны специальные ограничители перенапряжения, которые устанавливаются на открытом воздухе и позволяют питанию от адаптера Power over Ethernet достигать маршрутизатора. L-Com — хороший источник для их покупки в Интернете:
- http: //www.l-com.com — Найдите номер детали AL-CAT5EJW24 или AL-CAT6JW
Внешний разрядник должен быть установлен непосредственно под маршрутизатором на крыше, как можно ближе к земле. Это необходимо для минимизации длины провода между разрядником и заземляющим стержнем или заземляющим проводом, поскольку они должны быть установлены в земле или в подвале. Он должен крепиться двумя короткими шурупами к деревянному, бетонному или кирпичному основанию здания.
Электрическое заземление, защита от перенапряжения и молнии
Обзор
Электрическое заземление — это часто неправильно понимаемый и неправильно реализованный компонент систем экологического мониторинга.В системах, в которых не используются компоненты электрического заземления, могут возникать как полные отказы системы, так и периодические проблемы, которые трудно диагностировать. Однако простого использования заземляющих устройств недостаточно. Неправильная установка компонентов электрического заземления может вывести их из строя. Установка системы с надлежащим заземляющим оборудованием и соблюдение надлежащих инструкций по установке может сократить возможное время простоя, а также дорогостоящий ремонт системной электроники.
Зачем нужна защита от заземления?
Большинство регистраторов данных и датчиков изготовлены из тонких кремниевых чипов, таких как микропроцессоры и другие интегральные схемы.Это оборудование может быть легко повреждено переходными напряжениями, такими как скачки и скачки напряжения. Эти скачки и всплески могут привести к необратимым повреждениям, например, удару молнии поблизости электронику и провода. Они также могут вызывать небольшие скрытые отказы, которые разрушают оборудование и со временем вызывают необратимые повреждения. Эти небольшие скрытые сбои являются наиболее сложными для диагностики сбоями, потому что кажется, что электроника просто вышла из строя в один прекрасный день, когда на самом деле система была склонна к непрерывным периодическим скачкам и скачкам напряжения, постоянно ухудшающим ее производительность.
Применение надлежащих методов заземления не только защищает от разрушительных скачков и скачков напряжения, но, что еще более важно, предохраняет систему от негативных последствий скрытых сбоев системы.
Что вызывает скачки и скачки напряжения?
Скачки и скачки напряжения, которые повреждают схемы регистраторов данных и датчиков, проходят через самую простую точку доступа: кабели, которые входят в регистратор данных и выходят из него. Эти кабели могут быть проводами, передающими сигналы датчиков, или коаксиальным радиочастотным кабелем, или телефонными проводами, обеспечивающими телеметрическую связь.Эти скачки и скачки напряжения чаще всего вызываются:
1. Молния
2. Другие электрические системы
3. Электростатический разряд (ESD)
Молния
Молния — это наиболее часто встречающийся скачок напряжения или скачок напряжения, приводящий к повреждению. электронные устройства.
Молния может повредить систему двумя способами: прямым ударом или переходными скачками напряжения, которые распространяются от прямого удара в близлежащие области. Ничто не может предотвратить повреждение от прямого удара молнии.При установке систем в местах, подверженных ударам молний, или там, где телеметрические столбы или антенны расположены на большей высоте, чем их окружение, следует устанавливать громоотводы. Громоотводы не притягивают молнию; они просто отводят удары молнии от прямого поражения близлежащих участков. Тогда устройства защиты от перенапряжения могут защитить от разрушительных скачков напряжения, возникающих при прямом ударе. Как и все устройства защиты от перенапряжения, молниеотводы должны быть правильно заземлены, чтобы быть эффективными. Более подробная информация представлена ниже в разделе «Установка».
Удар молнии может показаться редкостью, но он встречается чаще, чем можно было бы подумать. Повреждения от ударов молнии, проходящих по телефонным линиям или коаксиальным радиочастотным кабелям, возникают часто и разрушают регистраторы данных, датчики и телеметрические модемы. Кроме того, скачки напряжения могут вызвать скрытые непредвиденные сбои, которые выйдут из строя в более позднее время.
Другие электрические системы
Скачки могут исходить изнутри здания или объекта от таких вещей, как факсы, копировальные аппараты, кондиционеры, лифты и / или двигатели / насосы, и это лишь некоторые из них.Эти устройства обычно работают от высокого переменного напряжения. Лучше всего держать оборудование для регистрации данных об окружающей среде, включая кабели датчиков, подальше от таких устройств, поскольку сигналы, генерируемые электродвигателями, вызывают большие шумы в сигнале.
Электростатический разряд (ESD)
Электростатический разряд, называемый ESD, возникает в результате трения двух непроводящих материалов друг о друга. Это заставляет электроны переходить от одного непроводящего материала к другому. Электростатический разряд — это шок, вызываемый прикосновением к дверной ручке после перетасовки по ковру.Этот электростатический разряд обычно превышает 10 кВ (10 000 вольт) и может серьезно повредить чувствительную электронику. Большинство, если не все, регистраторы данных и датчики, представленные сегодня на рынке, имеют встроенную защиту от электростатического разряда для защиты при обращении с ними. Кроме того, редко приходится обращаться с печатной платой напрямую при установке и обслуживании системы регистрации данных об окружающей среде. Однако всегда следует проявлять осторожность при обращении с электронными схемами, чтобы избежать разряда. Этого можно достичь, используя заземляющий браслет, прикоснувшись к металлическому объекту, чтобы разрядить накопившиеся электроны перед работой со схемами, и избегая работы на ковре при работе с печатными платами.
Как работают устройства защиты от перенапряжения (SPD)
Устройства защиты от молний и перенапряжений работают, направляя скачки и скачки напряжения от электрических компонентов, которые они защищают, и рассеивая их на поверхность заземления, такую как земля или медная труба внутри здания. Таким образом, каждая система заземления состоит из двух основных компонентов: устройства защиты, которое направляет сигналы повреждения, и заземляющего соединения, на которое направляются сигналы. Важно, чтобы оба компонента были на месте и использовались надлежащим образом.Одно без другого или одно правильно реализованное с неправильным выполнением другого — это то же самое, что и отсутствие системы защиты от перенапряжения.
Типы устройств защиты
Существует несколько областей защиты устройств мониторинга окружающей среды, таких как:
— Входящая мощность от батареи или источника постоянного напряжения
— Защита от перенапряжения переменного тока
— Кабели беспроводной передачи, такие как коаксиальные кабели, используемые для радио-, сотовой или спутниковой телеметрии
— Телефонные линии при использовании стационарной телефонной телеметрии
— Защита входа датчика
Защита линии питания
Предохранители обычно представляют собой одноразовые устройства, которые защищают от напряжения или токовые перегрузки, а также короткие замыкания от источника питания системы экологического мониторинга.Предохранители состоят из корпуса, содержащего металлическую проволоку, которая плавится при нагревании заданным электрическим током, называемым отключающей способностью. Это предотвращает попадание электрического скачка на чувствительную электронику, к которой подключен предохранитель.
Предохранители следует выбирать на основе:
— Номинальная отключающая способность, которую для любого предохранителя следует выбирать чуть выше максимального ожидаемого тока системы
— Уровень напряжения системы и номинальное напряжение предохранителя
— Упаковка предохранителей.Предохранители бывают многих стандартных размеров и типов, например, стеклянные картриджи, вставные и т. Д. Выберите упаковку, которая поддерживается вашим оборудованием.
Существуют и другие предохранители, такие как автоматические выключатели или сбрасываемые предохранители, но они обычно не используются. Автоматические выключатели лучше подходят для больших токов, как в сети переменного тока, в отличие от напряжений постоянного тока в системах окружающей среды. Восстанавливаемые предохранители в несколько раз дороже стандартных предохранителей, которые широко используются в системах мониторинга окружающей среды.
Устройства защиты от перенапряжения переменного тока
Устройство защиты от перенапряжения переменного тока ограничит влияние скачков напряжения в линиях электропередачи переменного тока на дорогостоящее оборудование для мониторинга. Устройство защиты от перенапряжения переменного тока может быть таким же простым, как и устройство, приобретенное в универмагах для использования в домашних условиях. Обратите внимание, что блоки питания намного шире, чем простой кабель питания переменного тока, и могут покрывать более одного слота на типичном сетевом фильтре.
Защита также может быть получена от источников питания переменного тока в постоянный или зарядных устройств переменного тока.Источники питания переменного тока в постоянный бывают двух типов: импульсные и преобразующие. Импульсные источники питания небольшие, легкие и недорогие, поскольку в них используются интегральные схемы для преобразования переменного тока в постоянный. Преобразовательные источники питания обычно более громоздкие, тяжелые и более дорогие, чем импульсные источники питания, поскольку они используют большую катушку провода, называемую трансформатором, для преобразования переменного тока в постоянный ток. Однако блоки питания-трансформеры обычно более прочные и обеспечивают хорошую защиту систем мониторинга.Если мощность переменного тока резко возрастет, это приведет к повреждению подключенного к нему оборудования, но преобразующий источник питания выйдет из строя и повредит только себя, защищая оборудование, которое он питает. С другой стороны, импульсный источник питания, если он не указан в спецификации, может посылать повреждающее напряжение на систему, которую он питает.
Примечание. При покупке устройства защиты от перенапряжения переменного тока оно должно соответствовать стандарту UL 1449. Этот рейтинг присваивается лабораторией андеррайтеров и означает, что устройство было протестировано на защиту от скачков напряжения.Это также указывает на то, что устройство соответствует стандартам термического предохранителя 1998 года, что означает, что оно будет отключать питание во время сильных скачков напряжения, в конечном итоге не давая ему воспламениться.
Защита беспроводной телеметрии
Существует несколько видов устройств для защиты беспроводной телеметрии от сигналов радио, сотовой или спутниковой связи. К ним относятся:
— Ограничители воздушного зазора
— Газоразрядные трубки
— Изоляторы питания
Примечание. При выборе любого устройства беспроводной защиты убедитесь, что устройство рассчитано на диапазон частот, в котором работает ваше беспроводное устройство.Например, безлицензионное радио с расширенным спектром может работать в диапазоне от 902 МГц до 928 МГц. Следовательно, с этой системой следует использовать устройство беспроводной защиты, используемое с этой телеметрией.
Грозовые разрядники с воздушным зазором являются наименее дорогими и наименее защищенными из беспроводных устройств защиты телеметрии. Первоначально разработанные для защиты старых ламповых телевизоров, эти устройства не обеспечивают достаточной защиты для устройств на базе микропроцессоров, используемых сегодня. Они лучше, чем отсутствие защиты вообще, но не так надежны и не так хорошо спроектированы для защиты от скачков и скачков напряжения, как другие средства защиты беспроводной телеметрии.
Газоразрядные трубки обычно являются следующими наименее дорогими. Они защищают оборудование от скачков в высоких частотах и являются наиболее распространенной защитой для оборудования беспроводной передачи.
Силовые изоляторы намного дороже, но обеспечивают наиболее эффективную защиту. В изоляторах питания используется особый вид феррита для передачи высокочастотных беспроводных сигналов через магнитное поле вместо физического соединения.
Защита телефонной линии
В соответствии с Национальным электротехническим кодексом (статья 800-32), все устройства защиты от перенапряжения, подключенные к линиям наземной телефонной связи, должны быть протестированы и внесены в список UL.Установка определенных защитных устройств, не включенных в перечень, может противоречить местным, государственным и / или национальным строительным нормам. Установка устройства защиты стационарного телефона, не включенного в список UL, может повлечь за собой ответственность установщика в случае пожара.
Защита телефонной линии от перенапряжения необходима для любой системы мониторинга телефонной телеметрии. Хотя это может показаться ненужным, поскольку телефоны обычно не имеют внешней защиты от перенапряжения, модемы более подвержены скачкам напряжения, чем телефоны. Модемы содержат более тонкую электронику и обычно подключаются к дорогостоящему оборудованию.Разрушительный скачок напряжения через модем может и потенциально может повредить электронику, к которой он подключен.
Установка
Как упоминалось ранее, подключение к заземляющей пластине так же важно, как и само устройство защиты от перенапряжения. Для работоспособной системы электрического заземления требуется соблюдение надлежащих методов установки и подключение к соответствующим плоскостям заземления.
Выбор материала заземления
Любая система заземления после устройства защиты состоит из трех основных частей: плоскости заземления, заземляющего провода и соединения между ними.
Плоскость заземления:
1. Лучшие плоскости заземления:
a. Вбитые в землю стержни заземления с медным или медным покрытием
b. Медные водопроводные трубы или другие строительные площадки, такие как металлический каркас
c. Металлические корпуса и кожухи (которые, в свою очередь, должны быть заземлены на землю)
2. Заземляющие стержни должны быть из меди или оцинкованной стали и иметь минимальный диаметр 5/8 дюйма.
3. Алюминий не следует использовать при непосредственном закапывании почвы в качестве заземляющего стержня, поскольку щелочность почвы вытравливает металл.Это вызывает отключение и увеличение сопротивления между системой заземления и заземлением.
Заземляющий провод:
1. Для прокладки заземляющего провода используйте провода большого сечения (10 AWG или больше). Это важно, поскольку более толстый сечение провода вместе с коротким кабелем обеспечивает меньшее сопротивление заземляющего провода, сводя к минимуму падение напряжения во время скачков напряжения.
2. Кабель может быть одножильным или многожильным (при условии, что он достаточно толстого сечения).Провод может быть неизолированным или изолированным.
Связь между ними:
1. Следует избегать использования разнородных металлов для подключения устройства защиты от перенапряжения к плоскости заземления. Со временем соединение может изнашиваться и вызывать нежелательные эффекты в системе заземления, поскольку соединение будет ухудшаться из-за окисленных слоев, которые образуются между ними.
2. Провода заземления должны быть прикреплены к плоскости заземления (например, заземляющему стержню или медным водопроводным трубам) с помощью зажимов заземления.Обязательно выберите хомут, соответствующий размеру стержня или трубы.
3. Как медь, так и алюминий одобрены UL для использования в системах защиты заземления. Однако медь лучше проводит электричество и может использоваться в меньших калибрах.
Рекомендации по правильной установке:
1. Не перегибайте провода защиты от перенапряжения во время заделки. Предложите прямой путь к земле.
2. Делайте провода защиты от перенапряжения как можно короче, чтобы повысить эффективность и время реакции.
3. Держите устройство защиты от перенапряжения на расстоянии нескольких футов от защищаемого оборудования, чтобы обеспечить время срабатывания, достаточное для подавления переходного напряжения.
4. Убедитесь, что все системы подключаются к одной и той же точке заземления только один раз. Несколько путей к плану заземления создают в системе разные потенциалы напряжения, что может привести к переходным скачкам напряжения. Это просто означает, что для заземления вбейте в землю только один медный стержень.
Ссылки
http://www.ul.com/consumers/surge.html
http://www.isa.org/
http://www.littelfuse.com/data/en/Product_Catalogs/EC101-J_V052505.pdf
http://www.ul.com/lightning/
REV : 13G18
Заземление и молниезащита согласно NFPA 780 и 70.
Основная цель этого поста — создать план защиты L ighting P и план системы заземления с хорошим знанием стандартных ссылок.
NFPA 780 (молниезащита) КРАТКИЙ ОБЗОР.
A) Воздушные терминалы высотой 0,6 м по краю (в пределах 0,6 м от края крыши) с максимальным расстоянием 7,6 м. Высота молниеотводов 0,6 м с максимальным расстоянием 15 м. [4.8.2.1], [4.8.3].
B) Максимальная длина поперечного провода — 45 м. допускается без соединения поперечного проводника с основным периметром или токоотводом. [4.8.3].
C) Два токоотвода Минимум для конструкции любой формы с максимальным расстоянием между ними составляет 30 м.Если трасса проходит по железобетонным колоннам или внутри них, либо по колоннам из конструкционной стали, они должны быть соединены с арматурной сталью или конструкционным стальным элементом на их верхних и нижних концах с максимальным вертикальным расстоянием 60 м. [4.9.10.1].
D) Минимальный размер оголенной петли составляет 58 мм.кв. для класса II И 29 мм.кв. для класса I, В то время как обычно используется 25×3 мм (или 70 мм.кв.).
E) Заземляющие стержни должны иметь диаметр не менее 12,7 мм и длину 2,4 м и выходить вертикально не менее чем на 3 м в землю с минимальным расстоянием 6 м.[4.13.23].
F) Кольцевой электрод заземления , непосредственно контактирующий с землей, состоит не менее 6 м из неизолированного медного проводника сечением не менее 35 мм2. [NEC2011,250.52 (A) (4)] с минимальной глубиной 4,6 м ниже уровня земли должны быть соединены со стальными колоннами по периметру конструкции с интервалами в среднем не более 18 м. [4.16.4.1].
G) Обычно используется заземляющий провод контура 120 мм.кв.
H) G округление E лектрод C ондуктор в соответствии с показанной таблицей 250 NEC.66.
I) Рассматриваемый радиус сферы 46,0 м. [4.7.4].
J) На следующих рисунках показаны типовые планы систем.
План защиты освещения перекрытия крыши (типовой)
План системы освещения первого этажа (типовой)
Изометрия обычного здания (типовая)
K) На следующих рисунках показан эталонный размер кабеля NEC для ЗАЗЕМЛЕНИЯ.
Заземление оборудования до контура / стержня заземления В зависимости от размера фидера оборудования.
Заземление оборудования, работающего с питающим кабелем.
Показан другой заземляющий провод / электрод.
Соединение молниезащиты и заземления оборудования.
Нравится:
Нравится Загрузка …
Связанные
Заземление фотоэлектрической системы и молниезащита
Солнечная молниезащита важна, так как Удары молнии и соответствующий электрический разряд являются одной из основных причин внезапных, неожиданных отказов солнечных систем.
Освещение может серьезно повредить вашу фотоэлектрическую систему
Удары молнии и связанный с ними электрический разряд — одна из главных причин внезапных, неожиданных отказов солнечных систем.
Солнечные системы часто устанавливают на открытых пространствах, вдали от высоких строений, поэтому они более подвержены ударам молнии и связанным с ними повреждениям.
Это распространенный миф, что только большая видимая молния в непосредственной близости от солнечной системы может нанести ущерб. Также скачки высокого напряжения или переходные токи, вызванные невидимыми ударами на большом расстоянии от солнечной системы, могут вызвать повреждение.Вы можете быть удивлены тем, что даже молнии между облаками часто бывает достаточно, чтобы нанести значительный ущерб.
Хорошая новость: урон от молнии можно предотвратить
За счет правильного заземления системы вы можете избежать повреждения чувствительных компонентов солнечной системы.
Заземление — это метод электрического соединения части системы с землей с помощью проводящего материала и ключевой метод защиты от солнечной молнии.
Землю можно рассматривать как море бесконечного электричества.Любой заряд / ток, который передается на землю, безопасно поглощается ею.
Заземление основано на принципе обеспечения прямого канала с низким сопротивлением для очень высоких токов, которые достигают земли и поглощаются, не причиняя вреда оборудованию или людям.
Правильное заземление достигается несколькими способами, но наиболее распространенным является использование заземляющих стержней .
Как работает заземляющий стержень?
Для небольших солнечных систем вы можете реализовать заземление, вставив в землю металлический заземляющий стержень длиной 8 футов, сделанный из проводящего материала , такого как медь или алюминий, .После вы подключите к этому стержню все токопроводящие части системы с помощью толстых проводов.
Для более крупных систем рекомендуется создать сеть заземления .
Заземляющая сетка представляет собой соединение нескольких заземляющих стержней, расположенных на расстоянии примерно 10 футов друг от друга и соединенных с помощью неизолированного медного проводника (минимальный размер — 6 AWG).
После того, как сеть сформирована, заземление достигается путем соединения всех проводящих частей системы с сеткой заземления с помощью толстых проводов .
Солнечная молниезащита
Что необходимо заземлить?
После понимания основ заземления солнечной системы важно понять, что нужно заземлить.
Не каждый компонент требует заземления из-за его механических свойств. Ниже приводится список некоторого оборудования, которое необходимо заземлить:
- Алюминиевая рама солнечных модулей.
- Наружная рамка инвертора
- Вся проводка должна быть заземлена.Один из способов заземления проводки — это проложить всю проводку в металлическом кабелепроводе и затем закопать ее под землей.
Другой способ, если вы используете кабельные лотки для прокладки кабелей, — это заземлить кабельные лотки по всей их длине.
- Отрицательная сторона системы питания.
Предупреждение
- Во многих юрисдикциях, провинциях и странах существует закон о надлежащем заземлении вашей электрической системы.
- Выполнение любых электромонтажных работ может привести к травме или поражению электрическим током.Если вы не уверены в своей способности правильно подключить вашу систему, наймите электрического подрядчика или электрика, имеющего лицензию .
Во многих юрисдикциях, провинциях и странах получение разрешений и выполнение электромонтажа выполняются лицензированным электриком или подрядчиком по электрике.
Молниезащита и заземление | Hunter Industries
Надлежащее заземление декодирующих систем является частью установки, требующей рассмотрения.Правильно заземленные системы декодирования работают очень хорошо даже в регионах с высокой степенью освещения. Плохое заземление часто приводит к ненужным потерям оборудования и простоям при поливе.
Правила заземления для контроллеров декодера I-CORE такие же, как и для обычных контроллеров I-CORE. Большой наконечник заземления предназначен для подключения неизолированного медного провода к заземляющему оборудованию.
Ограничители перенапряжения
Hunter DUAL-S должны использоваться во всех двухпроводных системах DUAL. Ограничитель перенапряжения DUAL-S подключается непосредственно к двухпроводному тракту, чтобы минимизировать повреждения от ударов молнии.Требуемый объем защиты от перенапряжения зависит от того, насколько подвержена воздействию молнии область и насколько хорошо установка должна быть защищена. В дополнение к заземлению контроллера минимальный рекомендуемый уровень защиты — один DUAL-S с заземлением на конце каждого двухпроводного тракта и один DUAL-S с заземлением на каждые 1000 футов / 300 м или двенадцатый декодер. Для более высокого уровня защиты чаще подключайте ограничители перенапряжения.
Подобно декодерам DUAL, DUAL-S защищен от влаги и должен быть помещен в отдельную клапанную коробку.Важно, чтобы и контроллер, и ограничители перенапряжения были заземлены на заземляющие стержни или пластины с сопротивлением менее 10 Ом. Используйте заземляющие электроды, которые внесены в список UL или соответствуют минимальным требованиям Национального электрического кодекса (NEC), а также местных норм. Как минимум, цепь заземления для контроллеров будет включать стальной заземляющий стержень с медным покрытием или медную пластину заземления.
Медные заземляющие стержни должны иметь минимальный диаметр 5⁄8 дюйма / 1,5 см и минимальную длину 8 футов / 2.5 мес. Они должны быть вбиты в землю на расстоянии от 8 до 10 футов / от 2,4 до 3 м от оборудования или подключенных к нему проводов под прямым углом к двухпроводному тракту. Установите все компоненты цепи заземления прямыми линиями. Когда необходимо сделать изгибы, не делайте резких поворотов.
Медные заземляющие пластины в сборе, предназначенные для заземления, имеют минимальные размеры 4 «x 36» x 0,0625 «(100 мм x 2,4 м x 1,58 мм). Непрерывная длина 25 футов (8 м) (соединения не допускаются, если не используется процесс экзотермической сварки ) сплошного неизолированного медного провода 6 AWG необходимо прикрепить к пластине с помощью утвержденного процесса сварки.
Измеренное сопротивление заземления должно быть не более 10 Ом. Если сопротивление превышает 10 Ом, можно установить дополнительные пластины заземления и PowerSet®. Требуется, чтобы почва, окружающая медные электроды, постоянно поддерживалась при минимальном уровне влажности 15 процентов за счет выделения станции орошения в каждом месте контроллера.
DUAL-S Установка
Ограничители перенапряжения
DUAL-S следует устанавливать в конце каждого двухпроводного тракта и с интервалами 1000 футов / 300 м или каждого двенадцатого декодера.Последний декодер в любом проводе должен быть заземлен. Это включает в себя окончательные декодеры в каждом из разных плеч «Т», если длина плеча превышает 500 футов / 150 м.
Установка ограничителя перенапряжения на линии
Питание контроллера должно быть ВЫКЛЮЧЕНО при установке защиты от перенапряжения на двухпроводном тракте.
Выберите место для разрядника DUAL-S.
Найдите двухпроводной путь от контроллера (обычно красный и синий провода).Чтобы вставить ограничитель перенапряжения, путь провода необходимо обрезать, если вы не заменяете существующий разрядник.
Найдите пару красных / синих проводов от DUAL-S и подключите один красный провод к одному красному с одной стороны двухпроводного тракта. Скрутите красные провода вместе и закройте соединение прилагаемыми водонепроницаемыми разъемами. Повторите то же самое для синего провода.
Подключите вторую пару красно-синих проводов от DUAL-S к другой стороне двухпроводного тракта.Закройте соединения прилагаемыми водонепроницаемыми соединителями.
Прикрепите заземляющее устройство к медному проводу от DUAL-S, следуя рекомендациям производителя по установке. Провод к заземляющему оборудованию должен быть проложен под прямым углом к двухпроводному тракту, на расстоянии минимум 8 футов / 2,5 м от тракта. Заземляющее оборудование не должно находиться в той же клапанной коробке, что и ограничитель перенапряжения.
Установка ограничителя перенапряжения на линии
- Провод массы декодера
- Сплошной неизолированный медный экранирующий провод
- Поместите пластину заземления в траншею шириной 6 дюймов (15 см) перпендикулярно экранирующему проводу, 8 футов (2.На расстоянии 5 м, на глубине 36 дюймов (1 м) ниже уровня земли. Равномерно окружите пластину материалом PowerSet.
Установка ограничителя перенапряжения в конце линии
Питание контроллера должно быть ВЫКЛЮЧЕНО при установке защиты от перенапряжения в двухпроводном тракте.
Найдите конец двухпроводного тракта от контроллера (обычно красный и синий провода).
Найдите две пары красных / синих проводов от ограничителя перенапряжения DUAL-S.Скрутите три красных провода вместе и надежно вставьте их в прилагаемую гайку. Закройте соединение, вставив проволочную гайку в водонепроницаемую смазку разъема и наденьте колпачок на провода.
Повторите процедуру для синих проводов.
Прикрепите пластину заземления или заземляющий стержень к оголенному медному проводу от DUAL-S в соответствии с рекомендациями производителя по установке.
Установка ограничителя перенапряжения на оконечной линии
- Провод массы декодера
- Сплошной неизолированный медный экранирующий провод
- Поместите пластину заземления в траншею шириной 6 дюймов (15 см) перпендикулярно экранирующему проводу, 8 футов (2.На расстоянии 5 м, на глубине 36 дюймов (1 м) ниже уровня земли. Равномерно окружите пластину материалом PowerSet.
Заземление и заземление молниезащита и подавление перенапряжения
Заземление: управление, передача, поведение
В то время как воздухораспределители и устройства защиты от перенапряжения действуют как регулятор напряжения, токоотводы и система заземления являются основой для передачи этой мощности и ее безопасной передачи на землю по известному пути наименьшего сопротивления. система защиты дома.Конструктивными элементами системы и элементами защиты от перенапряжения являются наземные защитные устройства.
Что такое заземление?
Заземление — это намеренное подключение к земле с целью ограничения напряжения, создаваемого молнией или скачками напряжения в сети. Безопасная передача напряжения как от прямых ударов молнии, так и от скачков напряжения зависит от точно спроектированных систем заземления.
Без конструкции заземления / заземления / соединения с низким удельным сопротивлением ни одна система не может обеспечить полную защиту.Вот почему наша шеститочечная система основана на создании единой системы заземления, которая поддерживает очень низкое сопротивление 10 Ом или меньше.
Заземление во Флориде требует специальных навыков
Наш процесс заземления разработан с учетом уникальной геологии Флориды. Из всех геофизических свойств горных пород удельное электрическое сопротивление является наиболее изменчивым. Могут встречаться значения, варьирующиеся до 10 порядков, и даже отдельные типы горных пород могут отличаться на несколько порядков.Электропроводность грунтовых материалов зависит от содержания металлов (сульфидов) в породе, пористости, содержания глины, проницаемости и степени насыщения пор.
Удельное сопротивление почвы — один из ключевых факторов, определяющих сопротивление системы заземления. Конструкция любой системы заземления должна включать точное измерение удельного сопротивления почвы, и лучший метод определения удельного сопротивления почвы — это четырехточечный метод.
Современные наземные испытания
Мы проводим 4-точечный метод Веннера (4-полюсный метод сопротивления заземления) с использованием прибора AEMC — тестера заземления модели 6470-B.Мы единственная компания в этой области, проводящая такое тестирование. В рамках наземных испытаний мы предоставляем отчет об удельном сопротивлении почвы, в котором подробно описывается сопротивление земли вокруг вашего дома.
Ваш дом во Флориде будет построен на земле со значительным количеством песка. Песок / кварц — отличный изолятор, а НЕ хороший заземляющий материал. Кроме того, наличие рыхлых частиц песка снижает его проводимость. В результате, в большей степени, чем в других районах страны с более проводящими почвами и камнями, опыт заземления и набор навыков установщика систем молниезащиты имеют решающее значение.У нас есть оборудование, знания и опыт для проведения четырехточечных испытаний, которые включают подробный отчет об уровне сопротивления грунта для местного грунта.
Ваш подрядчик имеет опыт, лицензию и сертификацию?
В связи с высоким риском молнии во Флориде и особыми требованиями к заземлению в нашем районе, необходимо, чтобы выбранный вами подрядчик обладал опытом и навыками, необходимыми для разработки и установки системы заземления в соответствии со стандартами. Как сертифицированный подрядчик по электричеству в штате Флорида (номер лицензии: EC13002297), мы гарантируем, что ваша домашняя система будет установлена обученными и сертифицированными специалистами.Имея более чем 25-летний опыт работы в Сарасоте и штате Флорида, вы можете рассчитывать на нас в предоставлении надежных и точных услуг по проектированию и установке. Наши частные и коммерческие клиенты знают, что мы являемся частью надежной семейной компании, предоставляющей технические услуги, с заслуженной репутацией за выдающиеся достижения.
.