15.08.2024

Батарейка как работает: как работает батарейка — Ни о какой безапелляционности в моих высказываниях не может быть и речи! — ЖЖ

Содержание

как работает батарейка — Ни о какой безапелляционности в моих высказываниях не может быть и речи! — ЖЖ

как работает батарейка[июл. 11, 2017|12:47 pm]

Anatoly Vorobey


Где-то год назад я понял, что не вполне понимаю, как работают батарейки и аккумуляторы. Попытался разобраться. Прочитал десяток-два популярных объяснений на разных образовательных сайтах, и пришел к выводу, что они часто объясняют только половину процесса, и создают ложное впечатление. Опросил друзей и знакомых и пришел к выводу, что у них, как и у меня, было это ложное впечатление. Написал следующий текст в качестве попытки его исправить и объяснить себе лучше. Поправки и уточнения от физиков, химиков, инженеров итд. принимаются с благодарностью.

1. У батарейки есть два электрода, положительный и отрицательный. На отрицательном электроде происходит химическая реакция, производящая свободные электроны. На положительном электроде происходит химическая реакция, поглощающая свободные электроны. Для разных видов батареек используют разные реакции.

2. Вместе с тем обе реакции нейтральны по отношению к заряду. Та, которая производит электроны, балансирует это тем, что также производит катионы (положительно заряженные ионы, т.е. атомы с недостающими электронами) или поглощает анионы (атомы с лишними электронами). Та, которая поглощает электроны, либо производит анионы, либо поглощает катионы.

3. Ионы (положительные катионы или отрицательные анионы), которые участвуют в этих реакциях, приходят из/уходят в электролит. Электролит — это жидкое или сухое вещество, окружающее оба электрода и заполняющее все батарейку. У разных видов батареек электролит состоит из разных соединений. Главное для электролита — следующие его свойства: 1) его молекулы очень легко расщепляются в «суп» из катионов/анионов; 2) свободные электроны не могут легко в нем передвигаться; 3) катионы/анионы, наоборот, могут в нем легко передвигаться (иногда только один из видов, иногда только в одном направлении). Реакции на электродах происходят на границе электрода и электролита.

4. Из-за разного устройства электронной оболочки разных элементов — это сильное упрощение — у каждой из двух химических реакций есть свой электрический потенциал (т.е. энергия, которая освобождается/потребляется при каждой реакции). Эти потенциалы противоположны по знаку, но они неодинаковы, и разница между ними определяет напряжение батарейки, т.е. насколько сильно она «хочет» толкать электроны. Количество самого материала для реакции не влияет на напряжение, а только на емкость батарейки.

5. Когда цепь между полюсами батарейки не замкнута, реакции на электродах не протекают (точнее, протекают очень медленно). Почему? Даже очень маленький избыток разряда создает очень мощную электростатическую силу (закон Кулона), стремящуюся его сбалансировать. Например, возьмем реакцию, которая берет отрицательные ионы из электролита и производит свободные электроны. Свободные электроны остаются на электроде, им некуда уйти (электролит не пропускает их). Даже крохотный избыток электронов на электроде и дефицит отрицательных ионов в электролите создает электростатические силы (между ними и соседними атомами в электроде/электролите), которые не дают реакции продолжаться.

6. Когда цепь замкнута, электроны текут по цепи от отрицательного электрода к положительному, и одновременно ионы текут внутри электролита, поддерживая нейтральность заряда. Внешняя цепь переносит такой-то заряд от отрицательного электрода к положительному и одновременно поток ионов внутри электролита (либо положительных в том же направлении, либо отрицательных в обратном, иногда и то и другое) переносит ровно тот же заряд в обратном направлении. Без этого потока ионов через электролит, т.е. без тока *внутри* батарейки, ничего бы не работало.

7. В дополнение к тому, что электролит сам по себе плохо пропускает электроны, внутри батарейки обычно есть «сепаратор» — пористая ткань или пластик, пропитанные электролитом. Сепаратор пропускает сквозь себя электролит, так что ионы могут проходить, но еще более затрудняет проход свободных электронов.

8. В конце концов у реакций кончается исходный материал (например, металл полностью превращается в оксид) и батарейка перестает работать. Иногда реакции так подобраны, что положительные/отрицательные ионы в них на двух электродах симметричны, и тогда электролит не разрушается со временем. В других типах батареек сам электролит тоже ухудшается со временем.

9. Если это не просто батарейка, а аккумулятор, то происходит следующее. Когда он разряжается, электроны двигаются по внешней цепи, а положительные ионы двигаются внутри электролита, и потом они соединяются заново (в другой реакции и в другое соединение) на противоположном электроде. Когда аккумулятор заряжает, внешний потенциал, который больше потенциала самого аккумулятора и действует в обратном направлении, заставляет реакции происходит в обратном направлении, и все происходит «наоборот», как будто время пустили назад: второе соединение расщепляется на электроны и позитивные ионы, позитивные ионы движутся сквозь электролит, электроны по внешней цепи, и они соединяются опять в то, что было в самом начале.

P.S. Главное, что я во всем этом не понимал, и что по-моему обычно не объясняют в научно-популярных статьях и что не понимают «чайники» типа меня, это роль электролита как проводника ионов, точно балансирующих по заряду поток электронов по внешней цепи. Когда я прошу образованных людей, но не физиков-химиков-инженеров, объяснить мне на пальцах, как работает батарейка, обычно это звучит примерно так: «из-за химических реакций один полюс батарейки заряжен отрицательно, другой положительно, но между полюсами изолирующий материал и поэтому разница зарядов остается, пока не замкнут цепь, и тогда электроны будут течь из-за этой разницы зарядов». Я примерно так тоже это представлял, пока не попытался лучше понять.

Comments:

Я сомневаюсь, что сепаратор не столько мешает проходу электроном, склько позволяет уменьшить зазор междо катодом и анодом. Иногда вырастающие на катоде/аноде кристаллы таки протыкают сепаратор и тогда — ка-бум. Галакси.

По п.7: Основная задача сепаратора — исключить прямой контакт анода с катодом, который привёл бы к короткому замыканию. В батарейке всё упаковано очень плотно, так что объем, занимаемый свободным электролитом намного меньше объема, занимаемого электродами. Примерно так:

«The owner of this website (batteryuniversity.com) does not allow hotlinking to that resource (/_img/content/pack1(1). jpg)».

А разве электроны существуют как частицы? Это же волны, и притом вероятностные…

Вроде и остальные частицы тоже волны? Если кто-то стукнет Обаму дубинкой, чтобы чужие пилотки не натягивал, оный Обама может смело считать, что на него обрушился поток вероятностных волн.

Разве электролит не участвует в реакции? По-моему, он и есть главный игрок, ведь реакция происходит электролит+электрод. И как могли физики говорить, что между полюсами изолирующий материал? Они должны знать, что через любую батарейку течёт ток, у неё есть внутреннее сопротивление и т.д.

Изолятор — это мое слово, и ошибочный термин. Я пытался сказать, что электролит проводит ионный ток, но через него плохо проходят свободные электроны (иначе батарейка бы немедленно разрядилась). Я не знаю, почему это так (почему электролит не проводит электроны).

P.S. Отредактировал текст, убрал слово «изолятор».

Edited at 2017-07-11 11:38 (UTC)

А почему аккумулятор в конце концов перестаёт работать?

Есть море причин, которые можно в целом обозвать словом «побочные реакции». Для самых популярных на сегодня литий-ионных аккумуляторов это либо деградация катодного материала, либо нарастание всякого непроводящего по литию говна на аноде.

From: (Anonymous)
2017-07-11 12:31 pm

(Link)

Многе из этого можно понять и совершенно ничего не зная, кроме самой базовой физики (заряд сохраняется, одноимеенные заряды отталкиваются, разноименные притягиваются, ток — это поток электронов, и т.п.) Ну кроме сепаратора разве что. Это уже чисто инженерная штука. Давайте попробуем.

Мы знаем, что при замыкании полюсов баатарейки проводочком по нему начинает течь ток. Это значит, что на одном полюсе по сравнению с другим есть избыток электронов (отрицательный заряд). Откуда он там берется, не так важно сейчас.

Если бы этот избыток не поддерживался постоянно, то он довольно быстро кончился бы. Поддерживать его можно, только транспортируя электроны, попавшие на положительный полюс, обратно к отрицательному. Транспортировка эта может происходить в составе нейтральных атомов или отрицательно заряженных ионов. В первом случае для бааланса зарядов необходимо, чтобы был поток положительно заряженных ионов в обратном направлении.

То есть возможны два варианта. Либо нейтральный атом отдает электрон и мигрирует к другому электроду, где получает свой электрон обратно. Либо нейтральный атом отдает электрон и зависает, а у положительного электрода нейтральный атом получает электрон и мигрирует к отрицательному, где они оба и рекомбинируют.

Понятно, что я тут описал вечный двигатель и нужно на все это движение откуда-то брать энергию. Откуда она берется? Например, сначала атомы металла находятся в электроде в виде свободного металла (одна энергия), а после отдачи электрона и цикла рекомбинации переходят в электролит в составе соли (другая энергия), или что-нибудь в таком же роде.

Как-то так.

У меня со школы в голове осталась мутноватая картинка, что на одном полюcе батарейки электроны вырабатываются, а на другом потребляются. Поэтому первое представление: в первом полюсе идёт какая-то реакция с выделением лишних электронов. Почему бы и нет? А положительные ионы пусть где-нибудь там складируются в тёмном уголке, пока батарейка не кончится.

Видимо, эта картинка плоха тем, что заряд положительных ионов скоро станет весьма мощными и батарейку порвёт. Однако ничего очевидного в этом нет.

Может я чего то путаю, но в школе вроде проходят закон киргофа для замкнутой цепи. И там достаточно очевидно что внутри батарейки идет ток в обратную сторону тому току который идет по внешней цепи.

Хотя конечно по воспоминиям это было для меня АГА моментом.

From: (Anonymous)
2017-07-11 12:46 pm

(Link)

Закон Кирхгофа, конечно, хороший, но попробуйте заменить батарейку суперконденсатором. Никакого тока внутри него нет и быть не может. А работает, зараза.

Допустим внутре батарейки ионы бегають, а снаружи — эляктроны, как тогда объяснить эффект памяти в аккумуляторах? 😮

А там посередине сидит активный материал, который как раз и занимается тем, что жрёт с одной стороны электроны, а с другой — ионы. И вот он, собака такая, всёёёёёё помнит!

From: toi_samyi
2017-07-11 08:10 pm

вот серьёзно

(Link)

некоторые каменты просто потрясают
вы что, химию в школе не учили? математика у вас была, физика была, а химию отменили?

From: (Anonymous)
2017-07-12 12:18 am

они же Багрут сдавали

(Link)

Там знание библейских мифов обязательно, а физики-химии — нет. И всё всех устраивает.

Batteries convert chemical energy directly to electrical energy. A battery consists of some number of voltaic cells. Each cell consists of two half-cells connected in series by a conductive electrolyte containing anions and cations. One half-cell includes electrolyte and the negative electrode, the electrode to which anions (negatively charged ions) migrate; the other half-cell includes electrolyte and the positive electrode to which cations (positively charged ions) migrate. Redox reactions power the battery. Cations are reduced (electrons are added) at the cathode during charging, while anions are oxidized (electrons are removed) at the anode during charging.[14] During discharge, the process is reversed. The electrodes do not touch each other, but are electrically connected by the electrolyte. Some cells use different electrolytes for each half-cell. A separator allows ions to flow between half-cells, but prevents mixing of the electrolytes.

From: (Anonymous)
2017-07-12 10:57 am

(Link)

До сих пор нет ссылки на Шкробиуса! ЖЖ можно хоронить (опять).

Химические реакции в батарейках и движение заряженных ионов — это относительно понятно (даже из школьных курсов). Но как электроны в проводнике единовременно, со скоростью 300 т.км/с узнают что им пора двигаться? Если на электроде накапливается заряд, то почему он не отдается проводнику подсоединенному только к одному электроду и не остается на проводнике после его отсоединения? Возможно нет накопления заряда на электродах? Тогда, опять, как батарейка понимает, что проводник коснулся второго электрода и пора запускать химическую реакцию. Напомню, что скорость полета свободного электрона ЗНАЧИТЕЛЬНО меньше скорости распространения тока.

From: (Anonymous)
2019-11-21 03:47 pm

они не узнают) физика любит врать

(Link)

там просто процес прикольний, более активний метал батарейки, своими поглощающими свойствами, забира електрони, и начина растворятся. .. то есть анод цинк, в медно цинковой батарейке — растворяется с електронами, и в самом цинке, возника вакуум електронов… и електрони летят из медного електрода, у цинковий, что б растворится вместе с атомами цинка.

From: (Anonymous)
2019-11-21 03:24 pm

ха ха ха…

(Link)

физика, вообще как шлюха, дает тому, кто больше бабок отвалит. вобщем дружок, учти момент — что електрон, имеет позитивний заряд…. а вот в батарейке, более активний метал, работает катодом, и атоми метала, растворяются с електронами…. и на самом деле, когда окисляется метал, то кислород отдает електрони, атому метала. ладно нех мне тут делать.

From: (Anonymous)
2019-11-21 03:44 pm

вобщем, физика не верна.

..

(Link)

20% физики верние, 50% физики все где то рядом, но не совсем, а 30% физики вообще не верние.

вот что такое луч света — електрон летящий с огромной скоростью, напряжение если перещитать у вольти 700милиардов вольт приблизительно. если трубу зарядить негативно, сильним електричним полем, она притягивает вакумом, лучи солнечного света, и начина интенсивно грется…. свет в комнате пропадает и всасивается трубой. [email protected] если интересно подискутировать.

если зарядить кусок метала, позитивно — то есть наелектризовать електронами — он начина оталкиватся от наелектризованой солнечним светом земли, и начина летать над землей. например поставить большой диск метала на авто, и зарядить позитивно — авто начнет летать… електрони — позитивно заряжение частици… их хорошо удерживает магний, цезий, литий и так далее

Батарейки и элементы питания.

Принцип действия


Сложно представить современную жизнь без батареек. Они есть везде и получили широкое распространение, поскольку дают нам с вами возможность брать с собой энергию. И пусть, как правило, это не долговечный источник питания, но он способен нам с вами существенно упростить жизнь. Посудите сами, если бы не было бы батареек, приходилось бы включать и выключать телевизор, вставая с кровати. В отсутствии таких элементов питания, не было бы веселых детских игрушек портативных плееров. Со времён своего появления батарейки настолько эволюционировали, что появились аккумуляторы. Благодаря последним стало возможно включать зажигание автомобиля без механического раскручивания стартера. Также, благодаря им стало возможно производство мобильных телефонов, смартфонов и планшетов, без которых ни один современный человек не обходится. Давайте сегодня поговорим про батарейки, их принцип действия и начнем мы с истории.


Изобретателем, и человеком, который построил первую работающую батарейку принято считать Алессандро Вольта. Он построил так называемый «вольтов столб». Последний представлял собой ничто иное, как последовательное соединение гальванических элементов, которое могло выдавать постоянный ток. Что такое гальванический элемент? Это электрохимический элемент, способный выдавать постоянное напряжение. Названы они так в честь итальянского физиолога Луиджи Гальвани. Гальванические элементы основаны на химической реакции двух металлов и их оксидов с электролитом, в результате которой в замкнутой цепи появляется цепь электрического тока.


Современные батарейки ушли далеко вперёд. Они способны выдавать гораздо больше энергии и более длительное время, при меньших размерах. Батарейкой в обиходе, как правило называют одиночный гальванический элемент. Хотя это не совсем правильно. Батарея или батарейка — это последовательное соединение нескольких гальванических элементов. Типичным примером батарей является автомобильный аккумулятор, который в зависимости от потребностей машины состоит из шести или двенадцати гальванических элементов. Давайте поподробнее разберёмся в химической реакции, которая происходит в щелочной батарейке. На самом деле это несложный химический процесс: батарейка состоит из трёх основных элементов — двух электродов и электролита. В электролит добавляют специальные загустители для того, чтобы он попросту не вытекал из элемента питания. Анод, как правило делается из порошкового цинка с латунным сердечником, выведенным на дно батарейки, то есть к минусу. Катод выполнен из порошкового диоксида марганца, с добавлением угольного порошка. Угольный порошок способствует лучшей проводимости.


Катод и анод в батарейке находится в виде пасты. Катодную массу прессуют изнутри к внешнему корпусу батарейки. В середине находится анод, из которого выходит латунный сердечник. Последний соединяет анодную пасту с дном батарейки. Важно! Анодная паста не соединяется с плюсом батарейки. Для того, чтобы анодная и катодная пасты не смешивались, между ними кладут нетканый материал, вымоченный в электролите. Тем самым в батарейке начинается несложная химическая реакция. В анодной пасте начинает происходить окисление цинка, которое генерирует поток электронов и ионов. В катодной пасте происходит наоборот. Вместо разрушительной реакции, в момент разрядки происходит восстановление гидроксида марганца до метагидроксида. Хотя не будем вдаваться в химические дебри, так как это достаточно сложно. Скажу просто, процесс восстановления помогает забрать избыточные ионы, и на выходе мы получаем стабильное напряжение. Важно знать, что любой гальванический элемент выдаёт строго постоянный ток, так как он всегда направлен от плюса к минусу и не имеет синусоиды изменений.


Давайте коротко поговорим об аккумуляторных батареях. Они бывают разными по своему составу. Разница между аккумулятором и батарейкой в том, что в аккумуляторе при разрядке происходят обратные реакции. Проще всего это объяснить на примере автомобильного свинцового аккумулятора. При разрядке такого аккумулятора на катоде происходит восстановление диоксида свинца. На аноде в этот момент происходит окисление свинца. Обе эти реакции обратимые, и при зарядке происходит совершенно противоположный процесс. Так устроены все аккумуляторы, вопрос только в размерах, составе и конструкции. Но фундаментальная суть, повторяюсь одна, все аккумуляторы построены на обратимых реакциях. Например, аккумулятор мобильного телефона использует тот же принцип, но в нем содержится литий вместо свинца.


Существует так же литиевые одноразовые батарейки. Они стоят достаточно дорого, но у них есть масса плюсов. Во-первых, они обладают максимальной мощностью на единицу веса. Во-вторых, они работают гораздо дольше, нежели солевые или щелочные батарейки. В-третьих, литиевые батарейки имеют гораздо больший срок годности. Он составляет от десяти до двенадцати лет, в тот момент, как щелочные могут храниться только 5‒7 лет. Литиевые батарейки имеют схожую с щелочными конструкцию. Так что подробно на ней останавливаться не будем.


Последнее, о чем успеем поговорить сегодня — сахарные батареи. На данный момент — это лишь разработка, никакого практического применения она пока не имеет, хотя довольно успешно проходила испытания. Принцип такой батареи заключается в реакции полисахаридов, полученных из крахмала с уксусом. Конечно, это очень грубое описание происходящего в батарее, но зато понятное. В такой батарее самая высокая плотность энергии. К тому же, такие батарейки, как правило имеют возможность перезарядки, а значит из можно использовать достаточно долго. Но самая классная фишка сахарных аккумуляторов и батарей в другом, они полностью биоразлагаемы. Это значит, что такие батареи, в отличии от щелочных можно просто выкидывать, они не угрожают окружающей среде.


Сегодня мы с вами поговорили о большом количестве разнообразных батареек и разобрались с их принципом действия. Но осталось несколько вопросов которые мы с вами не решили. Например, как подобрать правильные батарейки? Или какой формы выпуска они бывают? Так что ждём вас в следующий раз, на этом же месте в тоже время. До новых встреч.

Как работают батарейки и аккумуляторы?

Где бы вы ни были и куда бы ни пошли, вы, так или иначе, столкнетесь с батарейками или аккумуляторами. Попробуйте представить мир, в котором бы все электроприборы питались от розеток – никаких телефонов, фонариков, ноутбуков, автомобилей и прочих уже привычных благ цивилизации. Аккумуляторы повсюду: от мобильных телефонов до космических кораблей. О том, как работают эти портативные источники энергии, из чего они сделаны, и какие мифы о них правдивы, а какие – нет, мы попытаемся разобраться в этой статье.

Первые батарейки

Считается, что примитивными батарейками пользовались еще арабы во времена до нашей эры. В результате раскопок под Багдадом археологи нашли глиняные кувшины, в которых находились железные стержни в медной оболочке. Протестировав находки в лаборатории, ученые пришли к выводу, что кувшины были наполнены кислотной жидкостью, скорее всего, вином или уксусом. Для каких целей использовались подобные устройства не совсем понятно, т.к. представление об электричестве возникло спустя практически два тысячелетия, но факт остается фактом: батарейками пользовались еще до Рождества Христова.

Первый в истории стабильный химический источник питания. Автор: dpantalony

Однако первые современные батарейки появились в 1800 году благодаря итальянскому ученому Алессандро Вольте, который получил непрерывный электрический ток, поместив цинковые и медные пластины в кислоту. Это изобретение получило название Вольтов столб, а единица измерения напряжения получила название в честь его создателя. С тех пор появились новые виды батареек с усовершенствованной конструкцией и улучшенным коэффициентом полезного действия, но принцип их работы существенно не изменился: при подключении батарейки к устройству в ней происходит электрохимическая реакция и вырабатывается электричество.

По типу электрохимической реакции различают два типа химических источников питания:
1. Гальванические элементы (батарейки). Они отличаются необратимой реакцией при выработке электроэнергии, поэтому их нельзя перезарядить. Попытка перезарядить батарейку может привести к утечке щелочи или другого вещества, в зависимости от батарейки.
2. Аккумуляторы. Они отличаются обратимостью реакций при выработке электричества, поэтому их можно перезарядить. Аккумуляторы могут не только, как батарейки, преобразовывать химическую энергию в электрическую, но и наоборот.

Как работают батарейки

Оригинал: Microsoft Encarta

Главными компонентами батарейки, из которых она состоит на 90 %, являются электролит и два электрода: анод, подключенный к отрицательному полюсу (-) и катод, подключенный к положительному полюсу (+). Если подключить батарейку к электрической цепи, в ней начнут происходить окислительно-восстановительные процессы. Взаимодействуя с электролитом, материал анода начнет окисляться и выделять отрицательно заряженные частицы – электроны, – которые и образуют электрический ток. Во время работы батарейки в аноде (-) вырабатывается избыточное количество электронов, и единственным выходом для них является перемещение к положительному полюсу. Взаимодействуя с материалом катода, электроны нейтрализуются в результате реакции восстановления. Именно избыток электронов в отрицательном полюсе и их нехватка в положительном полюсе приводит к постоянному перераспределению электронов между полюсами и создает электрическое напряжение. Окислительно-восстановительные процессы протекают в батарейке постоянно, пока она подключена к электрической цепи, изменяя изначальный состав материалов анода и катода: образуются второстепенные элементы, которые препятствуют движению электронов. Это приводит батарейку в негодность.

Аккумуляторы

Аккумуляторы отличаются от батареек обратимостью химических процессов, проще говоря, возможностью перезарядки. В электрической цепи аккумулятор работает так же, как и батарейка: в аноде образуются электроны, которые перемещаются в катод, образуя электрическое напряжение. Когда материал анода истощается, электроны прекращают вырабатываться и аккумулятор садится. Вот здесь и кроется главное преимущество аккумуляторы: в отличие от батарейки, анод можно восстановить, пропустив через аккумулятор электрический ток. Естественно, это не значит, что аккумуляторы будут работать вечно, ведь материал анода в любом случае будет постепенно истощаться, но на сотню перезарядок обычного аккумулятора зачастую хватает.

В зависимости от материалов, используемых в качестве анода и катода, выделяют разные типы батареек. Каждый тип отличается производительностью, сроком эксплуатации, ценой и вредностью. К сожалению, не существует идеальных батареек, которые бы удовлетворяли пользователей всеми параметрами. О типах батареек и аккумуляторов, их преимуществах и недостатках читайте далее.

Создана первая в мире «вечная» батарейка. Она стоит дешевле литиевых аккумуляторов. Видео

|

Поделиться

В США созданы первые прототипы бета-гальванической батареи, способной работать 28 тыс. лет. В ее основе лежит сердечник из переработанных ядерных отходов, но для человека она безопасна за счет покрытия из специальных синтетических алмазов. В России тоже есть подобные батареи, но они работают не дольше 20 лет.

Бесконечный источник энергии

Американские ученые из компании Nano Diamond Battery разработали «вечный» источник питания, способный работать тысячи и даже десятки тысяч лет. Они создали так называемую «бета-гальваническую батарею» (betavoltaic) и, по их заверениям, даже успешно испытали их в лабораторных условиях. В отечественном институте НИТУ «МИСиС» бета-гальванические элементы питания называют бетавольтаическими.

Как сообщил ресурсу New Atlas исполнительный директор Nano Diamond Battery Нима Голшарифи (Nima Golsharifi), одна такая батарейка может работать до 28 тыс. лет. Такой элемент питания может использоваться, по мнению разработчиков, в самых разных видах техники, начиная от носимых устройств и мобильных гаджетов и заканчивая средствами передвижения – поездами, электромобилями и даже самолетами.

Как работают такие батареи

В основе работы бета-гальванических батарей лежит принцип преобразования альфа- и бета-излучений радиоактивного вещества в обычный электрический ток, питающий всю современную технику. Как заверил Нима Голшарифи, созданным компанией источникам энергии можно придавать практически любую форму, другими словами, их можно выпускать в виде привычных многим батареек различных форматов – АА, 18650, CR2032 и др.

Батарейка Nano Diamond Battery может работать тысячелетиями

Конструкция бета-гальванической батареи состоит в первую очередь из радиоактивного сердечника, который выступает в качестве источника изотопов. Нима Голшарифи подчеркнул, что сердечник изготавливается из небольшого количества переработанных ядерных отходов.

Для того чтобы сделать батареи безвредными для людей и окружающей среды, специалисты Nano Diamond Battery покрыли «фонящий» сердечник специальными нерадиоактивными синтетическими алмазами, выращенными в лабораторных условиях. Это очень дешевые в производстве аналоги обычных алмазов.

Изотопы радиоактивного элемента в процессе так называемого «неупругого рассеяния» взаимодействуют с алмазным покрытием, и в итоге энергия бета-излучения преобразуется в электрический ток.



Для чего нужна «вечная» батарея

Столь значительный период работы батарей разработчики объяснили тем, что используемое в качестве сердечника вещество может оставаться радиоактивным сотни и тысячи лет. Они отметили также, что такие батареи могут вырабатывать чрезмерно большое количество энергии, которую они предлагают хранить в дополнительной «буферной» емкости. В качестве такой емкости могут служить суперконденсаторы, а в России, как сообщал CNews, как раз научились изготавливать их из бесполезного сорного растения – борщевика.

Лабораторные испытания

Прототипы бета-гальванических батарей, разработанные в Nano Diamond Battery, были протестированы в двух лабораториях – Кавендишской лаборатории Кембриджского университета и Ливерморской национальной лаборатории им Э. Лоуренса. Результаты испытаний показали, что творение ученых компании обходили другие элементы питания на основе синтетических алмазов – если те демонстрировали 15-процентный прирост эффективности в сравнении с традиционными батареями, включая литий-ионные, то в случае разработки Nano Diamond Battery этот показатель был 40-процентным.

Форму батарее Nano Diamond Battery можно придать любую

В то же время разработчики пока не могут точно сказать, когда элементы питания, основанные на разработанной ими технологии, начнут использоваться повсеместно. Первые версии таких элементов питания, пригодные для повседневного использования, могут появиться в течение двух лет.

10 простых шагов: Как обеспечить безопасность КИИ

Инфраструктура

По их заявлению, использование таких батарей, к примеру, электромобилях намного более эффективно в сравнении с литиевыми. При тех же габаритах они смогут нести в себе большее количество энергии, а использование дешевого искусственного алмаза вместо дорогого лития позволит снизить итоговую стоимость электрокаров.

Тем временем в России

Отечественные специалисты тоже смотрят в сторону атомных портативных элементов питания. К примеру, сотрудники НИТУ «МИСиС» в августе 2020 г. продемонстрировали собственный прототип такой батареи, конструкция которой основана на запатентованной микроканальной 3D-структуре никелевого бета-гальванического элемента. Срок службы такой батарейки – 20 лет.

Особенность трехмерной структуры батарейки заключается в том, что радиоактивный элемент наносится с двух сторон так называемого планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадет» мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

Отечественный вариант бета-гальванической батареи

За счет оригинальной 3D-структуры бета-гальванического элемента размеры батареи, по словам разработчиков, уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%.

Заменит ли ИИ человеческую эмпатию в контакт-центрах?

Искусственный интеллект

«Выходные электрические параметры предложенной конструкции составили: ток короткого замыкания IКЗ — 230 нА/см2 (в обычной планарной — 24 нА), итоговая мощность — 31 нВт/см2, (в планарной — 3 нВт). Конструкция позволяет на порядок повысить эффективность преобразования энергии, выделяющейся при распаде β-источника, в электроэнергию, что в перспективе снизит себестоимость источника примерно на 50% за счет рационального расходования дорогостоящего радиоизотопа, — отметил один из разработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ «МИСиС».

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

Российская атомная батарейка прослужит 50 лет — Российская газета

Сегодня атомную батарейку уже можно купить в интернете. Во всяком случае такие предложения есть. За эту экзотику, произведенную, к примеру, в США, нужно выложить 1000 долларов. Китайская обойдется дешевле. Зачем нужны столь супердорогие «игрушки»?

Главное достоинство — долговечность. Срок службы может быть и 20, и 50, и 100, и даже тысяча лет. Все зависит от периода полураспада радиоактивного изотопа — источника энергии. Отсюда и возможные области применения. Конечно, медицина, прежде всего кардиостимуляторы. Химические батарейки разряжаются, их приходится периодически менять. С «вечным» источником энергии такой проблемы вообще нет. Еще сфера применения — космос. С атомной батарейкой можно отправляться в дальние миссии, не думая о том, чем питать электронику.

Но все это пока действительно экзотика. И причина не только цена. Характеристики атомных батареек далеки от требуемых. Речь прежде всего о низкой удельной мощности и низком КПД, что предельно ограничивает сферу применения. Как изменить ситуацию? Над этим бьются в ведущих лабораториях мира. И здесь работа группы российских ученых из МФТИ, ФГБНУ «Технологический институт сверхтвердых и новых углеродных материалов» и МИСиС может стать прорывом. Ими создана батарейка, у которой удельная мощность и КПД в 10 раз выше, чем у всех созданных на сегодня аналогов. За счет чего это удалось?

— Источником энергии у нас служит изотоп никель-63 с периодом полураспада около 100 лет, — говорит руководитель разработки доктор физико-математических наук Владимир Бланк. — Этот изотоп испускает бета-частицы, которые создают электрический ток в полупроводнике из алмаза. Ноу-хау нашей разработки именно в этом материале. Его уникальные свойства позволили на порядок улучшить параметры атомной батарейки.

Бланк подчеркивает, что хотя, с одной стороны, алмаз имеет ряд привлекательных качеств, но никто из конкурентов с ним не работает. Достаточно сказать, что в созданном нашими учеными устройстве толщина полупроводников из алмаза должна быть как у обычного полиэтиленового пакета — несколько десятков микрон. Как «настрогать» такие тонкие пластины из самого твердого минерала во Вселенной? Российским ученым удалось решить проблему, создать оригинальную технологию обработки алмаза.

— Наша ядерная батарейка это своего рода слоеный пирог, между 200 алмазными полупроводниками установлены 200, изготовленных из никеля-63, источников энергии, — говорит Бланк. — Высота батарейки 3-4 миллиметра, вес 250 миллиграмм. Это в разы меньше, чем у всех современных аналогов.

Такие габариты — еще один плюс российской разработки. Расчеты показывают, что все известные на данный момент прототипы ядерных батарей имеют лишний объем. Вообще поиск оптимальных размеров — очень непростая задача. Если толщина изотопа слишком велика, рождающиеся в нем электроны не смогут его покинуть. С другой стороны, сильно уменьшать толщину тоже невыгодно, поскольку уменьшается число бета-распадов в единицу времени. Аналогичная ситуация и с толщиной полупроводника.

— Чтобы найти максимум параметров, мы построили модель движения электронов в изотопе и полупроводниках, — говорит Бланк. — Оказалось, что эффективнее всего батарейка работает при толщине изотопа около двух микрон, а алмазного полупроводника 10 микрон.

По словам Бланка, достигнутая рекордная удельная мощность — это не предел. Ученые знают, как ее повысить еще минимум в три раза. Понятно, что чем она выше, тем больше сфер применения атомной батарейки. И ниже цена, ведь она уменьшается при масштабном серийном выпуске. Впрочем, по мнению Бланка, даже сейчас при разумной организации производства цена такой батарейки сравнима с ценой химических источников питания, которые применяются в кардиостимуляторах. Атомные батарейки безопасны для человека, так как излучение полностью поглощается внутри корпуса.

Инфографика «РГ»: Антон Переплетчиков / Юрий Медведев

Аккумуляторы против батареек / Хабр

Номинальное напряжение щелочных батареек 1. 5 вольта, а номинальное напряжение NiMh-аккумуляторов 1.2 вольта, из-за этого многие думают, что аккумуляторы могут не работать в устройствах, предназначенных для работы от батареек. Я изучил, как меняется напряжение на батарейках и аккумуляторах при разрядке в разных режимах.

Для теста были использованы хорошие батарейки Lexman и аккумуляторы, использующие технологию Eneloop — Fujitsu AA 2500 mah и IKEA LADDA AAA 900 mAh.

Для тестирования ёмкости и нагрузочной способности батарейки и аккумуляторы разряжались в трёх режимах:

  • Разряд постоянным током 200 мА. Такая нагрузка свойственна для электронных игрушек;
  • Разряд импульсами (10 секунд нагрузка, 20 секунд пауза) 2500 мА для батареек AA и 1000 мА для AAA. Такая нагрузка свойственна для мощных устройств;
  • Разряд в режиме «постоянное сопротивление» с начальным током 1000 мА. Этот режим эмулирует работу фонаря или устройств с электромоторами.

Измерение делались при разряде до напряжения 0. 7 В.

Разряд постоянным током 200 мА

Отданная энергия:

AA: аккумулятор — 2.97 Втч, батарейка – 2.52 Втч;

AAA: аккумулятор — 1.08 Втч, батарейка – 1.00 Втч;

Аккумуляторы AA дают больше энергии на 15%, аккумуляторы AAA – на 7%.

Хоть начальное напряжение на аккумуляторах ниже, уже после разряда на треть оно становится равно напряжению на батарейках. При разряде батареек на 10% напряжение падает до 1.4 В и дальше при разряде до 90% оно плавно падает до 1 В. Аккумуляторы ведут себя по-другому. При первых 30% разряда напряжение плавно падает с 1.4 до 1.2В, а дальше остаётся почти неизменным до тех пор, пока аккумулятор не разрядится на 90%, в последние 10% работы аккумулятора напряжение начинает падать до 1 В и ниже.

Разряд в режиме «постоянное сопротивление» с начальным током 1000 мА

Отданная энергия:

AA: аккумулятор — 3.02 Втч, батарейка – 1.55 Втч;

AAA: аккумулятор — 1.08 Втч, батарейка – 0.59 Втч;

При большой нагрузке аккумуляторы AA дают больше энергии на 49%, аккумуляторы AAA – на 45%.

При такой нагрузке напряжение на батарейках уже после 1% разряда падает ниже напряжения на аккумуляторах!

Разряд импульсами 2500 мА (10 секунд нагрузка, 20 секунд пауза)

Отданная энергия: аккумулятор — 2.61 Втч, батарейка – 0.82 Втч;

При сверхвысокой нагрузке разница между батарейками и аккумуляторами становится ещё больше: аккумулятор даёт более, чем втрое больше энергии.

На графике хорошо видно, что напряжение под нагрузкой у аккумулятора выше с первой секунды разрядки.

Аккумулятор выдерживает гораздо большую нагрузку, поэтому разница напряжения при подаче и снятии нагрузки у него не велика (около 0.1 В), а у батарейки она достигает 0.5 В.

Разряд импульсами 1000 мА (10 секунд нагрузка, 20 секунд пауза)

Отданная энергия: аккумулятор — 0.94 Втч, батарейка – 0.50 Втч;

Точно такая же картина при разряде сверхбольшим током батареек и аккумуляторов ААА.

аккумулятор даёт почти вдвое больше энергии и напряжение на нём выше в течение всего разряда.

Из моих экспериментов можно сделать следующие выводы:

  • Аккумуляторы дают преимущества в любых режимах, но особенно большая разница наблюдается при питании мощной и сверхмощной нагрузки – аккумулятор может давать в три и более раз больше энергии.
  • Несмотря на то, что номинальное напряжение у аккумуляторов меньше (1.2 В, а у батареек 1.5 В), фактически в процессе разряда оно становится больше, чем у батареек (с самого начала при большой нагрузке и приблизительно после трети разряда при маленькой).
  • Аккумуляторы не очень целесообразно использовать в устройствах с очень маленьким потреблением (часы, пульты), где батарейки меняются реже, чем раз в год.
  • В устройствах, батарейки в которых «садятся» чаще, чем раз в год, применение аккумуляторов даёт не только экономию, позволяет заботиться об экологии, но и обеспечивают более долгую работу без подзарядки (смены батареек).

© 2020, Алексей Надёжин

Моделирование электрохимических процессов на примере батарейки из апельсина

Показывали ли вам на уроках химии принцип действия батарейки на примере апельсина или лимона? Вы должны помнить, как учитель волшебным образом проводил электричество между двумя металлическими стержнями, вставленными в цитрусовый фрукт. Что, если сейчас мы расскажем и покажем, как работает батарейка из апельсина, при помощи средств CAE-моделирования? В дальнейшем вы можете использовать эту статью, как введение в электрохимическое моделирование.

Геометрия батарейки из апельсина.

Как работает батарейка из апельсина

Очевидно, что никакой магии здесь нет. Электричество вырабатывается за счёт электрохимических процессов. Цитрусовые содержат лимонную кислоту, которая вместе с другими ионами выступает в роли электролита. Происходит электрохимическая реакция между лимонной кислотой и двумя стержнями, которые должны быть из разных металлов для образования гальванической пары. Чтобы электрическая цепь была замкнута, к стержням подключаем маленькую лампочку. В данном случае стержни являются электродами, а в качестве раствора с ионной проводимостью выступает лимонная кислота в апельсине. Поскольку мы используем химические реакции для превращения химической энергии в электрическую, можно рассматривать батарейку из апельсина, как гальваническую батарейку, так же как и любую другую батарейку, в которой энергия запасена в виде химических веществ.

Луиджи Гальвани и открытие «животного электричества»

Интересный факт: итальянский физик Луиджи Гальвани обнаружил «электричество животного происходжения», когда он прикрепил две пластины из разных металлов к лапкам лягушки и мышцы начали сокращаться, что было вызвано движением ионов. Заинтересовавшись этим фактом, другой итальянский физик Алессандро Вольта провёл собственный эксперимент и пришёл к выводу, что лапки лягушки были одновременно проводником и индикатором электричества. Основываясь на своём исследовании, он открыл электрохимический закон Вольта, который назвали в его честь, а затем в 1800-х — первую батарею.

Моделирование электрохимических процессов на основе примера батарейки из апельсина

Если вы только начинаете изучать электрохимические процессы, начните с нашего учебного примера по моделированию батарейки из апельсина. Следуя пошаговому описанию в прикреплённом PDF-файле, вы можете смоделировать растекание токов и концентрацию растворённых ионов металла в батарейке из апельсина.

Один стержень сделан из цинка, а второй — из меди. Цинковый стержень теряет свои электроны из-за реакции на электроде:

Zn(s) → Zn2+ 2e E0 = –0.82 V

так что ионы цинка присоединяются к электролиту (лимонной кислоте) в батарее. На поверхности медного стержня положительно заряженные ионы водорода присоединяют электроны и превращаются в атомы, которые объединяются в нейтральную молекулу. Таким образом, медный стержень выступает в роли электрокатализатора.

2H+ + 2e → H2(g) E0 = 0 V

Физический интерфейс Secondary Current Distribution (Вторичное Распределение Токов) используется для задания токов в модели. В этом физическом интерфейсе протекание тока через электролит мы заменяем движением ионов, в то время как реакции на электродах являются функциями, зависящими от электрического потенциала и концентрации реагирующих веществ. Закон Ома применяется совместно с балансом заряда для расчёта электрических токов в стержнях и электролите, которые, в свою очередь, связаны уравнениями Батлера-Фольмера, описывающими электрохимические реакции. В этом примере на одном из стержней задаётся гальванический потенциал 0.5 V, а второй стержень заземлён. Рассчитывается при этом распределение токов в системе.

После настройки параметров и расчёта модели, можно будет оценить эффективность батарейки из апельсина.

Распределение электрического потенциала в электролите Распределение плотности токов в стержнях

Как видно на рисунке слева электрический потенциал уменьшается по мере протекания тока от цинкового электрода (левый стержень) к медному (правый стержень). Потери напряжения между стержнями обусловлены активными потерями в электролите. Цитрусы с более высокой проводимостью, то есть содержащие больше лимонной кислоты, например лимоны, были бы более эффективными батарейками. В качестве альтернативы, можно сбилизить стержни. На правом рисунке видно, что ток увеличивается вдоль оси z. Это происходит из-за того, что электроды, погружённые в апельсин, имеют большую площадь соприкосновения с реагирующими элементами и, следовательно, быстрее отдают свои электроны.

Также можно рассчитать концентрацию ионов после включения батарейки и построить зависимость протекающего тока от времени. По мере увеличения ионов цинка, они всё больше препятствуют способности анода реагировать, поэтому ток уменьшается до тех пор, пока не достигнет постоянного значения.

Изоповерхность уровня концентрации ионов цинка 0.2 mol/m3 через 5 минут после включения батарейки. Зависимость тока от времени

Как работает аккумулятор — Любопытно

Представьте себе мир без батарей. Все те портативные устройства, от которых мы так зависим, были бы настолько ограничены! Мы сможем доставить наши ноутбуки и телефоны настолько далеко, насколько доступны их кабели, что сделает это новое работающее приложение, которое вы только что загрузили на свой телефон, практически бесполезным.

К счастью, батарейки у нас есть. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой. Археологи считают, что на самом деле это не батареи, а в основном они использовались для религиозных церемоний.

Изобретение батареи в том виде, в котором мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать свою точку зрения другому итальянскому ученому Луиджи Гальвани. В 1780 году Гальвани показал, что лапки лягушек, висящих на железных или латунных крючках, подергиваются при прикосновении к зонду из другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».

Луиджи Гальвани обнаружил, что лапы лягушки, подвешенные на латунных крючках, дергались, когда их ткнули зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.

Вольта, первоначально впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит от двух разных типов металла (крючки, на которых висели лягушки, и другой металл зонда) и просто передается через них, а не через них. из тканей лягушек.Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанной соленой водой, и обнаружил, что электрический ток действительно протекает через провод, приложенный к обоим концам стопки.

Батарея Алессандро Вольта: куча цинковых и серебряных листов, перемеженных тканью или бумагой, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.

Volta также обнаружил, что, используя различные металлы в свае, можно увеличить количество напряжения.Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. Это было довольно большое дело (Наполеон был весьма впечатлен!), И его изобретение принесло ему устойчивое признание в честь «вольта». ‘(мера электрического потенциала), названная в его честь.

Я сам, шутя в сторону, поражен тем, как мои старые и новые открытия . .. чистого и простого электричества, вызванного контактом металлов, могли вызвать такое волнение. Алессандро Вольта

Так что же именно происходило с этими слоями цинка и серебра и действительно с подергивающимися лягушачьими лапами?

Химия батареи

Батарея — это устройство, которое накапливает химическую энергию и преобразует ее в электричество.Это известно как электрохимия, а система, лежащая в основе батареи, называется электрохимическим элементом. Батарея может состоять из одного или нескольких (как в оригинальной куче Вольты) электрохимических ячеек. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.

Итак, откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов.В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), А затем они перетекают на другой электрод, где расходуются. Чтобы понять это правильно, нам нужно внимательнее изучить компоненты клетки и то, как они устроены вместе.

Электроды

Чтобы создать поток электронов, вам нужно где-то, чтобы электроны текли с из , а где-то электроны текли с по .Это электроды ячейки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Обычно это разные типы металлов или другие химические соединения.

В котле Вольта анодом служил цинк, от которого электроны текли по проволоке (при соединении) с серебром, которое было катодом батареи. Он сложил много этих ячеек вместе, чтобы получилась общая куча, и поднял напряжение.

Но откуда анод вообще берет все эти электроны? И почему они так счастливы, что их отправили в веселый путь к катоду? Все сводится к химии, происходящей внутри клетки.

Нам нужно понять пару химических реакций. На аноде электрод вступает в реакцию с электролитом, образуя электроны. Эти электроны накапливаются на аноде. Между тем, на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.

Технический химический термин для обозначения реакции, которая включает обмен электронами, — это реакция окисления-восстановления, обычно называемая окислительно-восстановительной реакцией. Вся реакция может быть разделена на две половинные реакции, и в случае электрохимической ячейки одна полуреакция происходит на аноде, а другая — на катоде. Уменьшение — это усиление электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается во время реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.

Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности / эффективности реакции либо производить, либо поглощать электроны — ее силу в электронном перетягивании каната.

  • Стандартные потенциалы для полуреакций

    Ниже приведен список половинных реакций, которые включают высвобождение электронов из чистого элемента или химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой готовности водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородная полуреакция имеет нулевое значение E 0 ).E 0 измеряется в вольтах.

    Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их в электрохимическую ячейку, значения E 0 скажут вам, в каком направлении будет протекать общая реакция: реакция с более отрицательной реакцией. Значение E 0 отдает свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном представляет собой напряжение ячейки.

    Итак, если вы возьмете литий и фторид и сумеете объединить их, чтобы сделать элемент батареи, у вас будет самое высокое напряжение, теоретически достижимое для электрохимического элемента. Этот список также объясняет, почему в котле Вольта цинк был анодом, а серебро — катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .

    Источник: UC Davis ChemWiki

Любые два проводящих материала, которые вступают в реакции с разными стандартными потенциалами, могут образовывать электрохимическую ячейку, потому что более сильный из них сможет забирать электроны у более слабого.Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбираете для своего катода. В итоге мы получаем, что электроны притягиваются к катоду от анода (и анод не очень сильно пытается бороться), и, когда у нас есть легкий путь, чтобы добраться туда — проводящий провод, мы можем использовать их энергию для обеспечения электрического питание нашего фонарика, телефона или чего-то еще.

Разница в стандартном потенциале между электродами как бы равна силе, с которой электроны перемещаются между двумя электродами. Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.

Чтобы увеличить напряжение аккумулятора, у нас есть два варианта. Мы могли бы выбрать для наших электродов другие материалы, которые придадут ячейке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединяются определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи.По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда они движутся от анода первого элемента на всем пути через какое бы количество ячеек батарея ни содержала, к катоду последнего элемента.

Когда элементы объединяются другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через элементы, но не ее напряжение.

Электролит

Но электроды — это всего лишь часть батареи. Помните обрывки бумаги Вольты, смоченные в соленой воде? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.

Электронов имеют отрицательный заряд, и поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ уравновесить это движение заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.

Поскольку химическая реакция на аноде производит электроны, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не проходят по внешнему проводу (только для электронов!), А попадают в электролит.

В то же время катод должен также уравновешивать отрицательный заряд электронов, которые он принимает, поэтому реакция, которая здесь происходит, должна втягивать положительно заряженные ионы из электролита (альтернативно, он также может высвобождать отрицательно заряженные ионы из электрода в электролит. электролит).

Итак, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для переноса положительно заряженных ионов, чтобы уравновесить отрицательный поток. Этот поток положительно заряженных ионов так же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания протекания всей реакции.

Итак, если бы все ионы, высвобожденные в электролит, могли полностью свободно перемещаться через электролит, они в конечном итоге покрыли бы поверхности электродов и забили бы всю систему.Таким образом, в клетке обычно есть какой-то барьер, чтобы этого не произошло.

При использовании аккумулятора возникает ситуация, когда происходит непрерывный поток электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановлен. Заряды будут накапливаться, и химические реакции, приводящие в движение аккумулятор, прекратятся.

По мере использования батареи и протекания реакций на обоих электродах возникают новые химические продукты.Эти продукты реакции могут создавать своего рода сопротивление, которое может помешать продолжению реакции с такой же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и электроны перестают течь. Аккумулятор медленно разряжается.

Зарядка аккумулятора

Некоторые распространенные батареи предназначены только для одноразового использования (так называемые первичные или одноразовые батареи).Электроны перемещаются от анода к катоду в одну сторону. Либо их электроды истощаются по мере того, как они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и это делается и вытирается пыль. Батарея оказывается в мусорном ведре (или, надеюсь, на переработку, но это уже другая тема Nova).

Но. Изящная вещь в этом потоке ионов и электронов, который имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. .Подобно тому, как батареи изменили способ использования различных электрических устройств, аккумуляторные батареи еще больше изменили полезность и продолжительность жизни этих устройств.

Когда мы подключаем почти разряженную батарею к внешнему источнику электричества и отправляем энергию обратно в батарею, происходит обратная химическая реакция, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода, в электролит, обратно к аноду, а электроны, которые катод принимает, также обратно к аноду.Возврат как положительных ионов, так и электронов обратно в анод подготавливает систему, так что она снова готова к работе: ваша батарея заряжена.

Однако процесс не идеален. Замена отрицательных и положительных ионов электролита обратно на соответствующий электрод при перезарядке аккумулятора не такая аккуратная и не такая хорошо структурированная, как электрод вначале. Каждый цикл зарядки еще больше ухудшает состояние электродов, а это означает, что батарея со временем теряет производительность, поэтому даже аккумуляторные батареи не работают вечно.

В течение нескольких циклов зарядки и разрядки форма кристаллов аккумулятора становится менее упорядоченной. Это усугубляется, когда аккумулятор разряжается / заряжается с высокой скоростью — например, если вы едете на электромобиле с большой скоростью, а не с постоянной скоростью. Высокоскоростное переключение приводит к тому, что кристаллическая структура становится более неупорядоченной, что приводит к менее эффективной батарее.

Эффект памяти и саморазряд

Почти, но не полностью обратимые реакции разряда и перезарядки также способствуют так называемому «эффекту памяти». Когда вы заряжаете некоторые типы аккумуляторных батарей, не разрядив их сначала, они «запоминают», где находились в предыдущих циклах разрядки, и не перезаряжаются должным образом.

В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как эта соль затем снова растворяется и металл заменяется на электродах при перезарядке). Мы хотим, чтобы в наших клетках были красивые, однородные, маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Некоторые кристаллы образуются очень сложно, а некоторые металлы откладываются во время перезарядки, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие.Дефекты в основном зависят от первоначального состояния заряда батареи, температуры, напряжения заряда и тока зарядки. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и так далее, и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на никелевой основе. Другие типы, такие как литий-ионные, не страдают этой проблемой.

Другой аспект аккумуляторных батарей заключается в том, что химический состав, делающий их перезаряжаемыми, также означает, что они имеют более высокую тенденцию к саморазряду.Это когда внутренние реакции происходят внутри аккумуляторного элемента, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы аккумуляторов и приводит к их разрядке во время хранения.

Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда около 2–3 процентов в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они, как правило, теряют 4–6 процентов. месяц.Никелевые батареи теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарик в течение всего сезона, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет около 2–3% своего заряда в год.

Напряжение, ток, мощность, емкость… в чем разница?

Все эти слова в основном описывают мощность батареи, не так ли? Ну вроде как.Но все они немного разные.

Напряжение = сила, при которой реакция, приводящая в движение аккумулятор, проталкивает электроны через элемент. Это также известно как электрический потенциал и зависит от разницы потенциалов между реакциями, которые происходят на каждом из электродов, то есть от того, насколько сильно катод будет тянуть электроны (через цепь) от анода. Чем выше напряжение, тем больше работы может совершить то же количество электронов.

Ток = количество электронов, которые проходят через любую точку цепи в данный момент времени.Чем выше ток, тем больше работы он может выполнять при том же напряжении. Внутри ячейки ток можно также рассматривать как количество ионов, проходящих через электролит, умноженное на заряд этих ионов.

Мощность = напряжение x ток. Чем выше мощность, тем быстрее батарея может работать — это соотношение показывает, как напряжение и ток важны для определения того, для чего подходит батарея.

Емкость = мощность батареи как функция времени, которая используется для описания продолжительности времени, в течение которого батарея может обеспечивать питание устройства.Аккумулятор большой емкости сможет проработать более длительный период, прежде чем разрядится / разрядится. У некоторых батарей есть небольшая печальная особенность — если вы слишком быстро попытаетесь извлечь из них слишком много энергии, химические реакции не успеют поспеть, и емкость станет меньше! Итак, мы всегда должны быть осторожны, когда говорим о емкости аккумулятора, и помнить, для чего он будет использоваться.

Еще один популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, сколько энергии вы получите за свои деньги с точки зрения мощности по сравнению сразмер. С батареей, как правило, чем выше плотность энергии, тем лучше, так как это означает, что батарея может быть меньше и компактнее, что всегда является плюсом, когда вам нужно заряжать то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!

Для некоторых приложений, таких как хранение электроэнергии на возобновляемых электростанциях, таких как ветряная или солнечная ферма, высокая плотность энергии не является большой проблемой, поскольку в них, скорее всего, будет достаточно места для хранения батарей.Основная цель такого использования — просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.

Почему так много типов?

Ряд материалов (раньше это были просто металлы) могут использоваться в качестве электродов в батарее. За прошедшие годы было опробовано множество различных комбинаций, но лишь немногие из них действительно прошли дистанцию.Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?

Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы соединяете их в аккумуляторном элементе. Например, некоторые комбинации будут производить высокое напряжение очень быстро, но затем быстро падают, не в состоянии поддерживать это напряжение в течение длительного времени. Это хорошо, если вам нужно произвести, скажем, внезапную вспышку света, как вспышка фотоаппарата.

Другие комбинации будут производить только тонкую струйку тока, но они будут поддерживать эту струю целую вечность. Например, нам не нужен большой ток для питания детектора дыма, но мы хотим, чтобы наши детекторы дыма работали долгое время.

Еще одна причина для использования различных комбинаций металлов заключается в том, что часто два или более аккумуляторных элемента необходимо уложить в стопку для получения необходимого напряжения, и оказывается, что некоторые комбинации электродов складываются вместе намного удобнее, чем другие комбинации.Например, литий-железо-фосфатные батареи (тип литий-ионных аккумуляторов), используемые в электромобилях, складываются вместе для создания систем высокого напряжения (100 или даже более вольт), но вы никогда не сделаете этого с теми батареями NiCad Walkman, которые имеют горячий!

Наши различные потребности с течением времени привели к разработке огромного количества типов батарей. Чтобы узнать больше о них и о том, что ждет аккумулятор в будущем, ознакомьтесь с другими нашими темами о Nova.

Эта тема является частью нашей серии из четырех статей об аккумуляторах.Для дальнейшего чтения ознакомьтесь с типами аккумуляторов, литий-ионных аккумуляторов и аккумуляторов будущего.

MIT Школа инженерии | »Как работает аккумулятор?

Как работает аккумулятор?

Ваши часы, ноутбук и лазерная указка питаются от одного и того же: химии…

Мэри Бейтс

Существует много разных типов батарей, но все они работают на основе одной и той же концепции. «Батарея — это устройство, способное накапливать электрическую энергию в форме химической энергии и преобразовывать эту энергию в электричество», — говорит Антуан Алланор, научный сотрудник отдела материаловедения и инженерии Массачусетского технологического института.«Вы не можете улавливать и хранить электричество, но вы можете хранить электрическую энергию в химических веществах внутри батареи».

Батарея состоит из трех основных компонентов: две клеммы, сделанные из разных химикатов (обычно металлов), анод и катод; и электролит, разделяющий эти выводы. Электролит — это химическая среда, которая обеспечивает прохождение электрического заряда между катодом и анодом. Когда устройство подключено к батарее — лампочке или электрической цепи — на электродах происходят химические реакции, которые создают поток электрической энергии к устройству.

Более конкретно: во время разряда электричества химическое вещество на аноде высвобождает электроны на отрицательный вывод и ионы в электролите в результате так называемой реакции окисления. Между тем, на положительном выводе катод принимает электроны, замыкая цепь для потока электронов. Электролит служит для того, чтобы привести различные химические вещества анода и катода в контакт друг с другом таким образом, чтобы химический потенциал мог уравновеситься от одного вывода к другому, преобразовывая накопленную химическую энергию в полезную электрическую энергию. «Эти две реакции происходят одновременно», — говорит Алланор. «Ионы переносят ток через электролит, в то время как электроны текут во внешней цепи, и это то, что генерирует электрический ток».

Если батарея одноразовая, она будет вырабатывать электричество до тех пор, пока не закончатся реагенты (одинаковый химический потенциал на обоих электродах). Эти батареи работают только в одном направлении, преобразовывая химическую энергию в электрическую. Но в других типах аккумуляторов реакция может быть обратной.Перезаряжаемые батареи (например, в вашем мобильном телефоне или в вашем автомобиле) сконструированы таким образом, что электрическая энергия из внешнего источника (зарядное устройство, которое вы подключаете к стене или динамо-машина в вашем автомобиле) может подаваться на химическую систему, и наоборот. его работу, восстанавливая заряд аккумулятора.

Лаборатория Group Sadoway в Массачусетском технологическом институте работает над созданием более эффективных батарей для многоцелевого использования. Для крупномасштабного хранения энергии команда работает над жидкометаллической батареей, в которой электролит, анод и катод являются жидкими.Для портативных приложений они разрабатывают тонкопленочные полимерные батареи с гибким электролитом из негорючего геля. Другой целью лаборатории является создание батарей с использованием ранее не рассматриваемых материалов с упором на обильные, дешевые и безопасные вещества, которые имеют такой же коммерческий потенциал, как и популярные литиевые батареи.

Спасибо 18-летнему Стивену Минкусу из Гленвью, штат Иллинойс, за этот вопрос.

Отправлено: 1 мая 2012 г.

DOE Объясняет…Батареи | Министерство энергетики

Аккумуляторы и аналогичные устройства принимают, хранят и отпускают электроэнергию по запросу. Батареи используют химию в форме химического потенциала для хранения энергии, как и многие другие повседневные источники энергии. Например, бревна хранят энергию в своих химических связях, пока при горении энергия не преобразуется в тепло. Бензин — это запасенная химическая потенциальная энергия, пока она не преобразуется в механическую энергию в двигателе автомобиля. Точно так же, чтобы батареи работали, электричество должно быть преобразовано в форму химического потенциала, прежде чем оно может быть легко сохранено.Батареи состоят из двух электрических клемм, называемых катодом и анодом, разделенных химическим материалом, называемым электролитом. Чтобы принимать и высвобождать энергию, батарея подключается к внешней цепи. Электроны движутся по цепи, в то время как ионы (атомы или молекулы с электрическим зарядом) одновременно движутся через электролит. В перезаряжаемой батарее электроны и ионы могут двигаться в любом направлении через цепь и электролит. Когда электроны движутся от катода к аноду, они увеличивают химическую потенциальную энергию, таким образом заряжая аккумулятор; когда они движутся в другом направлении, они преобразуют эту химическую потенциальную энергию в электрическую цепь и разряжают аккумулятор.Во время зарядки или разрядки противоположно заряженные ионы перемещаются внутри батареи через электролит, чтобы уравновесить заряд электронов, проходящих через внешнюю цепь, и создать устойчивую перезаряжаемую систему. После зарядки аккумулятор может быть отключен от цепи для хранения химической потенциальной энергии для последующего использования в качестве электричества.

Батареи были изобретены в 1800 году, но их химические процессы сложны. Ученые используют новые инструменты, чтобы лучше понять электрические и химические процессы в батареях, чтобы создать новое поколение высокоэффективных аккумуляторов электроэнергии.Например, они разрабатывают улучшенные материалы для анодов, катодов и электролитов в батареях. Ученые изучают процессы в аккумуляторных батареях, потому что они не полностью меняются, когда батарея заряжается и разряжается. Со временем отсутствие полной замены может изменить химический состав и структуру материалов батареи, что может снизить производительность и безопасность батареи.

Департамент науки и хранения электроэнергии Министерства энергетики США

Исследования, проведенные при поддержке Управления науки Министерства энергетики США и Управления фундаментальных энергетических наук (BES), привели к значительным улучшениям в хранении электроэнергии. Но мы все еще далеки от комплексных решений для хранения энергии следующего поколения с использованием совершенно новых материалов, которые могут значительно увеличить количество энергии, которое может хранить аккумулятор. Это хранилище имеет решающее значение для интеграции возобновляемых источников энергии в нашу систему электроснабжения. Поскольку усовершенствование аккумуляторных технологий имеет важное значение для повсеместного использования подключаемых к электросети электромобилей, хранение также является ключом к уменьшению нашей зависимости от нефти при транспортировке.

BES поддерживает исследования отдельных ученых и в многопрофильных центрах.Самый крупный центр — Объединенный центр исследований в области накопления энергии (JCESR), центр энергетических инноваций Министерства энергетики США. Этот центр изучает электрохимические материалы и явления на атомном и молекулярном уровне и использует компьютеры для разработки новых материалов. Эти новые знания позволят ученым разработать более безопасные накопители энергии, которые служат дольше, заряжаются быстрее и обладают большей емкостью. По мере того, как ученые, поддерживаемые программой BES, достигают новых успехов в науке об аккумуляторах, эти достижения используются прикладными исследователями и промышленностью для продвижения приложений в области транспорта, электросетей, связи и безопасности.

Факты о хранении электрической энергии

  • Нобелевская премия по химии 2019 года была присуждена совместно Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино «за разработку литий-ионных батарей».
  • Компания Electrolyte Genome в JCESR создала вычислительную базу данных с более чем 26 000 молекул, которую можно использовать для расчета основных свойств электролита для новых усовершенствованных аккумуляторов.

Ресурсы и связанные термины

Научные термины могут сбивать с толку.DOE Explains предлагает простые объяснения ключевых слов и концепций фундаментальной науки. В нем также описывается, как эти концепции применяются к работе, которую проводит Управление науки Министерства энергетики США, поскольку это помогает Соединенным Штатам преуспевать в исследованиях во всем научном спектре.

Как работает аккумулятор?

Энергия не может быть создана или уничтожена, но может быть сохранена в различных формах. Один из способов его хранения — использование в батарее химической энергии.При включении в цепь батарея может вырабатывать электричество.

Батареи преобразуют химическую энергию в электрическую

Батарея имеет два конца — положительный полюс (катод) и отрицательный полюс (анод). Если соединить две клеммы проводом, образуется цепь. Электроны будут течь по проводу, и будет производиться электрический ток. Внутри батареи происходит реакция между химическими веществами.Но реакция происходит только при наличии потока электронов. Батареи можно хранить в течение длительного времени и при этом продолжать работать, потому что химический процесс не начинается до тех пор, пока электроны не потекут с отрицательного полюса на положительный по цепи.

В батарее происходит химическая реакция

Простой пример — лимонная батарея

Начнем с очень простой батареи, в которой используется лимон, в который вставлены два разных металлических предмета, например гальванизированный гвоздь и медная монета или проволока.Медь служит положительным электродом или катодом, а гальванизированный (оцинкованный) гвоздь — отрицательным электродом или анодом, производящим электроны. Эти два объекта работают как электроды, вызывая электрохимическую реакцию, которая генерирует небольшую разность потенциалов.

Поскольку атомы меди (Cu) притягивают электроны больше, чем атомы цинка (Zn), если вы поместите кусок меди и кусок цинка в контакт друг с другом, электроны перейдут от цинка к меди. Когда электроны концентрируются на меди, они отталкиваются друг от друга и останавливают поток электронов от цинка к меди.С другой стороны, если вы поместите полоски цинка и меди в проводящий раствор и соедините их снаружи проводом, реакции между электродами и раствором позволят электронам непрерывно течь через провод.

ЛИМОННАЯ БАТАРЕЯ

Как работает лимонная батарейка?

Лимонная батарея состоит из лимона и двух металлических электродов из разных металлов, таких как медный пенни или проволока и гальванизированный (оцинкованный) гвоздь.

Энергия для батареи исходит не от лимона, а от химического превращения цинка (или другого металла). Цинк окисляется внутри лимона, обмениваясь некоторыми из его электронов, чтобы достичь более низкого энергетического состояния, и высвобождаемая энергия обеспечивает энергию. Лимон просто создает среду, в которой это может произойти, но они не расходуются в процессе.

Если предположить, что используются цинковые и медные электроды (например, медная монета и оцинкованный гвоздь), то один лимон может произвести приблизительно 0. 9 Вольт. Слева последовательная цепь лимонов показывает, что вырабатывается напряжение 3,41 вольт.

ПРИМЕЧАНИЕ: Можно использовать картофель, яблоки, квашеную капусту или любые другие фрукты или овощи, содержащие кислоту или другой электролит, но лимоны предпочтительнее из-за их более высокой кислотности. Например, в картофеле электролитом является фосфорная кислота, а в лимонах — лимонная кислота.

В лимонной батарее происходит как окисление (потеря электронов), так и восстановление (увеличение количества электронов).Эта батарея похожа на оригинальные «простые гальванические элементы», изобретенные Алессандро Вольта (см. Ниже). На аноде металлический цинк окисляется и попадает в кислый раствор в виде ионов Zn2 +:

Zn -> Zn2 + + 2 е-

На медном катоде ионы водорода (сольватированные протоны из кислого раствора в лимоне) восстанавливаются с образованием молекулярного водорода:

2H ++ 2e- -> h3

Что заставляет электроны двигаться?

Когда вы отпускаете мяч, который вы держите, он падает на землю, потому что гравитационное поле Земли тянет мяч вниз. Точно так же заряженным частицам, таким как электроны, необходимо проделать работу, чтобы переместить их из одной точки в другую. Количество работы на единицу заряда называется разностью электрических потенциалов между двумя точками. Единица измерения разности потенциалов называется вольт.

Разность потенциалов между катодом и анодом возникает в результате химической реакции. Внутри батареи электроны подталкиваются химической реакцией к положительному концу, создавая разность потенциалов.

Именно эта разность потенциалов движет электроны по проводу.

Разница потенциалов может быть положительной или отрицательной, похожей на гравитационную энергию при движении вверх или вниз по холму. В батарее поток электронов идет вниз … электроны могут течь вверх, как в случае зарядного устройства.

Почему электроны просто не перемещаются от анода к катоду внутри батареи?

Электролит в батарее не дает одиночным электронам идти прямо от анода к катоду внутри батареи. Когда клеммы соединены проводящим проводом, электроны могут легко перетекать от анода к катоду.

В каком направлении движутся электроны в проводе?

Электроны заряжены отрицательно, поэтому они будут притягиваться к положительному концу батареи и отталкиваться отрицательным концом. Когда батарея подключена к устройству, которое позволяет электронам проходить через нее, они текут от отрицательного (анода) к положительному (катодному) выводу.

Кто изобрел электрохимический элемент (батарею)?

ПЕРВАЯ БАТАРЕЯ VOLTA

Аккумулятор Volta считается первым электрохимическим элементом. Он состоит из двух электродов: один из цинка, другой из меди. Электролит — серная кислота или смесь соли с водой из рассола. Электролит существует в форме 2H + и SO42-. Цинк, содержание которого в электрохимическом ряду выше, чем у меди и водорода, вступает в реакцию с отрицательно заряженным сульфатом SO42-. Положительно заряженные ионы водорода (протоны) захватывают электроны из меди, образуя пузырьки газообразного водорода h3. Это делает цинковый стержень отрицательным электродом, а медный стержень — положительным электродом.

Теперь у нас есть две клеммы, и ток будет течь, если мы их соединим. Реакции в этой ячейке следующие:

цинк

Zn -> Zn2 + + 2e-

серная кислота

2H + + 2e- -> h3

Медь не вступает в реакцию, действуя как электрод для химической реакции.

Как работает современный аккумулятор (угольно-цинковый)?

Сухой цинк-углеродный элемент или батарея упакованы в цинковую банку, которая служит одновременно контейнером и отрицательной клеммой (анодом). Положительный вывод представляет собой углеродный стержень, окруженный смесью диоксида марганца и углеродного порошка. В качестве электролита используется паста из хлорида цинка и хлорида аммония, растворенных в воде.Углеродный (графитовый) стержень — это то, что собирает электроны, выходящие из анодной части батареи, чтобы вернуться к катодной части батареи. Углерод — единственный практичный проводящий материал, потому что любой обычный металл быстро разъедает положительный электрод в солевом электролите.

Цинк окисляется в соответствии со следующим полууравнением.
Zn (s) -> Zn2 + (водн.) + 2 e- [e ° = -1,04 вольт]

Диоксид марганца смешивают с углеродным порошком для увеличения электропроводности.Реакция выглядит следующим образом:

2MnO2 (s) + 2 e- + 2Nh5Cl (водн.) ->
Mn2O3 (s) + 2Nh4 (водн.) + H3O (водн.) + 2 Cl- [e ° ˜ +.5 v]

и CL сочетается с Zn2 +.

В этой полуреакции марганец восстанавливается со степени окисления (+4) до (+3). Возможны и другие побочные реакции, но общую реакцию в углеродно-цинковом элементе можно представить как:

Zn (тв) + 2MnO2 (тв) + 2Nh5Cl (водн) —> Mn2O3 (тв) + Zn (Nh4) 2Cl2 (водн) + h3O (l)

Батарея имеет эл.м.ф. около 1,5 В.

Какие бывают типы батарей?

В батареях разных типов используются разные химические вещества и химические реакции. Вот некоторые из наиболее распространенных типов батарей:

Щелочная батарея

Используется в Duracell® и Energizer® и других щелочных батареях.Электроды из цинка и оксида марганца. Электролит представляет собой щелочную пасту.


Свинцово-кислотный аккумулятор

Они используются в автомобилях. Электроды изготовлены из свинца и оксида свинца с сильной кислотой в качестве электролита.


Литиевая батарея

Эти батарейки используются в фотоаппаратах для лампы-вспышки.Они сделаны из лития, иодида лития и иодида свинца. Они могут подавать скачки электричества для вспышки.


Литиевая батарея Эти батарейки используются в фотоаппаратах для лампы-вспышки. Они сделаны из лития, иодида лития и иодида свинца. Они могут подавать скачки электричества для вспышки.


Литий-ионный аккумулятор Эти батареи используются в портативных компьютерах, сотовых телефонах и другом портативном оборудовании с высокой нагрузкой.


Никель-кадмиевый или никель-кадмиевый аккумулятор Электроды из гидроксида никеля и кадмия. Электролит — гидроксид калия.


Угольно-цинковая батарея или стандартная угольная батарея — Цинк и углерод используются во всех обычных или стандартных сухих батареях AA, C и D. Электроды изготовлены из цинка и углерода, между которыми находится паста из кислотных материалов, служащая электролитом.



ССЫЛКИ И ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Potato Power: Руководство для учителя
История батареи
Электрохимические реакции
Углеродно-цинковая батарея
Углеродно-цинковая батарея — Как они работают?
Как работают батареи Анимированное руководство по науке об аккумуляторах


Оценка
Вопросы:

M крайний
Вопросы на выбор

Как работает автомобильный аккумулятор?

02 окт.

Как работает автомобильный аккумулятор?

Отправлено в 00:00
в блогах
Калеб Шарбоно

Автомобильные аккумуляторы отвечают за питание всего автомобиля.Если аккумулятор не работает, то и остальная часть автомобиля тоже. Так как же получается, что одна маленькая батарея обеспечивает достаточно энергии, чтобы запустить целую машину и поддерживать ее в рабочем состоянии?

Автомобильные аккумуляторы работают на химической и электрической энергии. К внешней стороне батареи подключена электрическая цепь, которая заряжает батарею и позволяет электронам течь. В батарее также есть химические вещества, которые вступают в химические реакции друг с другом и с электронами. Электроны действуют как субатомная частица, которая активирует аккумулятор, позволяя ему приводить в действие двигатель автомобиля.

Если вам всегда было интересно, как работает автомобильный аккумулятор, эта статья для вас. Продолжайте читать, чтобы узнать все, что вам нужно знать о том, как работает автомобильный аккумулятор.

Как работает автомобильный аккумулятор

Внутри батареи есть три компонента, а именно два соединителя, известные как анод и катод, а затем химический раствор, в котором находятся соединители. Электрический заряд извне батареи заряжает ее и активирует химическую реакцию внутри батареи.

Химическая энергия преобразуется в электрическую; таким образом, аккумулятор заряжается.

Анод — это положительно заряженный электрод внутри батареи, который позволяет электронам перемещаться за пределы батареи, а катод — это противоположный отрицательно заряженный электрод, через который электроны снова входят.

Каждая химическая реакция между химическим раствором в батарее, анодом и катодом позволяет происходить движению электронов.Электроды участвуют в химических реакциях, происходящих между раствором и разъемами.

Физика работы автомобильного аккумулятора

С точки зрения физики батарея состоит из трех основных типов компонентов:

  • Сепаратор
  • Электролит
  • Два электрода

Два электрода конкретно называются анодом и катодом, и оба они сделаны из проводящих материалов, которые позволяют электрическому току проходить через них. Два электрода выполняют разные функции в батарее.

Катод присоединяется к положительному полюсу батареи. Положительный конец — это также место, где ток выходит из батареи. Это происходит, когда внутри него разряжается энергия или когда используется энергия от батареи.

Пока батарея разряжается, электрический ток поступает в батарею на противоположном конце, отрицательном конце. Эта сторона называется анодом.

Не следует путать электрический ток с электронами, главным образом потому, что они более подробно обсуждаются в следующих подзаголовках.Когда электрический ток проходит через анод, электроны выходят через него. Следовательно, они движутся в противоположных направлениях.

Между электродами внутри батареи, а также внутри них (поскольку оба электрода являются губками, которые также впитывают смесь электролита) находится электролит.

Эти частицы, также известные как ионы, объединяются и вступают в реакцию с материалом, из которого сделан каждый из электродов, в результате чего происходит химическая реакция. Химическая реакция позволяет батарее генерировать электрический ток, питающий все, что к ней подключено.

Аккумулятор получает электрический заряд от автомобильного генератора. Генератор переменного тока представляет собой компонент, состоящий из магнитной катушки и стержня внутри двигателя автомобиля, который преобразует механическую энергию в электрическую.

Электроэнергия вырабатывается через аккумулятор, давая ему заряд. Затем аккумулятор может, в свою очередь, питать электрические компоненты двигателя автомобиля, в первую очередь стартер, без которого невозможно запустить автомобиль.

Химия работы автомобильного аккумулятора

Чтобы понять химический состав автомобильного аккумулятора, мы должны сначала понять химические вещества, присутствующие в каждом из компонентов аккумулятора.Все химические вещества, обнаруженные внутри батареи, содержат некоторую комбинацию водорода, кислорода, серы и свинца.

  • Химический раствор — Серная кислота в виде h3SO4 (представляет собой соединение водорода, серы и кислорода)
  • Катод — диоксид свинца, обозначенный химической аннотацией PbO2 (соединение свинца и кислорода)
  • Анод — Свинец, обозначенный химической аннотацией Pb

Аккумулятор накапливает энергию в химической форме и преобразует химическую энергию в электрическую. Реакция компенсируется внешним подключением электрического кабеля, который передает электрический заряд через батарею.

Катод, губка, состоящая из диоксида свинца и химического раствора серной кислоты внутри батареи, в которой находятся два разъема, взаимодействуют вместе с образованием сульфата свинца

Вот уравнение, показывающее, как это происходит:

Что мы видим из этой формулы, если разложить ее на простые термины, так это то, что когда электроны от электрического заряда, проходящего через клемму батареи, взаимодействуют с диоксидом свинца катода и серной кислотой химического раствора, сульфат свинца и тяжелая вода являются побочными продуктами.

Со стороны анода свинец в аноде реагирует с серной кислотой в химическом уравнении. Взаимодействие двух химических веществ создает сульфид свинца и электроны.

Электроны необходимы в химической реакции, которая происходит на катодной стороне; однако электроны не могут пройти через химическую формулу к катоду. Вместо этого они должны пройти через внешнюю электрическую цепь и вернуться в катод.

Уравнение дает эту химическую реакцию:

Эти две химические реакции протекают в цикле, одна питает другую и наоборот, питая аккумулятор и позволяя ему заряжать двигатель автомобиля.

Как долго работает автомобильный аккумулятор?

Средний срок службы аккумуляторной батареи автомобиля — три года. Однако на этот период влияет множество факторов, которые также необходимо учитывать.

Поскольку большая часть работы батареи связана с химическими веществами внутри нее, факторы окружающей среды, которые обычно влияют на эти химические агенты, также являются факторами окружающей среды, которые могут влиять на батарею. Прекрасный пример этого — температура.

В холодную погоду машину нужно завести и дать немного поработать, чтобы холода не нагружали аккумулятор. Такая нагрузка на аккумулятор может ослабить аккумулятор и сократить срок его службы, чем предполагалось изначально. И потенциально может привести к поломке вашего автомобиля на обочине дороги.

С другой стороны, тепло имеет тенденцию значительно снижать производительность и запас заряда батареи. Жаркая погода может вызвать испарение жидкости внутри батареи, а также вызвать дополнительные внутренние повреждения.

Как только тепло ослабит аккумулятор, он более уязвим для разрушения при низких температурах, потому что он не имеет сопротивления, чтобы справиться с глубокими перепадами температуры.

Еще одна вещь, которая может убить аккумулятор вашего автомобиля, — это оставить его бездействующим на долгое время. Это приведет к тому, что все заряды полностью разрядятся из аккумулятора до того, как вы в следующий раз начнете движение. Чтобы решить эту проблему, вам потребуется перезарядить разряженный аккумулятор, вынув аккумулятор и зарядив его, а затем заменив его на месте перед повторным запуском автомобиля.

Как работает зарядка автомобильного аккумулятора?

Как упоминалось выше, во время движения автомобиля аккумулятор заряжается с помощью другого компонента двигателя, который называется генератором переменного тока, который преобразует механическую энергию в электрическую, которая поступает через аккумулятор. Поэтому обычно аккумулятор специально заряжать не нужно.

Аккумулятор сам по себе разряжает электрическую энергию в остальную часть автомобиля, поэтому ему нужен источник электричества, чтобы поддерживать напряжение на определенном уровне, чтобы автомобиль продолжал работать.

Напряжение батареи — это количество электроэнергии, производимой батареей. Большинство автомобильных аккумуляторов работают при напряжении 12. Но в большинстве автомобилей аккумулятор должен иметь напряжение выше 10,5 В, чтобы он мог питать двигатель автомобиля.

У батареи есть так называемая зарезервированная емкость. Зарезервированная емкость определяет, как долго батарея может разряжаться со скоростью около 25 ампер в случае неисправности соединения между генератором переменного тока и батареей из-за разрыва браслета.

Это показатель того, как долго аккумулятор может работать, если он не может постоянно получать новый заряд от генератора переменного тока во время движения автомобиля. Однако, как только напряжение упадет ниже отметки 10,5, аккумулятор необходимо перезарядить.

Таким образом, в ситуации, когда аккумулятор не получает заряд от генератора переменного тока, из-за проблемы в соединении между двумя частями необходимо использовать внешний источник для зарядки аккумулятора. Это неустойчиво: одно без другого не работает очень долго.

Необходимо заменить генератор и осмотреть двигатель в целом, чтобы убедиться, что проблема не является более серьезной. Если проблема заключается в ремне, который соединяет две части, инженер может заменить ремень и исправить соединение.

Кроме того, аккумулятор можно заряжать одним из двух способов. Вы можете подключить два кабеля напрямую к аккумулятору, так называемые «соединительные кабели», чтобы подключить аккумулятор, или вы можете отсоединить аккумулятор от автомобиля и подключить его к зарядному устройству.

Если вы хотите прыгнуть или зарядить аккумулятор, вы должны сначала выключить все индикаторы и компоненты, обычно подключенные к аккумулятору, и провести на нем некоторое обслуживание. Сначала отсоедините отрицательный кабель или заземляющий кабель. Это всегда черный кабель, если только он не менялся годами.

Даже если кабель был заменен, вы можете идентифицировать его как кабель с маркировкой отрицательного заряда. Затем удалите кабель с пометкой для положительного заряда.

Если какая-либо аккумуляторная кислота вылилась наружу аккумуляторной батареи, очистите клеммы с помощью щетки для очистки клемм и смеси воды и пищевой соды для нейтрализации кислоты.

Используйте средства защиты глаз, носа и рта.Если аккумулятор имеет съемные крышки, осторожно подденьте их, чтобы проверить уровень воды. Если уровень воды низкий, доливайте дистиллированную воду только до полной отметки. Обратите внимание, что это требуется не для всех батарей, поэтому, если крышки нет, пропустите этот шаг.

Чтобы запрыгнуть в машину, соединительные кабели подключатся к разряженной батарее и к исправной, которая будет использоваться для зарядки. Подсоедините положительный кабель красного цвета к обеим батареям, начиная с разряженной, а затем к положительной стороне батареи. Затем в том же порядке подключите черный провод (отрицательный заряд). Начните с самого низкого уровня заряда и постепенно увеличивайте его до максимального уровня.

Точно так же, если вы планируете зарядить аккумулятор, выньте его из машины и поместите в прочное и безопасное место. Подключите зарядное устройство сначала к красному проводу, затем к черному.

Начните с минимальной скорости зарядки и продолжайте работать до идеальной. Если вам нужна помощь, проверьте стоимость быстрого старта и обратитесь к профессионалу, который поможет вам зарядить автомобиль в их магазине, если вы боитесь ошибок.Включите зарядное устройство и установите таймер на полную зарядку.

Если вы хотите узнать больше о функциях автомобильного аккумулятора, ознакомьтесь с этой статьей!

Заключение

В заключение, автомобильные аккумуляторы получают электрическую энергию, преобразуют ее в химическую энергию, а затем обратно в электрическую энергию, используемую для запуска стартера автомобиля и других электрических компонентов. Если вам нужна дополнительная помощь с автомобильным аккумулятором, поищите «мобильного механика рядом со мной», который поможет вам.

Более того, если вы когда-нибудь окажетесь в ситуации, когда не знаете, как зарядить разряженный аккумулятор вашего автомобиля, и вам потребуется дополнительная помощь, Mach 1 всегда готов помочь!

Источники

batteryworld.varta-automotive.com

www.manbat.co.uk.

www.cars.com.

www.science.org.au

Physics.aps.org

Physics.stackexchange.com

https://www.youtube.com/watch?v=–DIXM2_OB4

www.livescience.com

ресурс-центр.meineke.com

Как работает литий-ионный аккумулятор?

Литий-ионные батареи чрезвычайно популярны и универсальны. Эти аккумуляторные батареи, которые используются в сотовых телефонах, автомобилях, электроинструментах и ​​некоторых других типах электронных устройств, также оказывают влияние на оборудование для погрузочно-разгрузочных работ и наземного обслуживания аэропортов.

Технология, лежащая в основе литий-ионных аккумуляторов, делает их отличным выбором из-за их явных преимуществ и экологических преимуществ.

Но как именно работают литий-ионные аккумуляторы? И что делает их такими популярными во многих приложениях?

Вот что вам нужно знать о компонентах, из которых состоит литий-ионный аккумулятор, и о том, как они работают вместе для создания высокоэффективных и долговечных источников энергии.

Компоненты

Литий-ионные батареи

доступны во многих различных формах и размерах. Однако внутри они обычно выглядят одинаково.Чтобы понять, как работает литий-ионный аккумулятор, важно знать роль, которую играют отдельные части.

The Cell

Литий-ионный аккумулятор состоит из нескольких частей. Элемент, служащий рабочей лошадкой батареи, является наиболее важным компонентом батареи.

Элемент состоит из следующих материалов батареи:

  • Электроды — это два конца батареи. Один — анод, другой — катод.
  • Анод накапливает литий и обычно изготавливается из углерода.
  • Катод также хранит литий и сделан из химического соединения, которое представляет собой оксид металла.
  • Сепаратор блокирует поток отрицательных и положительных электронов внутри батареи, но пропускает ионы.
  • Электролит , жидкость находится между двумя электродами. Он переносит положительно заряженные ионы лития от анода к катоду и наоборот, в зависимости от того, заряжается батарея или разряжается.
Аккумулятор

Батарейный блок, в котором находятся литий-ионные элементы, работает как компьютер. Он содержит:

  • Как минимум один датчик температуры для контроля температуры батареи.
  • Преобразователь напряжения и схема регулятора , которая фокусируется на поддержании напряжения и тока на безопасных уровнях.
  • Разъем евро, позволяющий подавать питание и информацию из аккумуляторной батареи.
  • Элемент отвод , который контролирует напряжения элементов в аккумуляторной батарее.
  • A система контроля заряда батареи , небольшой компьютер, который контролирует всю батарею и обеспечивает безопасность пользователя.
Движение в камере

Так как же ячейка обеспечивает питание оборудования?

Когда вы подключаете литий-ионную батарею к устройству или части оборудования, положительно заряженные ионы перемещаются от анода к катоду.В результате катод становится более положительно заряженным, чем анод. Это, в свою очередь, притягивает к катоду отрицательно заряженные электроны.

Сепаратор в ячейке включает электролиты, которые образуют катализатор. Это способствует перемещению ионов между ними. Движение ионов через раствор электролита — это то, что заставляет электроны перемещаться через устройство, в которое вставлен аккумулятор.

Литий-ионные батареи перезаряжаемые. При перезарядке ионы лития проходят тот же процесс, но в противоположном направлении.Это восстанавливает аккумулятор для дополнительного использования.

Общая конструкция литий-ионной батареи обеспечивает множество преимуществ для пользователей оборудования:

  • Время работы значительно увеличивается с их использованием по сравнению с батареями других типов.
  • Возможности быстрой зарядки сокращают время простоя сменных рабочих и повышают производительность.
  • Они имеют плоские кривые нагнетания и обеспечивают более высокую постоянную мощность. Это означает, что больше не будет раздражающей медлительности в работе оборудования при снижении уровня заряда аккумулятора.
Система управления батареями (BMS)

Система управления играет важную роль в обеспечении максимальной работы аккумуляторной батареи. Это также влияет на работу аккумулятора, предлагая несколько защит и функций.

Например:

  • BMS поддерживает температуру элементов в идеальном рабочем диапазоне, чтобы предотвратить перегрев или замерзание.
  • BMS контролирует ток и напряжение, чтобы поддерживать их на безопасном уровне.Дендриты начинают формироваться в ячейке, если напряжение падает слишком низко, что может привести к короткому замыканию ячейки, поэтому важно, чтобы литий-ионный аккумулятор имел систему, позволяющую контролировать это.
  • В аккумуляторе нет встроенной «памяти», поэтому частичные разряды не повреждают аккумулятор. Литий-ионные аккумуляторы могут заряжаться и разряжаться в наиболее удобное для операторов время.
  • Встроенные контроллеры предотвращают перезарядку, чтобы предотвратить образование, которое может привести к значительному повреждению литий-ионных аккумуляторов.
  • Балансировка ячеек контролируется, поэтому выравнивающие заряды никогда не требуются. Поскольку литий-ионные батареи не нуждаются в уравнительном заряде, они не выделяют опасные газы.
  • Система управления батареями также позволяет менеджерам отслеживать состояние батареи своего флота с помощью бортовых компьютеров, которые отправляют жизненно важные данные через облачные сервисы.

Литий-ионные батареи содержат несколько элементов передовых технологий, которые работают вместе, чтобы обеспечить пользователям явные преимущества.

Вы можете узнать о том, почему литий-ионные батареи являются лучшим вариантом, чем свинцово-кислотные, в нашей статье Литий-ионные батареи для вилочных погрузчиков лучше, чем свинцово-кислотные?

Батареи, схемы и трансформаторы — Управление энергетической информации США (EIA)

Батареи производят электроэнергию

Электрохимическая батарея вырабатывает электричество из двух разных металлов в химическом веществе, называемом электролитом .Один конец батареи прикреплен к одному из металлов, а другой конец — к другому металлу. Химическая реакция между металлами и электролитом освобождает больше электронов в одном металле, чем в другом.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Металл, который высвобождает больше электронов, приобретает положительный заряд, а другой металл — отрицательный.Если электрический провод или провод соединяет один конец батареи с другим, электроны проходят через провод, чтобы уравновесить электрический заряд.

Электрическая нагрузка — это устройство, которое использует электричество для выполнения работы или выполнения работы. Если электрическая нагрузка — например, лампа накаливания — размещена вдоль провода, электричество может работать, поскольку оно течет через провод и лампочку. Электроны текут от отрицательного конца батареи через провод и лампочку и обратно к положительному концу батареи.

Электроэнергия передается по цепям

Электричество должно пройти полный путь, или электрическая цепь , прежде чем электроны смогут двигаться. Выключатель или кнопка включения-выключения на всех электрических устройствах замыкает (включает) или размыкает (выключает) электрическую цепь в устройстве. Выключение или выключение света размыкает цепь, и электроны не могут проходить через свет. Включение света замыкает цепь, что позволяет электричеству течь по одному электрическому проводу через лампочку, а затем по другому проводу.

Лампа накаливания излучает свет, когда электричество проходит через крошечный провод в лампочке, который становится очень горячим и светится. Лампа накаливания перегорает, когда крошечный провод внутри лампы обрывается, что приводит к размыканию цепи.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Трансформаторы помогают эффективно перемещать электроэнергию на большие расстояния

Чтобы решить проблему отправки электричества на большие расстояния, Уильям Стэнли разработал устройство под названием трансформатор . Трансформатор изменяет электрическое напряжение в проводнике или линии электропередачи. Линии передачи высокого напряжения, например те, которые проходят между высокими металлическими башнями, переносят электричество на большие расстояния туда, где это необходимо. Электроэнергия более высокого напряжения более эффективна и менее дорога для передачи электроэнергии на большие расстояния. Электроэнергия более низкого напряжения более безопасна для использования в домах и на предприятиях. Трансформаторы повышают (повышают) или снижают (понижают) напряжение по мере того, как электроэнергия перемещается от электростанций в дома и на предприятия.

Последняя проверка: 13 декабря 2021 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *