17.02.2025

Звезда треугольник пуск двигателя: Как подключить электродвигатель в схему звезда-треугольник – СамЭлектрик.ру

Содержание

в чем разница, особенности и основные отличия

Существует множество схем, которые помогут не терять напряжение в процессе работы того или иного прибора. В этой статье рассказано о том, как выполняется подключение трёхфазного двигателя «звездой» и «треугольником».

Плюсы и минусы подключения двигателя «звездой» и «треугольником»

Применение данного вида подключения помогает сделать неразрывную линию в электрической цепи. Схема называется так благодаря своей треугольной форме. Основные плюсы следующие:

  • при подключении получается наибольшая мощность приборов во время использования;
  • используется реостат для включения мотора;
  • заметно повышается крутящий момент;
  • создается сильное тяговое поле.

Внешний вид переключателя

Среди минусов выделяют только максимальные показатели пусковых токов, а также постоянное тепловыделение во время эксплуатации.

Обратите внимание! Этот вид соединения широко используется в мощных приборах, в которых есть максимальные токи нагрузки. Именно благодаря этому повышается электродвижущая сила, которая влияет на мощность крутящего момента.

Обозначение выводов как соединять

Основные различия между схемами

Ключевая разница между двумя видами соединений заключается в том, что при применении одной питающей электросети появляется возможность переключать различные значения напряжения на подсоединяемом приборе. В основном используется соединение обмоточных деталей по типу «звезды».

Применение подключения по треугольному принципу необходимо при включении в трехфазную цепь механизмов большой мощности, имеющих максимальные пусковые токи.

К главным плюсам соединения обмоточных элементов по схеме «звезды» относят такие параметры данного типа коммутации:

  • понижение мощностного параметра для увеличения надежности эксплуатируемого прибора;
  • стойкость и стабильность системы при беспрерывной работе привода;
  • вероятность плавного включения электромотора;
  • отсутствие нагрева корпуса агрегатов.

Схема переключения «звезда треугольник» асинхронного двигателя

Обратите внимание! Некоторые приборы в электрике имеют в своем составе внутреннее подсоединение концов обмоток в «звезду». Такие агрегаты не предназначены для использования при других вариантах соединения обмоток, и их нельзя переключить в сети.

Какая схема соединения лучше

Многие профессионалы рекомендуют в электродвигателях, где применяются одновременно два типа подключения — «звезда-треугольник», к подключению обмоток по схеме «звезда». Проще говоря, к их общей точке соединения подключать нейтраль от электросети. Это необходимо, потому что во время эксплуатации появляется большой риск асимметрии амплитуд разных фаз.

Как правильно подключать в трехфазную сеть

«Звезда» предусматривает, что края обмоток статора заключаются в одной точке, которая называется нулевой либо нейтральной, а начало обмоток — L. Поэтому двигатели небольшой мощности необходимо запускать только «звездой». Но при этом нельзя достигнуть паспортной мощности электрического двигателя.

Комбинированная схема

При соединении двигателя «треугольником» конец первой обмотки последовательно подключается к началу второй. Но такая схема сильно повышает пусковые токи, из-за чего прибор перегревается, и повреждается изоляционный слой.

Соединить при помощи конденсатора

Для применения асинхронного двигателя от обычной электросети 220 В используют фазосдвигающий конденсатор. Благодаря этому агрегат более плавно запускается. Способы подключения конденсаторов к электросети 220 В:

  • с выключателем;
  • без выключателя;
  • с использованием трансформаторов;
  • параллельный запуск двух электролитов.

Схема обмоток электродвигателя

В любом случае использование вышеописанных схем необходимо, чтобы потребитель мог корректно подключить приборы к любой сети и запустить их без потери напряжения. Также с помощью схем можно увеличить напряжение и понизить пульсацию.

Разница схемы звезда и треугольник

Специфика трехфазных электрических сетей предусматривает два варианта подключения трехфазных нагрузок – звездой и треугольником. Это касается фазных обмоток в трехфазных электродвигателях, обмоток трансформаторов или нагревательных элементов электрических котлов. При этом для звезды начала всех обмоток соединяются с фазными проводами, а концы обмоток соединены в нулевую (нейтральную) точку. В случае соединения треугольником конец предыдущей обмотки соединяется с началом последующей, образуя равносторонний треугольник, а все 3 фазы подключаются к его вершинам (точкам соединения).

Однако геометрические схемные различия не единственное, что отличает звезду от треугольника. Рассматривая на примере активной нагрузки, представленной тремя ТЕНами, видим, что в случае соединения звездой при выходе из строя одного нагревателя, двое остальных, подключенных последовательно на линейное напряжение остаются работать, а вот при поломке сразу двух перестает работать и третий. Если все три ТЕНа подключены треугольником, то каждый из них работает от линейного напряжения (380 в) и нагреватель сохраняет работоспособность даже при выходе из строя двух элементов.

Схема подключения и мощность асинхронных электродвигателей

Иначе сказываются схемы подключения обмоток статора в асинхронных двигателях. Дело в том, что при подключении их звездой или треугольником мощность двигателя меняется в три раза. То есть в случае подключения трехфазных асинхронных электродвигателей предназначенных для работы в подключении звездой при 380 вольтах трехфазного напряжения, треугольником их мощность увеличивается втрое. При таком режиме двигатель просто сгорает, но если у двигателя, рассчитанного на работу при подключении треугольником в те же 380 В обмотки статора соединены звездой, то его мощность упадет в три раза.

Последнее свойство нашло широкое применение в схемах пуска электрического двигателя. При запуске электродвигателя величина пускового тока может до 10 раз превышать номинальные значения. Влияние пусковых нагрузок негативным образом сказывается на напряжении в сети и на работе подключенного к ней оборудования.

С целью снижения пусковых токов электродвигатель включается по схеме пуска звезда-треугольник, при которой до момента разгона он подключен звездой, а при достижении номинальных оборотов на валу переключается на схему треугольника. Для возможности реализации схемы переключения звезда-треугольник большинство мощных электродвигателей имеют отдельные выводы обмоток статора, сама коммутация обеспечивается применением контакторов.

Таким образом каждая из схем включения имеет свои достоинства. Для треугольника это достижение максимальной мощности, хотя требует строгого соблюдения эксплуатационных режимов, преимуществами соединения звездой можно назвать:

  • плавный пуск;
  • работу в номинальном режиме;
  • нормальную реакцию на кратковременные перегрузки;
  • оптимальные температурные режимы.

Схемы подключения обмоток генераторов

В отношении электрогенераторов схемы подключения обмоток тоже имеют свои отличия. Как и нагрузка, они также могут включаться по схеме звезды или треугольника, однако мощность генератора при этом остается неизменной. Изменения касаются выходного напряжения, так если обмотки генератора соединяют звездой, то выходное напряжение будет в √3 раз ниже, нежели при соединении треугольником, но поскольку мощность остается неизменной, то при увеличении напряжения значение тока падает на этот же множитель.

Смотрите также другие статьи :

Перекос фаз, в чем опасность

Перекосом фазных напряжений в трехфазных электрических сетях называют несовпадение величин последних, вызванное, как правило, неравномерностью распределения нагрузок.

Подробнее…

УЗО и дифавтомат в чем разница

Если необходимо быстро определить, дифавтомат или УЗО перед вами, то необходимо обратить внимание на маркировку, на диф. автомате рядом с номинальным током стоит какая например буква С или В, что указывает на категорию расцепителя, если же стоит маркировка с указанием ампер (буква А), то это однозначно УЗО. Ниже на фото видно, в верхнем ряду установлены именно диф. автоматы, а в нижнем ряду УЗО.

Подробнее…

Схемы звезда и треугольник


Асинхронные двигатели используются повсеместно и обладают массой неоспоримых достоинств. Но в первую очередь двигатель необходимо правильно подключить. От выбранного способа будет зависеть эффективность его работы в конкретной электрической сети с конкретными характеристиками. Подключить двигатель можно соединив концы статорной обмотки по методу звезды или по методу треугольника. Чем отличаются эти способы подключения?


Основные отличия.


При соединении звездой нагрузка сети подается на начало фаз, а концы фаз соединяются между собой в одной точке. В графическом виде это выглядит так, как будто фазы расходятся из центральной точки в разные стороны, как лучи, образующие звездочку. Отсюда и родилось такое название данного метода подключения. Как правило, нулевой проводник также подключается в эту точку.


Метод треугольника подразумевает соединение конца одной обмотки с началом следующей. То есть конец первой обмотки соединяют с началом второй, конец второй обмотки с началом третьей, а конец третьей обмотки уже замыкается на начале первой. Если представить это в виде схемы, то получится замкнутый треугольник, что оправдывает данное название. Питающие фазы подключаются к местам соединения обмоток.


Достоинства и недостатки.


Каждый способ имеет как ярко выраженные преимущества, так и неизбежные недостатки. Соединенные звездой обмотки дают возможность электродвигателю работать более плавно и мягко. Особенно это касается пусковых токов, которые на порядок ниже, чем при соединении треугольником. Но плавность работы происходит за счет частичной потери мощности. То есть при соединении звездой двигатель просто не способен выйти на максимальную паспортную мощность.


А вот при использовании метода треугольника можно создать максимальный вращающий момент при запуске и выйти на полную рабочую мощность. Если говорить в цифрах, то мощность может в полтора раза превышать ту, которая возможна при соединении звездой. Главный недостаток метода треугольника — это высокие значения пусковых токов.


Справедливости ради стоит отметить, что соединение треугольником допустимо не во всех случаях. Если линейное напряжение составляет 380В, а рабочее напряжение двигателя 380/220В, то задействуется только схема звезды. Ошибочный выбор схемы подключения вызовет выход двигателя из строя прямо во время работы.


Практическое применение.


На практике для управления запуском электрических двигателей часто используют объединенную схему «звезда-треугольник». Сначала происходит включение по методу звезды. Это позволяет снизить пусковой момент и дать возможность двигателю поработать в номинальном режиме на пониженных оборотах. И только потом режим работы сменяется на метод треугольника, чтобы выйти на максимальную нагрузку.


Такое сочетание рабочих схем делает процесс запуска электродвигателя максимально безопасным для самого оборудования и питающей его сети. Снижается риск сокращения ресурса двигателя или преждевременного выхода из строя. Реализовать последовательность «звезда-треугольник» можно с помощью пусковых реле.


Однако необходимо учитывать момент, который касается высоконагруженных двигателей. Поскольку при соединении звездой вращающий момент ослаблен, то наличие чрезмерной нагрузки на валу в момент запуска может обернуться выходом двигателя из строя. Так что для таких двигателей запуск производят сразу по схеме треугольника. Знание подобных нюансов и правильность выбора той или иной схемы — это гарантия безотказной работы и залог длительной эксплуатации оборудования.

Схема пуска двигателя звезда-треугольник в формате dwg

Представляю Вашему вниманию схему пуска двигателя с переключением обмоток статора со «звезды» на «треугольник» выполненную в программе AutoCad в формате dwg.

Перед тем как перейти к принципу работы схемы, давайте разберемся, а зачем нужно выполнять пуск асинхронного двигателя с переключением обмоток статора со «звезды» на «треугольник».

Связано это с тем, что при прямом пуске двигателя, возникают большие пусковые токи превышающие номинальный ток двигателя в 5 – 10 раз и используя схему переключения обмоток двигателя со звезды на треугольник, мы тем самым уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального.

Подробно об изменении мощности при схеме соединении двигателя звезда-треугольник рассмотрено в статье: «Расчет мощности двигателя при схеме соединения звезда-треугольник».

Принцип работы схемы пуска двигателя звезда-треугольник

Перед пуском двигателя следует предварительно включить автоматический выключатель QF1. Затем, для пуска двигателя, следует нажать кнопку SB2 «ПУСК». Срабатывает контактор КМ1 , замыкаются его силовые контакты, контактом КМ1. 1 мы шунтируем кнопку SB2, тем самым создаем самоподхват кнопки, так как кнопка у нас используется с самовозвратом.

Одновременно с контактором КМ1, срабатывает реле времени КТ1. Через нормально закрытые контакты КТ1.1 и КМ2.1 срабатывает контактор КМ3 и своими силовыми контактами соединяет обмотку статора двигателя «звездой».

По истечению времени, контакт реле времени КТ1.1 в цепи контактора КМ3 разомкнется, отключая контактор КМ3. В это же время, контакт реле времени КТ1.2 замкнется в цепи контактора КМ2 и своими силовыми контактами соединяет обмотку статора двигателя «треугольником».

Для защиты двигателя от перегрузки применяется тепловое реле КК1, в случае перегрева двигателя, контакт КК1.1 разомкнется, тем самым разомкнув цепь питания контакторов и двигатель отключится.

Если у вас двигатель не большой мощности от 0,06 до 7,5 кВт, можно вместо теплового реле использовать автоматический выключатель типа MS, у которого реализована функция тепловой защиты двигателя.

Хотел бы еще предложить альтернативную схему, в случае, когда возникли проблемы с выбором типа реле времени (например по габаритам не подходит) у которого должны быть контакты:

  • один размыкающий контакт, имеющий выдержку времени при срабатывании реле;
  • один замыкающий контакт, имеющий выдержку времени при срабатывании реле;

Предлагаю использовать следующую схему с использованием реле времени, у которого есть только размыкающий контакт и дополнительно промежуточное реле.

Принцип работы схемы следующий

При нажатии кнопки SB2 одновременно срабатывает реле времени КТ1 и промежуточное реле KL1, контакт KL1.1 мгновенно замыкается и через нормально закрытый контакт КМ2.1 срабатывает контактор КМ3.

Спустя определенное время, контакт КТ1.1 разомкнется, тем самым сняв напряжение с катушки реле KL1, в это время контакт KL1.1 размыкает цепь включения контактора КМ3, а в цепи включения контактора КМ2 замыкается, и если контакт КМ3. 1 замкнут, то включается контактор КМ2.

Данная схема может быть дополнена переключателем с выбором режимов: «Ручной», «Автоматически», электронным таймером, например насос может включается в определенное время суток и другими устройствами.

Если Вам нужна помощь в реализации схемы пуска двигателя звезда-треугольник, пишите в комментариях, постараюсь помочь.

Поделиться в социальных сетях

Пуск «Звезда — Треугольник»

Если асинхронный двигатель Вашего насоса (или другого механизма) запускается в режиме «Звезда — треугольник«, то: 

— на первом этапе пуска обмотки двигателя, ротор которого еще неподвижен, коммутируются на питающую сеть таким образом, чтобы получить конфигурацию «Звезда»;
— затем, через небольшой временной интервал, автоматически производится переключение обмоток в конфигурацию «треугольник».

Это наиболее часто применяемый способ снижения пусковых токов. При пуске в положении «звезда», у двигателя, специально используемого для таких пусков, ток на треть ниже, чем при пуске путем прямого включения общепромышленного двигателя. Такой метод относительно дешев, прост и надежен.

Для механизмов с небольшим моментом инерции, например погружных насосов, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса насоса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до номинальной скорости об/мин. требуется не более пары десятков периодов напряжения сети. Это означает также, что насос при отключении конфигурации «звезда» и перед переходом к «треугольнику» (переключении тока) очень быстро, практически сразу же, останавливается.
Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока. При переключении со «звезды» на «треугольник» механизм быстро останавливается, ЭДС вращения исчезает и во второй раз должен запускаться напрямую.
Из диаграммы на рисунке видно, что на втором этапе значительного сокращения амплитуды пускового тока уже не происходит. Уменьшается лишь длительность этой перегрузки. Поэтому можно заключить, что пуск «Звезда-треугольник» неэффективен для механизмов с малыми моментами инерции.

Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих соответственно более продолжительным моментом инерции. У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока. Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме «треугольник» приводит к его перегреву (вспоминаем курс «Электрические машины» и «ТОЭ», циркуляцию паразитной третьей и кратных ей гармоник внутри «треугольника» никому еще отменить не удалось) и, следовательно, сокращает срок службы.
Установки, содержащие погружные насосы с электродвигателями, включаемыми по этому методу, часто бывают дороже, чем с общепромышленными, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).

Плавный пуск электродвигателя.

Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления тиристорными или симисторными сборками, включаемыми последовательно со статорными обмотками. Электронный прибор УПП содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры, и силовой блок с встречно-параллельно включенными тиристорами/симисторами. С его помощью пусковой ток ограничивают, как правило, величиной, в 2–3 раза превышающей номинальный ток.  Наличие значительного момента инерции в процессе пуска может привести к увеличению теплообразования в электродвигателе и, тем самым, к снижению его срока службы.

Поэтому рекомендуется заменять схемы пуска «звезда-треугольник» на плавные электронные пускатели.

Тем более, что технически эта задача не представляет никакой сложности и асинхронный двигатель менять не нужно! При проведении такой замены,  рекомендуется соблюдать  в первую очередь «Правила облаштування електроустановок»приведенные здесь времена ускорения/ замедления для плавного пуска. В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 50%. Однако при нормальных условиях эксплуатации для электродвигателей, которыми оснащают насосы ведущие фирмы, этого не требуется .
При плавном пуске электродвигателя тиристорный силовой блок обеспечивает подачу тока несинусоидальной формы и создает высшие гармоники. В связи с очень коротким временем ускорения/торможения с практической точки зрения (и в нормах, касающихся высших гармоник) это не имеет продолжительного отрицательного влияния на питающую сеть. Однако может вносить помехи в работу контроллеров. Для исключения влияния помех желательна установка противопомеховых фильтров** на входе устройства плавного пуска.
Как показано, устройство плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме прямого присоединения к питающей сети. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска.

 

 

** этому вопросу вскоре будет посвящен отдельный раздел, хотя вопрос сам по себе дискуссионный!

Пуск переключением «звезда—треугольник» — Студопедия

Пуск переключением «звезда—треугольник» может применяться в случаях, когда выведены все шесть концов об­мотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 в и с соединением обмоток Y/ работает от сети 220 в. В этом случае при пуске обмотка статора включается в звезду (нижнее положение переключателя П), а при достижении нормальной скорости вращения переключается в треугольник (верхнее поло­жение переключателя П). При таком способе пуска по сравнению с прямым пуском при соединении обмотки в треуголь­ник напряжение фаз обмоток уменьшается в раза, пусковой момент уменьшается в раза, пусковой ток в фазах об­мотки уменьшается в раза, а в сети — в раза. Та­ким образом, рассматриваемый способ пуска равноценен автотранс­форматорному пуску при

Недостатком этого способа пуска по сравнению с реакторным и автотрансформаторным является то, что при пусковых переключениях цепь двигателя разрывается, что связано с возникновением коммутационных перенапряжений. Этот способ ранее широко применялся при пуске низковольтных двигателей, однако с увеличе­нием мощности сетей потерял свое прежнее значение и в настоящее время используется сравнительно редко.



Пуск двигателя с фазным ротором с помощью пускового рео­стата.

Двигатели с фазным ротором применяются значительно реже двигателей с короткозамкнутым ротором. Они используются в сле­дующих случаях:

1) когда двигатели с короткозамкнутым ротором неприемлемы по условиям регулирования их скорости вращения;

2) когда статический момент сопротивления на валу при пуске Мст велик и поэтому асинхронный двигатель с коротко­замкнутым ротором с пуском при пониженном напряжении непри­емлем, а прямой пуск такого двигателя недопустим по условиям воздействия больших пусковых токов на сеть;

3) когда приводимые в движение массы настолько велики, что выделяемая во вторичной цепи двигателя тепловая энергия вызывает недопустимый нагрев обмотки ротора в виде беличьей клетки.

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора. Применяются прово­лочные, с литыми чугунными элементами, а также жидкостные реостаты. По условиям нагрева реостаты рассчитываются на кратко­временную работу. Сопротивления металлических- реостатов для охлаждения обычно помещают в бак с трансформаторным маслом. Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически (в автоматизированных установках) с помощью контакторов или контрол­лера с электрическим при­водом. Жидкостный реостат представляет собой сосуд с электролитом (например, водный раствор соды или поваренной соли), в кото­рый опущены электроды.


Сопротивление реостата регулируется путем изменения глубины погружения электродов.

Рассмотрим пуск двигателя с фазным ротором с помощью сту­пенчатого металлического реостата, управляемого кон­такторами К.

Перед пуском щетки должны быть опущены на контактные коль­ца ротора, а все ступени реостата включены. Далее в процессе пуска поочередно включаются контакторы КЗ, К.2, К1. Характеристики вращающего момента двигателя М = f (s) и вторичного тока I2= f (s) при работе на разных ступенях реостата изображены на рис.

Предположим, что сопротивления ступеней пуско­вого реостата и интервалы времени переключения ступеней подо­браны так, что момент двигателя М при пуске меняется в пределах от некоторого Ммакс до некоторого Ммин и при включении в сеть (кривая 3 на рис.а). В начале пуска двигатель работает по характеристике 3, ротор приходит во вра­щение, скольжение s начинает уменьшаться, и при s=s3, когда М=Mмин, производится переключение реостата на вторую ступень. При этом двигатель будет работать по характеристике 2, и при даль­нейшем разбеге двигателя скольжение уменьшится от s=s3,, до s=s2, а момент — от значения М = Ммаксдо М = Ммин. Затем производится переключение на первую ступень и т. д. После выключения последней

ступени реостата двигатель переходит на ра­боту по естественной характеристике 0 и достигает установив­шейся скорости вращения.

При наличии у двигателя короткозамыкающего механизма после окончания пуска щетки с помощью этого механизма поднимаются с контактных колец и кольца замыкаются накоротко, а реостат возвращается в пусковое положение. Тем самым пусковая аппа­ратура приводится в готовность к следующему пуску. Необходимо отметить, что дистанционное управление короткозамыкающим ме­ханизмом контактных колец сложно осуществить; это затрудняет автоматическое управление двигателем. Поэтому в последнее время фазные асинхронные двигатели строятся без таких механизмов. При этом щетки постоянно налегают на контактные кольца, что несколько увеличивает потери двигателя и износ щеток. Количество ступеней пускового реостата с целью упрощения схемы пуска и уде­шевления аппаратуры в автоматизированных установках выбирается небольшим (обычно 2—3 ступени).

Пусковые характеристики асинхронного двигателя при реостат­ном пуске наиболее благоприятны, так как высокие значения мо­ментов достигаются при невысоких значениях пусковых токов.

Самозапуск асинхронных двигателей.

В электрических сетях в результате коротких замыканий случаются кратковременные, длительностью до нескольких секунд, большие понижения напряже­ния или перерывы питания. Включенные в сеть асинхронные дви­гатели при этом начинают затормаживаться и чаще всего полностью останавливаются. При восстановлении напряжения начинается одновременный самозапуск не отключившихся от сети двигателей.

Такой самозапуск двигателей способствует быстрейшему восстанов­лению нормальной работы производственных механизмов и поэтому целесообразен, а в ряде случаев даже чрезвычайно желателен. Од­нако одновременный самозапуск большого количества асинхронных двигателей загружает сеть весьма большими токами, что вызывает в ней большие падения напряжения и задерживает процесс восста­новления нормального напряжения.

Время самозапуска двигателей при этом увеличивается, а в ряде случаев величина пускового мо­мента недостаточна для пуска двигателя. Кроме того, самозапуск некоторых двигателей в подобных условиях недопустим, или невоз­можен (например, двигатели с фазным ротором с пуском с помощью реостата и двигатели с короткозамкнутым ротором с пуском с по­мощью реакторов и автотрансформаторов, не снабженные специаль­ной автоматической аппаратурой для автоматического самозапуска).

Поэтому целесообразно возможность самозапуска использовать только для двигателей наиболее ответственных производственных механизмов, а все остальные двигатели снабдить релейной защитой для их отключения от сети при глубоких падениях напряжения.

Регулирование скорости вращения асинхронных двигателей с короткозамкнутым ротором

Скорость вращения ротора асинхронного двигателя

Способы регулирования скорости вращения асинхронных двигателей можно подразделить на два класса:

1) регулирование скорости вращения первичного магнит­ного поля

что достигается либо регулированием первичной частоты f1, либо изменением числа пар полюсов р двигателя;

2) регулирование скольжения двигателя s при n/

В первом случае к. п. д. двигателя остается высоким, а во втором случае к. п. д. снижа­ется тем больше, чем больше s, так как при этом мощность сколь­жения

теряется во вторичной цепи двигателя (мощность скольжения ис­пользуется полезно только в каскадных установках).

Регулирование скорости изменением первичной частоты

Регулирование скорости изменением первичной частоты (частот­ное регулирование) требует применения источников питания с ре­гулируемой частотой (синхронные генераторы с переменной ско­ростью вращения, ионные или полупроводниковые преобразователи частоты и др.). Поэтому данный способ регулирования используется главным образом в случаях, когда для целых групп двигателей необходимо повышать (п > 3000 об/мин) скорости вращения (на­пример, ручной металлообрабатывающий инструмент, некоторые механизмы деревообрабатывающей промышленности и др.) или одновременно и плавно их регулировать (например, двигатели роль­гангов мощных прокатных станов и др.).

С развитием полупроводни­ковых преобразователей все более перспективным становится также индивидуальное частотное регулирование скорости вращения дви­гателей. Схему короткозамкнутого асинхронного двигателя с ча­стотным управлением при помощи полупроводниковых преобразо­вателей можно получить, если заменить явнополюсный ротор на ротор с обмоткой в виде беличьей клетки и питать эту схему от сети переменного тока через полупроводни­ковый выпрямитель. Управление инвертором при этом произво­дится особым преобразователем частоты вне зависимости от поло­жения ротора двигателя. Величина напряжения регулируется с помощью выпрямителя.

Если пренебречь относительно небольшим падением напряжения в первичной цепи асинхронного двигателя, то

Существенное изменение величины потока Ф при регулировании п нежелательно, так как увеличение Ф против нормального вызы­вает увеличение насыщения магнитной цепи и сильное увеличение намагничивающего тока, а уменьшение Ф вызывает недоиспользо­вание машины, уменьшение перегрузочной способности и увеличе­ние тока /.а при том же значении М и т. д. Поэтому в большинстве случаев целесообразно поддерживать Ф = const. При этом одновременно с регулированием частоты пропорционально ей необходимо изменять также напряжение, т. е. поддерживать

Отступление от этого правила целесообразно только в случаях, когда Мст быстро уменьшается с уменьшением п (например, приводы вентиляторов, когда ). В этом случае более быстрое умень­шение U1 по сравнению с f1 вызывает уменьшение Ф и улучшает энергетические показатели двигателя и в то же время уменьшение М,п с точки зрения перегрузочной способности не опасно.

При широком диапазоне регулирования правильнее поддер­живать

К недостаткам частотного регулирования относится громозд­кость и высокая стоимость питающей установки.

Регулирование скорости изменением

числа пар полюсов

Регулирование скорости изменением числа пар полюсов р ис­пользуется обычно, для .двигателей с короткозамкнутым ротором, так как при этом требуется изменять р только для обмотки статора. Изменять р можно двумя способами:

1) применением на статоре нес­кольких обмоток, которые уложены в общих пазах и имеют разные числа пар полюсов р;

2) применением обмотки специального типа, которая позволяет получить различные значения р путем изменения (переключения) схемы соединений обмотки.

Предложено значитель­ное количество различных схем обмоток с переключением числа пар полюсов, однако широкое распространение из них получили только некоторые. Применение нескольких обмоток

невыгодно, так как при этом из-за ограниченного места с пазах сечение проводников каждой из обмоток нужно уменьшать, что приводит к снижению мощности двигателя. Использование обмоток с переключением числа пар полюсов вызывает усложнение коммутационной аппаратуры, в особенности, если с помощью одной обмотки желают получить более двух скоростей вращения. Несколько ухудшаются также энергетические показатели двигателей.

Двигатели с изменением числа пар полюсов называются многоскоростными. Обычно они выпускаются на 2, 3 или 4 ско­рости вращения, причем двухскоростные двигатели изготовляются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении р2 : р1= 2 : 1, трехскоростные двигатели — с двумя об­мотками на статоре, из которых одна выполняется с переключением р2 : р1= 2 : 1, четырехскоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Например, двигатель на f1 = 50 гц с синхронными скоростями вращения 1500/1000/750/500 об/мин имеет одну обмотку с переключением на 2р = 4 и 8 и другую об­мотку с переключением на 2р = 6 и 12.

Многоскоростные двигатели применяются в металлорежущих и деревообрабатывающих станках, в грузовых и пассажирских лифтах, для приводов вентиляторов и насосов п в ряде других случаев.

Каждая фаза обмотки с переключением числа пар полюсов в отношении 2 : 1 состоит из двух частей, или половинок, с одинаковым количеством катушечных групп в каждой части.

Когда обе части обмотки обтекаются токами одинакового направле­ния, обмотка создает магнитное поле с большим числом полюсов (рис.а, 2р = 4), а при изменении направления тока в одной части обмотки на обратное число полюсов уменьшается вдвое (рис. б и в, 2р = 2). Подобные переключения производятся во всех фазах одновременно, и переключаемые части обмотки могут соединяться последовательно (рис. а и б) или парал­лельно (рис. в).

Ширина фазной зоны, зани­маемой сторонами катушек ка­тушечной группы, и величина шага обмотки в зубцовых деле­ниях одинаковы при обоих числах полюсов. Поскольку, однако, при переключении числа пар полюсов в отношении 2 : 1 полюсное деление изменяется в два раза, то величина фазной зоны в электрических градусах и относительный шаг обмотки при этом также изменяются в два раза.

Переключаемую обмотку вы­полняют так, что при меньшем числе пар полюсов (p1) фазная зона = 60° эл. Тогда при удвоенном числе пар полюсов ( ) ширина этой зоны = 120° эл

Нормальные одной фазы обмотки с переключением чередования фазных зон при одинаковом направлении вращения магнитного поля для обеих ско­ростей вращения должны быть такими, как показано на рис.2

Рис 1.

Рис 2.

Из рисунка видно, что, кроме изменения направлений токов в зонах X, Y, Z (рис. 2, а) на обратные (т. е. обращение их в зоны А, В, С), для сохранения направления вращения поля, а следовательно, и ротора при пере­ключении числа пар полюсов (рис.2, б) необходимо также пе­реключить концы двух фаз обмотки (например, фазы В и С).

Обмотка выполняется так, что ее шаг равен полному (180° эл.) при большем числе полюсов (2p2), так как кривая н. с. обмотки с зоной и =120° наиболее близка к синусоидальной при полном шаге. Тогда при меньшем числе полюсов относительный шаг

Из сказанного следует, что обмотка с переключением числа по­люсов создает н. с. с большей величиной высших гармоник поля, чем нормальная трехфазная обмотка с = 60° и . Это при­водит к некоторому ухудшению энергетических показателей двига­телей с переключением числа полюсов по сравнению с нормальными.

На рис. 3 пред­ставлена наиболее часто употребляемая схема обмо­ток с переключением числа пар полюсов в отношении р2 : p1 = 2 : 1.

Определим мощности и моменты, разви­ваемые двигателями с такими схемами обмоток при неиз­менном линейном напряже­нии сети Uл1 и наибольшем допустимом (номинальном) токе в по­луфазе обмотки Пренебрегая разницей в условиях охлажде­ния при изменении скорости вращения, можно принять, что ве­личина одинакова при обеих скоростях вращения. Приближенно можно считать, что коэффициенты мощности и к. п. д. при одинако­вых значениях для обеих скоростей вращения также одинаковы. При указанных условиях мощности на валу для схем рис. 3, а и б соответственно равны:

Рис. 3.

Вид механических характеристик двигателей со схе­мой обмоток рис. 3 изображен на рис.4

Рис 4.

При переключении много­ скоростной обмотки магнитные индукции на отдельных участках магнитной цепи в общем случае изменяются, что необходимо иметь в виду при проектирова­нии двигателя, чтобы, с одной стороны, добиться по возможности более полного использования материалов двигателя, а с другой, не допустить чрезмерного насыщения магнитной цепи.

Вес и стоимость многоскоростных двигателей несколько больше, чем у нормальных асинхронных двигателей такой же мощности. Тем не менее это лучший и» наиболее широко применяемый способ регулирования скорости короткозамкнутых двигателей.

Регулирование скорости уменьшением величины первичного напряжения.

При уменьшении U1 момент двигателя изменяется пропорционально и соответственно изменяются механические характеристики (рис. 1),

Рис 1.

в результате чего изменяются также значения рабочих скольжении s1,s2,s3 при данном виде зависимости — Очевидно, что регулирование s в этом случае воз­можно в пределах 0 < s < sm. Для получения достаточно большого диапазона регулирования скорости необходимо, чтобы активное сопротивление цепи ротора и соответственно sм, были достаточно велики (рис. 1, б).

Следует учитывать, что во вторичной цепи возникают потери, равные мощности скольжения P2 и вызывающие повышенный на­грев ротора.

Этот метод регулирования скорости применяется также для двигателей с фазным ротором, причем в этом случае в цепь ро­тора включаются добавочные сопротивления.

Рис. 2.

В связи с пониженным к. п. д. и трудностями регулирования напряжения рассматриваемый метод применяется только для двигателей малой мощности. При этом для регулирования U1 можно использовать регу­лируемые автотрансформато­ры или сопротивления, вклю­ченные последовательно в пер­вичную цепь. В последние годы для этой цели все чаще применяют (рис. 2) реак­торы насыщения, регулируе­мые путем подмагничивания постоянным током.

При изменении величины по­стоянного тока подмагничива­ния индуктивное сопротивле­ние реактора изменяется, что приводит к изменению напряжения на зажимах двигателя. Путем автоматического регулирования тока подмагничивания можно рас­ширить зону регулирования скорости в область s > sm и получить при этом жесткие механические характеристики.

Программа ПЛК

для пускателя двигателя звезда-треугольник

При запуске электродвигателя он потребляет большой ток, обычно в 5-6 раз превышающий нормальный ток.

В двигателях постоянного тока при пуске нет обратной ЭДС, поэтому начальный ток очень высок по сравнению с нормальным током.

Для защиты двигателя от высоких пусковых токов мы используем пускатель со звезды на треугольник.

Просто при соединении звездой напряжение питания двигателя будет меньше. поэтому мы используем соединение звездой во время пуска двигателя, после запуска двигателя мы изменим соединение со звезды на треугольник, чтобы получить полную скорость двигателя.

Читать статью полностью: Как работает стартер со звездообразным треугольником?

Стартер двигателя звезда-треугольник

На следующем рисунке последовательно показаны соединения обмоток в конфигурации звезды и треугольника.

Видно, что при соединении звездой один конец всех трех обмоток закорочен, чтобы образовать точку звезды, в то время как другой конец каждой обмотки подключен к источнику питания.

В конфигурации «треугольник» обмотки соединены таким образом, чтобы образовать замкнутый контур.

Подключение каждой обмотки показано на рисунке выше. В реальном двигателе трехфазные соединения предоставляются в следующем порядке, как показано на рисунке

.

Итак, чтобы в практическом двигателе выполнить соединение обмоток звездой и треугольником, соединение показано выше.

Главный подрядчик используется для питания обмоток. Его нужно постоянно включать. Первоначально контактор звезды замкнут, а контактор треугольника разомкнут. Это переводит обмотки двигателя в звезду.

Когда двигатель набирает скорость, контактор звезды размыкается, а контактор треугольник замыкается, переводя обмотки двигателя в треугольную конфигурацию.

Контакторы управляются с помощью ПЛК. В следующем разделе учебного пособия по ПЛК будет объяснено программирование лестничной диаграммы для пускателя двигателя со звездой-треугольником.

Программа ПЛК для пускателя двигателя звезда-треугольник:

Релейная логика ПЛК

Ступень 1 Главный контактор:

Главный контактор зависит от нормально разомкнутой входной пусковой кнопки (I1), нормально замкнутой кнопки останова (I2) и нормально замкнутого реле перегрузки.

Это означает, что главный контактор будет активирован только при нажатии кнопки пуска, в то время как останов не нажат и реле перегрузки не активировано. Нормально открытый вход с именем (Q1) добавляется параллельно кнопке пуска I1.

При этом создается кнопка, что означает, что после запуска двигателя он будет продолжать работать, даже если кнопка запуска будет отпущена.

Контактор ступени 2 звезды:

Контактор звезды зависит от главного контактора, нормально замкнутых контактов таймера (T1) и нормально замкнутых контактов выходного контактора треугольника (Q3).

Таким образом, контактор звезды будет активирован только в том случае, если главный контактор включен, выходной сигнал времени не активирован и контактор треугольник не включен.

Таймер T1:

Таймер T1 измеряет время, по истечении которого необходимо изменить соединение обмотки пускателя со звезды на треугольник. Он начнет отсчет времени после включения главного контактора.

Контактор звена 3 треугольник:

Контактор

Дельта будет включен, когда главный контактор (Q1) активирован, таймер T1 активирован, а контактор звезды (Q3) обесточен.

См. Также Программирование кнопки и другие требования для простого пускателя двигателя, которые объясняются в Руководстве по ПЛК: Пускатель двигателя

Примечание: этот пост предназначен только для образовательных или справочных целей. Для цепи под напряжением будут некоторые дополнения к указанной выше цепи, например, связанные с безопасностью, в соответствии с приложением, некоторые блокировки и т. Д.

статей, которые могут вам понравиться:
Масштабирование датчика ПЛК
Релейный шум в системах ПЛК
PLC Вопросы для интервью
Поиск и устранение неисправностей в системе ПЛК
Методы аналогового подключения ПЛК

Пускатели двигателей | RS Components

Пускатели двигателей | Компоненты RS

Пускатели электродвигателей

Пускатель двигателя — это устройство для управления двигателем, которое используется для запуска и остановки двигателя.Стартер — это электромеханический переключатель, похожий на реле, главное отличие состоит в том, что пускатель содержит контактор и защиту от перегрузки для предотвращения электрической перегрузки двигателя.

Типы пускателей двигателя

  • Пускатели прямого включения . Пускатели прямого включения (DOL) или поперечные пускатели являются наиболее распространенными пускателями общего назначения. Магнитный контактор подключает полное напряжение источника питания непосредственно к двигателю с реле перегрузки для защиты от короткого замыкания, при подаче питания на катушку контакторы соединяются, замыкая цепь и запуская устройство.Они используются для двигателей, которые должны работать только в одном направлении с одной скоростью.
  • Реверсивные пускатели прямого тока — эти пускатели двигателя могут запускать двигатель как вперед, так и назад. Эти трехкнопочные пускатели особенно полезны для конвейерного оборудования, где иногда требуется реверсирование направления.
  • Пускатель звезда-треугольник — пускатель двигателя с пониженным напряжением, предназначенный для управления трехступенчатым пускателем. Для запуска двигателя обмотки в этом пускателе переключаются между звездой и треугольником.Схема звезда-треугольник будет иметь конфигурацию контактора в реле. тройной полюс (звезда) и двойной бросок (дельта).
  • Устройство плавного пуска — обычно используется для управления электродвигателями переменного тока. Устройство плавного пуска работает, помогая снизить крутящий момент и нагрузку при включении питания, а также скачки электрического тока, которые типичны для двигателей во время их эксплуатации. этап запуска. Он использует твердотельные переключатели для управления напряжением, а также пусковым током.


Наш веб-сайт использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший сервис при поиске или размещении заказа, в аналитических целях и для персонализации нашей рекламы для вас.Вы можете изменить настройки файлов cookie, прочитав нашу политику в отношении файлов cookie. В противном случае мы будем считать, что вы согласны с использованием файлов cookie.

Хорошо, я понимаю

Пускатели с разомкнутым и замкнутым переходом звезда-треугольник (звезда-треугольник) для асинхронных двигателей

Пускатели звезда / треугольник, вероятно, являются наиболее распространенными
пускатели напряжения в мире 50 Гц.(Известные как стартеры Уай / Дельта в
Мир 60 Гц). Они используются для уменьшения приложенного пускового тока.
двигателю во время запуска, чтобы уменьшить помехи и
помехи в электроснабжении.
Во многих, если не в большинстве случаев, пускатель звезда / треугольник мало снижает
проблемы, на самом деле это обычно их усугубляет.

Традиционно во многих регионах поставок
требование установки пускателя пониженного напряжения на все двигатели с мощностью более
5 л.с. (4 кВт).Это правило было введено для того, чтобы уменьшить пуск
текущее, но, к сожалению, решение было указано, а не результат.
Пускатель звезда / треугольник (или звезда / треугольник) — один из самых дешевых электромеханических
пускатели пониженного напряжения, которые могут быть применены, и поэтому
так популярно. Стартер звезда / треугольник соответствует нормам, но
не достигли желаемых результатов.

Пускатель звезда / треугольник состоит из трех контакторов,
таймер и тепловая перегрузка.Контакторы меньше одиночных
контактор, используемый в пускателях Direct On Line, поскольку они управляют обмоткой
только токи. Ток через обмотку составляет 1 / корень 3 (58%) от
ток в линии.
Есть два контактора, которые замкнуты во время работы, часто называемые
как главный контактор и контактор треугольника. Это AC3 с рейтингом
58% от номинального тока двигателя. Третий контактор — звезда
контактор, который пропускает только звездный ток, когда двигатель подключен
в звезде.Ток в звезде составляет одну треть тока в дельте, поэтому
этот контактор может быть рассчитан на AC3 на одну треть номинальной мощности двигателя.

Операция

В работе главный контактор (KM3) и контактор звезды
(KM1) сначала закрываются, а затем через некоторое время звезда
контактор размыкается, а затем замыкается контактор треугольник (KM2). В
управление контакторами осуществляется таймером (К1Т), встроенным в пускатель.Звезды и треугольники связаны электрически и предпочтительно механически.
также заблокированы.
Фактически, есть четыре состояния:

  1. Состояние ВЫКЛ. Все контакторы разомкнуты
  2. Звездное государство. Контакторы Main и Star замкнуты, а треугольник
    контактор открыт. Двигатель подключен звездой и произведет один
    треть крутящего момента прямого тока при одной трети тока прямого вывода.
  3. Открытое состояние. Главный контактор замкнут, а контакторы треугольником и звездой
    открыты.На одном конце обмотки двигателя есть напряжение, но
    другой конец открыт, поэтому ток не может течь. Мотор имеет вращающийся ротор.
    и ведет себя как генератор.
  4. Delta State. Контакторы Main и Delta замкнуты. Звезда
    контактор разомкнут. Двигатель подключен к полному линейному напряжению и полному
    мощность и крутящий момент доступны.

Этот тип операции называется переключением с открытым переходом.
потому что существует открытое состояние между состоянием звезды и состоянием треугольника.

Стартеры с открытым переходом.

Когда двигатель приводится в действие источником питания, либо на полной скорости
или при частичной скорости в статоре возникает вращающееся магнитное поле. Этот
поле вращается с линейной частотой. Поток от поля статора индуцирует
ток в роторе, что, в свою очередь, приводит к возникновению магнитного поля ротора.
При отключении двигателя от питания (открытый переход) нет
это вращающийся ротор внутри статора, и ротор имеет магнитное поле.Из-за низкого импеданса цепи ротора постоянная времени довольно
долго, и действие поля вращающегося ротора внутри статора таково, что
генератора, который генерирует напряжение с частотой, определяемой
скорость ротора. Когда двигатель снова подключается к источнику питания, он
повторное включение на несинхронизированный генератор, и это приводит к очень
высокий ток и переходный момент. Величина переходного процесса зависит от
от соотношения фаз между генерируемым напряжением и линейным напряжением
в момент закрытия, но обычно может быть намного выше, чем ток прямого включения
и крутящий момент, что может привести к электрическим и механическим повреждениям.

Стартер с замкнутым переходом звезда / треугольник.

Есть методика уменьшения величины переключения
переходные процессы. Это требует использования четвертого контактора и набора из трех
резисторы. Размер резисторов должен быть таким, чтобы
может течь по обмоткам двигателя, пока они находятся в цепи.
Вспомогательный контактор и резисторы подключаются через контактор треугольника.
Во время работы, непосредственно перед размыканием контактора звезды, вспомогательный контактор
замыкается, что приводит к протеканию тока через резисторы в звезду.Как только контактор звезды размыкается, ток может течь через
обмотки двигателя к питанию через резисторы. Эти резисторы затем
закорочен контактором треугольника. Если сопротивление резисторов равно
слишком высокие, они не будут подавлять напряжение, генерируемое двигателем, и будут
не служат никакой цели.

Фактически существует пять состояний:

  1. Состояние ВЫКЛ. Все контакторы разомкнуты
  2. Звездное государство.Контакторы Main [KM3] и Star [KM1] замкнуты.
    и контактор треугольник [KM2] разомкнут. Двигатель подключен звездой
    и будет производить одну треть крутящего момента прямого выхода при одной трети тока прямого выхода.
  3. Звездное переходное состояние. Двигатель подключен звездой, а резисторы
    подключаются через контактор треугольника через вспомогательный контактор [KM4].
  4. Закрытое переходное состояние. Главный контактор [KM3] замкнут, и
    Контакторы Дельта [KM2] и Звезда [KM1] разомкнуты.Ток течет через
    обмотки двигателя и переходные резисторы через КМ4.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *