16.07.2024

Электрическое поле что это: Электрическое поле: определение, классификация, характеристики

Содержание

Электрическое поле: определение, классификация, характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в  электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное
электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4).  Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией,  называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Рис. 7. Линии напряжённости различных полей

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — это… Что такое ЭЛЕКТРИЧЕСКОЕ ПОЛЕ?

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ (электростатическое поле), область вокруг электрического заряда, в которой на каждую заряженную частицу действует некоторая сила. Объект с противоположным зарядом испытывает силу притяжения. Объект, имеющий такой же заряд, как и окружающее его поле, испытывает отталкивающее воздействие. Сила поля относительно единичного заряда на расстоянии r от заряда Q равна: Q/4pr2e, где e — диэлектрическая проницаемость среды, окружающей заряд. Переменное магнитное поле также может создать электрическое поле. см. также ЭЛЕКТРОМАГНЕТИЗМ.

Научно-технический энциклопедический словарь.

  • ЭЛЕКТРИЧЕСКИЙ ТОК
  • ЭЛЕКТРИЧЕСТВО

Смотреть что такое «ЭЛЕКТРИЧЕСКОЕ ПОЛЕ» в других словарях:

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — частная форма проявления (наряду с магн. полем) электромагнитного поля, определяющая действие на электрич. заряд (со стороны поля) силы, не зависящей от скорости движения заряда. Представление об Э. п. было введено М. Фарадеем в 30 х гг. 19 в.… …   Физическая энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической индукцией). Напряженность электрического поля у… …   Современная энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — (14, а) …   Большая политехническая энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — частная форма проявления электромагнитного поля; создается электрическими зарядами или переменным магнитным полем и характеризуется напряженностью электрического поля …   Большой Энциклопедический словарь

  • Электрическое поле — одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. .. Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ …   Официальная терминология

  • электрическое поле — Одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. [ГОСТ Р 52002 2003] EN electric field constituent of an… …   Справочник технического переводчика

  • Электрическое поле —     Классическая электродинамика …   Википедия

  • электрическое поле — 06.01.07 электрическое поле [ electric field]: Составляющая электромагнитного поля, которая характеризуется векторами напряженности электрического поля Е и электрической индукции D. Примечание Во французском языке термин «champ electrique»… …   Словарь-справочник терминов нормативно-технической документации

  • Электрическое поле — Демонстрация поля электростатического заряда. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической… …   Иллюстрированный энциклопедический словарь

  • электрическое поле — частная форма проявления электромагнитного поля; создаётся электрическими зарядами или переменным магнитным полем и характеризуется напряжённостью электрического поля. * * * ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, частная форма проявления… …   Энциклопедический словарь

Книги

  • Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсное поле витка с током и катушки (теория аб, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. В книге доказано, что электромагнитное поле проводника с током образовано электронами. Электромагнитное поле — есть пространство, заполненное направленно движущимися по винтовым траекториям… Подробнее  Купить за 916 грн (только Украина)
  • Теоретические основы электротехники. Электромагнитное поле, Л. А. Бессонов. Рассмотрены традиционные и появившиеся за последние годы новые вопросы теории и методы расчета физических процессов в электрических, магнитных и электромагнитных полях, предусмотренные… Подробнее  Купить за 750 руб
  • Почему у свитых проводников с током отсутствует электромагнитное поле? Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсивноеполе витка с током и катушки… Подробнее  Купить за 715 руб

Другие книги по запросу «ЭЛЕКТРИЧЕСКОЕ ПОЛЕ» >>

Электрическое поле. Виды и работа. Применение и свойства

Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

Как устроено и действует электрическое поле

По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:
  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях. Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие. Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластиковой расчески.

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Свойства поля

Для характеристики электрического поля применяется 3 показателя:
  • Потенциал.
  • Напряженность.
  • Напряжение.

Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина. В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать. Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт. Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию. Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ беспроводной передачи электричества от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер. Уже имеется эффективная реализация технологии зарядки телефона без применения непосредственного гибкого кабеля вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется. Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная индикаторная отвертка, действующая на основе схемы полевого транзистора. Помимо ряда функций, она может реагировать на электрическое поле. Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию. Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Похожие темы:

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Определение 1

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

E→=F→q.

Напряжение электрического поля является векторной величиной. Направление вектора E→ совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Определение 2

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Определение 3

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

E→=E1→+E2→+…

Электрическое поле подчиняется принципу суперпозиции.

Определение 4

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E=14πε0·Qr2.

Это поле называется кулоновским.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

В кулоновском поле направление вектора E⇀ зависит от знака заряда Q: если Q>0, то вектор E⇀ направлен по радиусу от заряда, если Q<0, то вектор E⇀ направлен к заряду.

Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.

Рисунок 1.2.1. Силовые линии электрического поля.

Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.

Рисунок 1.2.2. Силовые линии кулоновских полей.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r→от заряда Q к точке наблюдения. Тогда при Q>0 вектор E→ параллелен r→, а при Q<0 вектор E→ антипараллелен r→.

Следовательно можно записать:

E→=14πε0·Qr3r→,

где r – модуль радиус-вектора r→.

По заданному распределению зарядов можно определить электрическое поле E→. Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.

Пример 1

Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.

Рисунок 1.2.3. Электрическое поле заряженной нити.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx, где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆E→. Результирующее поле оказывается равным

E=τ2πε0R.

Вектор E→ везде направлен по радиусу R→. Это следует из симметрии задачи.

Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.

Рисунок 1.2.4. Модель электрического поля точечных зарядов.

Рисунок 1.2.5. Модель движения заряда в электрическом поле.

Понятие о диполях

Определение 5

Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.

Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.

Рисунок 1.2.6. Силовые линии поля электрического диполя E→=E1→+E2→.

Дипольный момент p→ является одной из наиболее важных характеристик электрического диполя:

p→=l→q,

где l→ – вектор, направленный от отрицательного заряда к положительному, модуль l→=l.

Электрическим дипольным моментом обладает, например, нейтральная молекула воды (h3O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105°. Дипольный момент молекулы воды p=6,2·10–30 Кл · м.

Рисунок 1.2.7. Дипольный момент молекулы воды.

Электрическое поле. Напряженность электрического поля. « ЭлектроХобби

В нашем мире мы все привыкли к тому, что материальные объекты взаимодействуют друг с другом по средствам прямого контакта (прикосновения). Мы видим это своими глазами, и значит это так. Но на самом деле это далеко не так. Любые материальные тела состоят из мельчайших элементарных частиц. Неотъемлемой составляющей всех частиц являются различные виды полей, которые окружают их вокруг и отталкиваются друг от друга. Таких полей существует множество, и одним из них является электрическое поле.

Электрическое поле — это особый вид материи, которая существует вокруг электрически заряженных элементарных частиц (электроны и протоны). Через электрические поля передаётся воздействие одного электрического заряда (неподвижного) на иной неподвижный электрический заряд. Данное взаимодействие происходит в соответствии с известными законами Кулона.
Что собой представляет этот вид поля (электрическое) и чем он специфичен? Чтобы это понять, давайте с Вами прежде разберёмся в его свойствах и проявлениях. Как Вы должны знать, электрическое поле проявляет себя тогда, когда возникает перераспределение электрических зарядов между телами. Точнее, когда в силу некоторых обстоятельств одного вида заряда становится больше или меньше, по отношению к противоположному. Тогда одни тела начинают притягиваться либо отталкивать другие на расстоянии.

Поскольку в промежутке этого расстояния нет плотных тел, то, следовательно, можно утверждать о существовании невидимого поля. Ну, а поскольку данное поле связанно с электрическими явлениями, то и поле стали называть электрическим. В целом же, электрическое поле (как и другие виды полей) существуют везде и вокруг всего, только из-за их скомпенсированности взаимодействия друг на друга и невидимости невооруженным глазом создаётся впечатление, будто они появляются.

К свойствам электрического поля можно отнести:

  • невидимость (их определение происходит через поведение пробного электрического заряда)
  • электрические поля взаимодействуют только лишь с электрическими полями
  • оно имеет векторное направление
  • может притягивать либо отталкивать
  • существует всегда вокруг заряженных частиц (в отличие от магнитного поля)
  • обладает свойством концентрации и неоднородности (имеется в виду НАПРЯЖЕННОСТЬ)

Как было упомянуто выше, электрическое поле определяется при помощи пробного точечного заряда. Если электрический заряд (пробный заряд) обладает электрическим полем внести в интересующую нас точку пространства, можно выяснить — если в данном месте электрическое поле. Если начнёт действовать электрическая сила, то значит, в этой точки поле есть. Интенсивность данного электрического поля будет характеризовать напряженность поля.

Силы, которые действуют на один и тот же точечный электрический заряд будут отличатся по направлению и величине в различных точках электрического поля. Поэтому и было целесообразно ввести силовую характеристику любой точки данного поля, созданного зарядом. К сожалению, сила «F» (Кулона) подобной характеристикой послужить не может, поскольку для одной точки поля эта сила будет прямо пропорциональна величине точечного заряда.

Было принято считать силовой характеристикой точки электрического поля «E». Она стала называться напряжённостью электрического поля. Напряжённость измеряется силой, с которой электрическое поле действует на единичный положительный заряд, что был внесён в некую точку определяемого поля в пространстве. Напряженность является векторной величиной. Напряжённость электрического поля измеряется в Ньютонах на Кулон или в Вольтах на метр.

И ещё, что можно сказать о напряжённости — если электрическое поле создаётся одновременно множеством электрических зарядов, то результативная (общая) напряжённость «E» в определённой точке электрического поля находится как геометрическая сумма всех имеющихся напряженностей, созданных в данной точке каждым конкретным электрическим зарядом в отдельности.

P.S. Электрические поля, это неотъемлемая составляющая всего существующего в мироздании, и лишь в силу нашей ограниченности восприятия мира, поля воспринимаются нами, как нечто загадочное и непонятное.

Электричество и магнетизм

В Дополнении 3 разобран пример использования этих соотношений.

 В СИ единицей измерения потенциала электрического поля является вольт (В):

 

Напряженность поля определяет силу, действующую в поле на точечный заряд, а потенциал — его потенциальную энергию в этом поле. Поэтому, следуя смыслу соотношений и, напряженность электрического поля  называют силовой характеристикой поля, а потенциал  — его энергетической характеристикой.

Как и потенциальная энергия, потенциал поля всегда определен с точностью до аддитивной постоянной. Это видно из : поскольку набла есть дифференциальный оператор, потенциалы  и  физически тождественны, так как им соответствует поле одной и той же напряженности                                               

.

Это позволяет нормировать потенциал, произвольно выбирая некоторую точку  и полагая потенциал в этой точке равным нулю

               

(1.16)

Учитывая, что и напряженность поля, и потенциал поля убывают с ростом расстояния до системы зарядов, создающей поле, во всех тех случаях, когда конечный  заряд распределен по конечной области пространства, нормировать потенциал естественно и удобно на «нуль на бесконечности», то есть полагать его равным нулю на бесконечном удалении от системы зарядов

             

(1.17)

О тех идеализированных случаях, когда нормировка на нуль на бесконечности, именно в силу идеализированности задачи, лишена смысла, будет сказано далее.

Соотношение (1.13) позволяет вычислить напряженность поля по известному потенциалу;

            

(1.18)

Получим «обратную» связь: выразим потенциал поля через его напряженность. Для этого сравним три выражения: выражение для  из (1.18), выражение для вектора бесконечно малого перемещения  и выражение для полного дифференциала  функции :                                   

Нетрудно видеть, что скалярное произведение двух первых векторов равно полному дифференциалу  потенциала

             

(1.19)

или, с учетом

              

(1. 20)

На самом деле это соотношение не новое. Если умножить (1.20) на заряд  и учесть связи (1.14) и (1.15), мы получим знакомое по главе 4 раздела «Механика» соотношение, связывающее работу консервативной силы и убыль потенциальной энергии                                          

Там же, в разделе «Механика» было показано, что стационарное потенциальное поле консервативно. Из соотношения (1.18) вытекает, что электростатическое поле консервативно во всех тех случаях, когда потенциал поля не зависит от времени.

Интегрируя соотношение (1.20) от точки , потенциал в которой принят равным нулю, до некоторой точки , потенциал в которой нас интересует, вдоль произвольной, удобной для вычислений кривой (поле консервативно и от формы кривой результат не зависти), получаем

                

(1. 21)

Вычислим с помощью (1.21) потенциал поля точечного заряда , находящегося в начале координат, нормировав его на нуль на бесконечном удалении от этого заряда. Воспользуемся для этого законом Кулона в форме (1.9):

                 

(1.22)

При вычислении использовано тождество , справедливое для любого вектора :  и являющееся результатом простого дифференцирования определения модуля любого вектора: .

Таким образом, потенциал поля точечного заряда находящегося в начале координат имеет вид 

              

(1.23)

и поле это, как уже отмечалось ранее, центральное: фактически потенциал поля зависит только от .

Электрическое поле. Напряженность электрического поля.

Электростатическое поле

Электростатическое поле — это особая форма материи, которая возникает вокруг неподвижного электрического заряда. Это поле нет возможности увидеть, понюхать. Поле можно представить при помощи линий напряженности (силовых линий).

На
рисунке видно, какое условное направление имеют силовые линии:
начинаются на положительных зарядах и заканчиваются на отрицательных.
Изображено и то, как линии напряженности распределяются при
взаимодействии одноименных и разноименных зарядов.В реальности силовые линии можно увидеть при помощи железных опилок.

Чем дальше удаляться от заряда, тем меньше сила поля (силовые линии
редеют), тем слабее взаимодействуют заряженные тела, посредством
создаваемого ими поля.
Поле бывает однородным. В этом случае линии напряженности параллельные.

Поле однородное между пластинами в центре

Напряженность поля

Как оценить силу поля вокруг некоторого заряда? Для этого используют пробный заряд q0.
Пробный заряд — это всегда положительный заряд, его собственное
электростатическое поле ничтожно мало, относительно исследуемого поля.
Сила, с которой поле действует на пробный заряд в данной точке поля, называется напряженностью электростатического поля в этой точке
Напряженность поля — векторная величина. Вектора — это
касательная к линиям напряженности в данной точке поля. Направлен вектор
туда же, куда силовая линия (линия напряженности).

Вектор напряженности в различных точках поля: А, B, C и D

Вектор напряженности в точках 1, 2 и 3

Можно вывести формулу
— напряженность поля точечного заряда q на расстоянии r от него.

Принцип суперпозиции

Если поле создается несколькими зарядами, то напряженность в
некоторой точке равна векторной сумме напряженностей каждого из полей в
отдельности

 

??? Вопросы

1. Какими зарядами создается электрическое поле?

2. Что называют электрическим полем?

3. Какими величинами характеризуется электрическое поле?

4. Запишите формулу напряженности электрического поля?

5. Запишите формулу напряженности электрического поля точечного заряда?

6. Назовите единицу измерения напряженности электрического поля?

7. Как изображается электрическое поле? 

8. Какое направлений силовых линий электрического поля?

9. Как называется электрическое поле, если его напряженность одинакова во всех точках?

10. В чем заключается принцип суперпозиции?

Что такое электрическое поле? Определение, формула, пример

Когда воздушный шар трется о свитер, он заряжается. Из-за этого заряда воздушный шар может прилипать к стенкам, но когда его помещают рядом с другим воздушным шариком, который также был натерт, первый воздушный шар летит в противоположном направлении.

Ключевые выводы: электрическое поле

  • Электрический заряд — это свойство вещества, которое заставляет два объекта притягиваться или отталкиваться в зависимости от их заряда (положительного или отрицательного).
  • Электрическое поле — это область пространства вокруг электрически заряженной частицы или объекта, в которой электрический заряд может ощущать силу.
  • Электрическое поле — это векторная величина, которую можно представить в виде стрелок, идущих к зарядам или от них. Линии определены как направленные радиально наружу, , от положительного заряда, или радиально внутрь, , к отрицательному заряду.

Это явление является результатом свойства вещества, называемого электрическим зарядом.Электрические заряды создают электрические поля: области пространства вокруг электрически заряженных частиц или объектов, в которых другие электрически заряженные частицы или объекты будут ощущать силу.

Определение электрического заряда

Электрический заряд, который может быть как положительным, так и отрицательным, — это свойство материи, которое заставляет два объекта притягиваться или отталкиваться. Если предметы заряжены противоположно (положительно-отрицательно), они будут притягиваться; если они заряжены одинаково (положительно-положительно или отрицательно-отрицательно), они будут отталкиваться.

Единицей электрического заряда является кулон, который определяется как количество электричества, которое переносится электрическим током в 1 ампер за 1 секунду.

Атомы, которые являются основными единицами материи, состоят из трех типов частиц: электронов, нейтронов и протонов. Сами электроны и протоны электрически заряжены и имеют соответственно отрицательный и положительный заряд. Нейтрон электрически не заряжен.

Многие объекты электрически нейтральны и имеют нулевой общий заряд.Если имеется избыток электронов или протонов, в результате чего суммарный заряд не равен нулю, объекты считаются заряженными.

Один из способов количественно определить электрический заряд — использовать константу e = 1,602 * 10 -19 кулонов. Электрон, который представляет собой наименьшее количество отрицательного электрического заряда ( ), имеет заряд -1,602 * 10 -19 кулонов. Протон, который представляет собой наименьшее количество положительного электрического заряда, имеет заряд +1,602 * 10 -19 кулонов. Таким образом, 10 электронов имели бы заряд -10 э, а 10 протонов имели бы заряд +10 э.

Закон Кулона

Электрические заряды притягивают или отталкивают друг друга, потому что они действуют друг на друга. Сила между двумя точечными электрическими зарядами — идеализированными зарядами, которые сосредоточены в одной точке пространства — описывается законом Кулона. Закон Кулона гласит, что сила или величина силы между двумя точечными зарядами составляет пропорционально величине зарядов и обратно пропорционально расстоянию между двумя зарядами.

Математически это выражается как:

F = (k | q 1 q 2 |) / r 2

где q 1 — заряд первого точечного заряда, q 2 — заряд второго точечного заряда, k = 8,988 * 10 9 Нм 2 / C 2 — постоянная Кулона, а r расстояние между двумя точечными зарядами.

Хотя технически нет реальных точечных зарядов, электроны, протоны и другие частицы настолько малы, что могут быть приблизительно или точечным зарядом.

Формула электрического поля

Электрический заряд создает электрическое поле, которое представляет собой область пространства вокруг электрически заряженной частицы или объекта, в которой электрический заряд будет ощущать силу. Электрическое поле существует во всех точках пространства, и его можно наблюдать, добавляя другой заряд в электрическое поле. Однако для практических целей электрическое поле можно приблизить к нулю, если заряды расположены достаточно далеко друг от друга.

Электрические поля — это векторная величина, которую можно представить в виде стрелок, направленных к зарядам или от них.Линии определены как направленные радиально наружу, , от положительного заряда, или радиально внутрь, , к отрицательному заряду.

Величина электрического поля определяется формулой E = F / q, где E — напряженность электрического поля, F — электрическая сила, а q — пробный заряд, который используется для «ощущения» электрического поля. .

Пример: электрическое поле двухточечных зарядов

Для двухточечных зарядов F определяется законом Кулона выше.

  • Таким образом, F = (k | q 1 q 2 |) / r 2 , где q 2 определяется как пробный заряд , который используется для «ощущения» электрического поле.
  • Затем мы используем формулу электрического поля, чтобы получить E = F / q 2 , поскольку q 2 был определен как пробный заряд.
  • После замены F, E = (k | q 1 |) / r 2 .

Источники

  • Фитцпатрик, Ричард.«Электрические поля». Техасский университет в Остине , 2007 г.
  • Левандовски, Хизер и Чак Роджерс. «Электрические поля». Университет Колорадо в Боулдере , 2008 г.
  • Ричмонд, Майкл. «Электрический заряд и закон Кулона». Рочестерский технологический институт.

Электрическое поле | IOPSpark

Электрическое поле

Электричество и магнетизм

Электрическое поле

Глоссарий Определение
для 16-19

Описание

Электрическое поле существует в любой области, где на заряженную частицу действует сила, которая зависит только от заряда и положения частицы.

Электрическое поле в точке — это векторная величина, обычно обозначаемая символом E .

Электрическое поле в точке определяется как сила на единицу заряда, которая действует на небольшую положительно заряженную частицу, находящуюся в этой точке.

Если небольшой испытательный заряд размером q подвергается действию силы F в какой-то момент, и F зависит только от заряда и положения частицы, то электрическое поле в этой точке определяется как

E = F q

Обсуждение

Электрическое поле иногда называют напряженностью электрического поля; этот глоссарий избегает этого термина, потому что его можно спутать с величиной электрического поля.

Представление электрических полей

Электрические поля могут быть представлены графически линиями электрического поля и / или эквипотенциалами.

Линии электрического поля представляют направление и величину электрического поля в некоторой области трехмерного пространства. Линии поля являются непрерывными, если в области нет зарядов, на которых силовые линии могут начинаться или заканчиваться. Ориентация силовых линий указывает направление электрического поля.Сильное поле представлено линиями поля, проведенными близко друг к другу; чем ближе расстояние, тем сильнее поле.

Эквипотенциальные точки соединения с одинаковым потенциалом. В трехмерном пространстве эквипотенциалы представляют собой поверхности, но они часто представлены линиями в двумерном «срезе» области. Эквипотенциалы обычно рисуются так, чтобы между каждым из них и его соседями была постоянная разность электростатических потенциалов. Расстояние между эквипотенциалами указывает величину поля; чем ближе эквипотенциалы, тем больше градиент потенциала, другими словами, тем сильнее поле.

Линия поля в любой точке всегда перпендикулярна эквипотенциалу, проведенному через эту точку. Направление поля от высокого к низкому электростатическому потенциалу

На рисунке 1 показаны силовые линии и эквипотенциалы для однородного электрического поля между двумя параллельными пластинами.

Рисунок 1. Линии поля (сплошные стрелки) и эквипотенциалы (пунктирные линии) для электрического поля между двумя параллельными противоположно заряженными проводящими пластинами

На рисунке 2 показано радикальное поле изолированного точечного заряда или сферическое распределение заряда.Если заряд положительный, поле направлено радиально наружу; если он отрицательный, поле направлено радиально внутрь.

Рисунок 2: Электрическое поле от положительно заряженного сферического объекта

единиц СИ

ньютон на кулон, N C -1 ; вольт на метр, В · м -1

Выражается в основных единицах СИ

кг м с -3 A -1

Математические выражения
  • Если на пробный заряд q действует электростатическая сила F в какой-то момент, то электрическое поле в этой точке определяется как

    E = F q

  • В любой точке, расположенной на расстоянии r от точечного заряда Q в свободном пространстве (вакууме), величина электрического поля, создаваемого точечным зарядом, составляет

    E = Q 4 π ε 0 r 2

    , где ε 0 — диэлектрическая проницаемость свободного пространства, а поле действует в радиальном направлении, как показано на рис. 2 .

  • Если существует разность электростатических потенциалов ΔV между двумя бесконечными параллельными проводящими пластинами, разделенными расстоянием d, то между пластинами существует однородное электрическое поле, величина которого равна

    E = Δ V d

  • В более общем смысле, компонента x электрического поля составляет

    E x = — d V d x

    и аналогично для компонентов y и x

Связанные записи
  • Заряд
  • Электростатический потенциал
  • Сила
  • Разность потенциалов, электростатическая
В контексте

В жидкокристаллических дисплеях (ЖК-дисплеях) электрические поля используются для управления ориентацией длинных молекул, которые имеют небольшой положительный заряд на одном конце и небольшой отрицательный заряд на другом.Величина поля, используемого в ЖК-дисплеях, обычно составляет ~ 10 6 N C -1 . Электрон имеет заряд q = -1,60 × 10 -19 Кл, поэтому, находясь в поле такой величины, электрон испытывает силу, которая действует в направлении, противоположном полю, и имеет величину F = 1,60 × 10 -13 Н.
Вблизи поверхности Земли существует естественное электрическое поле силой около 150 N C -1 , которое ослабевает с увеличением высоты.Поле направлено вертикально вниз — Земля заряжена отрицательно, тогда как атмосфера имеет чистый положительный заряд. Поле создается и поддерживается различными процессами, включая взаимодействие космических лучей и солнечного ветра (поток заряженных частиц) с атмосферой, а также радиоактивность на Земле.

Электрическое поле и движение заряда

Возможно, одним из самых полезных, но само собой разумеющихся достижений последних веков является разработка электрических цепей.Поток заряда по проводам позволяет нам готовить пищу, освещать наши дома, кондиционировать нашу работу и жилое пространство, развлекать нас фильмами и музыкой и даже позволяет нам безопасно ездить на работу или в школу. В этом разделе Физического класса мы исследуем причины, по которым заряд течет по проводам электрических цепей, и переменные, которые влияют на скорость, с которой он течет. Средства, с помощью которых движущийся заряд передает электрическую энергию приборам для их работы, будут подробно рассмотрены.

Один из фундаментальных принципов, который необходимо понять, чтобы понять электрические цепи, относится к концепции того, как электрическое поле может влиять на заряд внутри цепи, когда он перемещается из одного места в другое. Понятие электрического поля впервые было введено в разделе «Статическое электричество». В этом блоке электрическая сила описывалась как неконтактная сила. Заряженный воздушный шар может оказывать притягивающее воздействие на противоположно заряженный воздушный шар, даже когда они не находятся в контакте.Электрическая сила действует на расстоянии, разделяющем два объекта. Электрическая сила — это сила, действующая на расстоянии.

Силы действия на расстоянии иногда называют полевыми силами. Концепция полевой силы используется учеными для объяснения этого довольно необычного явления силы, которое происходит при отсутствии физического контакта. На пространство, окружающее заряженный объект, влияет наличие заряда; в этом пространстве устанавливается электрическое поле.Заряженный объект создает электрическое поле — изменение пространства или поля в окружающей его области. Другие заряды в этой области почувствовали бы необычное изменение пространства. Независимо от того, входит заряженный объект в это пространство или нет, электрическое поле существует. Пространство изменяется присутствием заряженного объекта; другие объекты в этом пространстве испытывают странные и таинственные качества космоса. По мере того, как другой заряженный объект входит в пространство и перемещается на все глубже и глубже в поле, действие поля становится все более и более заметным.

Электрическое поле — это векторная величина, направление которой определяется как направление, в котором положительный тестовый заряд будет выдвигаться при помещении в поле. Таким образом, направление электрического поля около положительного заряда источника всегда направлено от положительного источника. И направление электрического поля около отрицательного заряда источника всегда направлено в сторону отрицательного источника.

Электрическое поле, работа и потенциальная энергия

Электрические поля подобны гравитационным полям — оба связаны с силами, действующими на расстоянии.В случае гравитационных полей источником поля является массивный объект, а силы действия на расстоянии действуют на другие массы. Когда концепция силы тяжести и энергии обсуждалась в Блоке 5 Класса физики, было упомянуто, что сила тяжести является внутренней или консервативной силой. Когда гравитация воздействует на объект, перемещая его с высокого места на более низкое, общее количество механической энергии объекта сохраняется. Однако во время падающего движения произошла потеря потенциальной энергии (и увеличение кинетической энергии). Когда гравитация действительно воздействует на объект, перемещая его в направлении гравитационного поля, объект теряет потенциальную энергию. Потенциальная энергия, изначально запасенная внутри объекта в результате его вертикального положения, теряется, когда объект движется под действием гравитационного поля. С другой стороны, для перемещения массивного объекта против его гравитационного поля потребуется энергия. Стационарный объект не может естественно двигаться против поля и получать потенциальную энергию. Энергия в форме работы должна быть передана объекту внешней силой, чтобы он достиг этой высоты и соответствующей потенциальной энергии.

Важный момент, который следует сделать из этой аналогии с гравитацией, заключается в том, что внешняя сила должна совершать работу, чтобы переместить объект против природы — от энергии с низким потенциалом к ​​энергии с высоким потенциалом. С другой стороны, объекты естественным образом переходят от энергии с высоким потенциалом к ​​энергии с низким потенциалом под действием силы поля. Для объектов просто естественно переходить от высокой энергии к низкой; но требуется работа, чтобы переместить объект с низкой энергии на высокую.

Аналогичным образом, чтобы переместить заряд в электрическом поле против его естественного направления движения, потребуется работа. Работа внешней силы, в свою очередь, добавит объекту потенциальной энергии. Естественное направление движения объекта — от высокой энергии к низкой энергии; но необходимо проделать работу по перемещению объекта против природы . С другой стороны, не потребуется работы, чтобы переместить объект из места с высоким потенциалом энергии в место с низким потенциалом энергии.Когда этот принцип логически распространяется на движение заряда в электрическом поле, связь между работой, энергией и направлением движения заряда становится более очевидной.

Рассмотрим диаграмму выше, на которой положительный заряд источника создает электрическое поле, а положительный тестовый заряд движется против поля и вместе с ним. На диаграмме A положительный тестовый заряд перемещается против поля из точки A в точку B. Перемещение заряда в этом направлении похоже на движение против природы.Таким образом, потребуется работа, чтобы переместить объект из местоположения A в местоположение B, и положительный тестовый заряд будет приобретать потенциальную энергию в процессе. Это было бы аналогично перемещению массы в восходящем направлении; потребовалась бы работа, чтобы вызвать такое увеличение потенциальной гравитационной энергии. На схеме B положительный тестовый заряд перемещается с полем из точки B в точку A. Это движение было бы естественным и не требовало работы внешней силы. Положительный тестовый заряд будет терять энергию при перемещении из точки B в точку A.Это было бы аналогично падению массы вниз; это произойдет естественным образом и будет сопровождаться потерей гравитационной потенциальной энергии. Из этого обсуждения можно сделать вывод, что место с высокой энергией для положительного тестового заряда — это место, ближайшее к положительному исходному заряду; а место с низким энергопотреблением находится дальше всего.

Вышеупомянутое обсуждение относилось к перемещению положительного тестового заряда в электрическом поле, созданном положительным зарядом источника. Теперь рассмотрим движение того же положительного пробного заряда в электрическом поле, создаваемом отрицательным зарядом источника.Тот же принцип в отношении работы и потенциальной энергии будет использоваться для определения местоположений высокой и низкой энергии.

На схеме C положительный тестовый заряд движется из точки A в точку B в направлении электрического поля. Это движение было бы естественным — как масса, падающая на Землю. Для того, чтобы вызвать такое движение, не потребуется работа, и это будет сопровождаться потерей потенциальной энергии. На схеме D положительный тестовый заряд движется из точки B в точку A против электрического поля.Потребуется работа, чтобы вызвать это движение; это было бы аналогично увеличению массы в гравитационном поле Земли. Поскольку энергия передается испытательному заряду в виде работы, положительный испытательный заряд будет приобретать потенциальную энергию в результате движения. Из этого обсуждения можно сделать вывод, что место с низкой энергией для положительного тестового заряда — это место, ближайшее к отрицательному заряду источника, а место с высокой энергией — это место, наиболее удаленное от отрицательного заряда источника.

Когда мы начнем обсуждать схемы, мы применим эти принципы, касающиеся работы и потенциальной энергии, к движению заряда по цепи. Как мы здесь рассуждали, перемещение положительного тестового заряда против электрического поля потребует работы и приведет к увеличению потенциальной энергии. С другой стороны, положительный тестовый заряд будет естественным образом перемещаться в направлении поля без необходимости работы с ним; это движение приведет к потере потенциальной энергии.Прежде чем применить это к электрическим цепям, нам нужно сначала изучить значение концепции электрического потенциала.

Учебное пособие по физике: Напряженность электрического поля

В предыдущем разделе Урока 4 было введено понятие электрического поля. Было заявлено, что концепция электрического поля возникла в попытке объяснить силы, действующие на расстоянии.Все заряженные объекты создают электрическое поле, которое распространяется наружу в окружающее их пространство. Заряд изменяет это пространство, вызывая воздействие этого поля на любой другой заряженный объект, который входит в это пространство. Сила электрического поля зависит от того, насколько заряжен объект, создающий поле, и от расстояния до заряженного объекта. В этом разделе Урока 4 мы исследуем электрическое поле с числовой точки зрения — напряженность электрического поля .

Коэффициент силы на заряд

Напряженность электрического поля — векторная величина; он имеет как величину, так и направление. Величина напряженности электрического поля определяется способом ее измерения. Предположим, что электрический заряд можно обозначить символом Q . Этот электрический заряд создает электрическое поле; поскольку Q является источником электрического поля, мы будем называть его источником заряда . Сила электрического поля исходного заряда может быть измерена любым другим зарядом, помещенным где-нибудь в его окрестностях. Заряд, который используется для измерения напряженности электрического поля, называется тестовым зарядом , поскольку он используется для проверки напряженности поля . Тестовый заряд имеет количество заряда, обозначенное символом q . При помещении в электрическое поле испытательный заряд испытывает электрическую силу — притягивающую или отталкивающую. Обычно эта сила обозначается символом F .Величина электрического поля просто определяется как сила, приходящаяся на заряд испытательного заряда.

Если напряженность электрического поля обозначена символом E , то уравнение можно переписать в символической форме как

.

Стандартные метрические единицы напряженности электрического поля вытекают из его определения. Поскольку электрическое поле определяется как сила, приходящаяся на заряд, его единицами измерения будут единицы силы, разделенные на единицы заряда. В этом случае стандартными метрическими единицами измерения являются Ньютон / Кулон или Н / Кл.

В приведенном выше обсуждении вы заметите, что упоминаются два заряда — исходный заряд и тестовый заряд. Для встречи с отрядом всегда требовалось два заряда. В электрическом мире нужны двое, чтобы привлечь или оттолкнуть. Уравнение для напряженности электрического поля ( E ) имеет одну из двух величин заряда, перечисленных в нем. Поскольку задействованы два заряда, ученик должен быть предельно осторожным, чтобы использовать правильное количество заряда при вычислении напряженности электрического поля.Символ q в уравнении — это количество заряда на тестовом заряде (а не на исходном заряде). Напомним, что напряженность электрического поля определяется с точки зрения того, как она измеряется или проверяется; таким образом, тестовый заряд находит свое место в уравнении. Электрическое поле — это сила, приходящаяся на количество заряда на испытательном заряде .

Напряженность электрического поля не зависит от количества заряда в тестовом заряде. Если вы немного подумаете об этом заявлении, оно может вас обеспокоить.(Конечно, если вы вообще не думаете — никогда — ничто не беспокоит вас. Невежество — это блаженство.) В конце концов, количество заряда в тестовом заряде ( q ) находится в уравнении для электрического поля. Так как же напряженность электрического поля может не зависеть от q , если q входит в уравнение? Хороший вопрос. Но если вы подумаете над этим немного дольше, вы сможете ответить на свой вопрос. (Невежество может быть блаженством. Но немного подумав, вы можете достичь прозрения, состояния, которое намного лучше, чем блаженство.) Увеличение количества заряда в тестовом заряде — скажем, в 2 раза — увеличит знаменатель уравнения в 2 раза. Но согласно закону Кулона, больший заряд также означает большую электрическую силу ( F ) . Фактически, двукратное увеличение q будет сопровождаться двукратным увеличением F . Таким образом, когда знаменатель в уравнении увеличивается в два (три или четыре) раза, числитель увеличивается во столько же раз. Эти два изменения уравновешивают друг друга, так что можно с уверенностью сказать, что напряженность электрического поля не зависит от количества заряда в тестовом заряде.Таким образом, независимо от того, какой испытательный заряд используется, напряженность электрического поля в любом заданном месте вокруг источника заряда Q будет одинакова.

Другая формула напряженности электрического поля

Вышеупомянутое обсуждение относилось к определению напряженности электрического поля с точки зрения ее измерения. Теперь мы исследуем новое уравнение, которое определяет напряженность электрического поля в терминах переменных, которые влияют на напряженность электрического поля.Для этого нам придется вернуться к уравнению закона Кулона. Закон Кулона гласит, что электрическая сила между двумя зарядами прямо пропорциональна произведению их зарядов и обратно пропорциональна квадрату расстояния между их центрами. Применительно к двум нашим зарядам — ​​исходному заряду ( Q ) и пробному заряду ( q ) — формула для электрической силы может быть записана как

Если выражение для электрической силы, заданное законом Кулона, заменить на силу в приведенном выше уравнении E = F / q, можно вывести новое уравнение, как показано ниже.

Обратите внимание, что приведенный выше вывод показывает, что тестовый сбор q был исключен как из числителя, так и из знаменателя уравнения. Новая формула для напряженности электрического поля (показанная внутри рамки) выражает напряженность поля в терминах двух переменных, которые на нее влияют. Напряженность электрического поля зависит от количества заряда источника ( Q ) и расстояния разделения ( d ) от источника заряда.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут использоваться для алгебраического решения физических задач со словом. И, как и все формулы, эти формулы напряженности электрического поля также можно использовать, чтобы направлять наши размышления о том, как изменение одной переменной может (или не может) повлиять на другую переменную. Одной из особенностей этой формулы напряженности электрического поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием. Напряженность электрического поля, создаваемого зарядом источника Q , обратно пропорциональна квадрату расстояния от источника. Это известно как закон обратных квадратов .2).

Используйте этот принцип обратной квадратичной зависимости между напряженностью электрического поля и расстоянием, чтобы ответить на первые три вопроса в разделе «Проверьте свое понимание» ниже.

Повторение аналогии с вонючим полем

В предыдущем разделе Урока 4 была представлена ​​несколько грубая, но поучительная аналогия — аналогия с вонючим полем. Аналогия сравнивает понятие электрического поля, окружающего исходный заряд, с вонючим полем, окружающим вонючий подгузник младенца.Подобно тому, как каждый вонючий подгузник создает неприятное поле, каждый электрический заряд создает электрическое поле. А если вы хотите узнать силу вонючего поля, вы просто используете вонючий детектор — нос, который (насколько я знаю) всегда отталкивающе реагирует на вонючий источник. Точно так же, если вы хотите узнать силу электрического поля, вы просто используете детектор заряда — тестовый заряд, который будет реагировать притягивающим или отталкивающим образом на исходный заряд. И, конечно, сила поля пропорциональна воздействию на детектор.Более чувствительный детектор (лучший носик или более заряженный тестовый заряд) ощутит эффект более интенсивно. Тем не менее, напряженность поля определяется как влияние (или сила) на чувствительность детектора; поэтому напряженность поля вонючего подгузника или электрического заряда не зависит от чувствительности детектора.

Если вы измерите вонючее поле подгузника, будет понятно, что на него не повлияет то, насколько вы вонючий. Человек, измеряющий силу вонючего поля подгузника, может создать собственное поле, сила которого зависит от того, насколько он вонючий.Но поле этого человека не следует путать с вонючим полем подгузника. Вонючее поле подгузника зависит от того, насколько вонючий подгузник. Точно так же сила электрического поля исходного заряда зависит от того, насколько заряжен исходный заряд. Более того, как и в случае с вонючим полем, наше уравнение электрического поля показывает, что по мере того, как вы приближаетесь к источнику поля, эффект становится все больше и больше, а напряженность электрического поля увеличивается.

Аналогия с вонючим полем оказывается полезной для передачи как концепции электрического поля, так и математики электрического поля.Концептуально он иллюстрирует, как источник поля может влиять на окружающее пространство и оказывать влияние на чувствительные детекторы в этом пространстве. И математически он показывает, как сила поля зависит от источника и расстояния от источника и не зависит от каких-либо характеристик, связанных с детектором.

Направление вектора электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной.В отличие от скалярной величины, векторная величина не описывается полностью, если с ней не связано направление. Величина вектора электрического поля рассчитывается как сила, приходящаяся на заряд любого заданного испытательного заряда, находящегося в пределах электрического поля. Сила на испытательном заряде могла быть направлена ​​либо на исходный заряд, либо прямо от него. Точное направление силы зависит от того, имеют ли тестовый заряд и исходный заряд один и тот же тип заряда (в котором происходит отталкивание) или противоположный тип заряда (в котором происходит притяжение).Чтобы решить дилемму, направлен ли вектор электрического поля к источнику заряда или от него, было принято соглашение. Согласно всемирному соглашению, которое используется учеными, направление вектора электрического поля определяется как направление, в котором положительный тестовый заряд толкается или вытягивается в присутствии электрического поля. Используя условное обозначение положительного тестового заряда, каждый может согласовать направление E .

Учитывая это соглашение о положительном испытательном заряде, можно сделать несколько общих выводов о направлении вектора электрического поля.Положительный заряд источника создает электрическое поле, которое оказывает отталкивающее действие на положительный испытательный заряд. Таким образом, вектор электрического поля всегда будет направлен от положительно заряженных объектов. С другой стороны, положительный тестовый заряд будет притягиваться к отрицательному заряду источника. Следовательно, векторы электрического поля всегда направлены в сторону отрицательно заряженных объектов. Вы можете проверить свое понимание направлений электрического поля, ответив на вопросы 6 и 7 ниже.

Мы хотели бы предложить…

Иногда просто прочитать об этом недостаточно. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения «Положите заряд в цель» и / или интерактивного интерфейса «Электростатические ландшафты». Оба интерактивных компонента можно найти в разделе Physics Interactives на нашем веб-сайте. Оба Interactives предоставляют увлекательную среду для изучения электрических полей и действий на расстоянии.

Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. Заряд Q действует как точечный заряд, создавая электрическое поле. Его сила, измеренная на расстоянии 30 см, составляет 40 Н / К. Какова величина напряженности электрического поля, которую вы ожидаете измерить на расстоянии…

а. На расстоянии 60 см?

г. 15 см?

г. На расстоянии 90 см?

г. На расстоянии 3 см?

г. На расстоянии 45 см?

2. Заряд Q действует как точечный заряд, создавая электрическое поле. Его сила, измеренная на расстоянии 30 см, составляет 40 Н / К.Какой была бы напряженность электрического поля …

а. 30 см от источника с зарядом 2Q?

г. 30 см от источника с зарядом 3Q?

г. 60 см от источника с зарядом 2Q?

г. 15 см от источника с зарядом 2Q?

e. 150 см от источника с зарядом 0.5Q?

3. Используйте свои знания о напряженности электрического поля, чтобы заполнить следующую таблицу.

4. В приведенной выше таблице найдите по крайней мере две строки, которые иллюстрируют, что напряженность вектора электрического поля равна …

а. напрямую связано с количеством заряда на исходном заряде ( Q ).

г. обратно пропорционально квадрату разделительного расстояния ( d ).

г. независимо от количества заряда в тестовом заряде ( q ).

5. Следующая единица определенно не является стандартной единицей для выражения величины напряженности электрического поля.

кг • м / с 2 / C

Однако это может быть приемлемый блок для E . Используйте анализ единиц измерения, чтобы определить, является ли вышеуказанный набор единиц приемлемой единицей измерения напряженности электрического поля.

6.Замечено, что воздушный шар A заряжен отрицательно. Воздушный шар B оказывает отталкивающее действие на воздушный шар A. Будет ли вектор электрического поля, созданный воздушным шаром B, быть направлен к B или от B? ___________ Объясните свои рассуждения.

7. Отрицательный заряд источника ( Q ) показан на диаграмме ниже. Этот исходный заряд может создавать электрическое поле. Обозначены различные места в поле.Для каждого местоположения нарисуйте вектор электрического поля в соответствующем направлении с соответствующей относительной величиной. То есть нарисуйте длину вектора E длинной, если величина большая, и короткой, где величина мала.

электрических полей

электрических полей

Далее: Рабочие примеры
Up: Электричество
Предыдущая: Закон Кулона

Согласно закону Кулона, заряд действует на второй заряд,
и наоборот , даже в вакууме.Но как эта сила
передается через пустое пространство? Чтобы ответить на этот вопрос, физики из
19 век
разработал концепцию электрического поля . Идея в следующем. В
заряд создает электрическое поле
который заполняет пространство.
Электростатическая сила, действующая на второй заряд, фактически создается локально за счет
электрическое поле на месте этого заряда в соответствии с законом Кулона. Точно так же заряд порождает
собственное электрическое поле
который также заполняет пространство.Равная и противоположная реакция
действующая сила создается локально электрическим полем на
положение этого заряда опять же в соответствии с законом Кулона. Конечно, электрическое поле
не может воздействовать на порождающий его заряд,
точно так же, как мы не можем взять себя в руки шнурками. Между прочим, электрические поля имеют реальное физическое существование, а не просто теоретические конструкции, изобретенные физиками, чтобы обойти
проблема передачи электростатического
проталкивает через вакуум.Мы можем сказать это с уверенностью, потому что, как мы увидим позже, существует энергия
связаны с
электрическое поле, заполняющее пространство. Действительно, действительно можно преобразовать эту энергию в
нагреть или работать, а наоборот .

Электрическое поле
генерируемое набором фиксированных электрических зарядов, представляет собой векторное поле, которое определяется следующим образом.
Если
это электростатическая сила, испытываемая небольшим положительным
пробный заряд, расположенный в определенной точке пространства, то электрическое поле на
эта точка — это просто сила, деленная на величину испытания
заряжать.Другими словами,

(62)



Электрическое поле имеет размерность силы на единицу заряда, и
единицы ньютонов на кулон (
). Кстати, причина
что мы указываем маленькую, а не большую,
Тестовая зарядка заключается в том, чтобы не беспокоить любой из
фиксированные сборы
которые генерируют электрическое поле.

Воспользуемся указанным выше правилом, чтобы восстановить электрическое поле, создаваемое
точечный заряд. Согласно закону Кулона электростатическая сила
вызванный точечным зарядом положительного испытательного заряда, находящегося на расстоянии
от него, имеет величину

(63)



и направлен радиально от прежнего заряда, если, и радиально
к нему, если.Таким образом, электрическое поле на расстоянии
вдали от заряда имеет величину

(64)



и направлена ​​радиально от заряда, если, и радиально в сторону
заряд если. Обратите внимание, что поле не зависит от величины
тестового заряда.

Следствием приведенного выше определения электрического поля является то, что стационарный заряд
находящийся в электрическом поле испытывает электростатическую силу

(65)



где — электрическое поле в месте нахождения заряда
(без учета поля самого заряда).

Поскольку электростатические силы наложены друг на друга, отсюда следует, что электрические поля также наложены.
Например, если у нас есть три стационарных
точечные заряды« и, расположенные в трех разных точках пространства,
тогда чистое электрическое поле, заполняющее пространство, представляет собой просто векторную сумму созданных полей.
по каждому точечному заряду, взятому изолированно.


Далее: Рабочие примеры
Up: Электричество
Предыдущая: Закон Кулона

Ричард Фицпатрик
2007-07-14

18.3 Электрическое поле — Физика

Разделы Цели обучения

К концу этого раздела вы сможете делать следующее:

  • Вычислить напряженность электрического поля
  • Создание и интерпретация чертежей электрических полей

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (5) Студент знает природу сил в физическом мире.Ожидается, что студент:
    • (С)
      описать и вычислить, как величина электрической силы между двумя объектами зависит от их зарядов и расстояния между ними.

Раздел Ключевые термины

электрическое поле пробный заряд

Поддержка учителей

Поддержка учителей

Спросите учащихся, видели ли они фильмы, в которых используется концепция полей , как и в силовых полях .Попросите их описать, как работают такие поля. Опишите, как гравитацию можно рассматривать как поле, окружающее массу и с которым взаимодействуют другие массы. Объясните: электрические поля очень похожи на гравитационные.

Возможно, вы слышали о силовом поле в научно-фантастических фильмах, где такие поля применяют силы в определенных позициях в космосе, чтобы удержать злодея в ловушке или защитить космический корабль от вражеского огня. Концепция поля очень полезна в физике, хотя несколько отличается от того, что вы видите в фильмах.

Поле — это способ концептуализации и отображения силы, которая окружает любой объект и действует на другой объект на расстоянии без видимой физической связи. Например, гравитационное поле, окружающее Землю и все другие массы, представляет собой гравитационную силу, которая возникла бы, если бы другая масса была помещена в заданную точку внутри поля. Майкл Фарадей, английский физик XIX века, предложил концепцию электрического поля. Если вы знаете электрическое поле, вы можете легко вычислить силу (величину и направление), приложенную к любому электрическому заряду, который вы помещаете в это поле.

Электрическое поле создается электрическим зарядом и сообщает нам силу на единицу заряда во всех точках пространства вокруг распределения заряда. Распределение зарядов может быть единственной точечной зарядкой; распределение заряда, скажем, по плоской пластине; или более сложное распределение заряда. Электрическое поле распространяется в пространство вокруг распределения заряда. Теперь рассмотрите возможность размещения пробного заряда в полевых условиях. Пробный заряд — это положительный электрический заряд, заряд которого настолько мал, что он не вызывает значительного возмущения зарядов, создающих электрическое поле.Электрическое поле действует на пробный заряд в заданном направлении. Приложенная сила пропорциональна заряду испытательного заряда. Например, если мы удвоим заряд испытательного заряда, сила, приложенная к нему, удвоится. Математически, говоря, что электрическое поле — это сила на единицу заряда, записывается как

E → = F → qtest E → = F → qtest

18,15

где мы рассматриваем только электрические силы. Обратите внимание, что электрическое поле — это векторное поле, которое направлено в том же направлении, что и сила, действующая на положительный тестовый заряд.Единицы электрического поля — N / C.

Если электрическое поле создается точечным зарядом или сферой с однородным зарядом, то величина силы между этим точечным зарядом Q и пробным зарядом определяется законом Кулона

F = k | Qqtest | r2F = k | Qqtest | r2

, где используется абсолютное значение, потому что мы учитываем только величину силы. Величина электрического поля тогда равна

.

E = Fqtest = k | Q | r2.E = Fqtest = k | Q | r2.

18,16

Это уравнение дает величину электрического поля, создаваемого точечным зарядом Q .Расстояние r в знаменателе — это расстояние от точечного заряда Q или от центра сферического заряда до интересующей точки.

Если испытательный заряд удалить из электрического поля, электрическое поле все еще существует. Чтобы создать трехмерную карту электрического поля, представьте, что тестовый заряд размещается в разных местах поля. В каждом месте измерьте силу, действующую на заряд, и используйте векторное уравнение E → = F → / qtestE → = F → / qtest для расчета электрического поля.Нарисуйте стрелку в каждой точке, куда вы помещаете тестовый заряд, чтобы обозначить силу и направление электрического поля. Длина стрелок должна быть пропорциональна напряженности электрического поля. Если соединить эти стрелки вместе, получатся линии. На рисунке 18.17 показано изображение трехмерного электрического поля, созданного положительным зарядом.

Рис. 18.17 Трехмерное представление электрического поля, создаваемого положительным зарядом.

Поддержка учителя

Поддержка учителя

[BL] [OL] Укажите, что все силовые линии электрического поля происходят от заряда.

[AL] Обратите внимание на то, что количество линий, пересекающих воображаемую сферу, окружающую заряд, одинаково независимо от того, какой размер сферы вы выберете. Спросите, могут ли учащиеся использовать это, чтобы показать, что количество силовых линий, пересекающих поверхность на единицу площади, показывает, что напряженность электрического поля уменьшается пропорционально квадрату расстояния.

Простое рисование силовых линий электрического поля в плоскости, пересекающей заряд, дает двумерные карты электрического поля, показанные на рисунке 18.18. Слева — электрическое поле, созданное положительным зарядом, а справа — электрическое поле, созданное отрицательным зарядом.

Обратите внимание, что линии электрического поля направлены от положительного заряда в сторону отрицательного заряда. Таким образом, положительный тестовый заряд, помещенный в электрическое поле положительного заряда, будет отталкиваться. Это согласуется с законом Кулона, который гласит, что одинаковые заряды отталкивают друг друга. Если мы поместим положительный заряд в электрическое поле отрицательного заряда, положительный заряд будет притягиваться к отрицательному заряду.Обратное верно для отрицательных тестовых зарядов. Таким образом, направление силовых линий электрического поля согласуется с тем, что мы находим с помощью закона Кулона.

Уравнение E = k | Q | / r2E = k | Q | / r2 говорит, что электрическое поле становится сильнее по мере приближения к заряду, который его генерирует. Например, на расстоянии 2 см от заряда Q ( r = 2 см) электрическое поле в четыре раза сильнее, чем на расстоянии 4 см от заряда ( r = 4 см). Глядя на рисунок 18.17 и рисунок 18.18 снова, мы видим, что силовые линии электрического поля становятся более плотными по мере приближения к заряду, который его генерирует. Фактически, плотность силовых линий электрического поля пропорциональна напряженности электрического поля!

Рисунок 18.18 Силовые линии электрического поля от двух точечных зарядов. Красная точка слева несет заряд +1 нКл, а синяя точка справа несет заряд –1 нКл. Стрелки указывают направление движения положительного тестового заряда. Линии поля становятся более плотными по мере приближения к точечному заряду.

Карты электрического поля могут быть составлены для нескольких зарядов или для более сложных распределений зарядов. Электрическое поле из-за нескольких зарядов можно найти, сложив электрическое поле от каждого отдельного заряда. Поскольку эта сумма может быть только одним числом, мы знаем, что только одна линия электрического поля может проходить через любую заданную точку. Другими словами, линии электрического поля не могут, , пересекать друг друга.

На рисунке 18.19 (а) показана двумерная карта электрического поля, создаваемого зарядом + q и ближайшим зарядом — q .Трехмерная версия этой карты получается вращением этой карты вокруг оси, проходящей через оба заряда. Положительный испытательный заряд, помещенный в это поле, будет испытывать силу в направлении силовых линий в его местоположении. Таким образом, он будет отталкиваться от положительного заряда и притягиваться к отрицательному. На рисунке 18.19 (b) показано электрическое поле, создаваемое двумя зарядами — q . Обратите внимание на то, как линии поля имеют тенденцию отталкиваться друг от друга и не перекрываются. Положительный тестовый заряд, помещенный в это поле, будет притягиваться к обоим зарядам.Если вы находитесь далеко от этих двух зарядов, где «далеко» означает намного больше, чем расстояние между зарядами, электрическое поле выглядит как электрическое поле от одного заряда −2 q .

Рис. 18.19 (a) Электрическое поле, создаваемое положительным точечным зарядом (слева) и отрицательным точечным зарядом той же величины (справа). (б) Электрическое поле, создаваемое двумя равными отрицательными зарядами.

Поддержка учителя

Поддержка учителя

Попросите учащихся интерпретировать карты электрического поля.Где поле наиболее сильное? Где поле самое слабое? В каком направлении поле увеличивается или уменьшается? Где поле наиболее однородное? Могут ли они проверить, что величина обвинений одинакова на данной панели? Чем поле для двух отрицательных зарядов отличается от поля для положительного и отрицательного зарядов?

Virtual Physics

Исследование электрического поля

Это моделирование показывает электрическое поле, создаваемое зарядами, которые вы размещаете на экране.Начните с установки верхнего флажка на панели параметров справа, чтобы отобразить электрическое поле. Перетаскивайте заряды из ведер на экран, перемещайте их и наблюдайте за электрическим полем, которое они образуют. Чтобы более точно увидеть величину и направление электрического поля, перетащите датчик электрического поля или датчик E-field из нижнего ведра и перемещайте его по экрану.

Контроль захвата

На экране помещены два положительных заряда. Какое утверждение описывает электрическое поле, создаваемое зарядами?

  1. Постоянно везде.
  2. Обнуляется возле каждого заряда.
  3. Это ноль на полпути между зарядами.
  4. Сильнейший на полпути между зарядами.

Watch Physics

Электростатика (часть 2): интерпретация электрического поля

В этом видео объясняется, как рассчитать электрическое поле точечного заряда и как интерпретировать карты электрического поля в целом. Обратите внимание, что лектор использует d для расстояния между частицами вместо r .Обратите внимание, что точечные заряды бесконечно малы, поэтому все их заряды сосредоточены в одной точке. Когда рассматриваются более крупные заряженные объекты, расстояние между ними необходимо измерять между центрами объектов.

Проверка захвата

Верно или неверно — если точечный заряд имеет линии электрического поля, направленные внутрь, заряд должен быть положительным.

  1. правда
  2. ложь

Рабочий пример

Какая плата?

Посмотрите на рисунок электрического поля на рисунке 18.20. Какова относительная сила и знак трех зарядов?

Рис. 18.20. Карта электрического поля от трех заряженных частиц.

Стратегия

Мы знаем, что электрическое поле исходит от положительного заряда и заканчивается отрицательным зарядом. Мы также знаем, что количество силовых линий электрического поля, которые касаются заряда, пропорционально заряду. Заряд 1 имеет 12 выходящих полей. Заряд 2 имеет шесть линий поля, входящих в него. Заряд 3 имеет 12 линий поля, входящих в него.

Решение

Силовые линии электрического поля выходят из заряда 1, так что это положительный заряд. Линии электрического поля переходят в заряды 2 и 3, поэтому они являются отрицательными зарядами. Отношение зарядов q1: q2: q3 = + 12: −6: −12q1: q2: q3 = + 12: −6: −12. Таким образом, заряды 1 и 3 по величине вдвое превышают заряд 2.

Обсуждение

Хотя мы не можем определить точный заряд каждой частицы, мы можем получить много информации из электрического поля о величине и знаке зарядов, а также о том, где сила на пробном заряде будет наибольшей (или наименьшей).

Рабочий пример

Электрическое поле от дверной ручки

Дверная ручка, которую можно принять за сферический металлический проводник, приобретает заряд статического электричества q = -1,5 нКл. Q = -1,5 нКл. Какое электрическое поле на 1,0 см перед дверной ручкой? Диаметр дверной ручки 5,0 см.

Стратегия

Поскольку дверная ручка является проводником, весь заряд распределяется по внешней поверхности металла. Кроме того, поскольку предполагается, что дверная ручка имеет идеально сферическую форму, заряд на поверхности распределен равномерно, поэтому мы можем рассматривать дверную ручку так, как если бы весь заряд находился в центре дверной ручки.Справедливость этого упрощения будет доказана в более позднем курсе физики. Теперь нарисуйте дверную ручку и определите свою систему координат. Используйте + x + x, чтобы указать направление наружу, перпендикулярное двери, с x = 0x = 0 в центре дверной ручки (как показано на рисунке ниже).

Если диаметр дверной ручки 5,0 см, ее радиус равен 2,5 см. Нам нужно знать электрическое поле на расстоянии 1,0 см от поверхности дверной ручки, что составляет расстояние r = 2,5 см + 1,0 см = 3,5 см = 2,5 см + 1,0 см = 3.5 см от центра дверной ручки. Мы можем использовать уравнение E = k | Q | r2E = k | Q | r2, чтобы найти величину электрического поля. Направление электрического поля определяется знаком заряда, который в данном случае отрицательный.

Решение

Подставив заряд Q = −1,5 нКл = −1,5 × 10−9CQ = −1,5 нКл = −1,5 × 10−9 ° C и расстояние r = 3,5 см = 0,035mr = 3,5 см = 0,035 м в уравнение E = k | Q | r2E = k | Q | r2 дает

E = k | Q | r2 = (8,99 × 109 Н · м2 / C2) | −1,5 · 10−9C | (0,035 м) 2 = 1,1 · 104 Н / C..

Обсуждение

Это похоже на огромное электрическое поле. К счастью, электрическое поле примерно в 100 раз сильнее (3 × 106 Н / С3 × 106 Н / Ц), чтобы вызвать разрушение воздуха и провести электричество. Кроме того, вес взрослого человека составляет около 70 кг × 9,8 м / с2≈700N70 кг × 9,8 м / с2≈700N, так почему же вы не чувствуете силы, действующей на протоны в своей руке, когда вы тянетесь к дверной ручке? Причина в том, что ваша рука содержит равное количество отрицательного заряда, который отталкивает отрицательный заряд дверной ручки.Из-за поляризации в вашей руке может развиться очень небольшая сила, но вы никогда этого не заметите.

Практические задачи

15.

Какова величина электрического поля на расстоянии 20 см от точечного заряда q = 33 нКл?

  1. 7,4 × 10 3 Н / З
  2. 1,48 × 10 3 Н / З
  3. 7,4 × 10 12 Н / З
  4. 0

16.

Заряд −10 нКл находится в исходной точке. В каком направлении движется электрическое поле от точки заряда на x + 10 см?

  1. Электрическое поле направлено в сторону от отрицательных зарядов.
  2. Электрическое поле указывает на отрицательные заряды.
  3. Электрическое поле указывает на положительные заряды.
  4. Электрическое поле направлено в сторону от положительных зарядов.

Проверьте свое понимание

17.

Когда линии электрического поля сближаются, что это говорит вам об электрическом поле?

  1. Электрическое поле обратно пропорционально плотности силовых линий электрического поля.
  2. Электрическое поле прямо пропорционально плотности силовых линий электрического поля.
  3. Электрическое поле не связано с плотностью силовых линий электрического поля.
  4. Электрическое поле обратно пропорционально квадратному корню из плотности силовых линий электрического поля.

18.

Если пять линий электрического поля выходят из заряда +5 нКл, сколько линий электрического поля должно выходить из заряда +20 нКл?

  1. пять линий поля
  2. 10 линий поля
  3. 15 линий поля
  4. 20 линий поля

Возвращение к электрическому полю | Безграничная физика

Электрическое поле точечного заряда

Точечный заряд создает электрическое поле, которое можно рассчитать по закону Кулона.

Цели обучения

Определить закон, который можно использовать для расчета электрического поля, создаваемого точечным зарядом

Ключевые выводы

Ключевые моменты
  • Электрическое поле — это векторное поле вокруг заряженной частицы. Он представляет силу, которую почувствовали бы другие заряженные частицы, если бы их поместили рядом с частицей, создающей электрическое поле.
  • Учитывая точечный заряд или частицу бесконечно малого размера, которая содержит определенный заряд, силовые линии электрического поля исходят одинаково во всех радиальных направлениях.
  • Если точечный заряд положительный, силовые линии направлены в сторону от него; если заряд отрицательный, на него указывают силовые линии.
Ключевые термины
  • Закон Кулона : математическое уравнение, вычисляющее вектор электростатической силы между двумя заряженными частицами
  • векторное поле : конструкция, в которой каждая точка в евклидовом пространстве связана с вектором; функция, диапазон которой является векторным пространством

Электрическое поле точечного заряда, как и любое другое электрическое поле, представляет собой векторное поле, которое представляет эффект, который точечный заряд оказывает на другие заряды вокруг него.Эффект ощущается как сила, и когда заряженные частицы не движутся, эта сила известна как электростатическая сила. Электростатическая сила, как и сила тяжести, действует на расстоянии. Поэтому мы рационализируем это действие на расстоянии, говоря, что заряды создают вокруг себя поля, которые влияют на другие заряды.

Учитывая точечный заряд или частицу бесконечно малого размера, которая содержит определенный заряд, силовые линии электрического поля излучаются радиально во всех направлениях.Если заряд положительный, силовые линии направлены радиально от него; если заряд отрицательный, силовые линии направлены радиально к нему.

Электрическое поле положительного точечного заряда : Электрическое поле положительно заряженной частицы направлено радиально от заряда.

Электрическое поле точечного отрицательного заряда : электрическое поле отрицательно заряженной частицы направлено радиально к частице.

Причину этих направлений можно увидеть в выводе электрического поля точечного заряда. 2} \ hat {\ text {r}}} [/ latex]

Радиальная система координат : электрическое поле точечного заряда определяется в радиальных координатах.Положительное направление r указывает от начала координат, а отрицательное направление r указывает на начало координат. Электрическое поле точечного заряда симметрично относительно направления θ.

Следует иметь в виду, что указанная выше сила действует на испытательный заряд Q в положительном радиальном направлении, определяемом исходным зарядом q . Это означает, что поскольку оба заряда являются положительными и будут отталкиваться друг от друга, сила, действующая на тестовый заряд, направлена ​​в сторону от исходного заряда.2} \ hat {\ text {r}} [/ latex]

Обратите внимание, что это указывает в отрицательном направлении [latex] \ hat {\ text {r}} [/ latex], то есть к исходному заряду. Это имеет смысл, потому что противоположные заряды притягиваются, и сила, действующая на тестовый заряд, будет стремиться подтолкнуть его к исходному положительному заряду, создающему поле. Приведенное выше математическое описание электрического поля точечного заряда известно как закон Кулона.

Наложение полей

Результат нескольких электрических полей, действующих на одну и ту же точку, является суммой напряженности сил, приложенных каждым полем в этой точке.

Цели обучения

Сформулируйте принцип суперпозиции для линейной системы

Ключевые выводы

Ключевые моменты
  • Принцип суперпозиции гласит, что для всех линейных систем общий ответ на множественные стимулы в заданном месте и в определенное время равен сумме ответов, которые были бы вызваны каждым стимулом в отдельности.
  • Возможные стимулы включают, помимо прочего, числа, функции, векторы, векторные поля и изменяющиеся во времени сигналы.
  • Принцип суперпозиции применим к любой линейной системе, включая алгебраические уравнения, линейные дифференциальные уравнения и системы уравнений вышеупомянутых форм.
  • Электрические поля — это непрерывные поля векторов, поэтому в данной точке можно найти силы, которые несколько полей будут применять к испытательному заряду, и сложить их, чтобы найти результат.
Ключевые термины
  • ортогонально : из двух объектов под прямым углом; перпендикулярны друг другу.
  • принцип суперпозиции : принцип, согласно которому линейная комбинация двух или более решений уравнения сама по себе является решением; это особенность многих физических законов.
  • вектор : Направленная величина, имеющая как величину, так и направление; между двумя точками.

Как векторные поля, электрические поля подчиняются принципу суперпозиции. Этот принцип гласит, что для всех линейных систем чистый ответ на множественные стимулы в определенном месте и в определенное время равен сумме ответов, которые были бы вызваны каждым стимулом индивидуально.

Возможные стимулы включают, помимо прочего: числа, функции, векторы, векторные поля и изменяющиеся во времени сигналы. Следует отметить, что принцип суперпозиции применим к любой линейной системе, включая алгебраические уравнения, линейные дифференциальные уравнения и системы уравнений вышеупомянутых форм.

Например, если силы A и B постоянны и одновременно действуют на объект, обозначенный буквой O in, результирующая сила будет суммой сил A и B.Сложение векторов является коммутативным, поэтому добавление A к B или B к A не влияет на результирующий вектор; это также относится к вычитанию векторов.

Сложение вектора : Силы a и b действуют на объект в точке O. Их сумма коммутативна и дает результирующий вектор c.

Электрические поля — это непрерывные поля векторов, поэтому в данной точке можно найти силы, которые несколько полей будут прилагать к испытательному заряду, и сложить их, чтобы найти результат.Для этого сначала найдите составляющие вектора силы, прикладываемой каждым полем в каждой из ортогональных осей. Это можно сделать с помощью тригонометрических функций. Затем, как только векторы-компоненты найдены, добавьте компоненты по каждой оси, которые применяются объединенными электрическими полями.

Это единственная форма решения. Общий результирующий вектор можно найти, используя теорему Пифагора, чтобы найти результирующую (гипотенузу треугольника, созданного с помощью приложенных сил как катетов) и угол по отношению к данной оси, приравняв арктангенс угла к отношению силы соседних и противоположных ног.

Линии электрического поля: многократные заряды

Электрические поля, создаваемые множественными зарядами, взаимодействуют, как и любые другие векторные поля; их силы можно подвести.

Цели обучения

Вычислить результирующую силу нескольких электрических зарядов на испытательном заряде

Ключевые выводы

Ключевые моменты
  • Когда взаимодействуют несколько электрических зарядов, их результирующая сила на испытательном заряде может быть вычислена с помощью векторного сложения.
  • Если рассматриваются противоположные заряды, соедините один с другим с помощью силовых линий. Если заряды одинаковые, ни в коем случае не подключайте их.
  • При моделировании электрических полей нескольких зарядов учитывайте знак и величину каждого заряда. Количество силовых линий должно быть пропорционально величине заряда, который их вызывает.
Ключевые термины
  • вектор : Направленная величина, имеющая как величину, так и направление; между двумя точками.

До сих пор мы рассматривали силовые линии электрического поля, относящиеся к изолированным точечным зарядам. Но что, если будет введено другое обвинение? У каждого будет свое собственное электрическое поле, и эти два поля будут взаимодействовать.

При моделировании электрических полей нескольких зарядов важно учитывать знак и величину каждого заряда. Такие модели не должны быть абсолютными, но должны быть непротиворечивыми. Например, числовое поле линий должно быть пропорционально величине заряда, который их порождает.Это означает, что если заряды q 1 (со значением +1) q 2 (заряд +2) и q 3 (заряд +3) находятся в одном поле, можно соединить 4, 8 и 12 силовые линии соответственно зарядам. Можно также выбрать подключение 3, 6 и 9 силовых линий соответственно к q 1 , q 2 и q 3 ; важно то, что количество линий связано со значениями заряда одной и той же константой пропорциональности. Линии поля всегда должны быть направлены от положительных зарядов в сторону отрицательного заряда.

Силовые линии между подобными и разнородными зарядами : Пример a показывает, насколько слабое электрическое поле между подобными зарядами (концентрация силовых линий между ними мала). Пример b, напротив, имеет сильное поле между зарядами, о чем свидетельствует высокая концентрация соединяющих их силовых линий.

Если рассматриваются противоположные заряды, соедините один с другим с помощью силовых линий. Если заряды одинаковые, ни в коем случае не подключайте их.

Напряженность электрического поля пропорционально зависит от расстояния между силовыми линиями.Больше линий поля на единицу площади, перпендикулярной линиям, означает более сильное поле. Также следует отметить, что в любой точке направление электрического поля будет касательным к силовой линии.

Определение чистой силы при испытательном заряде

Как векторные поля, электрические поля проявляют свойства, типичные для векторов, и поэтому могут складываться друг с другом в любой интересующей точке. Таким образом, для заданных зарядов q 1 , q 2 ,… q n , можно найти их равнодействующую силу на испытательном заряде в определенной точке, используя сложение векторов: сложив составляющие векторы в каждом направлении и используя арктангенс. функция, чтобы найти угол результирующей относительно заданной оси.

Конденсатор с параллельными пластинами

Конденсатор с параллельными пластинами — это электрический компонент, используемый для хранения энергии в электрическом поле между двумя заряженными плоскими поверхностями.

Цели обучения

Опишите общую конструкцию конденсатора

Ключевые выводы

Ключевые моменты
  • Конденсаторы могут быть разных форм, но все они состоят из двух проводников, разделенных диэлектрическим материалом.
  • Все конденсаторы собирают заряд на двух отдельных проводящих поверхностях; одна сторона положительная, а другая отрицательная.Электрическое поле создается, когда заряд накапливается на противоположных поверхностях, накапливая энергию. Диэлектрик действует как изолятор, изолируя заряженные поверхности.
  • Способность конденсаторов удерживать заряд измеряется в Фарадах (Ф). Конденсаторы обычно допускают небольшую утечку тока через диэлектрик, но после определенного напряжения весь конденсатор выходит из строя, поскольку диэлектрик становится проводником.
Ключевые термины
  • конденсатор : Электронный компонент, способный накапливать электрический заряд, особенно тот, который состоит из двух проводников, разделенных диэлектриком.
  • диэлектрик : Электроизоляционный или непроводящий материал, рассматриваемый на предмет его электрической восприимчивости (т. Е. Его свойства поляризации при воздействии внешнего электрического поля).
  • проводник : Материал, содержащий подвижные электрические заряды.

Обзор

Конденсатор — это электрический компонент, используемый для хранения энергии в электрическом поле. Конденсаторы могут иметь разные формы, но все они состоят из двух проводников, разделенных диэлектрическим материалом.Для этого атома мы сосредоточимся на конденсаторах с параллельными пластинами.

Схема конденсатора с параллельными пластинами : Заряды в диэлектрическом материале идут вверх, чтобы противостоять зарядам каждой пластины конденсатора. Электрическое поле создается между пластинами конденсатора по мере накопления заряда на каждой пластине.

Емкость

Все конденсаторы собирают заряд на двух отдельных проводящих поверхностях; одна сторона положительная, а другая отрицательная. Электрическое поле создается, когда заряд накапливается на противоположных поверхностях, накапливая энергию.Диэлектрик между проводниками должен действовать как изолятор, не позволяя заряду перекрывать зазор между двумя пластинами. Такие диэлектрики обычно состоят из стекла, воздуха, бумаги или пустого пространства (вакуума). На практике диэлектрики не действуют как идеальные изоляторы и пропускают через них небольшой ток утечки.

Конденсаторы ограничены в своей способности предотвращать перетекание заряда с одной проводящей поверхности на другую; их способность удерживать заряд измеряется в фарадах (Ф), которые, среди прочего, определяются как 1 ампер-секунда на вольт, один джоуль на квадратный вольт и один кулон на вольт.

Для конденсатора с параллельными пластинами емкость (C) связана с диэлектрической проницаемостью (ε), площадью поверхности (A) и расстоянием между пластинами (d):

[латекс] \ text {C} = \ frac {\ epsilon \ text {A}} {\ text {d}} [/ latex]

Напряжение (В) конденсатора зависит от расстояния между пластинами, диэлектрической проницаемости, площади поверхности проводника и заряда (Q) на пластинах:

[латекс] \ text {V} = \ frac {\ text {Qd}} {\ epsilon \ text {A}} [/ latex]

В зависимости от диэлектрической прочности (E ds ) и расстояния (d) между пластинами, конденсатор «сломается» при определенном напряжении (V bd ).Рассчитывается по:

[латекс] \ text {V} _ {\ text {bd}} = \ text {E} _ {\ text {ds}} \ text {d} [/ latex]

Параллельные пластины и эквипотенциальные линии : Краткий обзор параллельных пластин и эквипотенциальных линий с точки зрения электростатики.

Электрические поля и проводники

Электрические поля в присутствии проводников обладают несколькими уникальными и не обязательно интуитивно понятными свойствами.

Цели обучения

Описывать уникальные свойства, выражаемые электрическими полями в присутствии проводников

Ключевые выводы

Ключевые моменты
  • Внутри заряженного проводника отсутствует электрическое поле.Это связано с тем, что заряды, которые расположены на поверхности проводника, симметрично противоположны друг другу и в сумме равны 0 во всех местах.
  • Заряженные поверхности выравниваются перпендикулярно электрическим полям для достижения электростатического равновесия. Если заряды не распределяются как таковые, они будут оказывать друг на друга общую силу, которая перемещает их. В таком случае заряды не будут находиться в статическом равновесии.
  • Искривление поверхности поля позволяет увеличить концентрацию заряда.Большая часть зарядов отталкивания происходит в направлении от поверхности проводника, а не вдоль его поверхности. Таким образом, заряды более слабо толкают друг друга по поверхности изогнутого проводника.
Ключевые термины
  • векторное поле : конструкция, в которой каждая точка в евклидовом пространстве связана с вектором; функция, диапазон которой является векторным пространством
  • равновесие : Состояние тела в состоянии покоя или равномерного движения, равнодействующая всех сил, действующая на него, равна нулю.

Электрическое поле, как и другие поля (например, гравитационные или магнитные), представляет собой векторное поле, окружающее объект. Электрические поля находятся вокруг электрических зарядов и помогают определить направление и величину силы, которую заряд оказывает на соседнюю заряженную частицу. Он измеряет единицы силы, прилагаемой к единице заряда, и его единицы СИ — N / C.

Линии поля, созданные точечным зарядом : Линии вокруг положительного заряда представляют электрическое поле, которое он создает.

Электрические проводники — это материалы, в которых внутренние заряды могут свободно перемещаться. Следовательно, они могут способствовать прохождению заряда или тока. Когда проводник помещается в электрическое поле, он проявляет некоторые интересные свойства:

  1. Внутри заряженного проводника отсутствует электрическое поле. Заряженный проводник в электростатическом равновесии будет содержать заряды только на своей внешней поверхности и не будет иметь внутри себя электрического поля. Это связано с тем, что все заряды в таком проводнике будут симметрично противостоять другим зарядам внутри проводника, в результате чего итоговый результат будет равен 0.
  2. Заряженные поверхности выравниваются перпендикулярно электрическим полям. Если проводник находится в состоянии электростатического равновесия, электрическое поле на поверхности будет выровнено перпендикулярно этой поверхности. Если бы существовала ненулевая параллельная составляющая электрического поля по отношению к любому заряду на поверхности проводника, этот заряд проявил бы силу и переместился бы. Если проводник находится в равновесии, такая сила не может существовать, и поэтому направление электрического поля должно быть полностью перпендикулярно поверхности.
  3. Кривизна поверхности проводника позволяет увеличить концентрацию заряда. Заряд не обязательно будет равномерно распределяться по поверхности проводника. Если поверхность проводника плоская, заряд будет распределяться очень равномерно. Но по мере того, как поверхность становится более изогнутой, заряд может обнаруживаться более плотно упакованным на участках, даже если проводник находится в состоянии электростатического равновесия. Заряды на изогнутой поверхности отталкиваются друг от друга менее сильно, чем на гладкой поверхности.Это связано с тем, что в зависимости от того, как расположены заряды, большая часть отталкивания, которую они оказывают, происходит в направлении от поверхности проводника, а не вдоль его поверхности. И заряды оттолкнуть от поверхности сложнее, чем по ней. Следовательно, отталкивание между зарядами на искривленной поверхности слабее.

Электрический заряд на острой части проводника : Силы отталкивания в направлении более резко изогнутой поверхности справа направлены больше наружу, чем вдоль поверхности проводника.

Проводники и поля в статическом равновесии

В присутствии заряда или электрического поля заряды в проводнике будут перераспределяться, пока не достигнут статического равновесия.

Цели обучения

Описать поведение зарядов в проводнике в присутствии заряда или электрического поля и при статическом равновесии

Ключевые выводы

Ключевые моменты
  • Наличие заряда или электрического поля заставляет заряды в проводнике перераспределяться по поверхности проводника до тех пор, пока не будет достигнуто статическое равновесие.
  • В статическом равновесии заряд будет больше концентрироваться в острых, заостренных участках проводников, чем где-либо еще.
  • В статическом равновесии внутренняя часть проводника будет полностью защищена от внешнего электрического поля.
Ключевые термины
  • статическое равновесие : физическое состояние, в котором все компоненты системы находятся в покое, а результирующая сила равна нулю во всей системе

Проводники — это материалы, в которых заряды могут свободно перемещаться.Если проводники подвергаются воздействию заряда или электрического поля, их внутренние заряды быстро перестраиваются. Например, если нейтральный проводник входит в контакт со стержнем, содержащим отрицательный заряд, часть этого отрицательного заряда передается проводнику в точке контакта. Но заряд не будет оставаться локальным в точке контакта — он будет равномерно распределяться по поверхности проводника. После перераспределения зарядов проводник находится в состоянии электростатического равновесия.Следует отметить, что распределение зарядов зависит от формы проводника и что статическое равновесие не обязательно предполагает равномерное распределение зарядов, которые имеют тенденцию агрегироваться в более высоких концентрациях вокруг острых точек. Это объясняется в.

.

Электрический заряд в острой точке проводника : Силы между одинаковыми зарядами на обоих концах проводника идентичны, но компоненты сил, параллельных поверхностям, различны. Компонент, параллельный поверхности, имеет наибольшее значение на самой плоской поверхности и поэтому более свободно перемещает заряды друг от друга.Это объясняет разницу в концентрации заряда на плоских и заостренных участках проводника.

Аналогично, если проводник помещен в электрическое поле, заряды внутри проводника будут перемещаться до тех пор, пока поле не станет перпендикулярным поверхности проводника. Отрицательные заряды в проводнике будут выравниваться по направлению к положительному концу электрического поля, оставляя положительные заряды на отрицательном конце поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *