Переменное напряжение тока — что это?
Напряжение – это физическая величина, характеризующая работу эффективного электрического поля, совершающего перенос заряда из одной точки проводника в другую. Оно есть везде, где есть токовая сила и пропорционально зависит от него, как и сопротивление. Каждый знает, что в его домашней розетке 220 В, но мало кто догадывается, какой именно это вид величины. Стоит подробнее разобраться с постоянным и переменным напряжением, в чем их различия, и какие виды переменного напряжения существуют.
Напряжение переменного тока
Как известно еще с уроков физики, ток – это движение заряженных частиц, которое возникает под воздействием на них электромагнитного поля, разности потенциалов и напряженности. Основная характеристика любого напряжения – это зависимость от времени. Исходя из этого, различают постоянную и переменную величины. Значение постоянного с течением времени практически не изменяется, а переменного – изменяется.
Закон Ома
В свою очередь переменная характеристика бывает периодической и непериодической. Периодическое – это напряжение, значения которого повторяются через одинаковые интервалы времени. Непериодическое же способно изменяться в любой отрезок времени.
Схема описания физического смысла
Напряженность в переменной цепи – это такой параметр, который изменяет свою величину с течением времени. Для упрощения разъяснений в дальнейшем будет рассматриваться синусоидальное гармоническое переменное напряжение.
Минимальное время, в течение которого переменная величина повторяется, называется периодом. Абсолютно любую периодическую величину можно записать зависимостью от какой-либо функции. Если время – это t, то зависимость будет обозначаться F(t). Таким образом, любой период во времени имеет вид: F(t+-T) = F(t), где T – период.
Физическая величина, которая является обратной периоду, называется частотой. Она равна 1/T. Единицей ее измерения является герц, в то время как единицей измерения периода стала секунда.
f = 1/T, 1 Гц = 1/с = с в минус первой степени.
Формулы колебаний
Важно! Чаще всего встречается функциональная зависимость переменной сети в виде синусоиды. Именно поэтому она была взята за основу этого материала.
Из математики известно, что синусоида – это простейшая периодическая функция, и с ее помощью из нескольких синусоид с кратными частотами можно представить любые другие периодические функции.
Синусоидальная напряженность в абсолютно любой промежуток времени может описать моментальная характеристика: u = U * sin(ωt + φ), где ω = 2πf = 2π/T, где U – максимальное напряжение (амплитуда), ω – угловая скорость изменения, φ – начальная фаза, которая определяется смещением функции относительно нулевой точки координат.
Синусоидальная функция
Часть (ωt + φ) – это фаза, которая характеризует значение напряжения в конкретный промежуток времени. Из этого выходит, что амплитуда, угловая скорость и фаза – это основные характеристики переменных сетей, определяющие их значения в любой интервал времени.
Важно! При рассмотрении синусоидальной функции фазу часто принимают за ноль. На практике также часто прибегают к еще некоторым параметрам, включающим действующее и среднее напряжение, коэффициент формы.
Регулятор переменного напряжения
Отличие между переменным и постоянным напряжением
Разница между двумя этими величинами не только в названии. Все зависит от вида тока. В обычной розетке дома ток переменный. Это значит, что направление движения заряженных частиц в нем постоянно изменяется. Более того, у переменных токовых сил разная частота и напряжение. Например, в розетке на 220 вольт обычная частота равна 50 Гц, что означает смену направления движения электронов и их зарядов 50 раз в секунду. Напряжение в этом плане означает максимальную скорость, с которой движутся электроны по цепи.
Постоянная и переменная характеристики
Еще одно отличие изменчивого направления движения частиц и, как следствие, напряжения от постоянного, в том, что в нем постоянно изменяется заряд. Значение U в такой сети бывает равно то 100 %, то 0 %. Если оно всегда было полным, то потребовался бы провод очень большого диаметра.
Постоянное же направление – это ток, который не изменяет координаты своего движения. Его можно наблюдать в аккумуляторах и батареях. Попадает он туда через зарядное устройство, конвертирующее любой поток из розетки в постоянный.
Противофаза
Виды напряжения переменного тока
В случае наиболее распространенного синусоидального напряжения часто рассматривают его виды:
- Мгновенное, которое определяется для произвольного момента времени t.
- Действующее, производящее один и тот же тепловой эффект, равный по величине постоянной характеристики. Оно определяется выполненной активной работой первого полупериода.
- Средневыпрямленное, определяемое как модуль величины выпрямленного напряжения за один цикл гармонического колебания.
Если электрический поток передается по воздушным линиям, то упоры и их размеры напрямую зависят от величины напряжения, которое применяется в сети. Его величина между фазами именуется линейным напряжением, а между землей и каждой из фаз – фазным.
Период и амплитуда синусоидального колебания
Двухфазный ток
Двухфазный ток – это когда идет передача сразу двух токов разного направления. Параметр напряженности для двухфазной сети сдвинут по фазе на угол в 90 градусов. Передается такой ток двумя проводниками: два фазных и два нулевых. Применяется в электрических сетях переменного тока. Для этого используют два контура, значения которых сдвинуты по фазе на 90 градусов. В каждом контуре используется четыре линии – по две штуки на каждую из фаз. Иногда применяется и один провод с большим диаметром, чем у двух других. Преимуществом двухфазный сетей был плавный запуск электродвигателей, но они были вытеснены трехфазными.
Двухфазный источник
Трехфазный ток
Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.
Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.
График трехфазного сигнала
Виды источников переменного напряжения
Среди основных источников непостоянного напряжения можно выделить такие компоненты, как:
- Электростанция;
- Генератор непостоянного тока;
- Промышленная и домашняя электросеть.
Главным источником непостоянных токовых сил и напряжения является электростанция или промышленная электросеть. Использование такого тока обосновано тем, что его намного легче передавать на большие расстояния по проводникам и просто преобразовать в постоянный электрический ток. Переменные параметры передаются со станции к трансформаторам, которые преобразуют напряжение непостоянного тока, не являясь его источниками. Генераторы вырабатывают такой ток путем преобразования механической энергии в электрическую.
Генератор переменной силы
Как можно измерить переменное напряжение
Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:
- Найти шкалу измерения на приборе, которая чаще всего находится справа.
- Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
- Взять щупы и вставить их в источник. При этом неважно, какой щуп куда будет вставлен.
- Произвести измерения с учетом техники безопасности.
- Зафиксировать полученные показатели.
Однофазный двигатель
Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.
переменный ток
читать далее…
Поэтому, наша обыкновенная лампочка(или, например, обогревательный прибор)будет одинаково работать как при переменном напряжении, изменяющегося от нуля до 310В, так и при постоянном напряжении 220В. А 12-вольтовая лампочка будет одинаково светить как от источника переменного напряжения величиной 12В(изменяющегося от нуля до 16,8В), так и от любой батарейки или аккумулятора(а они являются, как известно, источниками постоянного напряжения). Итак, запомните!!!
1)электрический ток(напряжение), который периодически изменяет свое направление и величину, называется переменным током. Любой переменный ток характеризуется в основном своей частотой, амплитудой и действующим значением;
2)приборы, предназначенные для измерения переменного тока, показывают его действующее значение;
3)напряжение измеряют вольтметром(или комбинированным прибором — авометром), ток — амперметром(или комбинированным прибором — авометром). Также ток можно измерять так называемыми токовыми клещами. Служат они для бесконтактного измерения тока — рабочая часть прибора образует кольцо вокруг измеряемого провода и по величине электромагнитного поля, действующего на рабочую часть прибора, выводится информация на его небольшой дисплей о величине протекающего тока. Авометр — это комбинированный прибор(его в простонародье еще называют просто тестером), который полностью в своем техпаспорте называется ампервольтомметром и служит для измерения и тока, и напряжения, и сопротивлений. А цифровые модели могут измерять и частоту напряжения(тока), и емкости конденсаторов и другие вещи — это уж как задумает разработчик;
4)зная значение(действующее) переменного напряжения, всегда можно узнать его максимальное значение(не забудьте — оно меняется по синусоидальному закону). А связь здесь такая —
Umax = 1,4U, где U — действующее значение, а Umax — максимальное значение(амплитуда)… На этом пока всё!
Принцип работы, отличия постоянного от переменного электрического тока
Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.
Определение постоянного электрического тока, его источники
Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.
Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.
Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется в переменный с использованием специальных преобразователей (инверторов).
Принцип работы переменного тока
Переменный ток (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.
Переменный ток может быть как одно- , так и трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.
Основные характеристики переменного тока — действующее значение напряжения и частота.
Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.
Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).
И так мы подошли к понятию частота— это отношение числа полных циклов (периодов) к единице времени периодически меняющегося электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.
Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!
Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями к электрощиту. У многих возникает вопрос: а почему в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах. С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.
И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.
Как переменный ток сделать постоянным
Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи выпрямителей.
- Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
- Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).
И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.
- Далее при необходимости для уменьшения уровня пульсаций, дополнительно могут применяются стабилизаторы тока или напряжения.
Преобразователь постоянного тока в переменный
Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.
Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.
Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.
Что такое фаза, ноль, заземление читайте в следующей нашей статье.
Преобразование переменного тока в постоянный
Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.
Постоянный ток и его источники
У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:
Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).
Графики напряжений трехфазного переменного тока
Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Характеристики трехфазного тока
Достоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Преобразование переменного тока в постоянный и наоборот
Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.
Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.
Схема простейшего выпрямителяГрафики работы выпрямителя
Для преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.
Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.
Оцените качество статьи:
Источник переменного напряжения, источник постоянного напряжения
Напряжение, этим термином обозначают разность электрических потенциалов между двумя точками электрической цепи. Некоторые неправильно полагают, что напряжение — это что-то такое, что движется в цепи. Но это не так. Напряжение — это та сила, под действием которой в электрической цепи движутся электрические заряды, т. е. протекает электрический ток. Напряжение можно сравнить с ударом клюшки по шайбе. Полёт шайбы сравним с протеканием тока, но удар клюшки — это потенциальная сила, вызвавшая движение шайбы. Ток и напряжение взаимосвязаны, так как важна не только разность потенциалов сама по себе, а важен и электрический ток, обусловленный этой разностью потенциалов. Поэтому при описании работы электрических цепей ток и напряжение, как правило, фигурируют вместе.
Можно выделить две группы источников электрической энергии: источники напряжения и источники тока. Напряжение между выходными полюсами источника напряжения не зависит или слабо зависит от тока, отдаваемого источником во внешнюю цепь (нагрузку). В источниках тока, напротив, выходной ток почти не зависит от напряжения на его полюсах, которое определяется нагрузкой.
Основной единицей измерения разности потенциалов является вольт (В). На практике часто применяются производные от основной единицы измерения напряжения. Единица измерения милливольт (мВ) используется для обозначения разности потенциалов, эквивалентной 1/1000 В. Микровольт (мкВ) составляет 1/1000 мВ или 1/1000 000 В. Один киловольт (КВ) равен 1000 В, а один мегавольт (МВ) — 1 000 000 В.
Различают переменное напряжение и постоянное напряжение.
Источник постоянного напряжения
Аккумуляторная батарея — это типичный источник постоянного напряжения. Для питания электронных схем применяются преимущественно источники постоянного напряжения. Напряжение измеряется между положительным и отрицательным выводами (полюсами) источника. Для того, чтобы образовать замкнутую электрическую цепь, в которой протекает постоянный ток, полюсы источника питания должны быть соединены с выводами схемы (нагрузки), потребляющей энергию от источника, или с выводами измерительного прибора. Считается, что в нагрузке, подключённой к источнику питания, ток течёт в направлении от положительного потенциала к отрицательному.
Источник переменного напряжения
Промышленная электросеть — типичный источник переменного напряжения. Если в цепях постоянного напряжения полярность полюсов фиксирована и один из полюсов всегда положителен, а другой отрицателен, то в источниках переменного напряжения полярность постоянно меняется. В первой половине периода один из полюсов имеет отрицательную полярность, а другой — положительную. Во второй половине полярности полюсов меняются. Быстрота смены полярности в цепях переменного тока измеряется в герцах (Гц). В нашей сети напряжение является переменным и в течение одной секунды происходит 50 циклов (периодов) смены полярности напряжения. Частота сети переменного тока (в РФ) равна 50 Гц. Для примера, в США она равна 60 Гц.
1. Что такое переменный ток? | 1. Основы теории переменного тока | Часть2
1. Что такое переменный ток?
Что такое переменный ток?
Основная масса начинающих радиолюбителей начинает изучение электроники с основ постоянного тока (DC), который течет в одном направлении и/или обладает напряжением постоянной полярности. Постоянный ток — это вид электричества, производимого батареями (имеющими положительные и отрицательные клеммы), или вид заряда, производимого трением определенных типов материалов друг о друга.
Однако, постоянный ток не является единственным видом электричества. Некоторые источники электропитания (в первую очередь роторные электромеханические генераторы) производят такое напряжение, полярность которого меняется с течением времени. Такой вид электричества известен как переменный ток (АС):
Так же как знакомое нам условное обозначение батареи используется для обозначения любого источника постоянного напряжения, кружок с волнистой линией внутри используется для обозначения любого источника переменного напряжения.
Можно было бы подумать, что практическое применение переменного тока ограничено. И действительно, в некоторых случаях переменный ток уступает постоянному по части практического применения. В тех системах, где электричество используется для рассеивания энергии в форме тепла, полярность или направление тока не имеет значения, — вполне достаточно, чтобы напряжения и тока хватало нагрузке для производства необходимого тепла (рассеивания энергии). Однако, используя переменный ток, можно создавать гораздо более эффективные электрогенераторы, электродвигатели и системы распределения энергии. Благодаря этому, в высокомощных системах преобладает использование именно переменного тока. Чтобы понять, почему это так, нам нужно узнать немного больше о переменном токе как таковом.
Согласно закону электромагнитной индукции Фарадея, электродвижущая сила, возникающая в замкнутом проводящем контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Это основополагающий принцип работы генератора переменного тока, или альтернатора.
Принцип работы альтернатора
Заметьте, как меняется полярность напряжения на катушках, когда при вращении возле них оказываются разные полюсы магнита. При соединении с нагрузкой такое напряжение будет создавать ток, периодически меняющий направление своего движения. Чем быстрее вращается вал альтернатора, тем быстрее будет вращаться магнит, и тем чаще напряжение будет менять полярность, а ток – направление за определённый промежуток времени.
Несмотря на то, что генераторы постоянного тока работают так же по принципу электромагнитной индукции, их устройство гораздо сложнее, чем у их соперников, генераторов переменного тока. У генераторов постоянного тока обмотка находится на валу (у альтернаторах на валу находится магнит), и эта вращающаяся обмотка соприкасается с неподвижными угольными «щётками». Такая конструкция необходима для переключения изменяющейся полярности на выходе катушки во внешнюю схему, чтобы на последней создавалась постоянная полярность:
Принцип работы генератора постоянного тока
Генератор, показанный на данном рисунке, производит два импульса напряжения за одно вращение вала. Оба импульса имеют одинаковую полярность. Чтобы генератор постоянного тока производил постоянное напряжение, а не короткие импульсы за каждый полупериод вращения, создаётся набор обмоток, которые периодически входят в контакт с щётками. Приведенный выше рисунок в упрощенной форме показывает то, что вы увидите на практике.
Проблемы, связанные с возникновением и прерыванием электрического контакта при движении обмотки очевидны (искрение и перегрев), особенно если вал генератора вращается с большой скоростью. Если в среде вокруг генератора содержатся легковоспламеняющиеся или взрывоопасные пары, проблемы, связанные с искрообразованием, усугубляются. Для работы генератора переменного тока (альтернатора) никаких щёток и коммутаторов не требуется, поэтому он застрахован от проблем, присущих генераторам постоянного тока.
Генераторы переменного тока имеют очевидные преимущества перед генераторами постоянного тока и при использовании их в качестве электродвигателей. В отличие от электродвигателей постоянного тока, двигатели переменного тока не страдают проблемой соприкосновения щёток с подвижной обмоткой. Электродвигатели постоянного и переменного тока по своему устройству очень похожи на соответствующие электрогенераторы.
Таким образом, становится понятно, что конструкция генераторов и электродвигателей переменного тока гораздо проще конструкции генераторов и электродвигателей постоянного тока. Относительная простота этих устройств на практике выливается в гораздо большую надежность и рентабельность. Для чего же еще используют переменный ток? Наверняка должно быть что-то еще кроме применения его в генераторах и электродвигателях! И действительно, спектр применения переменного тока очень широк. Наверняка вы слышали о таком явлении, как взаимная индукция. Она возникает при размещении двух или более обмоток таким образом, что переменное магнитное поле, создаваемое одной из обмоток наводит напряжение в другой. Если на одну обмотку мы подадим переменное напряжение, то на другой мы также получим переменное напряжение. Такое устройство известно как трансформатор.
Главное предназначение трансформатора состоит в его способности повышать и понижать напряжение на вторичной обмотке. Напряжение переменного тока, возникающее во вторичной обмотке равно напряжению переменного тока на первичной обмотке, умноженному на коэффициент отношения числа витков вторичной обмотки к числу витков первичной. Если же со вторичной обмотки ток подаётся в нагрузку, то изменение тока на вторичной обмотке будет прямо противоположным: ток первичной обмотки умножается на коэффициент отношения числа витков первичной к числу витков вторичной обмотки. Механическим аналогом подобных отношений может служить пример с крутящим моментом и скоростью (вместо напряжения и тока, соответственно):
Если соотношение витков обмоток обратное, т.е. первичная обмотка имеет меньше витков, чем вторичная, то трансформатор увеличивает напряжение источника до более высокого уровня:
Способность трансформатора повышать и понижать переменное напряжение дает переменному току неоспоримое преимущество над постоянным в области распределения энергии (см. рисунок ниже). Гораздо эффективнее передавать электроэнергию на большие расстояния при высоком напряжении и низком токе (провода меньшего диаметра с меньшими потерями на сопротивление), а затем понижать напряжение и усиливать ток при подаче энергии конечным потребителям.
Благодаря трансформаторам передача электрической энергии на большие расстояния стала гораздо более практичной. Не имея возможности эффективного увеличения и понижения напряжения было бы непомерно дорого создавать системы энергообеспечения для больших расстояний (более нескольких десятков километров).
Для работы трансформаторов необходим только переменный ток. Поскольку явление взаимоиндукции основано на переменных магнитных полях, трансформаторы просто не будут работать на постоянном токе (постоянный ток способен создавать только постоянные магнитные поля). Конечно, на первичную обмотку трансформатора можно подать постоянный прерывистый (импульсный) ток, чтобы создать переменное магнитное поле (как это делается в автомобильной системе зажигания, для создания искры в свече от низковольтной батареи постоянного тока), но в таком варианте импульсный постоянный ток ничем не отличается от переменного. Возможно, именно по этой причине переменный ток находит более широкое применение в энергосистемах.
Напряжение преобразование постоянного в переменное
Метод преобразования постоянного напряжения в переменное сравнительно прост и является наиболее современным методом измерения слабых токов. Простейшим преобразователем постоянного напряжения в переменное является ручное переключение. Такой метод применяют в компенсационных баллистических схемах (рис. IX.6). Конденсатор попеременно заряжают от измеряемого источника и разряжают через сеточное сопротивление [c.288]
Назначением нуль-индикатора сигнализатора является сигнализация момента изменения полярности входного сигнала, т. е. момента, когда величина сигнала проходит через нуль. Таким образом нуль-индикатор является фазочувствительным устройством с высокоомным входом и релейным выходом. Применяют две разновидности схем электронных нуль-индикаторов схемы, построенные по принципу усиления постоянного тока, II схемы с преобразованием постоянного напряжения в переменное и последующим усилением. [c.155]
Система контроля и зажигания пламени. Состоит из термоэлемента, зажигающего элемента и усилителя. На входе усилителя стоит реле РП-4 для преобразования постоянного напряжения от термопары в переменное. Зажигание пламени водорода производится тумблером включено , а контроль пламени по загоранию сигнальных лампочек да , нет , [c.180]
Электронные нуль-индикаторы, построенные по принципу преобразования постоянного напряжения в переменное с последующим усилением при помощи обычных усилителей переменного тока, обладают большими преимуществами и получили весьма широкое распространение. Основные их достоинства-отсутствие дрейфа нулевой точки, простота наладки и регулировки, надежность, возможность замены ламп без дополнительной регулировки. [c.155]
Анализ рассмотренных характеристик позволяет сделать вывод о возможности применения усилителя постоянного тока для изме—рений слабых световых потоков. На практике наибольшее распространение получили электрометрические усилители прямого усиления (в частности, многокаскадные усилители с коррекцией в цепи, отрицательной и положительной обратной связи) и с преобразованием постоянного напряжения в переменное [85]. [c.55]
Предварительное преобразование постоянного напряжения рассогласования в переменное электромеханическим преобразователем с дальнейшим усилением ламповым усилителем переменного тока применено в регуляторах как периодического действия [27], так и непрерывного действия [28]. Аналогичное преобразование, но с применением транзисторного усилителя переменного тока, использовано при разработке регулятора непрерывного действия [28]. [c.109]
Усилитель, используемый для усиления термо-э. д. с. дифференциальной термопары, собран по схеме преобразования постоянного напряжения в переменное (рис. 3). Частота преобразования 30 гц. Второй и третий каскады усилителя избирательные. Полоса пропускания усилителя —1 гц, чувствительность —- 1 мкв. В качестве преобразователей постоянного напряжения в переменное и обратно используются поляризованные реле типа РП-5. Благодаря высокой избирательности и частоте преобразования, не кратной 50 гц, усилитель мало чувствителен к наводкам от электрической сети. Реле усилителя приводится в действие переменным напряжением, подаваемым от R генератора, схема которого приведена на рис. 4. [c.23]
Мощные преобразовательные агрегаты типа двигатель—генератор постоянного и импульсного напряжения вытесняются статическими преобразователями, использующими полупроводниковые вентили — селеновые или кремниевые. Статические преобразователи состоят из силового трансформатора, выпрямительного блока, пускорегулирующей и защитной аппаратуры. С помощью силового трансформатора обеспечиваются необходимое число фаз и заданная величина напряжения. Выпрямительный блок производит преобразование переменного напряжения в постоянное,. Пускорегулирующая и защитная аппаратура позволяет включать и выключать источник, получать необходимые вольт-амперные [c.157]
Основным элементом потенциостата является усилитель постоянного тока с преобразованием постоянного тока в переменный на входе и обратным преобразованием на выходе усилителя. Преобразование на входе осуществляется генератором (транзистор Ti), колебательный контур которого состоит из катушки индуктивности Li и емкостей стабилитронов (Дг—Дз), работающих как электрически управляемые конденсаторы-вари-конды. Напряжение разбаланса изменяет емкость стабилитронов и амплитуду генерируемого транзистором напряжения. Таким образом, на входе усилителя происходит преобразование сигнала рассогласования в соответствующее значение амплитуды генерируемого напряжения. Входное сопротивление преобразователя не ниже 10 ом. Усиление напряжения генерации про- [c.213]
Для преобразования постоянного напряжения небаланса измерительной схемы в переменное напряжение частотой 50 гц служит преобразовательный каскад, схематически изображенный на фиг. 44. [c.92]
Производственные автоматические рН-метры требуют очень большого усиления напряжения небаланса, и в них применяются более совершенные принципы усиления импульсов и преобразования постоянного напряжения в переменное. [c.505]
Преобразование постоянного напряжения небаланса в переменное производится непрерывным подключением слюдяного конденсатора в цепи стеклянного электрода то к диагонали измерительной мостовой схемы, то к сетке лампы Л. В первом положении конденсатор заряжается напряжением небаланса измерительной схемы, пропорциональным измеряемой величине Е , во втором разряжается на сопротивление утечки сетки При этом на сопротивлении [c.505]
К электродам электрофильтра должен подаваться ток высокого напряжения и постоянного направления. Для преобразования переменного тока низкого напряжения в постоянный ток высокого напряжения устанавливают специальные повыситель-но-выпрямительные электроагрегаты. Такой электроагрегат представляет собой трансформатор переменного тока, скомплектованный с механическим выпрямителем. [c.227]
В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в данной схеме вибропреобразователь должен обладать высоким сопротивлением изоляции контактов относительно земли . Измерительным инструментом служит электронный нуль-индикатор с электронно-оптическим индикатором на выходе (рис. IX.23). [c.305]
Датчик с усилителем. В процессе исследований был проверен вариант измерения падения напряжения на токоподводящем тросе в момент касания анода и катода с преобразованием постоянного сигнала в переменный с последующим усилением (рис. 30). В качестве преобразователя был [c.95]
Определение электропроводности. Для определения электропроводности растворов применяют схему мостика Уитстона в специальном видоизменении Кольрауша, изображенную на рис. 10. На этом рисунке А — аккумулятор с напряжением в 4 в / — индукционная катушка для преобразования постоянного тока в переменный (постоянный ток неприменим вследствие поляризации электродов, погруженных в раствор электролита) г — сосуд с электродами (платиновыми пластинками) и с раствором, сопротивление которого г надо определить Я — известное сопротивление О — контакт, скользящий по никелиновой струне АВ, [c. 68]
В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в дан- [c.260]
Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамиче- [c.290]
Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамического конденсатора. Емкость [c.250]
Преобразование постоянного тока в переменный (инвертирование) может осуществляться при помощи электрических вентилей, проводимостью которых можно управлять. Для этой цели используются тиристоры. Как было показано, выпрямитель е фазовым управлением и ведомый сетью инвертор (инвертор, частота тока в котором соответствует частоте сети и > Р н) работают одинаково и любой из этих режимов может быть осуществлен в одной и той же схеме. При работе как выпрямитель устройство передает энергию в нагрузку постоянного тока. Когда оно работает как инвертор, источник постоянного напряжения нужен, чтобы создать ток в устройстве и передать мощность на сторону переменного тока, инверторный режим наступает при а = 90 -i- 180° эл. (рис. 124). Ведомый сетью (неавтономный) инвертор используется при реостатных испытаниях тепловозов с рекуперацией энергии. Подобные установки о каждым годом находят все большее распространение. [c.141]
Важнейшим типом преобразователя энергии является автономный (независимый) инвертор, служащий для преобразования постоянного тока в переменный с заданным числом фаз, с регулируемой частотой и напряжением. Автономный инвертор — основное звено электропривода переменного тока, а следовательно, и тепловозной электрической передачи с машинами переменного тока. [c.141]
Питание индукционного датчика 6 осуществляется от генератора 8 током определенной частоты. Преобразователь 7 служит для преобразования сигнала переменного тока, получаемого от датчика уровня 6, в сигнал постоянного тока и передачи его к потенциометру 9. Питание генератора 8 и потенциометра 9 стабилизированным напряжением осуществляется от стабилизатора 10. [c.221]
Трудности, возникающие при создании ламповых электрометров, значительно уменьшаются, если применяется преобразование постоянных сигналов в переменные и используются усилители переменного напряжения или тока с отрицательной связью. Такие электрометры более сложны в изготовлении, но позволяют измерять токи до 10 а. Электрометры ламповые можно использовать для измерения кратковременных токов (до 0,01 сек) 143, 150]. [c.108]
Долгое время в качестве преобразователя использовали набор калиброванных резисторов, часто называемых токоизмерительными (см. рис. 34, 38,6). Для преобразования постоянного тока выбирают в пределах от десятков Ом до десятка МОм, для преобразования переменного и импульсного тока-не более 10 кОм. В противном случае преобразователь, вносит существенный вклад в поворот суммарной фазы напряжения, и потенциостат теряет устойчивость. Эти резисторы подсоединяют в цепь ячейки подвешен-но относительно земли, тогда ИЭ соединяется с землей (см. рис. 34), либо резисторы соединяют с земляной шиной, а ячейка оказывается подвешенной относительно земли (см. рис. 38,6). Схема с заземленной ячейкой предпочтительнее с точки зрения уменьшения внешних наводок на ячейку. Схема с заземленным таким свойством не обладает. Однако при применении первой схемы усложняется задача считывания падения напряжения с токоизмерительного резистора. [c.53]
В качестве источника питания применяются сухие элементы с напряжением 4,5у и с силой тока 150—200 тА. Для преобразования постоянного тока в переменный служит вибропреобразователь типа В-5, вторая пара контактов которого работает на выпрямление измеряемого гальванометром тока. Прибор имеет четыре поддиапазона измерений в омах [c.152]
Предназначен для преобразования сетевого переменного напряжения 220 В, 50 Гц в постоянное стабилизированное напряжение от 22,5 до 28,5 В с гальванической изоляцией от сети питания. [c.16]
Для стабилизации работы электронных силоизмерителен применяются различные способы работа усилителей стабилизуется применением обратной связи вследствие нестабильности усиления малых напряжений постоянного тока (медленное изменение постоянной составляющей выходного напряжения усилителя со временем при неизменном входном напряжении, или дрейф нуля ) применяется усиление с преобразованием постоянного напряжения в переменное и усиление с помощью усилителя переменного тока изменение характеристик элемента датчика при изменении температуры помещения исключается термостатированием датчика применением компенсационной измерительной схемы для уменьшения искажающего влияния способа закрепления упругих элементов подбираются специальные конструкции опор и т. д. [c.137]
Питание дефектоскопа производится от аккумуляторной батареи 6 в. Преобразование постоянного напряжения в переменное происходит в генераторе, собранном на германиевых триодах. [c.109]
С помощью выпрямителей осуществляется преобразование энергии переменного тока в энергию постоянного тока. В промышленных установках применяют различные схемы выпрямления переменного тока в постоянный, каждая из которых имеет свои достоинства и недостатки. При сравнении различных схем выпрямления учитывают следующие их технические характеристики число полупроводниковых приборов, коэффициент пульсаций выпрямленного напряжения, габаритную мощность трансформатора. [c.145]
Выпрямленное напряжение (рис. 5.6, в) имеет постоянную составляющую [/преобразовании переменного тока в постоянный переменная составляющая равна нулю. Важным показателем работы выпрямителя служит отношение амплитуды переменной составляющей к выпрямленному напряжению, называемое коэффициентом пульсации выпрямленного напряжения [c.146]
Рассматривая вопрос об использовании топливных элементов для производства дешевой электроэнергии в больших объемах, необходимо учитывать, что в этих элементах генерируется постоянный ток низкого напряжения, преобразование которого в переменный связано с некоторыми дополнительными потерями энергии. [c.256]
Чувствительность и стабильность нуля в электрометрических усилителях может быть повышена при использовании схем с преобразованием постоянного напряжения в переменное. С этой целью применяют электромеханические, электрическце и модуляторные преобразователи. Наиболее высокие входные сопротивления имеют -схемы с емкостным вибрационным преобразователем, его полупроводниковым аналогом — варикапом, диэлектрическим преобразователем и преобразователем на полевых транзисторах. Применение других преобразователей ограничено сравнительно невысоким входным сопротивлением и узкой полосой пропускания. [c.56]
Пряжение. Последовательно в цепь каждой ячейки включен модулятор, преобразующий постоянный ток ячейки в переменное напряжение с частотой в 1 кгц (рис. 5-5). Полученные напряжения суммируются в про-тивофазе, и сигнал разности после соответствующего усиления по переменному току поступает на фазовый детектор. Применение единого генератора подъема напряжения и усиление разности токов ячеек после преобразования в переменное напряжение позволяют уменьшить влияние дрейфа, характерного для методов измерения на постоянном токе. [c.103]
Разновидностью датчиков этого тина являются электростатические генераторы без подвижных частей [31, 32]. Металлическая измерительная пластинка такого датчика покрыта сегнетоэлектри-ком. Диэлектрическая проницаемость последнего периодически меняется под воздействием специального генератора переменного напряжения, и таким образом осуществляется преобразование постоянного измеряемого поля в переменное, под воздействием которого периодически меняется поляризация металлической измерительной пластины. Амплитуда тока второй гармоники в цепи нагрузки определяется величиной измеряемой напряженности поля. В такой конструкции мощность на выходе электростатического генератора поставляется за счет электрических сил, меняющих поляризацию сегнетоэлектрика [3]. [c.184]
Генератор имеет силовой трехфазный трансформатор / типа ЗГМ-75/10 с первичным напряжением 220/380 в и вторичным линейным напряжением Уаслин.) = 8000 в. Для преобразования подводимого от трансформатора переменного тока высокого напряжения в постоянный ток высокого напряжения служит высоковольтный газотронный выпрямитель 2, собранный по двухполупериодной трехфазной схеме. В процессе преобразования переменного тока по данной схеме значение выпрямленного напряжения возрастает до 1/г=1,35 У2(лин). В генераторе ГЛ-60 установлены две включенные параллельно лампы типа Г-431. Для предотвращения возможности прохождения высокочастотных колебаний в цепь питания имеется анодный стопорный дроссель 3, емкость 7 и индуктивность И анодного контура. [c.89]
Схемы высокочастотных установок для индукционного нагрева с электромашинными и ламповыми генераторами приведены на рис. 11.13. Установка с ламповым высокочастотным генератором состоит из блока трехфазного анодного трансформатора 1, ловышающего напряжение 220 и 380 В до 7,5—10 кВ, блока газотронов и тиратронов 2 для преобразования переменного тока в постоянный напряжением до 10—15 кВ, генераторного блока 3 преобразования постоянного тока в высокочастотные колебания с лампой Л, колебательного контура 4, состоящего из конденсаторной батареи С1, воздушного трансформатора к и индуктора И. Перед включением газотронов (тиратронов) на полное напряжение создается выдержка времени при помощи реле времени. [c.56]
Сигнал от сосуда 3 поступает в электронный регулирующий милливольтметр 4, от которого нужная команда подается на двигатель РД-09 через редуктор, приводящий в движение ползунок ЛАТР а 5. Электрический ток, измененный ЛАТРюм по величине и преобразованный из переменного в постоянный выпрямителем 7, изменяет индуктивное сопротивление дросселя в нужную сторону и выравнивает напряжение первичной сети. [c.97]
Преобразование постоянного напряжения в переменное может осуществляться с использованием всех типов силовых полупроводниковых ключей. За последние годы в области средних и больших мощностей до 1000 кВт начинают широко применяться инверторы на IGBT. Несмотря на более высокую стоимость по сравнению с традиционными тиристорами, они представляют разработчикам более широкие возможности формирования напряжения и тока. [c.155]
Что такое переменное напряжение?
Что такое переменное напряжение?
Далее: Что такое трансформатор?
Up: lab8b
предыдущий: фон
Закон индукции Фарадея дает основу для преобразования
механическую энергию в электрическую. Основная мысль
заключается в перемещении катушки с проволокой относительно магнитного поля.
Это движение вызовет ток в проводе. Такой
устройство называется , генератор и концептуальный чертеж
этого устройства показано на рисунке 1.
Для простоты катушка обычно вращается.
в поле. При вращении катушка прорезает
силовые линии, генерирующие напряжение на катушке
терминалы. Когда поверхность катушки параллельна
поле, он быстро прорезает силовые линии. Но когда
катушка повернута на 90 градусов и перпендикулярна
силовых линий поля, то движение катушки происходит по касательной к
поле и напряжение не возникает.Когда катушка поворачивается
после этой точки он прорезает поле в противоположном направлении.
направление, генерирующее отрицательное напряжение. Конечный результат
этой цепочки событий состоит в том, что напряжение, создаваемое
Генератор изменяется как косинус угла, как показано ниже.
Этот синусоидальный сигнал обозначается как
переменного тока или переменного тока.
Уравнение для формы волны этого типа:
(1) |
где — амплитуда , , —
частота , а фаза .Поскольку это
сигнал напряжения, изменяющийся во времени, имеет единицы вольт. В
частота измеряется в радианах в секунду.
Фаза измеряется в радианах. Мы часто измеряем частоту
в соответствующей единице циклов в секунду . Цикл
соответствует радианам.
Синусоидальная форма волны в уравнении 1 представляет собой
периодическая форма волны . Сигнал
периодический тогда и только тогда, когда существует такое, что
для всех . Чтобы увидеть, является ли синусоидальный сигнал
периодической, поэтому нам нужно найти такую, что
(2) |
В частности, мы знаем, что функция косинуса повторяет
каждые радианы, поэтому нам нужно найти такое, что
(3) |
Ясно, что это происходит, если
или
скорее
(4) |
основной период этой синусоидальной
функция.
Размер синусоиды можно измерить в
Разнообразие способов. Например, мы можем использовать
амплитуда сигнала (), чтобы указать
размер. Еще одна мера «размера» — это сигнал .
среднеквадратичное значение или среднеквадратичное значение сила
(5) |
Поскольку генераторы естественным образом производят синусоидальные волны, эти
формы волны играют важную роль в электрических
инженерное дело.Также оказывается, что синусоидальные волны также
обеспечить эффективный способ транспортировки электрических
энергия на большом расстоянии. Это часть причины
почему переменное напряжение используется в международных электрических сетях
и, конечно же, именно поэтому ваша настенная розетка обеспечивает
Напряжение переменного тока 120 вольт (среднеквадратичное значение) при 60 Гц.
В отличие от напряжений переменного тока, батареи обеспечивают прямое
ток или постоянное напряжение. Напряжения постоянного тока постоянны в течение
время. Для получения постоянного напряжения от стены переменного тока
сокет, нам нужно найти способ
регулирующий источник питания переменного тока.
Далее: Что такое трансформатор?
Up: lab8b
предыдущий: фон
2009-02-01
Что такое переменный ток (AC)? | Базовая теория переменного тока
Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением постоянной полярности.
постоянного тока — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.
Переменный ток против постоянного
Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.
Либо в качестве полярности переключения напряжения, либо в качестве направления переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):
Постоянный и переменный ток
В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.
Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.
В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток, чтобы произвести желаемое тепло (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.
Чтобы объяснить, почему это так, необходимы некоторые базовые знания об AC.
Генераторы переменного тока
Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.
Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже
Работа генератора
Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.
При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.
Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.
В генераторе постоянного тока катушка с проводом установлена на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.
Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:
Работа генератора постоянного тока
Показанный выше генератор будет генерировать два импульса напряжения за один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками.
Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.
Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.
Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.
Двигатели переменного тока
Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.
В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки из проволоки для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).
Трансформаторы
Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.
Существует эффект электромагнетизма, известный как взаимная индукция , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании в таком виде это устройство известно как трансформатор :
.
Трансформатор «преобразует» переменное напряжение и ток.
Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.
Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на соотношение первичных и вторичных витков. Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:
Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.
Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:
Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.
Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.
При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.
Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.
Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (в пределах нескольких миль максимум).
Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности зависит от изменения магнитных полей , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.
Конечно, постоянный ток может прерываться (генерироваться импульсами) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.
Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.
ОБЗОР:
- DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
- AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление соответственно.
- , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
- очень точно соответствует принципам конструкции генератора.
- Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается для создания увеличения или уменьшения напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
- Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
- Вторичный ток = Первичный ток (первичные витки / вторичные витки)
Электромеханические генераторы переменного тока
Конструкция двигателя переменного и постоянного тока
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Как это работает Jameco Electronics
Меган Тунг
Переменный ток (AC) — это когда электрический заряд периодически меняет направление.Для сравнения, постоянный ток (DC) — это когда электрический заряд течет только в одном направлении. В США направление тока меняется на противоположное с частотой 60 Гц (циклов в секунду). Наиболее распространенная форма волны переменного тока — синусоидальная волна; хотя прямоугольные и треугольные волны — это другие формы сигналов для переменного тока.
Особый тип электрического генератора, называемый генератором переменного тока, предназначен для выработки переменного тока. Генератор работает так: вращающиеся магниты, известные как ротор, и проводник, намотанный катушками на железный сердечник, называемый статором.Когда статор совершает полный оборот, в статоре индуцируется электродвижущая сила в виде тока, создавая переменное напряжение. Электропитание переменного тока используется для подачи энергии в дома, офисные здания и т. Д. Электропитание переменного тока также может использоваться для питания электродвигателей, таких как посудомоечные машины и холодильники.
Производство и транспортировка переменного тока на большие расстояния относительно просты. Энергетические компании посылают очень высокое напряжение, чтобы передавать электроэнергию на большие расстояния. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.Несколько трансформаторов используются для безопасной передачи нужного количества переменного тока от электростанций в дома.
Во-первых, электричество вырабатывается огромными генераторами с помощью ветра, угля, природного газа или воды. Затем переменный ток проходит через трансформаторы, чтобы увеличить напряжение, чтобы энергия передавалась на большие расстояния. Электрический заряд проходит по высоковольтным линиям электропередачи. Затем он достигает подстанции, где напряжение понижается, чтобы его можно было отправить по линиям электропередачи меньшего размера. Заряд проходит по распределительным линиям в район, где трансформаторы меньшего размера снова снижают напряжение, чтобы сделать электроэнергию безопасной для использования в домах.Затем мощность подключается к дому, где она проходит через счетчик, который измеряет, сколько энергии использует дом. Ток проходит через сервисную панель, где автоматические выключатели / предохранители защищают провода от перегрузки. Затем электричество проходит по проводам к розеткам и переключается в доме.
Для некоторых устройств потребуется адаптер переменного тока, который будет использовать другой трансформатор для преобразования электрических токов, получаемых от электрической розетки, в более низкий переменный ток, который может использовать электронное устройство. Количество трансформаторов, через которые должен пройти ток, зависит от максимальной силы тока, которую может выдержать электронное устройство.
Вам также может быть интересно прочитать: Как работает трансформатор
Меган Тунг — летний стажер в Jameco Electronics , посещает Калифорнийский университет , Санта-Барбара (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.
Кредиты на фото: Солнечные школы
Переменное напряжение и ток — цепи переменного тока
Цепи переменного тока
Введение
Переменное напряжение — это любое напряжение, которое изменяется как по величине, так и по величине.
полярность по времени.Напряжение может меняться в обычном, предсказуемом
способом, или напряжение может изменяться нерегулярно, неповторяющимся образом с
уважение ко времени. В любом случае напряжение считается допустимым.
переменное напряжение. На рисунке ниже показано переменное напряжение, которое
регулярно меняется во времени.
Пилообразная форма напряжения.
Переменный ток — это любой ток, который варьируется как по величине, так и по величине.
направление. Как и в случае с переменным напряжением, нет ограничений по скорости
изменения или формы волны.Переменный ток — это просто ток, который
со временем меняет величину и направление.
Переменные токи и напряжения широко используются для распределения электрического тока.
сила. Однако использование переменных напряжений и токов простирается далеко
помимо распределения электроэнергии. Вся электронная коммуникация
системы, электронно-вычислительные машины и электронные контрольно-измерительные системы требуют
переменные токи и напряжения, а также постоянные напряжения и токи.
При подаче электроэнергии переменного напряжения и тока для работы других
устройств, AC (обозначение «AC» обычно используется для обозначения либо
переменное напряжение или ток, или и то, и другое) обычно производится огромными
генераторы переменного тока (генераторы переменного тока), эксплуатируемые энергокомпаниями. Электронные устройства
также может использоваться для выработки переменного напряжения и тока. В этом случае источник
переменного напряжения и тока представляет собой цепь, называемую
осциллятор . Генератор — это электронная схема, которая преобразует постоянный ток
в AC.
Частота и период
Напряжения и токи постоянного тока легко определяются по величине. Переменные напряжения
и токи, однако, не могут быть точно определены только с точки зрения величины.
Все переменные напряжения и токи имеют три характеристики:
амплитуда , частота и фаза .Этот раздел касается
с частотной характеристикой переменного напряжения и тока.
Было заявлено, что любое напряжение или ток, меняющие полярность или направление
считается ак. Однако подавляющее большинство всех напряжений переменного тока и
токи меняются по величине и направлению с заданной скоростью. Это,
напряжение переменного тока повышается до максимального значения, уменьшается от максимального до нуля, затем
возрастает до максимального значения противоположной полярности, и снова уменьшается до нуля.
Он непрерывно повторяет этот процесс.
Цикл переменного напряжения или тока состоит из одного полного
переход от некоторой точки сигнала переменного тока к той же точке на
по форме волны переменного тока . Например, один цикл формы волны переменного тока на рисунке
указанное выше может быть измерено между точками a и d, b и e или c и f.
Количество циклов в секунду определяется как частота переменного тока.
напряжение или ток. Например, обычная частота в электросети в США.
Состояние составляет 60 циклов в секунду (cps), а частота радио
вещательная станция может быть 10 6 гц.Телевизионные станции
работают на частотах порядка 10 8 гц.
Теперь можно записать некоторые фундаментальные математические соотношения, относящиеся к
частота до времени одного цикла. Поскольку частота равна циклам в секунду,
это следует из того
где
T — время одного цикла (периода), сек
f — частота, гц или герц (Гц)
Когда известно время одного цикла, частота определяется по формуле
Синусоидальные напряжения и токи
Уникальной формой сигнала переменного напряжения или тока является синусоида. В предыдущем
разделах, было указано, что переменное напряжение или ток могут иметь
любой формы волны. Это действительно так, но именно этот факт может сделать математическое
Анализ цепей переменного тока очень трудоемок. Однако это может быть
показано математически и графически продемонстрировано, что любой формы волны,
независимо от того, насколько он неправильный, состоит из различных комбинаций синусоидальных
Волновой . Таким образом, уникальная особенность синусоидальной волны состоит в том, что она
является основным для всех напряжений и токов переменного тока!
В синусоиде один полный цикл представлен 360 ° или 2π
радианы.Следовательно, если период синусоидальной волны равен 0,2 с, то каждая степень
цикл составляет 0,556 мс. В любой момент мгновенное значение
синусоидальная волна равна произведению максимального значения синусоидальной волны и
синус угла, соответствующего времени. Уравнение для синусоидальной волны
напряжение
где θ — любой угол.
Уравнение для синусоидальной волны тока записывается аналогичным образом.
На рисунке ниже представлена синусоида напряжения, показывающая замену угловой
измерять время в градусах и радианах.
Синусоидальная волна напряжения.
В дополнение к графическому изображению синусоиды, как в
На рисунке выше синусоида может быть представлена радиус-вектором или вектором .
Вектор имеет постоянную величину, равную максимальному значению синуса.
волна, а мгновенное значение синусоиды — произведение
фазора и синуса угла между фазором и началом координат. Вектор
представление чрезвычайно полезно при добавлении и вычитании чередующихся
напряжения и токи.На рисунке ниже показано представление вектора для
синусоида на рисунке выше.
Фазорное представление синусоидальной волны напряжения с мгновенными значениями при 28 °, 70 ° и 225 °.
Обсуждение векторных представлений синусоидальных волн логически приводит к другому.
полезная концепция. Угловая скорость обычно связана с вращением
машины. Однако вектор, представляющий синусоидальную волну, можно визуализировать как
вращающийся вектор, и поэтому он также имеет угловую скорость.Как указано в
На рисунке выше положительное направление вращения — против часовой стрелки (ccw).
Скорость — это отношение расстояния ко времени. Угловая скорость синуса
волна — это «расстояние» одного цикла в радианах, деленное на период
синусоида. Угловая скорость обозначается строчной омегой ( ω ).
Однако T = 1/ f . Если подставить это значение T
в приведенное выше уравнение, тогда
Уравнения для синусоидальной волны напряжения
и синусоида тока может быть
переписать в терминах приведенного выше уравнения.Угловая скорость синуса
волна является постоянной, и частный угол синусоидальной волны в любой момент
это прямая функция времени. Следовательно, если угловую скорость умножить
по времени в секундах произведение представляет собой угол в радианах.
Уравнения для синусоидальной волны напряжения
и синусоида тока, когда радиан
мера используется, записываются
Фазовый угол и разность фаз
Было отмечено, что все переменные напряжения и токи имеют три характеристики;
частота, амплитуда и фаза.В этом разделе фазовые характеристики
синусоидальной волны.
Форма волны напряжения.
В уравнении синусоиды независимой переменной является время. В обоих
представления синусоидальной волны, графиком или вектором, угловая запись
был заменен на время. Это должно быть очевидно из уравнения
синусоида, что все синусоиды имеют нулевое значение в то время, когда угловой
эквивалент времени равен нулю. Синусоидальную волну принято представлять как
начиная с 0 °.Однако так же допустимо рассматривать синус
волна как начинающаяся в любой другой точке ее цикла. Рисунок выше иллюстрирует
синусоидальная волна напряжения, которая не равна нулю в начале своего цикла.
Когда считается, что синусоидальная волна начинается с некоторой величины, отличной от нуля,
факт должен быть указан в уравнении волны. Угловой
смещение волны от 0 ° до точки на ее цикле, где волна
считается его фазовый угол. Например, на рисунке
выше θ — фазовый угол волны.
Уравнение для формы волны напряжения на рисунке выше записано
На рисунке ниже показана синусоидальная волна тока, описываемая уравнением
Форма кривой тока.
В цепях переменного тока, содержащих емкость, индуктивность или и то, и другое, фазовые углы
тока и напряжения могут отличаться друг от друга. То есть ток в
цепь может достигать максимума или минимума в разное время, чем напряжение.
Эта разница во времени между переменными величинами называется
разность фаз и выражается в градусах.Разница фаз может
также выражают временной сдвиг между волнами разных частот
которые присутствуют в той же цепи.
Должно быть очевидно, что разность фаз между синусоидальными волнами разных
частоты постоянно меняются. Однако часто бывает удобно выразить
разность фаз между сигналами разных частот на некоторых
конкретный момент времени. При чередовании количества одинаковой частоты
достичь положительных максимумов (или любой другой удобной точки отсчета на цикле)
в тот же момент количества называются в фазе : фаза
разница между ними составляет 0 °.
На рисунке ниже показаны два вектора одинаковой частоты, смещенные друг относительно друга.
на θ °. v 1 считается ведущим
v 2 на θ ° (вращение против часовой стрелки
фазоры, как отмечалось ранее, — это положительное направление).
Две векторных величины одинаковой частоты.
Уравнения для напряжений v 1 и v 2 in
рисунок выше
Обратите внимание, что разность фаз между v 1 и
v 2 — это сумма углов β и α .Можно констатировать, что v 1 опережает референтную ось на
β градусов и v 2 отстает от этой же ссылки на
α градусов. На рисунке ниже показаны два тока, которые находятся в
фазы друг с другом. Часть A — это векторное представление этих токов,
а в части B токи показаны в виде синусоид.
Два синфазных тока.
Среднее значение синусоиды
Среднее значение любого тока или напряжения — это значение, которое будет
указывается измерителем постоянного тока.Эта концепция имеет особое значение в электронике,
поскольку многие напряжения и токи представляют собой комбинации постоянного тока и синусоид. В
Концепция средних значений имеет особое значение в выпрямительных схемах.
Среднее значение любой кривой — это площадь, ограниченная кривой, разделенной
основанием кривой. На рисунке ниже показан один цикл прямоугольного импульса.
напряжения, и он иллюстрирует среднее значение этого импульса за один цикл .
Среднее значение пульса.
Очевидно, что среднее значение синусоиды за полный цикл составляет
ноль, так как среднее значение одной половины цикла точно равно, но противоположно
по полярности к средней другой половине. Среднее значение синусоиды
обычно получается, если предположить, что он был исправлен. То есть оба
половины формы волны считаются положительными. Выпрямленная синусоида
показано на рисунке ниже.
Выпрямленная синусоида.
Расчет среднего значения синусоиды выполняется с помощью
интегральное исчисление.Этот процесс дает среднее значение кривой от 0 до
π радиан. Это среднее значение также соответствует синусоиде за полный
цикл, и его часто называют средним выпрямленным значением .
Среднее выпрямленное значение напряжения составляет
Среднее выпрямленное значение синусоидального тока составляет
Эффективное значение синусоиды
Действующее значение формы волны тока или напряжения — это значение, которое будет
рассеивают такую же мощность, что и , численно равный постоянного тока или напряжения.Например, переменный ток с эффективным значением 2 А рассеивается точно так же.
мощность как 2 ампера постоянного тока. Обратите внимание, что форма волны не учитывается.
переменного тока; мы просто утверждаем, что эффективный ток 2 А переменного тока
развивает ту же мощность, что и 2-амперный постоянный ток. Короче говоря, эффективное значение
определяется с точки зрения рассеиваемой мощности.
Эффективное значение часто называют среднеквадратическим (среднеквадратичным) значением.
Эффективные значения синусоидальной волны равны
Обратите внимание, что строчные буквы используются для обозначения мгновенных значений
ток или напряжение, если ток или напряжение изменяются во времени.Определенные значения тока или напряжения обозначаются заглавными буквами.
( В макс , I макс и т. Д.).
ПЕРЕМЕННЫЙ ТОК — прикладное промышленное электричество
Переменный ток
Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением с постоянной полярностью. Постоянный ток — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.
Переменный ток против постоянного
Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени. Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):
Рисунок 4.1 Постоянный и переменный ток
В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.
Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током. В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеет значения, пока на нагрузку поступает достаточно напряжения и тока, чтобы произвести желаемое тепло (рассеивание мощности).Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью. Чтобы объяснить подробности того, почему это так, необходимы некоторые базовые знания о AC.
Генераторы переменного тока
Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, переменное напряжение будет создаваться на катушках с проволокой, когда этот вал вращается, в соответствии с законом электромагнитной индукции Фарадея. Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока :
Рисунок 4.2 Работа генератора переменного тока
Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита. При подключении к нагрузке эта изменяющая полярность напряжения создает в цепи обратное направление тока. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.
Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока. В генераторе постоянного тока катушка с проволокой установлена на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу. Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:
Рисунок 4.3 Работа генератора постоянного тока
Показанный выше генератор будет генерировать два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками. Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.
Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше. Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.
Двигатели переменного тока
Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях. В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки из проволоки для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).
Трансформаторы
Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока.Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть. Существует эффект электромагнетизма, известный как взаимная индукция , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой. Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке.При использовании в таком виде это устройство известно как трансформатор :
.
Рисунок 4.4 Трансформатор «преобразует» переменное напряжение и ток.
Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки. Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки умножается на соотношение первичных и вторичных витков.Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:
Рисунок 4.5 Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.
Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «повышает» напряжение от уровня источника до более высокого уровня на нагрузке:
Рисунок 4.6 Редукторная передача увеличивает крутящий момент и снижает скорость. Повышающий трансформатор увеличивает напряжение и уменьшает ток.
Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже. При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток для промышленность, бизнес или потребительское использование.
Рисунок 4.7 Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.
Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (в пределах нескольких миль максимум).
Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током. Поскольку явление взаимной индуктивности зависит от изменения магнитных полей , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.Конечно, постоянный ток может прерываться (пульсировать) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но Импульсный постоянный ток не так уж отличается от переменного тока. Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.
- DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
- AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление соответственно.
- , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
- очень точно соответствует принципам конструкции генератора.
- Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой.Часто количество витков в каждой катушке устанавливается для создания увеличения или уменьшения напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
- Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
- Вторичный ток = Первичный ток (первичные витки / вторичные витки)
Электромеханические генераторы переменного тока
Конструкция двигателя переменного и постоянного тока
Измерения величины переменного тока
На данный момент мы знаем, что переменное напряжение меняется по полярности, а переменный ток — по направлению. Мы также знаем, что переменный ток может изменяться множеством различных способов, и, отслеживая изменение во времени, мы можем построить его в виде «формы волны». Мы можем измерить скорость чередования, измерив время, необходимое для развития волны, прежде чем она повторится («период»), и выразить это как количество циклов в единицу времени или «частоту». В музыке частота такая же, как шаг , что является важным свойством, отличающим одну ноту от другой.
Однако мы сталкиваемся с проблемой измерения, если пытаемся выразить, насколько велика или мала величина переменного тока.С постоянным током, где величины напряжения и тока обычно стабильны, у нас нет проблем с выражением того, сколько напряжения или тока у нас есть в любой части цепи. Но как дать единичное измерение величины чему-то, что постоянно меняется?
Способы выражения величины сигнала переменного тока
Один из способов выразить интенсивность или величину (также называемую амплитудой ) величины переменного тока — это измерить высоту его пика на графике формы волны. Это известно как значение пика или пика сигнала переменного тока:
Рисунок 4.8 Пиковое напряжение формы волны.
Другой способ — измерить общую высоту между противоположными вершинами. Это известно как значение размаха сигнала (P-P) для сигнала переменного тока:
Рис. 4.9. Размах напряжения сигнала.
К сожалению, любое из этих выражений амплитуды сигнала может вводить в заблуждение при сравнении двух разных типов волн. Например, прямоугольная волна с пиком 10 вольт, очевидно, представляет собой большее количество напряжения в течение большего времени, чем треугольная волна с пиком 10 вольт.Воздействие этих двух напряжений переменного тока, питающих нагрузку, будет совершенно различным:
Рис. 4.10. Прямоугольная волна дает больший эффект нагрева, чем такая же треугольная волна пикового напряжения.
Один из способов выразить амплитуду различных форм волны более эквивалентным способом — это математически усреднить значения всех точек на графике формы волны до единого совокупного числа. Это измерение амплитуды известно просто как среднее значение сигнала.Если мы усредним все точки на осциллограмме алгебраически (то есть, чтобы считать их знак , положительным или отрицательным), среднее значение для большинства сигналов технически равно нулю, потому что все положительные точки компенсируют все отрицательные точки на протяжении полный цикл:
Рисунок 4.11 Среднее значение синусоиды равно нулю.
Это, конечно, будет верно для любой формы волны, имеющей участки равной площади выше и ниже «нулевой» линии графика. Однако, как практическая мера совокупного значения формы волны, «среднее» обычно определяется как математическое среднее абсолютных значений всех точек за цикл.Другими словами, мы вычисляем практическое среднее значение сигнала, рассматривая все точки на волне как положительные величины, как если бы форма сигнала выглядела так:
Рис. 4.12 Форма волны, измеренная измерителем «среднего отклика» переменного тока.
Нечувствительные к полярности механические движения счетчика (счетчики, рассчитанные на одинаковую реакцию на положительные и отрицательные полупериоды переменного напряжения или тока) регистрируются пропорционально (практическому) среднему значению формы волны, потому что инерция стрелки по отношению к напряжению пружина естественным образом усредняет силу, создаваемую изменяющимися значениями напряжения / тока с течением времени.И наоборот, чувствительные к полярности движения измерителя бесполезно вибрируют при воздействии переменного напряжения или тока, их стрелки быстро колеблются около нулевой отметки, указывая истинное (алгебраическое) среднее значение нуля для симметричной формы волны. Когда в этом тексте упоминается «среднее» значение формы сигнала, предполагается, что подразумевается «практическое» определение среднего значения, если не указано иное.
Другой метод получения совокупного значения амплитуды сигнала основан на способности сигнала выполнять полезную работу при приложении к сопротивлению нагрузки. К сожалению, измерение переменного тока, основанное на работе, выполняемой осциллограммой, не совпадает со «средним» значением этой формы сигнала, поскольку мощность , рассеиваемая данной нагрузкой (работа, выполняемая в единицу времени), не прямо пропорциональна величине любого из них. приложенное к нему напряжение или ток. Напротив, мощность пропорциональна квадрату напряжения или тока, приложенного к сопротивлению (P = E 2 / R и P = I 2 R). Хотя математика такого измерения амплитуды может быть непростой, польза от этого есть.
Рассмотрим ленточную пилу и лобзик, две части современного деревообрабатывающего оборудования. Пилы обоих типов режут дерево с помощью тонкого зубчатого металлического полотна с приводом от двигателя. Но в то время как ленточная пила использует непрерывное движение полотна для резки, лобзик использует возвратно-поступательное движение. Сравнение переменного тока (AC) с постоянным током (DC) можно сравнить со сравнением этих двух типов пил:
Рисунок 4. 13. Аналогия постоянного и переменного тока с помощью ленточной пилы и лобзика.
Проблема попытки описать изменяющиеся величины переменного напряжения или тока в одном совокупном измерении также присутствует в этой аналогии с пилой: как бы мы могли выразить скорость полотна лобзика? Полотно ленточной пилы движется с постоянной скоростью, подобно тому, как проталкивает постоянное напряжение или постоянный ток движется с постоянной величиной.С другой стороны, полотно лобзика движется вперед и назад, скорость его вращения постоянно меняется. Более того, возвратно-поступательное движение любых двух лобзиков может быть неодинаковым, в зависимости от механической конструкции пил. Один лобзик может двигать лезвие синусоидально, а другой — треугольником. Оценка лобзика на основе его максимальной скорости вращения полотна может ввести в заблуждение при сравнении одного лобзика с другим (или лобзика с ленточной пилой!). Несмотря на то, что эти разные пилы перемещают свои полотна по-разному, они равны в одном отношении: все они режут древесину, и количественное сравнение этой общей функции может служить общей основой для оценки скорости полотна.
Представьте себе лобзик и ленточную пилу бок о бок, оснащенные одинаковыми лезвиями (одинаковым шагом зубьев, углом и т. Д.), Одинаково способными резать одинаковую толщину одного и того же вида древесины с одинаковой скоростью. Можно сказать, что эти две пилы были эквивалентны или равны по своей режущей способности. Можно ли использовать это сравнение, чтобы приписать «эквивалентную» скорость полотна ленточной пилы возвратно-поступательному движению полотна лобзика; связать эффективность лесозаготовки одного с другим? Это общая идея, используемая для присвоения измерения «эквивалента постоянного тока» любому переменному напряжению или току: независимо от величины постоянного напряжения или тока, будет производиться такое же количество рассеяния тепловой энергии через равное сопротивление:
Рисунок 4.14 Среднеквадратичное напряжение вызывает тот же эффект нагрева, что и такое же напряжение постоянного тока.
Как среднеквадратичное значение (СКЗ) соотносится с переменным током?
В двух приведенных выше схемах у нас одинаковое сопротивление нагрузки (2 Ом), рассеивающее одинаковую мощность в виде тепла (50 Вт), одна питается от переменного тока, а другая от постоянного тока. Поскольку изображенный выше источник переменного напряжения эквивалентен (с точки зрения мощности, подаваемой на нагрузку) 10-вольтовой батарее постоянного тока, мы бы назвали это «10-вольтовым» источником переменного тока. Более конкретно, мы бы обозначили его значение напряжения как 10 вольт RMS .Квалификатор «RMS» означает Среднеквадратичный , алгоритм, используемый для получения значения эквивалента постоянного тока из точек на графике (по сути, процедура состоит из возведения в квадрат всех положительных и отрицательных точек на графике формы сигнала, усреднения этих квадратов значений. , а затем извлечение квадратного корня из этого среднего, чтобы получить окончательный ответ). Иногда вместо «RMS» используются альтернативные термины эквивалент или эквивалент постоянного тока , но количество и принцип одинаковы.
Измерение амплитуды
RMS — лучший способ связать величины переменного тока с величинами постоянного тока или другими величинами переменного тока с различной формой волны при измерении электрической мощности. По другим соображениям лучше всего использовать измерения от пика до пика. Например, при определении правильного размера провода (допустимой нагрузки) для передачи электроэнергии от источника к нагрузке лучше всего использовать измерение среднеквадратичного тока, потому что основной проблемой, связанной с током, является перегрев провода, который является функцией рассеивание мощности, вызванное током через сопротивление провода.Однако при оценке изоляторов для работы в высоковольтных системах переменного тока измерения пикового напряжения являются наиболее подходящими, поскольку здесь основной проблемой является «пробой» изолятора, вызванный кратковременными скачками напряжения независимо от времени.
Инструменты, используемые для измерения амплитуды сигнала
Измерения размаха и пика лучше всего выполнять с помощью осциллографа, который может фиксировать пики формы сигнала с высокой степенью точности благодаря быстрому срабатыванию электронно-лучевой трубки в ответ на изменения напряжения. Для измерений RMS будут работать аналоговые измерительные приборы (D’Arsonval, Weston, железная лопасть, электродинамометр), если они были откалиброваны в значениях RMS. Поскольку механическая инерция и демпфирующие эффекты движения электромеханического измерителя делают отклонение стрелки естественным образом пропорциональным среднему значению переменного тока, а не истинному среднеквадратичному значению, аналоговые измерители должны быть специально откалиброваны (или неправильно откалиброваны, в зависимости от как вы на это смотрите), чтобы указать напряжение или ток в единицах RMS.Точность этой калибровки зависит от предполагаемой формы волны, обычно синусоидальной волны.
Электронные счетчики, специально разработанные для измерения среднеквадратичных значений, лучше всего подходят для этой задачи. Некоторые производители инструментов разработали оригинальные методы определения среднеквадратичного значения любой формы волны. Один из таких производителей производит измерители True-RMS с крошечным резистивным нагревательным элементом, питаемым напряжением, пропорциональным измеряемому. Эффект нагрева этого элемента сопротивления измеряется термически, чтобы получить истинное среднеквадратичное значение без каких-либо математических расчетов, только законы физики в действии в соответствии с определением среднеквадратичного значения.Точность этого типа измерения RMS не зависит от формы волны.
Взаимосвязь пика, размаха, среднего и среднеквадратичного значения
Для «чистых» сигналов существуют простые коэффициенты преобразования для приравнивания пикового, разностного, среднего (практического, а не алгебраического) и среднеквадратичного измерений друг к другу:
Рисунок 4.15 Коэффициенты преобразования для распространенных сигналов.
В дополнение к измерениям RMS, среднего, пика (пика) и размаха сигнала переменного тока существуют соотношения, выражающие пропорциональность между некоторыми из этих основных измерений.Пик-фактор , например, сигнала переменного тока, представляет собой отношение его пикового (пикового) значения, деленного на его среднеквадратичное значение. Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению. Сигналы прямоугольной формы всегда имеют пик и коэффициент формы, равные 1, поскольку пик такой же, как среднеквадратичное и среднее значения. Синусоидальные сигналы имеют среднеквадратичное значение 0,707 (величина, обратная квадратному корню из 2) и форм-фактор 1,11 (0,707 / 0,636). Сигналы треугольной и пилообразной формы имеют среднеквадратичное значение 0.577 (величина, обратная квадратному корню из 3) и форм-фактор 1,15 (0,577 / 0,5).
Имейте в виду, что константы преобразования, показанные здесь для пиковых, среднеквадратичных и средних амплитуд синусоидальных, прямоугольных и треугольных волн, верны только для чистых форм этих форм волны. Среднеквадратичные и средние значения искаженных форм волн не связаны одним и тем же соотношением:
Рис. 4.16. Сигналы произвольной формы не имеют простого преобразования.
Это очень важная концепция, которую необходимо понимать при использовании аналогового движения измерителя Д’Арсонваля для измерения переменного напряжения или тока. Аналоговый механизм Д’Арсонваля, откалиброванный для индикации среднеквадратичной амплитуды синусоидальной волны, будет точным только при измерении чистых синусоидальных волн. Если форма сигнала измеряемого напряжения или тока не является чистой синусоидой, показание измерителя не будет истинным среднеквадратичным значением формы сигнала, поскольку степень отклонения стрелки в аналоговом перемещении измерителя Д’Арсонваля равна пропорционально среднему значению сигнала, а не среднеквадратичному значению. Калибровка измерителя RMS получается путем «перекоса» диапазона измерителя так, чтобы он отображал небольшое кратное среднему значению, которое будет равно среднеквадратичному значению для определенной формы волны и только для конкретной формы волны .
Поскольку форма синусоидальной волны является наиболее распространенной в электрических измерениях, она является формой волны, принятой для калибровки аналогового измерителя, а малое кратное, используемое при калибровке измерителя, составляет 1,1107 (форм-фактор: 0,707 / 0,636: отношение среднеквадратичных значений деленное на среднее значение для синусоидального сигнала). Любая форма волны, отличная от чистой синусоидальной волны, будет иметь другое соотношение среднеквадратичных и средних значений, и, таким образом, измеритель, откалиброванный для синусоидального напряжения или тока, не будет показывать истинное среднеквадратичное значение при считывании несинусоидальной волны.Имейте в виду, что это ограничение применяется только к простым аналоговым счетчикам переменного тока, не использующим технологию True-RMS.
- Амплитуда сигнала переменного тока — это его высота, изображенная на графике во времени. Измерение амплитуды может принимать форму пика, размаха, среднего или среднеквадратичного значения.
- Пиковая амплитуда — это высота сигнала переменного тока, измеренная от нулевой отметки до самой высокой положительной или самой низкой отрицательной точки на графике.Также известен как гребень амплитуда волны .
- Полная амплитуда амплитуда — это общая высота сигнала переменного тока, измеренная от максимальных положительных до максимальных отрицательных пиков на графике. Часто обозначается как «П-П».
- Средняя амплитуда — это математическое «среднее» всех точек сигнала за период одного цикла. Технически, средняя амплитуда любой формы волны с участками равной площади выше и ниже «нулевой» линии на графике равна нулю.Однако в качестве практической меры амплитуды среднее значение сигнала часто вычисляется как математическое среднее всех точек абсолютных значений (принимая все отрицательные значения и рассматривая их как положительные). Для синусоиды среднее значение, вычисленное таким образом, составляет примерно 0,637 от его пикового значения.
- «RMS» означает среднеквадратическое значение и является способом выражения величины переменного напряжения или тока в терминах, функционально эквивалентных постоянному току. Например, среднеквадратичное значение 10 вольт переменного тока — это величина напряжения, которая будет обеспечивать такое же количество рассеивания тепла через резистор заданного значения, что и источник питания постоянного тока на 10 вольт. Также известен как «эквивалент» или «эквивалент постоянного тока» для переменного напряжения или тока. Для синусоидальной волны среднеквадратичное значение составляет примерно 0,707 от его пикового значения.
- Пик-фактор сигнала переменного тока — это отношение его пика (пик) к его среднеквадратичному значению.
- Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению.
- Аналоговые, электромеханические движения счетчика реагируют пропорционально среднему значению переменного напряжения или тока.Когда требуется индикация среднеквадратичного значения, калибровка измерителя должна быть соответственно «искажена». Это означает, что точность показаний RMS электромеханического измерителя зависит от чистоты формы волны: от того, точно ли она совпадает с формой волны, используемой при калибровке.
Рис. 4.17. Принципиальная схема однофазной системы питания мало показывает схему практического подключения силовой цепи.
Изображенная выше очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «силовой цепью» или «системой питания», а не рассматривать ее как обычную цепь.Различие между «силовой цепью» и «обычной цепью» может показаться произвольным, но с практической точки зрения это определенно не так.
Анализ практических цепей
Одной из таких проблем является размер и стоимость проводки, необходимой для подачи питания от источника переменного тока на нагрузку. Обычно мы не особо задумываемся об этом, если мы просто анализируем цепь ради изучения законов электричества. Однако в реальном мире это может стать серьезной проблемой.Если мы дадим источнику в приведенной выше схеме значение напряжения, а также дадим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить потребности в проводке для этой конкретной схемы:
С практической точки зрения, проводка для нагрузок 20 кВт при 120 В перем. Тока довольно значительна (167 А).
[латекс] I = \ frac {P} {E} [/ латекс]
[латекс] I = \ frac {10kW} {120V} [/ латекс]
[латекс] I = 83,33A \ text {(для каждого нагрузочного резистора)} [/ латекс]
[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]
[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]
[латекс] I_ {total} = (83.33 A) + (83,33 A) [/ латекс]
[латекс] P_ {total} = (20кВт) [/ латекс]
[латекс] \ pmb {I_ {total} = 166,67 A} [/ латекс]
В приведенном выше примере 83,33 ампера для каждого нагрузочного резистора на рисунке выше в сумме дают 166,66 ампера полного тока цепи. Это немалое количество тока, и для него потребуются медные проводники сечением не менее 1/0 калибра. Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов.Учтите, что медь тоже не из дешевых! В наших интересах найти способы минимизировать такие затраты, если мы проектируем энергосистему с проводами большой длины.
Один из способов сделать это — увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание 10 кВт каждая при этом более высоком напряжении. Нагрузки, конечно, должны иметь более высокие значения сопротивления, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая) при более высоком напряжении, чем раньше. Преимущество будет заключаться в меньшем потреблении тока, что позволяет использовать меньший, более легкий и дешевый провод:
[латекс] I = \ frac {P} {E} [/ латекс]
[латекс] I = \ frac {10кВт} {240V} [/ латекс]
[латекс] I = 41.67 A \ text {(для каждого нагрузочного резистора)} [/ latex]
[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]
[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]
[латекс] I_ {total} = (41,67 A) + (41,67 A) [/ латекс]
[латекс] P_ {total} = (20кВт) [/ латекс]
[латекс] \ pmb {I_ {total} = 83,33 A} [/ латекс]
Теперь у нашего общий ток цепи равен 83. 33 ампера, вдвое меньше, чем было раньше. Теперь мы можем использовать проволоку калибра 4, которая весит меньше половины того, что проволока калибра 1/0 на единицу длины. Это значительное снижение стоимости системы без снижения производительности. Вот почему разработчики систем распределения электроэнергии предпочитают передавать электроэнергию с использованием очень высоких напряжений (многие тысячи вольт): чтобы извлечь выгоду из экономии за счет использования меньшего, более легкого и более дешевого провода.
Опасности повышения напряжения источника
Однако это решение не лишено недостатков.Еще одна практическая проблема, связанная с силовыми цепями, — это опасность поражения электрическим током от высокого напряжения. Опять же, обычно это не то, на чем мы концентрируемся при изучении законов электричества, но это очень серьезная проблема в реальном мире, особенно когда имеют дело с большими объемами энергии. Повышение эффективности, достигаемое за счет увеличения напряжения в цепи, представляет повышенную опасность поражения электрическим током. Электрораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких опор или башен и изолируя линии от несущих конструкций с помощью больших фарфоровых изоляторов.
В точке использования (потребителя электроэнергии) все еще остается вопрос, какое напряжение использовать для питания нагрузок. Высокое напряжение обеспечивает большую эффективность системы за счет уменьшения тока в проводнике, но не всегда целесообразно держать силовую проводку вне досягаемости в точке использования, как это можно сделать в распределительных системах. Этим компромиссом между эффективностью и опасностью европейские проектировщики энергосистем решили рискнуть, поскольку все их домашние хозяйства и бытовая техника работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.Вот почему туристы из Америки, посещающие Европу, должны иметь с собой небольшие понижающие трансформаторы для своих портативных приборов, чтобы понижать мощность 240 В переменного тока (вольт переменного тока) до более подходящих 120 В переменного тока.
Решения для подачи напряжения потребителям
Понижающие трансформаторы в конечной точке энергоснабжения
Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности? Одним из решений может быть установка понижающих трансформаторов в конечной точке энергопотребления, как это должен делать американский турист, находясь в Европе.Однако это было бы дорого и неудобно для чего угодно, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (где стоимость толстых медных проводов превысила бы стоимость трансформатора).
Две нагрузки низкого напряжения в серии
Альтернативным решением может быть использование источника более высокого напряжения для подачи питания на две последовательно соединенные нагрузки с более низким напряжением. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:
Рисунок 4. 18 Последовательно подключенные нагрузки 120 В перем. Тока, управляемые источником 240 В перем. Тока при общем токе 83,3 А.
Обратите внимание на обозначения полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока. По большей части я избегал обозначать «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что обозначения действительны для обеспечения системы отсчета для фазы. В следующих разделах этой главы фазовые отношения станут очень важными, поэтому я введу эти обозначения в начале главы для вашего ознакомления.
Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки включены последовательно, а не параллельно. Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, у нас все еще есть полные 240 вольт на проводах системы питания, но каждая нагрузка работает при пониженном напряжении. Если кто-то и собирается быть шокированным, скорее всего, это произойдет из-за контакта с проводниками конкретной нагрузки, а не из-за контакта с основными проводами энергосистемы.
Модификации конструкции с двумя сериями нагрузок
У этой конструкции есть только один недостаток: последствия отказа одной нагрузки разомкнутой или выключенной (при условии, что каждая нагрузка имеет последовательный переключатель включения / выключения для прерывания тока) не благоприятны. В случае последовательной цепи, если бы одна из нагрузок разомкнулась, ток остановился бы и в другой нагрузке. По этой причине нам нужно немного изменить дизайн:
Рисунок 4.19 Добавление нейтрального проводника позволяет управлять нагрузками индивидуально.\ circ [/ латекс]
[латекс] I_1 = \ frac {P_1} {E_1} [/ латекс]
[latex] = \ frac {10kW} {120V} [/ latex]
[латекс] I_1 = 83,33 А [/ латекс]
[латекс] I_2 = \ frac {P_2} {E_2} [/ латекс]
[latex] = \ frac {10kW} {120V} [/ latex]
[латекс] I_2 = 83,33 А [/ латекс]
[латекс] P_ {всего} = (10кВт) + (10кВт) [/ латекс]
[латекс] = (20кВт) [/ латекс]
Двухфазная система питания
Вместо одного источника питания на 240 вольт мы используем два источника питания на 120 вольт (в фазе друг с другом!), Последовательно для получения 240 вольт, а затем подводим третий провод к точке соединения между нагрузками, чтобы справиться с возможностью одного загрузочное отверстие. Это называется энергосистемой с расщепленной фазой . Три провода меньшего размера по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы все еще впереди по эффективности. Проницательный наблюдатель заметит, что нейтральный провод должен передавать только разность тока между двумя нагрузками обратно к источнику. В приведенном выше случае при идеально «сбалансированных» нагрузках, потребляющих одинаковое количество энергии, нейтральный провод пропускает нулевой ток.
Обратите внимание на то, как нейтральный провод подключен к заземлению со стороны источника питания.Это обычная особенность энергосистем, содержащих «нейтральный» провод, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.
Важным компонентом системы с расщепленной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его нетрудно. Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижая напряжение с высоких уровней распределения до напряжения пользовательского уровня, такого как 120 или 240), этот трансформатор может быть построен с вторичной обмоткой с центральным отводом:
Рисунок 4.20 Американское питание 120/240 В переменного тока поступает от сетевого трансформатора с центральным ответвлением.
Если переменный ток поступает непосредственно от генератора (генератора переменного тока), катушки могут быть аналогичным образом с центральным отводом для того же эффекта. Дополнительные расходы на подключение центрального ответвления в обмотке трансформатора или генератора минимальны.
Вот где действительно важны обозначения полярности (+) и (-). Это обозначение часто используется для обозначения фазировки нескольких источников переменного напряжения , поэтому ясно, помогают ли они («повышают») друг друга или противостоят («компенсируют») друг друга. Если бы не эта маркировка полярности, фазовые отношения между несколькими источниками переменного тока могли бы быть очень запутанными. Обратите внимание, что источники с разделенной фазой на схеме (каждый 120 вольт 0 °) с отметками полярности (+) — (-), как и батареи с последовательным подключением, в качестве альтернативы могут быть представлены как таковые:
Рисунок 4.21. Источник 120/240 В переменного тока с разделенной фазой эквивалентен двум последовательным источникам переменного тока 120 В переменного тока.
Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны из вычесть напряжения, потому что их отметки полярности показывают, что они противоположны друг другу:
Полярный
[латекс] \ begin {align} & 120 \ angle 0 \ text {°} \\ — & 120 \ angle 180 \ text {°} \\ = & \ pmb {120 \ angle 0 \ text {°}} \ конец {align} [/ latex]
Прямоугольный
[латекс] \ begin {align} & 120 + \ text {j} 0 \ text {V} \\ — & (- {120} + \ text {j} 0) \ text {V} \\ = & \ pmb {240 + \ text {j} 0 \ text {V}} \ end {align} [/ latex]
Если мы отметим общую точку подключения двух источников (нейтральный провод) одинаковым знаком полярности (-), мы должны выразить их относительные фазовые сдвиги как разнесенные на 180 °. В противном случае мы бы обозначили два источника напряжения, прямо противоположных друг другу, что дало бы 0 вольт между двумя «горячими» проводниками. Почему я трачу время на уточнение отметок полярности и фазовых углов? В следующем разделе будет больше смысла!
Системы электропитания в американских домах и легкой промышленности чаще всего бывают расщепленными, обеспечивая так называемое питание 120/240 В переменного тока. Термин «разделенная фаза» просто относится к источнику питания с разделением напряжения в такой системе. В более общем смысле этот тип источника питания переменного тока называется однофазным , потому что оба сигнала напряжения синфазны или синхронизированы друг с другом.
Термин «однофазный» противопоставляется другому типу энергосистемы, называемому «многофазный», который мы собираемся изучить подробно. Приносим извинения за длинное введение, приведшее к заглавной теме этой главы. Преимущества многофазных систем питания становятся более очевидными, если сначала хорошо разбираться в однофазных системах.
- Однофазные системы питания определяются наличием источника переменного тока только с одной формой волны напряжения.
- Система питания с расщепленной фазой — это система с несколькими (синфазными) источниками переменного напряжения, подключенными последовательно, доставляющими мощность на нагрузки с более чем одним напряжением и более чем двумя проводами. Они используются в первую очередь для достижения баланса между эффективностью системы (низкие токи в проводниках) и безопасностью (низкие напряжения нагрузки).
- Источники переменного тока с разделенной фазой можно легко создать, отводя от центра обмотки катушек трансформаторов или генераторов переменного тока.
Фаза переменного тока
Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом.Под «несогласованным» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует это.
Рис. 4.22. Формы волн вне фазы
Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую синусоидальную функцию для углов от 0 до 360 градусов, то есть полного круга.Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах. Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна не совпадает с другой:
Рис. 4.23. Волна A опережает волну B на 45 °.
Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B». Выборка различных фазовых сдвигов представлена на следующих графиках, чтобы лучше проиллюстрировать эту концепцию:
Рисунок 4.24 Примеры фазовых сдвигов.
Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отличаться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.То есть можно с уверенностью сказать что-то вроде: «Напряжение« А »сдвинуто по фазе на 45 градусов с напряжением« В »». Какая бы форма волны ни была впереди в своем развитии, говорят, что опережает , а следующая — отстает от . Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как сигнал с абсолютным измерением фазы и , потому что не существует известного универсального эталона для фазы. Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах».”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника. Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды. К счастью, существует математическая система величин, называемая комплексных чисел , идеально подходящая для этой задачи по представлению амплитуды и фазы.Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.
- Фазовый сдвиг — это когда две или более формы сигналов не совпадают друг с другом.
- Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
- Сигнал , опережающий сигнал определяется как один сигнал, который опережает другие в своем развитии.Сигнал , отстающий от , — это сигнал, который отстает от другого. Пример:
- Расчеты для анализа цепей переменного тока должны учитывать как амплитуду, так и фазовый сдвиг сигналов напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .
Что такое двухфазные системы питания?
Двухфазные энергосистемы достигают высокого КПД проводников. и — низкий риск для безопасности за счет разделения общего напряжения на меньшие части и питания нескольких нагрузок с этими меньшими напряжениями при одновременном потреблении токов на уровнях, типичных для системы полного напряжения. Между прочим, этот метод работает так же хорошо для систем питания постоянного тока, как и для однофазных систем переменного тока. Такие системы обычно называются трехпроводными системами , а не с расщепленной фазой , потому что понятие «фаза» ограничивается переменным током.
Но из нашего опыта работы с векторами и комплексными числами мы знаем, что напряжения переменного тока не всегда складываются, как мы думаем, если они не совпадают по фазе друг с другом. Этот принцип, применяемый к энергосистемам, может быть использован для создания энергосистем с еще более высоким КПД проводников и меньшей опасностью поражения электрическим током, чем с расщепленной фазой.
Два источника напряжения, не совпадающих по фазе на 120 °
Предположим, что у нас есть два источника переменного напряжения, подключенных последовательно, как и в системе с расщепленными фазами, которую мы видели раньше, за исключением того, что каждый источник напряжения сдвинул по фазе на 120 ° друг с другом: (рисунок ниже)
Пара источников 120 В перем. Тока, фазированных под углом 120 °, аналогично расщепленной фазе.
Поскольку каждый источник напряжения составляет 120 вольт, и каждый нагрузочный резистор подключен непосредственно параллельно своему соответствующему источнику, напряжение на каждой нагрузке также должно составлять 120 вольт.Учитывая ток нагрузки 83,33 А, каждая нагрузка все равно должна рассеивать 10 киловатт мощности. Однако напряжение между двумя «горячими» проводами не составляет 240 вольт (120 ∠ 0 ° — 120 ∠ 180 °), потому что разность фаз между двумя источниками не равна 180 °. Вместо этого напряжение:
[латекс] E_ {total} = (120 \ text {V} \ angle \ text {0 °}) — (120 \ text {V} \ angle \ text {120 °}) [/ latex]
[латекс] \ pmb {E_ {total} = 207,85 \ text {V} \ angle \ text {-30 °}} [/ латекс]
Условно мы говорим, что напряжение между «горячими» проводниками составляет 208 вольт (округляя в большую сторону), и, таким образом, напряжение системы питания обозначено как 120/208 В.
Если мы посчитаем ток через «нейтральный» провод, то обнаружим, что он не равен нулю, даже при сбалансированном сопротивлении нагрузки. Закон Кирхгофа говорит нам, что токи, входящие и выходящие из узла между двумя нагрузками, должны быть равны нулю:
[латекс] I _ {\ text {load # 1}} + I _ {\ text {load # 2}} + I _ {\ text {нейтральный}} = 0A [/ latex]
[латекс] \ begin {align} I _ {\ text {нейтральный}} = & -I _ {\ text {load # 1}} — I _ {\ text {load # 2}} \\ = & — (83.33 A \ angle \ text {0 °}) — (83,33 A \ angle \ text {120 °}) \\ = & \ pmb {83,33 A \ angle \ text {240 °}} \ text {или} \ pmb { 83.33 A \ angle \ text {-120 °}} \ end {align} [/ latex]
Итак, мы обнаруживаем, что «нейтральный» провод имеет полный ток 83,33 А, как и каждый «горячий» провод.
Обратите внимание, что мы все еще передаем 20 кВт общей мощности двум нагрузкам, при этом «горячий» провод каждой нагрузки, как и раньше, выдерживает 83,33 А. При одинаковом количестве тока через каждый «горячий» провод, мы должны использовать медные проводники одинакового сечения, поэтому мы не снизили стоимость системы по сравнению с системой с разделением фаз 120/240.Тем не менее, мы добились повышения безопасности, потому что общее напряжение между двумя «горячими» проводниками на 32 вольт ниже, чем в системе с расщепленной фазой (208 вольт вместо 240 вольт).
Три источника напряжения, не совпадающих по фазе на 120 °
Тот факт, что нейтральный провод пропускает ток 83,33 А, открывает интересную возможность: поскольку по нему в любом случае протекает ток, почему бы не использовать этот третий провод в качестве еще одного «горячего» проводника, запитав другой нагрузочный резистор третьим источником 120 В, имеющим фазу. угол 240 °? Таким образом, мы могли бы передавать на больше мощности, чем на (еще 10 кВт), без необходимости добавлять дополнительные проводники.Посмотрим, как это может выглядеть:
Рисунок 4. 25. При фазировке третьей нагрузки под углом 120 ° к двум другим токи такие же, как и для двух нагрузок.
Многофазная цепь
Эта схема, которую мы анализировали с тремя источниками напряжения, называется многофазной цепью . Префикс «поли» просто означает «более одного», как в « поли, теизм» (вера в более чем одно божество), « поли, гон» (геометрическая форма, состоящая из нескольких отрезков линии: например, пятиугольник и шестиугольник ) и « поли атомный» (вещество, состоящее из нескольких типов атомов).Поскольку все источники напряжения находятся под разными фазовыми углами (в данном случае три разных фазовых угла), это схема « поли фаза». В частности, это трехфазная цепь , которая используется преимущественно в крупных системах распределения электроэнергии.
Однофазная система
Давайте рассмотрим преимущества трехфазной системы питания по сравнению с однофазной системой с эквивалентным напряжением нагрузки и мощностью. Однофазная система с тремя нагрузками, подключенными напрямую параллельно, будет иметь очень высокий общий ток (83.33 раза по 3, или 250 ампер.
Рисунок 4.26 Для сравнения, три нагрузки по 10 кВт в системе 120 В переменного тока потребляют 250 А.
Для этого потребуется медный провод сечением 3/0 ( очень большой, большой!), С плотностью около 510 фунтов на тысячу футов и со значительным ценником. Если бы расстояние от источника до нагрузки составляло 1000 футов, нам потребовалось бы более полутонны медного провода для выполнения этой работы.
Двухфазная система
С другой стороны, мы могли бы построить двухфазную систему с двумя нагрузками по 15 кВт, 120 В.
Рис. 4.27. Система с разделенными фазами потребляет половину тока 125 А при 240 В переменного тока по сравнению с системой на 120 В переменного тока.
Наш ток вдвое меньше того, который был при простой параллельной схеме, что является большим улучшением. Мы могли бы обойтись без использования медного провода калибра 2 с общей массой около 600 фунтов, из расчета около 200 фунтов на тысячу футов с тремя участками по 1000 футов каждый между источником и нагрузками. Тем не менее, мы также должны учитывать повышенную угрозу безопасности, связанную с наличием в системе 240 вольт, даже если каждая нагрузка получает только 120 вольт.В целом существует большая вероятность поражения электрическим током.
Трехфазная система
Если сравнить эти два примера с нашей трехфазной системой (рисунок выше), преимущества становятся очевидными. Во-первых, токи в проводниках немного меньше (83,33 ампер против 125 или 250 ампер), что позволяет использовать гораздо более тонкий и легкий провод. Мы можем использовать провод калибра 4 с плотностью около 125 фунтов на тысячу футов, что составит 500 фунтов (четыре участка по 1000 футов каждый) для нашей примерной схемы.Это обеспечивает значительную экономию затрат по сравнению с системой с разделением фаз, с дополнительным преимуществом, заключающимся в том, что максимальное напряжение в системе ниже (208 против 240).
Остается ответить на один вопрос: как вообще можно получить три источника переменного напряжения, фазовые углы которых разнесены точно на 120 °? Очевидно, что мы не можем отводить по центру обмотку трансформатора или генератора переменного тока, как мы это делали в системе с расщепленной фазой, поскольку это может дать нам только формы волны напряжения, которые либо совпадают по фазе, либо не совпадают по фазе на 180 °.Возможно, мы могли бы придумать способ использования конденсаторов и катушек индуктивности для создания фазовых сдвигов на 120 °, но тогда эти фазовые сдвиги также будут зависеть от фазовых углов наших импедансов нагрузки (замена резистивной нагрузки емкостной или индуктивной нагрузкой изменится. все!).
Лучший способ получить нужный сдвиг фаз — это генерировать его у источника: сконструировать генератор переменного тока (генератор переменного тока), обеспечивающий мощность таким образом, чтобы вращающееся магнитное поле проходило через три набора проволочных обмоток, каждая из которых установите на расстоянии 120o по окружности машины, как показано на рисунке ниже.
Рисунок 4.28 (a) Однофазный генератор переменного тока, (b) Трехфазный генератор переменного тока.
Вместе шесть «полюсных» обмоток трехфазного генератора переменного тока соединены, чтобы образовать три пары обмоток, каждая пара вырабатывает переменное напряжение с фазовым углом 120 °, смещенным от любой из двух других пар обмоток. Межсоединения между парами обмоток (как показано для однофазного генератора переменного тока: перемычка между обмотками 1a и 1b) для простоты не показаны на чертеже трехфазного генератора.
В нашем примере схемы мы показали три источника напряжения, соединенных вместе в конфигурации «Y» (иногда называемой конфигурацией «звезда»), с одним выводом каждого источника, привязанным к общей точке (узлу, к которому мы подключили «нейтраль»). Дирижер). Обычный способ изобразить эту схему подключения — нарисовать обмотки в форме буквы «Y», как показано на рисунке ниже.
Рисунок 4.29. Y-образная конфигурация генератора.
Конфигурация «Y» — не единственный доступный нам вариант, но, вероятно, поначалу ее легче всего понять. Подробнее об этом мы поговорим позже в этой главе.
- Однофазная система питания — это система, в которой имеется только один источник переменного напряжения (одна форма волны напряжения источника).
- Система питания с расщепленной фазой — это система, в которой есть два источника напряжения, сдвинутых по фазе на 180 ° друг от друга, которые питают две последовательно соединенные нагрузки. Преимущество этого заключается в возможности иметь более низкие токи в проводниках при сохранении низкого напряжения нагрузки по соображениям безопасности.
- Многофазная система питания использует несколько источников напряжения, находящихся под разными фазовыми углами друг от друга (много «фаз» формы волны напряжения в работе). Многофазная система питания может обеспечивать большую мощность при меньшем напряжении с проводниками меньшего сечения, чем однофазные или двухфазные системы.
- Источники сдвинутого по фазе напряжения, необходимые для многофазной энергосистемы, создаются в генераторах переменного тока с несколькими наборами обмоток проводов. Эти наборы обмоток расположены по окружности вращения ротора под желаемым углом (-ами).
Трехфазный генератор
Давайте возьмем схему трехфазного генератора переменного тока, представленную ранее, и посмотрим, что происходит при вращении магнита.
Рисунок 4.30 Трехфазный генератор
Фазовый сдвиг на 120 ° является функцией фактического углового сдвига трех пар обмоток. Если магнит вращается по часовой стрелке, обмотка 3 будет генерировать свое пиковое мгновенное напряжение ровно 120 ° (вращения вала генератора) после обмотки 2, которое достигнет своего пика 120 ° после обмотки 1.Магнит проходит через каждую пару полюсов в разных положениях во вращательном движении вала. То, где мы решим разместить обмотки, будет определять величину фазового сдвига между формами сигналов переменного напряжения обмоток. Если мы сделаем обмотку 1 нашим «эталонным» источником напряжения для фазового угла (0 °), то обмотка 2 будет иметь фазовый угол -120 ° (120 ° с запаздыванием или 240 ° вперед), а обмотка 3 будет иметь угол -240 °. (или 120 ° вперед).
Чередование фаз
Эта последовательность фазовых сдвигов имеет определенный порядок.Для вращения вала по часовой стрелке порядок 1-2-3 (сначала обмотка 1 пика, затем обмотка 2, затем обмотка 3). Этот порядок повторяется, пока мы продолжаем вращать вал генератора.
Рисунок 4.31 Чередование фаз по часовой стрелке: 1-2-3.
Однако, если мы обратим вращение вала генератора переменного тока (повернем его против часовой стрелки), магнит пройдет мимо пар полюсов в противоположной последовательности. Вместо 1-2-3 у нас будет 3-2-1.Теперь форма волны обмотки 2 будет впереди на 120 ° впереди 1 вместо запаздывания, а 3 будет еще на 120 ° впереди 2.
Рисунок 4.32 Последовательность фаз при вращении против часовой стрелки: 3-2-1.
Порядок последовательностей сигналов напряжения в многофазной системе называется чередованием фаз или чередованием фаз . Если мы используем многофазный источник напряжения для питания резистивных нагрузок, чередование фаз не будет иметь никакого значения. Независимо от того, 1-2-3 или 3-2-1, значения напряжения и тока будут одинаковыми.Как мы вскоре увидим, есть некоторые применения трехфазного питания, которые зависят от того, имеет ли чередование фаз ту или иную сторону.
Детекторы чередования фаз
Поскольку вольтметры и амперметры бесполезны для определения чередования фаз в действующей системе питания, нам нужен какой-то другой инструмент, способный выполнять эту работу.
В одной из хитроумных схемотехнических решений используется конденсатор для введения фазового сдвига между напряжением и током, который затем используется для определения последовательности путем сравнения яркости двух индикаторных ламп на рисунке ниже.
Рисунок 4.33. Детектор последовательности фаз сравнивает яркость двух ламп.
Две лампы имеют одинаковое сопротивление нити накала и мощность. Конденсатор рассчитан на то, чтобы иметь примерно такое же реактивное сопротивление на системной частоте, что и сопротивление каждой лампы. Если бы конденсатор был заменен резистором, равным сопротивлению ламп, две лампы светились бы с одинаковой яркостью, схема сбалансирована. Однако конденсатор вносит фазовый сдвиг между напряжением и током в третьем плече цепи, равный 90 °.Этот фазовый сдвиг больше 0 °, но меньше 120 ° приводит к смещению значений напряжения и тока на двух лампах в соответствии с их фазовым сдвигом относительно фазы 3.
Обмен горячими проводами
Существует намного более простой способ изменить последовательность фаз на противоположную, чем реверсирование вращения генератора: просто поменяйте местами любые два из трех «горячих» проводов, идущих к трехфазной нагрузке.
Этот трюк станет более понятным, если мы еще раз посмотрим на последовательность фаз трехфазного источника напряжения:
1-2-3 вращение: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3.. .
3-2-1 вращение: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1. . .
То, что обычно называют чередованием фаз «1-2-3», с таким же успехом можно назвать «2-3-1» или «3-1-2», двигаясь слева направо в числовой строке выше? Точно так же противоположное вращение (3-2-1) можно так же легко назвать «2-1-3» или «1-3-2».
Начиная с чередования фаз 3-2-1, мы можем попробовать все возможности для замены любых двух проводов за раз и посмотреть, что произойдет с результирующей последовательностью на рисунке ниже.
Рисунок 4.34. Все возможности перестановки любых двух проводов.
Независимо от того, какую пару «горячих» проводов из трех мы выберем для замены, чередование фаз в конечном итоге меняется на противоположное (1-2-3 меняются на 2-1-3, 1-3-2 или 3-2. -1, все равнозначно).
- Чередование фаз или последовательность фаз — это порядок, в котором формы волны напряжения многофазного источника переменного тока достигают своих соответствующих пиков. Для трехфазной системы есть только две возможные последовательности фаз: 1-2-3 и 3-2-1, соответствующие двум возможным направлениям вращения генератора.
- Чередование фаз не влияет на резистивные нагрузки, но оказывает влияние на несбалансированные реактивные нагрузки, как показано в работе схемы детектора поворота фаз.
- Чередование фаз можно изменить, поменяв местами любые два из трех «горячих» выводов, подающих трехфазное питание на трехфазную нагрузку.
Трехфазное соединение звездой (Y)
Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.
Рисунок 4.35 Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.
Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.
Рисунок 4.36. Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.
Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами . В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, как обсуждалось. ранее.
Рисунок 4.37 Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.
Значения напряжения и тока в трехфазных системах
Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно указать , где мы измеряем. Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт. Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.
Источники и нагрузки, подключенные по схеме Y, всегда имеют линейное напряжение выше фазных напряжений, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:
.
Для цепей «Y»:
[латекс] \ begin {align} \ tag {4.1} \ text {E} _ {\ text {line}} & = \ sqrt {3} \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ text {I} _ {\ text {phase}} \ end {align} [/ latex]
Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.
Трехфазная конфигурация, треугольник (Δ)
Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ). Обратите внимание на полярность каждой обмотки на рисунке ниже.
Рисунок 4.38 Трехфазное, трехпроводное соединение Δ не имеет общего.
На первый взгляд кажется, что три таких источника напряжения могут вызвать короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их. Однако из-за фазовых углов этих трех источников напряжения это не так.
Закон Кирхгофа о напряжении при соединении треугольником
Для быстрой проверки этого можно использовать закон Кирхгофа о напряжении, чтобы увидеть, равны ли три напряжения вокруг контура нулю.Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока. Начиная с верхнего витка и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:
[латекс] (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text {240 °}) + (120 \ text {V} \ angle \ text { 120 °}) [/ латекс]
Все равно нулю?
Да!
В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве:
Рисунок 4.39 Напряжение в открытом состоянии Δ должно быть нулевым.
Начиная с правой обмотки (120 В ∠ 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:
[латекс] (120 \ text {V} \ angle \ text {120 °}) + (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text { 240 °}) + \ text {E} _ {\ text {break}} = 0 [/ латекс]
[латекс] 0 + \ text {E} _ {\ text {break}} = 0 [/ латекс]
[латекс] \ text {E} _ {\ text {break}} = 0 [/ латекс]
Конечно, на разрыве будет нулевое напряжение, что говорит нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.
Установив, что трехфазный источник напряжения с Δ-соединением не сгорит до корки из-за циркулирующих токов, перейдем к его практическому использованию в качестве источника питания в трехфазных цепях. Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению. И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:
Для цепей Δ («треугольник»):
[латекс] \ begin {align} \ tag {4.2} \ text {E} _ {\ text {line}} & = \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ sqrt {3} \ text {I} _ {\ text {phase}} \ end {align} [/ latex]
Анализ цепи примера соединения треугольником
Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)
Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:
[латекс] I \: = \ frac {P} {E} [/ латекс]
[латекс] I \: = \ frac {10 кВт} {120 В} [/ латекс]
[латекс] \ pmb {I = 83.33A} \ text {(для каждого нагрузочного резистора и обмотки источника)} [/ latex]
[латекс] \ text {I} _ {\ text {line}} = √3 \ text {I} _ {\ text {phase}} [/ latex]
[латекс] \ text {I} _ {\ text {line}} = √3 (83,33 A) [/ латекс]
[латекс] \ pmb {\ text {I} _ {\ text {line}} = 144,34 A} [/ латекс]
Преимущества трехфазной системы Delta
Значит, ток каждой линии в этой трехфазной энергосистеме равен 144.34 ампера, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее. Можно задаться вопросом, не потеряли ли мы здесь все преимущества трехфазного питания, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогого провода. Ответ — нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).
Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке. Это не обязательно (или даже возможно!) В схеме с Δ-соединением. Когда каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.
Пожалуй, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость. Одна из обмоток трехфазного источника, подключенного по схеме Δ, может открыться при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!
Рис. 4.40. Даже при выходе из строя обмотки источника напряжение в сети все еще равно 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В. Единственная разница заключается в дополнительном токе в оставшихся функциональных обмотках источника.
Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках.Сравните эту отказоустойчивость с системой с Y-соединением, имеющей обмотку с открытым исходным кодом, как показано на рисунке ниже.
Рис. 4.41. Разомкнутая обмотка источника «Y» уменьшает вдвое напряжение на двух нагрузках подключенной нагрузки Δ.
При Δ-подключенной нагрузке два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении, 208. Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) с таким же отказом обмотки в схеме с Y-подключением. источник.
Рисунок 4.42 Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.
В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности. Однако, если требуются двойные напряжения (например, 120/208) или предпочтительны для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.
- Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
- Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
- Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
- Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
- Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
- Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
- В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
- Для цепей «Y»:
[латекс] \ text {E} _ {\ text {line}} = \ sqrt {3} \ text {E} _ {\ text {phase}} [/ latex]
[латекс] \ text {I} _ {\ text {line}} = \ text {I} _ {\ text {phase}} [/ latex]
- В симметричных схемах Δ линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
- Для цепей Δ («треугольник»):
[латекс] \ text {E} _ {\ text {line}} = \ text {E} _ {\ text {phase}} [/ latex]
[латекс] \ text {I} _ {\ text {line}} = \ sqrt {3} \ text {I} _ {\ text {phase}} [/ latex]
- Трехфазные источники напряжения с Δ-соединением обеспечивают большую надежность в случае выхода из строя обмотки, чем источники с соединением по схеме «треугольник». Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.
Что такое переменный ток? — Основы схемотехники
В статье Что актуально? , мы обсудили два основных типа тока — постоянный и переменный ток, уделяя особое внимание постоянному току.В этой статье мы сосредоточимся на переменном токе.
Переменный ток
Электрический ток определяется как поток заряда. В отличие от постоянного тока, который представляет собой поток заряда в одном направлении, переменный ток — это электрический ток, который периодически меняет направление.
Вот графическое представление Постоянный ток против переменного :
Переменный ток — это основа наших систем передачи электроэнергии.Еще в конце 1880-х годов Никола Тесла и Томас Эдисон спорили о том, следует ли нам использовать системы передачи переменного или постоянного тока для подачи электроэнергии. И это было известно как «Война токов», когда Эдисон поддерживал постоянный ток, а Тесла — переменный.
К сожалению, с постоянным током возникла серьезная проблема, и преобразовать его в более высокие или более низкие напряжения было непросто. Для уменьшения потерь мощности требовалось высокое напряжение. С другой стороны, переменный ток может легко достигать высоких напряжений за счет использования трансформаторов.
Сегодня в наших домах широко используется переменный ток. Однако постоянный ток, несомненно, возвращается, поскольку он питает компьютеры, электромобили, фотоэлементы и т. Д. Причина этого заключается в том, что постоянный ток намного легче хранить.
Генератор
Генератор — это электрический генератор, вырабатывающий переменный ток. Его раннее развитие произошло благодаря Майклу Фарадею и Ипполиту Пиксии. Генераторы обычно вырабатывают переменный ток за счет вращения ротора; однако в 1830-х годах от кондиционера было мало толку.Учитывая это, коммутаторы, поворотный электрический переключатель, использовались для преобразования выходного сигнала в постоянный ток.
(Генератор переменного тока, Источник)
Генератор включает вращение катушки в магнитном поле. Когда одна сторона движется вверх, другая движется вниз через магнитное поле. Ток индуцируется, когда катушка разрезает перпендикулярно линиям магнитного поля. В результате направление тока постоянно меняется, так как его частота зависит от скорости вращения ротора.
AC
Форма волны
Форма волны переменного тока имеет амплитуду и волновой цикл.Амплитуда соответствует пиковому напряжению. Частота волны — это количество волновых циклов, которые происходят в секунду, а период волны — это время, необходимое для завершения одного цикла.
Теперь, как нам точно измерить напряжение волны переменного тока, учитывая, что оно постоянно меняется?
Мы можем точно измерить волновое напряжение переменного тока, измерив среднеквадратичное значение, известное как RMS. Обратите внимание, что большинство значений переменного тока также являются значениями RMS. Розетки от сети подают 240 В электричества, что является среднеквадратичным значением напряжения сети переменного тока.А чтобы рассчитать среднеквадратичное значение, мы можем использовать следующий метод.
Давайте возьмем для примера первые 180 градусов волнового цикла. Разделив кривую на 180 / n градусов промежутка между средними ординатами (n = количество средних ординат), мы получим следующую диаграмму:
Используя эту информацию, мы можем вычислить среднеквадратичное значение напряжения для кривой, используя следующее уравнение:
Среднеквадратичное значение напряжения также полезно при преобразовании переменного тока в постоянный. Среднеквадратичное значение — это то, что в конечном итоге является стабильным напряжением постоянного тока.
Трансформатор
Трансформаторы служат для изменения напряжения переменного тока в электрической цепи. Как упоминалось ранее, одна из причин, по которой для питания электрической сети было выбрано переменное напряжение, заключается в том, что оно легко повышается и понижается. Это означает, что напряжение можно изменить с помощью трансформатора.
Закон индукции Фарадея объясняет, как работает трансформатор. Этот закон гласит, что индуцированное напряжение в цепи (вторичной обмотке) пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь, а изменяющийся ток в первичной катушке создает другой магнитный поток в сердечнике трансформатора.Проще говоря, ток в первичной обмотке вызывает индуцированный ток во вторичной обмотке. Ниже показано соотношение между напряжением, током и обмотками катушек.
Преобразование переменного тока в постоянный
Самый простой способ преобразовать переменный ток в постоянный — использовать компонент, известный как выпрямитель. Один из самых распространенных типов выпрямителей — это мостовой выпрямитель, схему которого можно увидеть ниже.
Мостовой выпрямитель состоит из 4 диодов в мостовой конфигурации.Диод — это компонент схемы, который позволяет току течь только в одном направлении. Его использование заключается в преобразовании переменного тока в постоянный, потому что постоянный ток — это ток, который движется только в одном направлении. Это приводит к следующему преобразованию волны:
Считайте волну постоянного тока выше пульсирующей волной. Благодаря этому ее можно быстро решить, добавив в схему сглаживающий конденсатор, как показано ниже. Сглаживающий конденсатор обеспечивает более стабильный и постоянный источник напряжения за счет зарядки при пиках и разрядки при падении напряжения.
График сглаженной волны:
Более гладкая волна обеспечивает более стабильный источник постоянного напряжения, что позволяет схеме питать множество устройств и компонентов. Переменный ток по-прежнему имеет решающее значение в нашей повседневной жизни, даже если мы этого не замечаем. Спасибо за чтение и не стесняйтесь оставлять комментарии ниже, если у вас есть какие-либо вопросы.
Переменный ток — MagLab
Переменный ток ведет себя по-разному, в зависимости от того, какие компоненты находятся в цепи.
Переменный ток (AC) — это электрический ток, который циклически меняет направление, в отличие от постоянного тока (DC), который всегда движется одинаково, как, например, в случае с чем-либо, питаемым от батареи. Переменный ток — это ток, протекающий через электрические провода и приборы в вашем доме. Величина переменного тока изменяется, возрастая от нуля до положительного максимума, а затем снова снижаясь до нуля до того, как изменение направления тока заставит ток постепенно достигнуть отрицательного максимума, а затем снова вернуться к нулю.Число раз, когда переменный ток повторяет полный цикл в секунду, составляет частота , а максимум, которого достигает ток в любом направлении, — это его амплитуда . Форма волны силовой цепи переменного тока представляет собой синусоидальную волну.
Размещение различных компонентов в цепи, питаемой от источника переменного тока, может повлиять на синусоидальные волны для тока и напряжение в цепи, которая запускает ток, как показано в этом руководстве. Ниже показана простая схема с источником питания переменного тока.Идеальный резистор , , конденсатор или индуктор можно включить в схему, сделав соответствующий выбор в раскрывающемся меню Выберите компонент . Напряжение (измеренное в вольтах) и ток (измеренное в амперах) в цепи колеблются из-за переменного тока, что видно по показаниям на счетчиках в цепи.
Связь между напряжением и током дополнительно подчеркивается векторной диаграммой в нижнем левом углу, которая показывает их колебания как вращающиеся векторы.Когда вектор направлен вверх по оси Y, напряжение или ток достигли своего положительного максимального значения, а когда он направлен вниз по той же оси, был достигнут отрицательный максимум. Горизонтальная ось абсцисс показывает нулевое значение. В правом нижнем углу учебного окна график показывает амплитуду (ось y) как напряжения, так и тока во времени (ось x). Обратите внимание на изменения на диаграмме и графике, когда в схему вставляются разные компоненты.
Когда в цепи используется только чистый резистор, ток и напряжение постоянно находятся в фазе друг с другом.Однако, когда в цепи присутствует чистый конденсатор, ток достигает своего максимального пика, когда напряжение равно нулю; в этом случае говорят, что ток опережает напряжение на 90 градусов.