Транзисторные оптопары
ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ И УСТРОЙСТВА
Транзисторная оптопара выполняется с фотоприемным элементом на базе фототранзистора. Как правило, в оптопарах используются фототранзисторы со структурой п-р-п на основе кремния, чувствительные к излучению с длиной волны около 1 мкм. Излучателями служат арсенидо-галлиевые диоды или диоды на тройном соединении, максимум спектрального излучения которых лежит вблизи области наибольшей чувствительности фототранзистора. Семейство выходных характеристик транзисторной оптопары приведено на рис. 7.11.
Излучательный диод конструктивно расположен так, что большая часть света направляется на базовую область фототранзистора. Излучатель и приемник изолированы друг от друга оптически прозрачной средой.
При отсутствии излучения в цепи коллектора фоторезистора, включенного по схеме с общим эмиттером, протекает обратный темновой ток, аналогичный по происхождению и характеристикам току в обычных биполярных транзисторах. ф.6.>
Где /ф 6 — генерированный излучением фототок в базе фоторезистора; И21 — коэффициент усиления тока.
Таким образом, фоторезистор обладает внутренним усилением фототока К). Наибольшим внутренним усилением обладают оптопары, использующие составные фототранзисторы. Их коэффициент усиления фототока К1 может превышать 1000, однако они имеют худшие показатели быстродействия. Быстродействие обычных диодно-транзисторных оптопар /„ = 2… 4 мкс.
Оптопары можно характеризовать параметром, называемым добротностью:
Б = *Л-
Этот параметр для различных типов оптопар остается постоянным в широком интервале значений входных токов. Значение добротности зависит от напряжения изоляции При ит= 1…5 кВ,{Э = 0,1…1%мкс-1.
Основные параметры и характеристики входной цепи транзисторной оптопары аналогичны параметрам диодных оптопар, так как в них используются сходные излучатели. Выходные характеристики существенно отличаются от аналогичных оптопар. Зависимость коэффициента передачи тока от входного тока отклоняется от линейной, причем тем больше, чем больше входной ток и чем лучше усилительные свойства фоторезистора.
Типичные зависимости К, от входного тока различных транзисторных оптопар приведены на рис. 7.12. Здесь кривая 1 соответствует диодно-транзисторной оптопаре, кривая 2 — транзисторной оптопаре, кривая 3 — оптопаре с составным фоторезистором. Нелинейность характеристик объясняется тем, что коэффициент усиления транзистора зависит от тока базы и поэтому не является постоянной величиной.
Рис. 7.12. Зависимости коэффициента передачи по току от входного тока для транзисторных оптопар |
При больших входных токах коэффициент передачи по току с повышением температуры линейно уменьшается, как и в случае диодных оптопар. В общем случае характер кривых К, =/(7) определяется зависимостью от температуры квантового выхода как светодиода, так и транзистора. Повышение температуры приводит к возрастанию инерционности транзисторных оптопар. Одновременно увеличивается и темновой ток фотоприемника. Это особенно сильно сказывается в случае оптопар с составными фоторезисторами: при увеличении температуры от 25 до 100°С их темновой ток возрастает в 104…105 раз, а у обычных оптопар — в 102… 103 раз.
Транзисторные оптопары находят применение в аналоговых и цифровых коммутаторах, оптоэлектронных реле, в линиях связи для гальванической развязки и др.
Приобретаем- купить осциллограф, тепловизоры, источники питания
Тепловизионные камеры. Тепловизоры testo — полупроводниковые приборы, наделённые возможностью наблюдать тепловое либо световое излучение. Тепловизор flir на собственном мониторе изображает оранжевыми, красными и желтыми цветами объекты, источающие тепло, но прохладные …
Условные обозначения
А, Механический эквивалент света К Постоянная Больцмана В Сииий свет К, Коэффициент передачи по току С Скорость света в свободном простран Ку Коэффициент световой эффективности Стве Коэффициент усиления лазера Ся …
Список Сокращений
А Номинальная числовая апертура Мэв Монохроматическая АВС Активный волоконный световод Электромагнитная волна АИМ Амплитудно-импульсная Нжк Нематические жидкие кристаллы Модуляция Ов Оптическое волокно АПП Абсолютный показатель ОЗУ Оперативное запоминающее Преломления Устройство …
Продажа шагающий экскаватор 20/90
Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др. ) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788
Транзисторные оптопары | Техника и Программы
по сравнению с диодными, за счет внутреннего усиления обладают большей чувствительностью
Рис. 4. Расположение выводов и внутренняя структура транзисторных оптопар
(необходим меньший управляющий ток). У них допустим и больший выходной ток, что позволяет во многих случаях при передаче сигналов обойгись без дополнительных последующих каскадов усиления, чго удобно. Видимо, поэтому транзисторные оптопары чаще всего применяются в радиоаппаратуре.
Рис. 4. Продолжение
Несмотря на то, что инерционность транзисторных оптопар выше, чем у диодных, для многих применений она оказывается вполне допустимой. А для повышения быстродействия таких компонентов разработчики придумали простой способ, реализованный при изготовлении некоторых оптопар. Он заключается в объединении в одном корпусе фотодиода и обычного транзистора, как это показано для оптопар 6N135, 6N136 (рис. 4). Фактически получается диодная оптопара с однотранзисторным внутренним усилителем. Такие компоненты применяютдля скоростной (до 1 Мбит/с) передачи цифровых сигналов.
Коллекторным током оптотранзистора можно управлять не только оптически (током через ИК-диод), но и электрическим сигналом по базовой цепи (если такой вывод имеется). При этом выходная цепь может работать в линейном или ключевом режиме. Схемы включения транзистора обычно применяются с общим эмиттером или общим коллектором.
Транзисторы, входящие в оптроны, бывают низковольтными, допускающими напряжение эмиттер-коллектор до 30 В (в полно-
Таблица 6. Основные параметры распространенных транзисторных оптопар
Продолжение табл. 6
Окончание табл. 6
Примечание к таблице
1. Следуетучитывать, что в таблице указана типовая величина времени переключения иунекоторыхзкземпляров значение можетбыть выше в 3…5 раз.
2. В таблице для Ki (CTR) указана минимальная допустимая величина и для многихприборов значение можетбыть большевЗ… Юраза.
стью открытом состоянии на них будет 0,25…0,5 В), и высоковольтные, способные работать с 11кэ > 80 В (в полностью открытом состоянии у них будет падение напряжение от 1 до 7 В, в зависимости оттипа). Чем больше максимально допустимое напряжение, на которое рассчитан прибор, тем больше и остаточное напряжение при насыщении.
В табл. 6 приведена справочная информация только по оптро- нам, которые выпускаются в популярныхпластмассовых DIP-корпу- cax (иногда эти корпуса называют PDiP). В таблицах применяются обозначения:
UcE — напряжение коллектор-эмиттер, В;
TonAoF — время включения и выключения (типовое), характеризует быстродействие элементов.
Наиболее популярны среди производителей электронных устройств оптопары серий 4Nxx, 6Nxxx, PC8xx, SFH6xx, HCPL-xxxx и др. Особенности и возможные варианты эквивалентной замены транзисторных оптронов разных производителей указаны в табл. 7. Обратная замена не всегда возможна, так какуказанные эквиваленты были разработаны позже и часто имеют лучшие характеристики.
Таблица 7. Варианты замены транзисторных оптронов
Продолжениетабл. 7
Основной тип | Полные зарубежные аналоги (отечественный вариантаналога) | Корпус | Особенности выхода |
MOC8113 | TLP632(GB), 0РТ06Ю | DlP-6 | 1 канал без вывода базы_ |
MOC8204 | TLP371 | DIP-6 | 1 канал |
MOC8205 | TLP371 | DIP-6 | 1 канал |
MOC8206 | TLP371 | DlP-6 | 1 канал |
CNYt7-t | LTV702VA, PC702VA, CNY17-2, K102P2 | DIP-6 | 1 канал |
CNY17-2 | LTV702VB, PC702VB, CNY75A, TLP535-2________ | DIP-6 | 1 канал |
CNY17-3 | LTV702VC, PC702VC, CNY75B, TLP535-3________ | DIP-6 | 1 канал |
CNY17-4 | LTV702VD, PC702VD, CNY17-4, CNY75C, TLP535-4 | DIP-6 | 1 канал |
CNX36 | PC703VB, TLP631, CQY80N | DIP-6 | 1 канал |
PC725V | LTV725V, MCA11G, h21G, TLP371, IL66_____ | DIP-6 | 1 канал со схемой Дарлингтона |
PC810 | PS2701-1, PS2561-1, PS2701-1________ | DIP-4 | 1 канал без вывода базы_ |
PC812 | PS2701-1, PS2561-1 | DIP-4 | 1 канал без вывода базы |
PC813 | LTV814, TLP520GB, TLP620, PS2705-1, PS2565-1________ | DIP-4 | 1 канал без вывода базы_ |
PC814 | LTV814, TLP520GB, TLP620, PS2705-1, PS2565-1, KB814 | DIP-4 | 1 канал без вывода базы _ |
PC815 | LTV815, TLP523, TIL197, ISP815, PS2502-1, PS2702-1, PS2502-1, KB815_ | DIP-4 | 1 канал со схемой Дарлингтона |
PC816 | LTV816, TLP321, PS2701-1, PS2561-1,KB816_ | DIP-4 | 1 канал без вывода базы_ ______ |
PC817 | LTV817, TLP521-1, TLP621, SFH618, PS2701-1, PS2561-1, KB817, (АОУ174)________ | DIP-4 | 1 канал без вывода базы |
PC818 | TLP621, PS2701-1, PS2561-1 | DIP-4 | 1 канал без вывода базы |
PC824 | LTV824, TLP620-2, PS2505-2, KB824 __________ | DIP-8 | 2 канала |
Окончание табл. 7
Основной тип | Полные зарубежные аналоги (отечественный вариант аналога) | Корпус | Особенности выхода |
PC825 | LTV825, ILD30, TLP523-2, PS2502-2, KB825_ | DIP-8 | 2 канала со схемой Дарлингтона__ |
PC826 | LTV826, TLP321-2, PS2501-2, PS2561-2_______ | DIP-8 | 2 канала |
PC827 | LTV827, TLP621-2, K827P2, PS2501-2, PS2561-2_______ | DIP-8 | 2 канала |
PC844 | LTV844, TLP620-4, ISP844, PS2505-4, KB844, OPTQ164 | DIP-16 | 4 канала |
PC845 | LTV845, ILQ30, ISP845, PS2505-4, KB845, OPTQ162 | DIP-16 | 4 канала со схемой Дарлингтона |
PC846 | PS2501-4, KB846 | DIP-16 | 4 канала |
PC847 | LTV847, TLP521-4, K847P2, ILQ621, ISP847, PS2501-4, KB847, OPTQ161 | DIP-16 | 4 канала |
Источник: Радиолюбителям: полезные схемы. Книга 6. — M / СОЛОН-Пресс, 2005. 240 с.
Оптопары транзисторные зот127А9-Е9
ч. 1
Оптопары транзисторные ЗОТ127А9-Е9
6
А
Оптопары транзисторные 3ОТ127А9 – Е9 в металлокерамических планарных корпусах, состоящие из кремниевого эпитаксиоально-планарного n-p-n транзисторного приемника и GaAlAs меза-эпитаксиального инфракрасного диодного излучателя предназначены для использования в радиоэлектронной аппаратуре специального назначения для бесконтактной коммутации цепей постоянного тока с гальванической развязкой между входом и выходом.
Схема соединения электродов с выводом вход оптопары – выводы 1, 2 выход оптопары – выводы 4, 5 Масса оптопары ≤0,2 г. |
Т а б л и ц а 1 — Электрические параметры оптопар при приемке, поставке и хранении
Наименование параметра, (режим измерения), единица измерения | Буквенное обозначение параметра | Норма параметра | |||||
3ОТ127А9 | 3ОТ127Б9 | 3ОТ127В9 | 3ОТ127Г9 | 3ОТ127Д9 | 3ОТ127Е9 | ||
Входное напряжение, ( Iвх опт=5 мА), В | Uвх опт | ≤1,6 | ≤1,6 | ≤1,6 | ≤1,6 | ≤1,6 | ≤1,6 |
Выходное остаточное напряжение, | Uвых. ост опт | ||||||
(Iвх опт=5 мА, Iвых опт=70 мА), В | ≤1,5 | ≤1,5 | ≤1,5 | — | — | — | |
(Iвх опт=0,5 мА, Iвых опт=2,5 мА), В | ≤1,2 | — | — | ≤1,2 | ≤1,2 | ≤1,2 | |
(Iвх опт=0,8 мА, Iвых опт=2,5 мА), В | — | — | ≤1,2 | — | — | — | |
(Iвх опт=5 мА, Iвых опт=100 мА), В | — | — | — | ≤1,5 | — | ≤1,5 | |
(Iвх опт=5 мА, Iвых опт=200 мА), В | — | — | — | — | ≤1,5 | — | |
Ток утечки на выходе оптопары, | Iут. вых опт | ||||||
(Iвх опт=0, Uком опт=30В), мкА | ≤10 | ≤10 | ≤10 | ≤10 | — | — | |
(Iвх опт=0, Uком опт=50В), мкА | — | — | — | — | ≤10 | — | |
(Iвх опт=0, Uком опт=60В), мкА | — | — | — | — | — | ≤10 | |
Сопротивление изоляции, | Rиз опт | ||||||
(Uиз опт=500 В), Ом | ≥1011 | ≥1011 | ≥1011 | ≥1011 | ≥1011 | ≥1011 |
Примечание: Измерение параметров, кроме Uвх опт , Rиз опт проводится при внешнем резисторе сопротивлением 1 МОм между выводами 3 и 5
Δ Значение статического потенциала не более 500 В.
Т а б л и ц а 2 — Предельно допустимые значения параметров электрических режимов эксплуатации оптопар
Наименование параметра, (условия измерения), единица измерения | Буквенное обозначение | Норма | |||||
3ОТ127А9 | 3ОТ127Б9 | 3ОТ127В9 | 3ОТ127Г9 | 3ОТ127Д9 | 3ОТ127Е9 | ||
Максимально-допустимое входное обратное напряжение, В | Uвх.обр. макс | 2 | 2 | 2 | 2 | 2 | 2 |
Максимально допустимое коммутируемое напряжение, В | Uком макс опт | 30 | 30 | 30 | 30 | 50 | 60 |
Максимально допустимое напряжение изоляции, В | Uиз опт | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Максимальный допустимый постоянный входной ток, мА | Iвх, макс опт | 30 | 30 | 30 | 30 | 30 | 30 |
Максимально допустимый импульсный входной ток, мА при τи ≤ 10 мкс; | Iвх. и. макс опт | 85 | 85 | 85 | 85 | 85 | 85 |
Максимально допустимый импульсный выходной ток, мА | Iвых.и. макс опт | 100 | 100 | 100 | 200 | 200 | 10 |
Примечание: Измерение параметров Uком макс опт проводится при внешнем резисторе между выводами 3 и 5 оптопары сопротивлением 1 Мом в диапазоне температур от -60ºС до плюс 70ºС и 0,5Мом в диапазоне температур от -60ºС до плюс 85ºС.
Минимальная наработка 25 000ч. При облегченных режимах (не свыше 0,5 по выходным токам и коммутируемым напряжениям от значений, указанных в таблице 1 и температурах окружающей среды от 0÷40ºС) минимальная наработка 40000 ч. Срок сохраняемости 25 лет.
Оптопары пригодны для монтажа в аппаратуре методом пайки. При распайке температура корпуса не должна превышать 125 С. При отсутствии контроля температуры корпуса оптопары распайка производится паяльником, нагретым до температуры не более 265 С в течение времени не более 3 секунд.
ч. 1
1.4. Транзисторные оптопары
Транзисторная
оптопара выполняется с фотоприёмным
элементом на основе транзистора. В ряде
случаев применяется составной
фототранзистор, например, АОТ 110А.
Транзисторная оптопара по сравнению с
диодной имеет более высокий КПД.
Транзисторные
оптопары находят преимущественное
применение в аналоговых и ключевых
коммутаторах сигналов, схемах согласования,
гальванической развязки , в линиях
связи, оптоэлектронных реле.
1.5. Тиристорные оптопары
В тиристорных
оптопарах в качестве приёмного элемента
используется кремниевый фототиристор.
Фототиристор так же, как и фототранзистор,
обладает большим внутренним усилением
фототока.
Тиристорные
оптопары применяются для гальванической
развязки логических цепей управления
от высоковольтных цепей, в качестве
переключателей переменного тока и т.д.
(рис.5)
Рис. 5. Электронный
ключ переменного тока
Маркировка оптопар
включает в себя семь символов:
Первый обозначает
материал: А(3) — арсенид галлия;
Второй символ —
буква О — означает оптопара;
Третий указывает
тип фотоприёмника: Д — диод, Т — транзистор,
У — тиристор;
Четвёртый, пятый
и шестой символы указывают номер
разработки;
Седьмой символ —
буква, означает группу.
Например:
— АОД101А – диодная
оптопара,
— АОТ110А –
транзисторная оптопара,
— АОУ103А –
тиристорная оптопара.
Описание стенда.
Принципиальная
электрическая схема стенда приведена
на рис. 6, а общий вид стенда на рис.7.
Рис. 6. Принципиальная
электрическая схема стенда.
Стенд содержит
шесть различных оптронов, которые через
кнопочный переключатель SA1
подключаются к источнику входного тока
VT1
и к цифровому вольтметру. С помощью
потенциометра R2
можно изменять входной ток в пределах
от 0 до 80мА.
Миллиамперметр
PA1
служит для измерения входного тока I
вх.
Выходное напряжение Uвых
(Iвых)
измеряется милливольтметром U
вых .
Источник питания выдает на схему
напряжение +9В и -9В.
Рис.7. Конструкция
стенда.
Цель работы
Целью настоящей
работы является:
3.1. Ознакомление
с работой оптоэлектронных элементов.
3.2. Снятие передаточных
характеристик исследуемых оптопар.
4. Порядок
выполнения работы.
4.1. Изучить
работу оптоэлектронных элементов.
4.2.
Ознакомиться с описанием лабораторной
работы.
4.3. Получить у
преподавателя разрешение на выполнение
работы.
4.4. Исследовать
работу резистивной оптопары.
Включить стенд. Переключатель SA1
поставить в положение «ОР». Снять
зависимость UВЫХ=f(IВХ).
Измеренные результаты занести в таблицу
1, рассчитать выходной ток IВЫХ
, сопротивление
фоторезистора RОР,
найти темновой ток и темновое сопротивление
( при IВХ.
= 0 ) .
Таблица 1
IВХ, | 0 | 10 | 30 | 50 | 70 | 80 |
UВЫХ, | ||||||
IВЫХ | ||||||
RОР |
U
вых
U
п —
U
вых
Iвых.
= ———- , R
ор = ——————
R
11
I
вых
Построить графические
зависимости UВЫХ=f(IВХ),
RОР=f(IВХ)
при Uп=9В.
и R
11
=
Транзисторная оптопара — Большая Энциклопедия Нефти и Газа, статья, страница 1
Транзисторная оптопара
Cтраница 1
Транзисторные оптопары применяются в оптоэлектронных реле, в схемах гальванической развязки, ключевых коммутаторах и схемах согласования. На рис. 72 показаны схемы нормально открытого и нормально закрытого полупроводниковых реле с транзисторной оп-топарой в цепи управления, обеспечивающих гальваническую развязку управляющих схем от выходной цепи. В нормально открытом реле ( рис. 72, а) сигнал включает транзисторную оптопару, что вызывает последовательное включение транзисторов Tl, T2 и коммутацию рабочей нагрузки. В нормально закрытом реле ( рис. 72 6) на-грузка выключается при поступлении управляющего сигнала.
[1]
Характеристики транзисторной оптопары существенно отличаются от аналогичных характеристик диодной.
[3]
Для транзисторных оптопар, работающих в ключевом режиме, параметр kj определяет нагрузочную способность прибора: если подключенная к выходу оптопары нагрузка такова, что выходной ток / Вых не превышает значения &. При значении / Вых & / / вх условие насыщения не выполняется и работа транзисторного ключа нарушается.
[4]
Характеристики транзисторной оптопары существенно отличаются от аналогичных характеристик диодной. Передаточная характеристика по току отклоняется от линейной зависимости, причем тем больше, чем выше усилительные свойства самого транзистора и чем больше входной ток. Температурная зависимость коэффициента передачи по току иллюстрируется рис. 3.9. При больших входных токах ( кривая 2) эта зависимость такая же, как и у диодной оптопары, при малых ( кривая J) существенно отличается. Характер рассмотренных зависимостей объясняется видом зависимости излучательной способности излучателя и коэффициента передачи фототранзистора от температуры и тока.
[6]
Основной режим эксплуатации транзисторных оптопар — ключевой.
[8]
Прибор К249КШ состоит из двух транзисторных оптопар. В приборе К249КП2 работоспособность второй оптопары не гарантируется или она отсутствует.
[9]
Прибор К249КП1 состоит из двух транзисторных оптопар. В приборе К249КП2 работоспособность второй оптопары не гарантируется или она отсутствует.
[10]
Прибор К249КП1 состоит из двух транзисторных оптопар. В приборе К249КП2 работоспособность второй оптоцары не гарантируется или она отсутствует.
[11]
Прибор К249КШ состоит из двух транзисторных оптопар. В приборе К249КП2 работоспособность второй оптопары не гарантируется или она отсутствует.
[12]
Входной узел драйвера выполнен в виде транзисторной оптопары, осуществляющей развязку с информационным каналом. Чтобы не увеличивать задержку передачи сигнала, транзистор оптрона работает в линейном режиме за счет включенного в цепь коллектора конденсатора.
[13]
Вследствие, прежде всего, высокой нелинейности передаточной характеристики транзисторных оптопар, а также сильной температурной зависимости параметров, высокого уровня шумов и узкой полосы рабочих частот транзисторные оптопары относительно редко применяются для передачи аналогового сигнала.
[14]
Страницы:
1
2
2.
Оптроны и оптоэлектронные микросхемы. Введение в оптоэлектронику
2.1. Устройство и основные параметры оптронов
2.1.1. Схема оптрона
2.1.2. Элементы оптопары
2.1.3. Параметры, характеризующие работу оптронов
2.2. Типы оптронов
2.2.1. Резисторные оптопары
2.2.2. Диодные оптопары
2.2.3. Транзисторные оптопары
2.2.4. Тиристорные оптопары
2.2.5. Параметры оптронов различного типа
2.2.6. Оптоэлектронные микросхемы
2.3. Применение оптронов
2.3.1. Применение оптронов в цифровых и линейных схемах
2.3.2. Управление процессами в высоковольтных цепях
2.3.3. Использование оптронов для получения информации оптическим методом
2.3.4. Другие применения оптронов
2.
1. Устройство и основные параметры оптронов
2.1.1. Схема оптрона
Оптрон — это прибор, содержащий источник и приемник излучения, которые оптически и конструктивно связаны друг с другом. Источниками света могут служить лампы накаливания, неоновые лампы, электролюминесцентные панели, однако в большинстве случаев ими являются светодиоды. В качестве приемника излучения используют фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Средой оптического канала, связывающего излучатель и приемник, могут служить воздух, стекло, пластмасса и другие прозрачные вещества.
Элементарный оптрон, содержащий один источник и один приемник излучения, называют также оптопарой. Будучи объединенными в микросхему вместе с одним или несколькими согласующими или усиливающими устройствами, оптопары образуют оптоэлектронную интегральную микросхему.
В оптронах происходит двойное преобразование энергии (рис. 2.1). Входной электрический сигнал (характеризующийся
силой тока I1 или напряжением U1) преобразуется источником излучения 1 в световой (поток света Ф1), который передается затем по оптическому каналу 2 к фотоприемнику 3. Фотоприемник осуществляет обратное превращение светового сигнала в электрический I2, U2. Среда оптического канала может быть управляемой (например обладать электрооптическими свойствами), что отражено и рис. 2.1 введением в схему устройства управления 4, которое преобразует световой поток Ф1 в поток Ф2. Для согласования параметров оптронов с другими элементами электронных схем могут использоваться дополнительные входные и выходные устройства.
На рис. 2.1 фотоприемник и излучатель электрически не соединены друг с другом. Такие оптроны с успехом могут использоваться в качестве элементов гальванической развязки. Однако введение электрической, а также оптической обратной связи между компонентами оптрона способно существенно расширить его возможности. В этом случае он может быть использован как прибор, позволяющий генерировать и усиливать электрические и оптические сигналы, как запоминающее устройство и т. д.
Помимо уже указанных достоинств оптрон характеризуется:
- высокой помехозащищенностью (поскольку его оптический канал невосприимчив к воздействию посторонних электромагнитных полей), а также однонаправленностью передачи оптического сигнала;
- широкой частотной полосой пропускания и, в частности, способностью преобразовывать и передавать не только импульсные сигналы, но и постоянную составляющую;
- совместимостью с другими изделиями полупроводниковой микроэлектроники.
Среди недостатков, присущих современным оптронам, необходимо прежде всего отметить их низкий к. п. д., что связано с большими потерями энергии при преобразовании электрического сигнала в оптический и обратно. Так же как и у других полупроводниковых приборов, параметры оптронов чувствительны к изменению температуры. От температуры в частности, сильно зависит срок службы таких устройств, который и так во многих случаях оказывается недостаточно высоким даже при комнатной температуре. К недостаткам нужно отнести также относительно высокий уровень собственных шумов и определенное конструкторско-технологическое несовершенство современных оптронов. Выпускаемые приборы изготовляют по гибридной технологии, при этом в одном устройстве необходимо довольно точно совмещать разнородные элементы—излучатель и фотоприемник.
Перечисленные недостатки ограничивают область применения оптронов, однако по мере совершенствования материале и технологии, решения ряда схемотехнических задач эти недостатки проявляются все в меньшей степени.
2.1.2. Элементы оптопары
Достижение высокого к. п. д. оптрона связано с получением высоких значений параметров, характеризующих преобразование и передачу энергии во всех его элементах. Желательно, чтобы параметры составных частей оптопары были согласованы по спектральным характеристикам, быстродействию, температурным свойствам, габаритам; при этом определенные требования предъявляются и на основе технологических соображений. В результате зачастую одно или несколько из вышеперечисленных требований приходится нарушать ради получения максимальных значений каких-либо определенных параметров.
Как уже отмечалось, источником излучения в оптронах в большинстве случаев служат инжекционные светодиоды. Помимо необходимости получения возможно больших к.п.д. преобразования электрической энергии в световую и высокого быстродействия светодиоды, применяемые в оптронах, должны обладать достаточно узкой направленностью излучения (для снижения потерь энергии на пути от источника света к фотоприемнику) и работать при сравнительно небольших входных токах (для согласования с микроэлектронными системами управления). Желательно также, чтобы квантовый выход таких излучателей был постоянным в по возможности более широком диапазоне входных токов, что важно для использования этих приборов в аналоговых схемах. В оптронах могут применяться также полупроводниковые лазеры . Этому препятствуют, однако, большие значения рабочих токов таких приборов, их сравнительно низкая долговечность и высокая стоимость.
Наиболее употребительными материалами для излучателей оптронов являются GaAs, GaAlAs, GaAsP. Светодиоды на основе этих материалов излучают в красной (0,67—0,7 мкм) и ближней инфракрасной (0,8-0,95 мкм) областях спектра. В отличие от обычных светодиодных индикаторов, для которых во многих случаях важно увеличение размеров высвечиваемых символов, излучающая область светодиодов, применяемых в оптронах, должна иметь минимальную площадь, так как при этом не только уменьшаются потери излучения, но и ослабляются требования к точности совмещения этой области с приемным окном фотоприемника. Номинальное напряжение возбуждения подобных светодиодов составляет 1,2—1,7 В, потребляемая ими мощность— 1—50 мВт.
Среду оптического канала выбирают, исходя из следующих соображений. Во-первых, она должна сводить к минимуму потери света, для чего материал оптического канала должен не только быть спектрально согласован с излучателем и фотоприемником, но и иметь показатель преломления, близкий к тем, которыми характеризуются эти элементы оптопары. Во-вторых, материал оптического канала должен обеспечивая высокий уровень электрической изоляции между входом и выходом оптрона (сопротивление изоляции оптопары обычно составляет ~ 1 • 1012 Ом). В-третьих, зачастую оптической среде приходится выполнять дополнительную функцию — служить основой, придающей оптрону конструктивную целостность и предохраняющей его элементы от механических, климатических и радиационных воздействий.
Используют по крайней мере три основных варианта оптического канала. В первом оптической средой служат полимерные оптические клеи, лаки, вязкие вещества (например, незасыхающие вазелиноподобные силиконовые составы), а также некоторые марки стекол (например, халькогенидные). Второй вариант оптического канала — воздушный, при этом для лучшей светопередачи могут использоваться фокусирующие системы на основе стеклянных линз. Третий вариант связан с использованием в качестве оптического канала волоконных световодов. Выбор варианта обусловливается требованиями, связанными с применением оптопары. Так, для получения высоких значений электрической изоляции, создания коротких линий оптической связи используют волоконные световоды, для устройств считывания информации с перфоленты требуется воздушный канал (перфоленту вводят в зазор между излучателем и фотоприемником) и т. д. Кроме того, необходимо учитывать, что многие из перечисленных материалов имеют свои недостатки. Так, полимеры характеризуются провалами спектра пропускания в ближней инфракрасной области (эти провалы обусловлены резонансным поглощением света химическими группами ОН, СН3, СН2, NH2, NH), а также изменением основных параметров со временем (что, естественно, сказывается на характеристиках всей оптопары в целом). Со своей стороны, стекла, применяемые в оптронах, менее устойчивы к резким перепадам температуры, имеют невысокую адгезию к материалам излучателя и фотоприемника.
Важнейшим достоинством оптронов является их способность осуществлять гальваническую развязку элементов электронной схемы. Оптроны, у которых в качестве оптического канала используют тонкие слои полимерных лаков или стекол обладают сравнительно невысокой электрической прочностью изоляции. Так называемое статическое напряжение изоляции Uиз (максимально допустимое постоянное напряжение между входом и выходом оптопары) у них составляет 100—500 В. У оптронов с воздушным зазором значение Uиз выше (до 1 — 5 кВ) и ограничивается уже электрической прочностью корпуса прибора; в оптронах с волоконными световодами максимально допустимое статическое напряжение изоляции может достигать 50—150 кВ.
К. п. д. оптрона, его срок службы, а также ряд других параметров в значительной степени определяются излучателем, и именно поэтому совершенствованию светодиодов уделяется большое внимание. В то же время оптрон как элемент электронной схемы характеризуется не столько излучателем, сколько типом используемого фотоприемника. С практической точки зрения важно, какие функции способен выполнять прибор, а это как раз и определяется фотоприемником, который, таким образом, должен обладать не только высокой эффективностью преобразования падающего на него излучения в электрический ток, но и требуемым быстродействием. В связи с этим различают оптопары резисторного, диодного, транзисторного и тиристорного типов.
Основным материалом фотоприемников для оптронов служит кремний, применяемый в диодных, транзисторных и тиристорных оптопарах. Так, кремниевый p—i—n-фотодиод по спектру и быстродействию хорошо согласуется со светодиодами на основе GaAs:Zn, GaAlAs, GaAsP, а кремниевые фототранзисторы и фототиристоры—с GaAlAs- и GaAs : Si-излучателями. В качестве материала фоторезисторов широко используют CdS и CdSe, хорошо согласующиеся по спектру с излучателями на основе GaP и GaAsP. Следует отметить, однако, что быстродействие фотоприемника зачастую ограничивает быстродействие всей оптопары в целом (это имеет место прежде всего в резисторных оптопарах).
2.1.3. Параметры, характеризующие работу оптронов
Элементарный оптрон является четырехполюсным прибором, свойства которого определяются прежде всего тремя основными характеристиками — входной, передаточной и выходной. Входной является вольт-амперная характеристика излучателя, а выходной—соответствующая характеристика фотоприемника (при заданном токе на входе оптопары).
Передаточной характеристикой называют зависимость тока I2 на выходе оптрона от тока I1 на его входе; в общем случае эта зависимость является нелинейной, что приводит к некоторому искажению формы передаваемого сигнала.
Суммарное быстродействие оптопары часто характеризуют временем переключения:
, (2.1)
где t1 и t 2 — соответственно времена нарастания и спада сигнала на выходе оптрона. Время переключения неодинаково у разных типов оптопар, оно зависит также от режимов их работы и может составлять от 10-9 до 10-1 с. Помимо времен переключения, быстродействие некоторых классов оптронов может быть задано граничной частотой fгр. В зависимости от типа оптрона fгр = 0,005… 10 МГц.
Параметром, тесно связанным с зависимостью I2(I1) и часто используемым на практике, является коэффициент передачи по току (статический)
. (2.2)
В общем случае, особенно при высоких температурах, когда существен темповой ток Iт на выходе фотоприемника,
. (2.3)
Для большинства типов оптопар kI является паспортный параметром, причем он может составлять от 0,5% (диодные; оптопары) до ~1000% (транзисторные оптопары с составным фототранзистором).
Важными для характеристики оптопары являются параметры ее изоляции. Среди этих параметров — максимально допустимое напряжение между входом и выходом (уже упоминавшееся в п. 2.1.2 статическое — Uиз, а также пиковое, максимально допустимое при работе с переменными сигналами). Кроме того, оптопары характеризуются сопротивлением изоляции Rиз и проходной емкостью Спр (емкостью между входом и выходом оптопары). У большинства типов оптопар Rиз может достигать 1·1012 Оm, что исключает обратную связь фотоприемника и излучателя по постоянному току. В то же время связь по переменному току может оказаться существенной. Действительно, скачок напряжения ΔU2 на выходе оптопары (за время Δt) может привести к тому, что через излучатель оптопары потечет емкостный ток
, (2.4)
который может привести к заметному сигналу на выходе даже при малой проходной емкости.
В связи с этим для многих типов оптопар актуальность) приобретает задача снижения Спр (обычно она порядка 1 пФ), решение которой может быть связано, например, с увеличением длины оптического канала между излучателем и фотоприемником.
Конструктивно-технологическое оформление оптронов (рис. 2.2, а) определяется требованиями по оптимизации тех или иных параметров этих приборов (1-излучатель, 2-фотоприемник, 3 — оптический канал, 4 — корпус, 5 — электрические выводы). Так, введение помимо полимерного клея стеклянной прокладки в пространство между излучателем и фотоприемником позволяет увеличить Rиз и снизить Спр до 0,01 пФ. Еще большего эффекта можно достичь, используя в качестве оптического канала волоконный световод (рис. 2.2, б). Приборы, изображенные на рис. 2.2, в, г, характеризуются повышенным значением коэффициента передачи по току: потери света в устройствах этого типа сведены к минимуму в первом случае вследствие того, что поток излучения падает на границу раздела элементов оптопары перпендикулярно, во втором — из-за введения в конструкцию дополнительной отражающей поверхности 6.
Исходя из значений Uиэ, Rиз, Спр, а также входной и выходной характеристик оптопары, для каждого типа оптронов задают предельные эксплуатационные данные о входных и выходных напряжениях и токах, напряжении между входом и выходом, указывают максимальную допустимую температуру и т. д. Все эти параметры, а также некоторые Другие обычно приводятся в справочниках.
Общей особенностью рассматриваемых оптронов является то, что они представляют собой не монолитные, а сборные конструкции, элементы которых связаны между собой общим корпусом, оптическим клеем и т. д. Дальнейшее совершенствование оптронов (снижение габаритов, повышение к. п. д., воспроизводимости параметров) связано в первую очередь с созданием монолитных приборов, у которых и излучатель, и фотоприемник либо созданы в одном кристалле, либо выращены на общей подложке с применением тонкопленочной технологии. Следует, однако, отметить, что у таких приборов первостепенную важность могут приобрести другие проблемы, например обеспечение высоких значений параметров изоляции.
2.2. Типы оптронов
2.2.1. Резисторные оптопары
В качестве фотоприемников оптопар этого типа используют фоторезисторы на основе CdS и CdSe. При засветке фоторезисторов их сопротивление снижается от RT (темнового) до RCE (при освещении). Одним из основных параметров резисторных оптопар является отношение этих сопротивлений; значение RТ/RCB может достигать 104–107.
Фоторезисторы обладают, как правило, большой инерционностью. Именно поэтому в фоторезисторных оптопарах в качестве источников излучения широко применяют миниатюрные лампы накаливания, к достоинствам которых следует отнести хорошую воспроизводимость параметров, большой срок службы, малую стоимость. Невысокое быстродействие (время переключения — порядка 1·10-2с) ламп накаливания в оптопарах этого типа не является их недостатком, поскольку общее время переключения (до 10-1 с) определяется фотоприемником. Кроме ламп накаливания в резисторных оптопарах используют светодиоды на основе GaP, спектр излучения которых хорошо согласован со спектрами возбуждения фотопроводимости CdS- и CdSe-фотоприемников.
Некоторые характеристики резисторных оптопар представлены на рис. 2.3. Увеличение тока I1 на входе оптрона сопровождается увеличением светового потока излучателя, в результате чего RCB снижается (рис. 2.3, а). Повышение температуры Т ведет к снижению подвижности свободных носителей заряда в фоторезисторе, увеличению Rсв, а следовательно, к спаду I2 при том же напряжении U2 на выходе (рис. 2.3,6). С ростом Т не только происходит увеличение RCB, но снижается и RT (растет концентрация собственных носителей заряда в зоне проводимости полупроводника). При этом отношение RТ/RCB очень сильно падает (при 70° С оно может составлять лишь примерно 1·102), что делает резисторную оптопару практически непригодной для использования при высоких температурах.
Инерционность резисторных оптопар сказывается на их частотных характеристиках, что иллюстрируется рис. 2.3,в. На рисунке по вертикали отложен коэффициент передачи по току, который в случае оптопар этого типа носит формальный характер, поскольку в выражение (2.2) для kI подставляется просто значение тока I2, соответствующее окончанию линейного участка вольт-амперной характеристики фоторезистора.
Достоинствами резисторных оптопар, определяющими их широкое применение в различных типах оптоэлектронных схем, являются линейность и симметричность выходной характеристики (независимость от полярности включения фоторезистора), отсутствие фото-э. д. с., высокие значения достижимого напряжения на выходе (до 250 В) и темнового сопротивления Rт≈1·106÷1·1011 Ом).
2.2.2. Диодные оптопары
Оптопары этого типа изготовляют на основе кремниевых p—i—n-фотодиодов и арсенидгаллиевых светодиодов.
На рис. 2.4 изображены типичные графики зависимостей коэффициента передачи по току kI от входного тока I1, напряжения на выходе U2 и температуры Т. Из рис. 2.4, а следует, что у диодных оптопар kI остается практически постоянным в широком диапазоне входных токов, что обусловлено постоянством в этом диапазоне квантового выхода ηк светодиода. Подъем в области малых и спад в области больших входных токов (когда начинает сказываться разогрев прибора) также определяется поведением ηк. Квантовый выход фотодиода η3 при этом, как правило, не меняется. Это следует, в частности, из рис. 1.5 и формулы (1-11) — зависимость фототока от падающего потока излучения линейна в рабочем диапазоне значений потоков.
Разогрев оптопары может привести и к снижению η3.
Оценим значение kI для диодной оптопары.
Поток излучения Ф1, испускаемого светодиодом, связан с входным током I1 соотношением
. (2.5)
(Здесь ηке — внешний квантовый выход светодиода). В то же время ток на выходе фотоприемника
(2.6)
где η3 — квантовый выход фотодиода, а Ф2— поток излучения, падающий на фотодиод.
Из соотношений (2.5) и (2.6) получаем, что
(2.7)
где = Ф2/Ф1 — коэффициент, учитывающий потери излучения на пути от светодиода к фотоприемнику.
Полагая, что η3≈1 (т.е. каждый фотон, достигнувший фотоприемника, генерирует носитель фототока; это хорошо выполняется, например, в случае p—i—n-фотодиодов), получаем:
kI ≈ ηкеk/.
В идеальном случае, когда потерь света почти не происходит, можно считать, что kI≈ηке, однако зачастую коэффициент k‘ оказывается заметно меньше единицы. Учитывая, что у реальных светодиодов ηке≈10%, получаем, что для диодных оптопар коэффициент kI вряд ли может превышать нескольких процентов.
Помимо зависимости kI (I1) на рис. 2.4 представлены еще две. Так, на рис. 2.4,б изображена зависимость коэффициента передачи по току диодных оптопар от обратного напряжения на выходе прибора— она довольно слаба. Температурная же зависимость kI диодных оптронов выражена более ярко (рис. 2.4, в), что объясняется зависимостью от Т параметров всех элементов оптопары и в первую очередь—излучателя.
В целом, поскольку у современных диодных оптронов значение коэффициента передачи по току составляет единицы процентов, это означает, что на выходе таких оптопар практически можно получать лишь токи, не превышающие одного-двух миллиампер.
Предельно достижимое время переключения tп диодных оптопар может меняться в довольно широких пределах (0,1 — 10 мкс) в зависимости от марки прибора. Но на практике получить подобное быстродействие довольно трудно, так как из-за малости выходного тока их приходится включать на большую нагрузку. В этом случае существенным оказывается уже время перезарядки, определяемое сопротивлением нагрузки Rн и выходной емкостью оптопары С2. Так, при Rн =(2÷20) кОм и С2 = 50 пФ постоянная времени перезарядки равна 0,1—1 мкс, что сравнимо по величине с предельными значениями tп.
Диодные оптопары могут работать в вентильном режиме, когда оптрон выступает в качестве источника питания. Оптроны, предназначенные для этих целей, имеют повышенное (3–4%) значение kI, однако к. п. д. таких приборов также составляет лишь около одного процента.
Среди выпускаемых диодных оптопар можно выделить, наконец, группу приборов, оптический канал которых выполнен в виде световода длиной 30—100мм. Эти приборы характеризуются высокой электрической прочностью (Uиз = 20≈50 кВ) и малой проходной емкостью (Спр=0,01 пФ).
2.2.3. Транзисторные оптопары
К этому классу приборов относятся диодно-транзисторные (приемником излучения является фотодиод, один из выводов которого соединен с базой транзистора, введенного в состав оптрона) и транзисторные (приемником излучения служит фототранзистор) оптопары, а также оптроны с составным фототранзистором. Их параметры существенно отличаются друг от друга. Так, оптопары с составным фототранзистором обладают наилучшими передаточными характеристиками по току (в результате внутреннего усиления сигнала kI может достигать 1000%), зато диодно-транзисторные имеют большее быстродействие (tп = 2÷4 мкс). При этом оказывается, что для оптопар перечисленных типов отношение остается постоянным в широком интервале значений входных токов. Параметр D называют добротностью оптрона, его значение зависит от параметров изоляции (в частности, от Uиз). Для транзисторных оптронов Uиз = 1÷5 кВ, D= 0,1÷1% мкс-1.
(2.8)
Так же как и в случае диодных оптопар, материалом фотоприемников чаще всего является кремний; излучателями в таких приборах служат арсенид-галлиевые светодиоды.
Транзисторные оптопары привлекают внимание возможностью управления коллекторным током как оптическими методами, так и электрическими. Эти приборы позволяют получать высокие значения коэффициента передачи по току и соответственно большие I2 (чем они выгодно отличаются от диодных оптопар) при удовлетворительном быстродействии.
На рис. 2.5 приведены типичные зависимости kI от входного тока для транзисторной (кривая 3), диодно-транзисторной (кривая 1) оптопар, а также для оптопары с составным фототранзистором (кривая 2). Сравнение этого рисунка с рис. 2.4, а показывает, что характеристики таких оптопар сильно отличаются от полученных для диодного оптрона. Это связано с тем, что коэффициент усиления транзистора зависит от тока базы и потому не является постоянной величиной.
Температурные зависимости kI транзисторного оптрона при больших (кривая 1) и малых (кривая 2) входных токах представлены на рис. 2.6. Видно, что при больших I1 коэффициент передачи по току с изменением температуры ведете себя примерно так же, как и в случае диодных оптопар (см. рис. 2.4,6). В общем случае характер кривых kI (T) определяется зависимостями от температуры квантового выхода как светодиода, так и фототранзистора.
Особенностью всех оптопар с излучателями-светодиодами является уменьшение t1 и увеличение t2 с ростом входного тока. Именно поэтому соответствующие характеристики транзисторных и диодных оптопар оказываются сходными.
Повышение температуры приводит к возрастанию инерционности транзисторных оптопар. Одновременно увеличивается и темновой ток фотоприемника. Это особенно сильно сказывается в случае оптопар с составными фототранзисторами: при увеличении температуры от 25 до 100 °С их темновой ток возрастает в 104—105 раз (у обычных транзисторных оптопар это изменение лежит в пределах 102-—103).
2.2.4. Тиристорные оптопары
Тиристорные оптопары используют в качестве ключей для коммутации сильнотоковых и высоковольтных цепей как радиоэлектронного (U2 = 50÷600 В, I2 = 0,1-10 А), так и электротехнического (U2= 100÷300 В, I2 = 6,3÷320 А) назначения. Важным достоинством этих приборов является то, что, управляя значительными мощностями в нагрузке, они тем не менее по входу совместимы с интегральными микросхемами.
В зависимости от гарантируемых значений коммутируемых напряжений и токов, а также от времени переключения тиристорные оптопары подразделяются на большое число групп. В целом типичные значения t1 составляют 10—30 мс, t2 = 30÷250 мкс.
Поскольку тиристорные оптопары работают в ключевом режиме, то параметр kI для них лишен смысла. Поэтому удобнее характеризовать такие оптопары номинальным значением I1 при котором открывается фототиристор, а также — максимально допустимым входным током помехи (максимальным значением I1, при котором еще не происходит включение фототиристора). Значение силы номинального входного тока для разных типов тиристорных оптопар лежит в пределах 20—200 мА, максимально допустимый ток помехи для оптопары АОУ 103, например, равен 0,5 мА.
2.2.5. Параметры оптронов различного типа
Ниже приводится краткая сводная таблица основных характеристик некоторых элементарных оптронов (табл. 2.1). В обозначениях отечественных оптронов первая буква (или цифра) определяет материал излучателя (А или 3 — GaAlAs или GaAs), вторая буква (О) указывает на принадлежность прибора к классу оптопар, а третья отражает тип фотоприемника (Д—фотодиод, Т—фототранзистор, У — фототиристор). Резисторные оптопары (исторически первый тип оптопар) сохраняют свое первоначальное обозначение ОЭП (оптоэлектронный прибор). Некоторые из оптронов могут иметь обозначения, отличающиеся от тех, которые указаны выше (например, К249КП1—оптоэлектронный ключ, состоящий из излучающего диода на основе арсенид-галлий-алюминия и кремниевого фототранзистора, в который входят две транзисторные оптопары).
Кроме рассмотренных в настоящей главе типов оптопар следует упомянуть также о некоторых других видах оптронов. К ним можно отнести приборы, у которых в качестве фотоприемников используют МДП-фотоварикапы и полевые фототранзисторы, дифференциальные оптроны (один излучатель в которых работает на два идентичных фотоприемника),
а также оптопары, у которых источником излучения является полупроводниковый лазер (например, на основе GaAlAs или GalnAsP).
Таблица 2.1. Обозначения и значения основных параметров различных оптронов
Типы оптронов
| |||||||||||||||||||||
Обозначения и параметры
|
Резисторные
|
Диодные
|
Транзисторные
|
Тиристорные
| |||||||||||||||||
диодно-транзисторные
|
транзисторные общего назначения
|
с составным фототранзистором
| |||||||||||||||||||
Схемное обозначение |
|
|
|
|
|
| |||||||||||||||
Буквенный элемент обозначения |
ОЭП
|
АОД
|
АОД, КОЛ
|
АОТ
|
АОТ
|
АОУ, ТО
| |||||||||||||||
Коэффициент передачи по току kI, % |
1 – 4
|
0,5 – 3,5
|
10 – 40
|
30 – 100
|
200 – 800
|
—
| |||||||||||||||
Граничная частота fгр, МГц |
0,005 – 0,01
|
1 – 10
|
0,01 – 0,5
|
0,01 – 0,5
|
0,001 – 0,01
|
—
| |||||||||||||||
Время, мкс: включения t1 |
1·103–1·105
|
0,1–1
|
1–2
|
4–10
|
10–100
|
10–30
| |||||||||||||||
выключения t2 |
1·103–1·105
|
0,1–1
|
1–2
|
4–30
|
10–100
|
30–250
| |||||||||||||||
Параметры входной цепи: | |||||||||||||||||||||
I1, мА
|
5–20
|
10–40
|
5–20
|
10–40
|
1–30
|
10–800
| |||||||||||||||
U1, В
|
2–6
|
1,1–1,8
|
1–2
|
1–2
|
1–5
|
1–3
| |||||||||||||||
Параметры выходной цепи: | |||||||||||||||||||||
I2, мА
|
0,2–7
|
0,1–1,5
|
5–30
|
5–50
|
100–200
|
(0,1–320)х103
| |||||||||||||||
U2, В
|
5–250
|
1–100
|
5–30
|
5–30
|
5–30
|
50–1300
| |||||||||||||||
Сопротивление изоляции Rиз, Ом |
1·109
|
1·109–1010
|
1010
|
5·108
|
1·109
|
5·108
|
2.2.6. Оптоэлектронные микросхемы
Приборы этого типа содержат одну или несколько оптопар, а также согласующие элементы или электронные интегральные схемы, объединенные при помощи гибридной технологии в один корпус. Оптоэлектронные микросхемы обладают более широкими возможностями, чем элементарные оптроны. Их можно разделить на три основные группы.
К первой относятся переключательные микросхемы; эта группа наиболее многочисленна. Примером прибора этого типа может служить микросхема серии 249ЛП1 (рис. 2.7, а), в который объединены диодный оптрон и стандартная интегральная схема, имеющая два статических состояния, при одном из которых напряжение на ее выходе равно примерно 0,3 В, а при другом — около 3 В.
Во вторую группу объединены линейные, оптоэлектронные микросхемы, которые способны выполнять аналоговые преобразования сигналов. В качестве примера можно привести микросхему серии К249КН1, линейную по выходной цепи, которая состоит из двух диодных оптронов, работающих в режиме фотоэлементов и выполняющих функции широкополосного (вплоть до передачи постоянного сигнала) трансформатора (рис. 2.7,6).
К третьей группе относятся оптоэлектронные микросхемы релейного типа, использующиеся для коммутации силовых цепей в широком диапазоне напряжений и токов. По входным параметрам эти приборы согласованы со стандартными интегральными микросхемами; в качестве примера можно назвать оптоэлектронное реле постоянного тока серии К295КТ1.
Помимо микросхем перечисленных трех групп существуют и более сложные. К ним относятся, например, фоточувствительные приборы с зарядовой связью, многоустойчивые элементы— сканисторы и т.д.
Так же как и элементарные оптроны, оптоэлектронные микросхемы обладают тем недостатком, что их приходится изготовлять по гибридной технологии, объединяя элементы из разных материалов. По мере совершенствования способов получения этих элементов открываются перспективы создания оптоэлектронных микросхем на одном кристалле, а также пленочных. Это должно привести не только к дальнейшей миниатюризации таких приборов, но и к расширению их функциональных возможностей.
2.3. Применение оптронов
2.3.1. Применение оптронов в цифровых и линейных схемах
Использование оптронов (прежде всего—диодных и транзисторных) в цифровых и импульсных устройствах связано с возможностью их быстрого переключения из состояния с низким уровнем сигнала на выходе в состояние с высоким уровнем, или наоборот. В качестве примера можно привести оптоэлектронные элементы, позволяющие реализовать основные логические функции в устройствах цифровых систем. Так, схема, представленная на рис. 2.8, а, моделирует операцию логического умножения (И), а схема на рис. 2.3,б — операцию логического сложения (ИЛИ). В первом случае выходное напряжение U2 поддерживается на высоком уровне, близком к напряжению U1, только если оба фототранзистора ФТ1 л ФТ2 включены и через них идет ток, близкий к насыщению (см. рис. 1.10,б), а во втором — при выходе на насыщение вольт-амперной характеристики любого из фототранзисторов ФТ1 или ФТ2. Оптроны могут также с успехом применяться для моделирования и других логических операций.
Еще одним примером использования оптронов в цифровых устройствах может служить оптоэлектронная микросхема серии 249ЛП1 (см. рис. 2.7,а). При протекании по цепи арсенид-галлиевого светодиода номинального входного тока в цепи фотоприемника (кремниевого фотодиода) возникает фототок, одновременно являющийся базовым для транзистора Т1; этот ток достаточен для отпирания транзистора. Эмиттерный ток транзистора Т1 поступает в базу транзистора ТЗ и переводит его в режим насыщения. При этом напряжение на выходе микросхемы оказывается равным падению напряжения на насыщенном транзисторе (примерно 0,3 В). Если же входной ток оптрона меньше номинального, то через его фотоприемник течет лишь малый темновой ток и транзистор Т1 остается запертым. В этом случае через резистор R1 течет базовый ток транзистора Т2, причем его значение таково, что Т2 находится в режиме насыщения. В результате напряжение на выходе оптопары является разностью напряжения Е1, базового напряжения транзистора Т2 и напряжения на диоде Д1; для микросхемы такого типа это 2,5—3,5 В.
Одним из важных параметров, по которым оптроны могут уступать однотипным устройствам (диодам, триодам, микросхемам) без оптических связей, является быстродействие, определяемое главным образом барьерными емкостями источника излучения и фотоприемника. Проигрыш в быстродействии может быть еще выше, если не принимать специальных мер по согласованию режимов работы элементов оптопары. Так, для снижения влияния времени перезарядки барьерной емкости светодиода (20—300 пФ) перезарядку приходится форсировать, например, подавая на вход светодиода ток достаточно большой амплитуды. Уменьшения времени перезарядки выходной емкости фотоприемника (5—15 пФ) можно добиться, изолируя или компенсируя емкостную нагрузку, а также уменьшая амплитуду напряжения выходного сигнала. Оптимизируя конструкцию и режим работы оптопар, время переключения удается заметно снизить, доведя его (для некоторых типов оптопар) до нескольких наносекунд.
К областям применения аналоговых оптронов можно отнести использование их в широкополосных трансформаторных устройствах, в усилителях различных сигналов, в других системах аналогового преобразования. Схема простого усилителя на основе оптрона, обеспечивающего электрическую развязку от остальной части схемы, изображена на рис. 2.9. Входной сигнал, подаваемый на вход оптрона, после преобразования в излучение попадает на базу фототранзистора, осуществляя тем самым управление амплитудой тока на выходе оптопары и напряжением на сопротивлении нагрузки R. Коэффициент усиления всего устройства определяется значением kI используемого транзисторного оптрона.
В аналоговых устройствах используют диодные и резисторные, а также (в некоторых случаях) транзисторные оптопары. Требования к аналоговым оптронам определяются конкретными условиями их применения и поэтому общего критерия качества, подобного тому, который имеет место в случае цифровых оптронов (добротности), для них нет. В то же время для сохранения формы передаваемого сигнала желательна линейность передаточной характеристики (постоянство kI в достаточно широком диапазоне токов). Этому требованию в наибольшей мере отвечают диодные оптроны, хотя и у них интервал значений I1, при которых kI постоянен, не слишком велик. Так, например, у оптопары АОД 101 даже при ее термостатировании передача аналогового сигнала с нелинейностью менее 2% осуществляется лишь при двух-трехкратном изменении I1.
Сказанное означает, что при проектировании аналоговых устройств, использующих оптроны, необходимо предусматривать дополнительные меры по линеаризации передаточной характеристики. В этой связи перспективным является применение дифференциальных оптронов (с одним излучателем и двумя фотоприемниками), у которых коэффициенты передачи по току между излучателем и первым фотоприемником, а также между излучателем и вторым фотоприемником одинаковы, причем в равной мере меняются в зависимости от условий работы (Т, I1, U1). Фотоприемники включены таким образом, чтобы при подаче сигнала входной ток одного из них увеличивался, а другого в той же мере уменьшался. Увеличение kI первого канала оптрона примерно компенсируется уменьшением kI второго, а общая передаточная характеристика оптопары выравнивается.
2.3.2. Управление процессами в высоковольтных цепях
Для бесконтактного управления процессами в высоковольтных (до 1300 В) и сильнотоковых (до 320 А) цепях используют мощные ключевые оптроны, типичными представителями которых являются тиристорные и транзисторные оптопары. По своим техническим показателям оптоэлектронные переключатели успешно конкурируют с электромагнитными реле и герконами (герметизированными переключателями), превосходя их по надежности, долговечности и помехоустойчивости.
Пример схемного варианта высоковольтного оптоэлектронного ключа, в котором тиристорный оптрон, переключающий ток в цепи с постоянным напряжением, управляется сразу по двум каналам—оптическому и электрическому, приведен на рис. 2.10. Если входной транзистор Т1 открыт и работает в режиме насыщения, то на выходе усилителя у поддерживается высокий потенциал и ток течет лишь через излучатель тиристорной оптопары — фототиристор включен. Для его выключения транзистор Т1 запирается, в результате чего, во-первых, снижается напряжение на светодиоде тиристорной оптопары, и он перестает излучать свет, и, во-вторых, на шину нулевого потенциала закорачивается управляющий электрод фототиристора. Закорачивание обусловлено тем, что после снижения напряжения на выходе усилителя—инвертора у светодиод транзисторной оптопары открывается и через фотоприемник начинает течь ток, переводящий транзистор Т2 в режим насыщения. Подобная схема может управлять током в цепи постоянного напряжения 50—400 В, причем длительность переключения фототиристора составляет 5—10 мкс.
Обобщенным параметром, характеризующим качество ключевых оптронов, является отношение максимальной мощности коммутируемой цепи к входной мощности, необходимой для управления. Это отношение носит название коммутационной добротности и для современных оптронов составляет примерно 102—106.
Для управления цепями высокого напряжения могут применяться и оптопары других типов. Так, в схемах управления электролюминесцентными индикаторами, возбуждающимися переменным напряжением с амплитудой 115— 300 В, используют резисторные оптроны. В цепь питания индикатора включают фоторезистор оптопары; изменение напряжения на индикаторе (а следовательно, и яркость его свечения) регулируют малым сигналом на входе оптрона.
В высоковольтных цепях находят широкое применение оптоизоляторы — оптопары с высоким допустимым напряжением изоляции (и, в частности, с волоконно-оптическими каналами). Использование оптронов этого типа в системах энергораспределения, высоковольтных СВЧ-устройствах, аппаратуре привода, в линиях электропередачи позволяет не только с успехом заменять традиционно использующиеся элементы, но и стимулирует дальнейшее совершенствование вновь разрабатываемых для этих целей приборов.
2.3.3. Использование оптронов для получения информации оптическим методом
Специальные оптроны с открытым оптическим каналов могут применяться в бесконтактной дистанционной технике в качестве индикаторов положения объектов и состояния их поверхности, датчиков заполнения сосудов жидкостью, устройств считывания информации с перфоносителей на входе ЭВМ и т. д. Существуют два типа подобных оптронов. Приборы первого типа (оптопрерыватели) реагируют на попадание в оптический канал непрозрачного предмета, который прерывает (или изменяет) световой поток, падающий на фотоприемник. Область применения оптопрерывателей — индикация положения и счет объектов, сигнализация об изменении параметров воздушной среды между излучателем и фотоприемником (например, при появлении дыма), считывание информации с перфолент и др. Приборы второго типа (отражательные оптроны) регистрируют световой поток, отраженный от исследуемой поверхности. Эти приборы позволяют, например, осуществлять автоматический контроль шероховатости поверхности, ее дефектности.
Из-за наличия воздушного зазора в оптическом канале коэффициент передачи по току таких оптронов мал, причем у отражательных оптронов он еще зависит и от свойств исследуемой поверхности, а также от расстояния до нее. Реально это расстояние не должно превышать нескольких миллиметров.
Пример схемы, в которой используется отражательный оптрон с открытым оптическим каналом, приведен на рис. 2.11. На этой схеме 1—генератор импульсного сигнала, подаваемого на светодиод 3 оптопары, 6—устройство, регистрирующее сигнал с фототранзистора, 4, 2 и 5—усилители входного и выходного сигналов. При изменении интенсивности отраженного от исследуемой поверхности светового потока меняется ток фотоприемника, что фиксируется регистрирующим устройством.
Среди трудностей схемной реализации подобных устройств следует назвать необходимость устранения влияния посторонней внешней засветки и обеспечения точной пространственной ориентации излучателя и фотоприемника. Положение во многом облегчается, если применить оптроны, у которых в качестве оптического канала используют волоконные световоды. Одним концом световоды пристыкованы к излучателю или фотоприемнику; срезы их других концов ориентированы таким образом, чтобы они могли служить чувствительным элементом схемы. Оптоэлектронные зонды этого типа могут использоваться, например, для исследования профиля поверхности, причем применение световодов малого диаметра позволяет регистрировать довольно «тонкие» изменения ее рельефа.
2.3.4. Другие применения оптронов
Как уже отмечалось в 2.2.2, диодные оптроны способны работать в режиме фотоэлементов, выступая в качестве изолированных источников э. д. с. и тока. Полное отсутствие гальванической связи с внешним источником питания дает возможность создавать устройства, обладающие высокой помехозащищенностью. Значение получаемой на выходе оптрона разности потенциалов составляет 0,3—0,4 В, однако батарейное соединение таких оптронов позволяет создавать маломощные источники питания с напряжением до 5 В и током 0,5—50 мА. К сожалению, к. п. д. оптрона, работающего в режиме фотоэлемента, не превышает 1%, хотя в некоторых случаях он может достигать 10—15%.
Введение положительной обратной связи между элементами оптопары позволяет получить устройства, обладающие S-образной вольт-амперной характеристикой. Подобные устройства называют регенеративными оптронами; вариант одной из возможных схем и ее вольт-амперная характеристика приведены на рис. 2.12. При малом напряжении на входе оптрона (рис. 2.12, а) и транзистор Т1, и сама оптопара заперты. После повышения входного напряжения до уровня, достаточного для открывания Т1, его коллекторный ток резко увеличивается, возбуждается излучатель оптопары. Возникающий при этом фототек приемника, в свою очередь, способствует еще большему отпиранию транзистора Т1; этот процесс приводит к возникновению на вольт-амперной характеристике всего устройства участка с отрицательной крутизной (рис. 2.12,б). Таким образом, регенеративные оптроны являются бистабилъными элементами (данному U1 соответствуют два значения I2) и поэтому пригодны для использования в качестве переключателей, усилителей, генераторов оптических и электрических колебаний.
В заключение следует упомянуть о приборах, в которых преобразование энергии происходит по схеме излучение — электрический сигнал — излучение. Примером подобного устройства может служить прибор, схема которого изображена на рис. 2.13.
Поток излучения Ф1, попадая через стеклянную подложку 1 и прозрачный электрод 2 на слой фотопроводника 3 (например, CdS), вызывает изменение его сопротивления, в результате чего происходит перераспределение напряжения, подаваемого на прозрачные электроды 2 и 6, между освещенным участком фотопроводника и прилегающей к нему областью слоя ZnS — электролюминофора 5. Повышение напряжения на люминофорном слое сопровождается возрастанием яркости его свечения; возникающий при этом поток излучения Ф2 выходит сквозь стеклянную пластину 7. Для предотвращения оптической связи между слоями фотопроводника и электролюминофора в устройстве предусмотрен еще один непрозрачный слой 4. Амплитуда управляющего напряжения, яркость, контраст и цвет получаемого изображения зависят от химического состава люминофора и фотопроводника, от толщины их слоев. Подобные структуры могут быть использованы в качестве усилителей и преобразователей изображения (с их помощью можно, например, реализовать устройство, превращающее негатив в позитив, и наоборот), преобразователей инфракрасного излучения в видимое, когерентного— в некогерентное. Особый интерес вызывает применение для этих целей тонкопленочных устройств, обладающих большой яркостью, повышенной крутизной вольт-яркостной характеристики, хорошей разрешающей способностью.
Приведенные примеры далеко не исчерпывают круг приборов, в которых используют оптроны, оптоэлектронные микросхемы и устройства. По мере совершенствования параметров оптронов этот круг все более расширяется.
|
Что такое оптопара и как она работает
Меган Тунг
Оптопара (также называемая оптоизолятором) — это полупроводниковое устройство, которое позволяет передавать электрический сигнал между двумя изолированными цепями. В оптроне используются две части: светодиод, излучающий инфракрасный свет, и светочувствительное устройство, которое обнаруживает свет от светодиода. Обе части содержатся в черном ящике со контактами для подключения. Входная цепь принимает входящий сигнал, будь то сигнал переменного или постоянного тока, и использует сигнал для включения светодиода.
Фотодатчик — это выходная цепь, которая определяет свет, и, в зависимости от типа выходной цепи, выход будет переменным или постоянным током. Сначала ток подается на оптопару, благодаря чему светодиод излучает инфракрасный свет, пропорциональный току, протекающему через устройство. Когда свет попадает на фотодатчик, проходит ток, и он включается. Когда ток, протекающий через светодиод, прерывается, ИК-луч отключается, в результате чего фотодатчик перестает проводить.
Существует четыре конфигурации оптопар, разница заключается в используемом светочувствительном устройстве.Фототранзистор и Photo-Darlington обычно используются в цепях постоянного тока, а Photo-SCR и Photo-TRIAC используются для управления цепями переменного тока. В оптопаре на фототранзисторе транзистор может быть либо PNP, либо NPN. Транзистор Дарлингтона представляет собой пару из двух транзисторов, в которой один транзистор управляет базой другого транзистора. Транзистор Дарлингтона обеспечивает высокий коэффициент усиления.
Термины оптопара и оптоизолятор часто используются как синонимы, но между ними есть небольшая разница.Отличительным фактором является ожидаемая разница напряжений между входом и выходом. Оптопара используется для передачи аналоговой или цифровой информации между цепями при сохранении гальванической развязки при потенциалах до 5000 вольт. Оптоизолятор используется для передачи аналоговой или цифровой информации между цепями, где разность потенциалов превышает 5000 вольт.
Оптопара может эффективно:
- Устранение электрических помех из сигналов
- Изолируйте низковольтные устройства от высоковольтных цепей.Устройство способно избежать сбоев из-за скачков напряжения (например, из-за передачи радиочастоты, ударов молнии и скачков напряжения в источнике питания).
- Разрешить использование небольших цифровых сигналов для управления более высокими напряжениями переменного тока.
Меган Тунг проходит стажировку в Jameco Electronics , посещая Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.
Фото: учебники по электронике и Autodesk.
ССОП-4 | 80 | 50 | 600 | 50 | от -55 до +110 | 3750 | UL, cUL, VDE, FIMKO, CQC | ||||
ССОП-4 | 80 | 50 | 600 | 50 | от -55 до +110 | 3750 | UL, cUL, VDE, FIMKO, CQC | ||||
4-контактный LSOP мини-плоский | 80 | 50 | 600 | 60 | 150 | от -55 до +110 | 5000 | UL, cUL, VDE, BSI, FIMKO, CQC | |||
СОП-16 | 70 | 80 | 300 | 60 | 150 | -40 до +100 | 3750 | UL, cUL, VDE, FIMKO, BSI, CQC | |||
СОП-4 | 70 | 80 | 300 | 60 | 150 | -40 до +100 | 3750 | UL, cUL, VDE, FIMKO, BSI, CQC | |||
Минифлет СОП-4Л | 70 | 80 | 300 | 60 | 150 | от -55 до +100 | 5000 | UL, CSA, VDE, BSI | |||
ДИП-16 | 70 | 20 | 300 | 60 | 150 | от -55 до +100 | 4420 | UL, CSA, VDE, FIMKO | |||
ДИП-8 | 70 | 20 | 300 | 60 | 150 | от -55 до +100 | 4420 | UL, CSA, VDE, FIMKO | |||
ДИП-4 | 70 | 20 | 300 | 60 | — 55 до + 100 | 5300 | UL, CSA, VDE, VDE, FIMKO | ||||
СОП-4 | 70 | 50 | 300 | 50 | 150 | — 55 до + 100 | 3750 | UL, cUL, FIMKO, VDE, | |||
ДИП-4 | 55 | 32 | 500 | 50 | 150 | от -55 до +100 | 5300 | UL, VDE, BSI | |||
DIP-4 400 мил | 55 | 32 | 500 | 50 | 150 | от -55 до +100 | 5300 | UL, VDE, BSI | |||
SFH6286 опция | 55 | 32 | 500 | 50 | 150 | от -55 до +100 | 5300 | UL, VDE, BSI | |||
СМД-4 | 55 | 32 | 500 | 50 | 150 | от -55 до +100 | 5300 | UL, VDE, BSI | |||
ДИП-4 | 50 | 600 | 60 | 150 | от -55 до +100 | 5300 | UL, CSA, BSI, | ||||
ДИП-4 | 70 | 13 | 320 | 60 | от -55 до +100 | 4470 5300 | UL, CSA, BSI, VDE, CQC | ||||
DIP-4, 400 мил | 70 | 13 | 320 | 60 | от -55 до +100 | 4470 5300 | UL, CSA, BSI, VDE, CQC | ||||
СМД-4 | 70 | 13 | 320 | 60 | от -55 до +100 | 4470 5300 | UL, CSA, BSI, VDE, CQC | ||||
ДИП-16 | 70 | 20 | 300 | 60 | -40 до +100 | 5000 | UL, cUL | ||||
ДИП-4 | 70 | 20 | 300 | 60 | -40 до +100 | 5000 | UL, cUL | ||||
ДИП-8 | 70 | 20 | 300 | 60 | -40 до +100 | 5000 | UL, cUL | ||||
ДИП-16 | 70 | 0.5 | 600 | 60 | — 55 до + 100 | 5300 | UL, cUL, VDE, FIMKO, CQC | ||||
ДИП-8 | 70 | 0.5 | 600 | 60 | — 55 до + 100 | 5300 | UL, cUL, VDE, FIMKO, CQC | ||||
СМД-16 | 70 | 0.5 | 600 | 60 | — 55 до + 100 | 5300 | UL, cUL, VDE, FIMKO, CQC | ||||
СМД-8 | 70 | 0.5 | 600 | 60 | — 55 до + 100 | 5300 | UL, cUL, VDE, FIMKO, CQC | ||||
СОИК-8 | 70 | 20 | 30 | от -55 до +100 | 4000 | UL, VDE | |||||
СОИК-8 | 30 | 0.5 | 2 | 60 | от -55 до +100 | 4000 | UL, cUL, VDE | ||||
DIP- # | 30 | 20 | 60 | 200150 | от -55 до +100 | 4420 | UL, cUL, CSA, BSI, VDE, CQC | ||||
SMD- # | 30 | 20 | 60 | 200150 | от -55 до +100 | 4420 | UL, cUL, CSA, BSI, VDE, CQC | ||||
ДИП-6 | 30 | 20 | 60 | 200 | — 55 до + 100 | 5300 | UL, CSA, BSI, VDE, FIMKO | ||||
СМД-6 | 30 | 20 | 60 | 200 | — 55 до + 100 | 5300 | UL, CSA, BSI, VDE, FIMKO |
Его типы и различные применения в цепях постоянного / переменного тока
Оптрон — это электронный компонент, который передает электрические сигналы между двумя изолированными цепями. Оптопара также называется оптоизолятором, фотоэлементом или оптическим изолятором.
Часто в схемах, особенно низковольтных или высокочувствительных к шумам, оптопара используется для изоляции схемы, чтобы предотвратить вероятность электрического столкновения или исключить нежелательные шумы. На нынешнем коммерческом рынке мы можем купить оптопару с от 10 кВ до 20 кВ, выдерживаемое напряжение от входа до выхода, со спецификацией 25 кВ / мкС при переходных процессах напряжения.
Внутренняя структура оптопары
Это внутренняя структура оптрона.На левой стороне открыты контакты 1 и 2, это светодиод (светоизлучающий диод), светодиод излучает инфракрасный свет на светочувствительный транзистор на правой стороне. Фототранзистор переключает выходную схему своим коллектором и эмиттером, как и типичные транзисторы BJT. Яркость светодиода напрямую регулирует фототранзистор. Поскольку светодиод может управляться другой схемой, а фототранзистор может управлять другой схемой, то двумя независимыми схемами можно управлять с помощью оптопары.Кроме того, между фототранзистором и инфракрасным светодиодом пространство выполнено из прозрачного непроводящего материала; он электрически изолирует две разные цепи. Полое пространство между светодиодом и фототранзистором может быть выполнено из стекла, воздуха или прозрачного пластика, электрическая изоляция намного выше, обычно 10 кВ, или выше.
Типы оптопар
Существует множество оптронов различных типов. доступны на коммерческой основе в зависимости от их потребностей и коммутационных возможностей.В зависимости от использования в основном доступны четыре типа оптопар.
- Оптрон, использующий фототранзистор .
- Оптрон, использующий транзистор Дарлингтона Photo .
- Оптрон, использующий Photo TRIAC .
- Оптрон, использующий Photo SCR .
Оптопара на фототранзисторах
На верхнем изображении показана внутренняя конструкция оптопары на фототранзисторе.Тип транзистора может быть любым, будь то PNP или NPN .
Фототранзистор
может быть двух типов в зависимости от наличия выходного контакта. На втором изображении слева есть дополнительный вывод, который внутренне связан с базой транзистора. Этот вывод 6 используется для управления чувствительностью фототранзистора . Часто вывод используется для соединения с землей или минусом с помощью резистора высокого номинала. В этой конфигурации можно эффективно контролировать ложное срабатывание из-за шума или электрических переходных процессов.
Кроме того, перед использованием оптопары на основе фототранзистора пользователь должен знать максимальный номинал транзистора. PC816, PC817, LTV817, K847PH — несколько широко используемых оптопар на основе фототранзисторов. Фото — Оптрон на основе транзистора используется в изоляции цепи постоянного тока.
Транзисторная оптопара Фото-Дарлингтона
На верхнем изображении изображены два типа символа, показана внутренняя конструкция оптрона Photo-Darlington .
Транзистор Дарлингтона — это пара из двух транзисторов, в которой один транзистор управляет базой другого транзистора. В этой конфигурации транзистор Дарлингтона обеспечивает высокий коэффициент усиления. Как обычно, светодиод излучает инфракрасный светодиод и управляет базой парного транзистора.
Оптопара этого типа также используется для изоляции в цепях постоянного тока. Шестой вывод, который внутренне соединен с базой транзистора, используется для управления чувствительностью транзистора, как обсуждалось ранее в описании фототранзистора. 4N32, 4N33, h31B1, h31B2, h31B3 — несколько примеров оптопары на основе фотодарлингтона.
Оптопара Photo-TRIAC
На верхнем изображении показана внутренняя конструкция оптрона TRIAC .
TRIAC в основном используется там, где требуется управление или переключение на основе переменного тока. Светодиод может управляться с помощью постоянного тока, а TRIAC используется для управления переменным током. Оптопара и в этом случае обеспечивает отличную изоляцию.Вот одно приложение симистора. Примеры оптопары на основе фото-TRIAC: IL420, , 4N35 и т. Д. Являются примерами оптопары на основе TRIAC.
Оптрон на основе фото-SCR
SCR стенд для выпрямителя с кремниевым управлением , SCR также обозначается как Thyristor . На верхнем изображении показана внутренняя конструкция оптопары на основе Photo-SCR. Как и другие оптопары, светодиод излучает инфракрасное излучение.SCR регулируется яркостью светодиода. Оптопара на основе Photo-SCR используется в схемах, связанных с переменным током. Узнайте больше о тиристоре здесь.
Несколько примеров оптопар на основе фото-SCR: — MOC3071, IL400, MOC3072 и т. Д.
Применение оптопары
Как обсуждалось ранее, несколько оптопар используются в цепи постоянного тока и несколько оптопар используются в операциях, связанных с переменным током . Поскольку оптопара не допускает прямого электрического соединения между двумя сторонами, основное применение оптопары — изолировать две цепи .
От переключения другого приложения, как и в случае, когда для переключения приложения можно использовать транзистор, можно использовать оптопару. Его можно использовать в различных операциях, связанных с микроконтроллером, где требуются цифровые импульсы или аналоговая информация от схемы высокого напряжения, оптопара может использоваться для превосходной изоляции между этими двумя.
Оптопара может использоваться для обнаружения переменного тока, операций, связанных с управлением постоянным током. Давайте посмотрим на несколько применений оптранзисторов.
Оптопара для переключения цепи постоянного тока:
В верхней схеме используется оптопара на основе фототранзистора .Он будет действовать как типичный транзисторный переключатель. В схеме использован недорогой оптрон на основе фототранзистора PC817 . Инфракрасный светодиод будет управляться переключателем S1 . Когда переключатель будет включен, аккумуляторный источник 9 В будет подавать ток на светодиод через токоограничивающий резистор 10 кОм. Интенсивность регулируется резистором R1. Если мы изменим значение и уменьшим сопротивление, интенсивность светодиода будет высокой, а коэффициент усиления транзистора будет высоким.
С другой стороны, транзистор представляет собой фототранзистор, управляемый внутренним инфракрасным светодиодом , когда светодиод излучает инфракрасный свет, фототранзистор контактирует, и VOUT будет равен 0, отключая нагрузку, подключенную к нему. Необходимо помнить, что коллекторный ток транзистора согласно паспорту составляет 50 мА. R2 обеспечивает VOUT 5v. R2 — это подтягивающий резистор.
Вы можете увидеть переключение светодиода с помощью оптрона на видео ниже…
В этой конфигурации оптопара на основе фототранзистора может использоваться с микроконтроллером для обнаружения импульсов или прерывания .
Оптопара для определения напряжения переменного тока:
Здесь показана еще одна схема для определения напряжения переменного тока . Инфракрасный светодиод управляется двумя резисторами 100 кОм. Два резистора 100 кОм, используемые вместо одного резистора 200 кОм, предназначены для дополнительной безопасности в случае короткого замыкания. Светодиод подключается через линию розетки (L) и нейтраль (N). При нажатии S1 светодиод начинает излучать инфракрасный свет. Фототранзистор реагирует и преобразует VOUT с 5В на 0В.
В этой конфигурации оптрон может быть подключен к цепи низкого напряжения, такой как блок микроконтроллера, где требуется определение напряжения переменного тока. На выходе будет прямоугольный импульс от высокого к низкому.
На данный момент первая схема используется для управления или переключения цепи постоянного тока, а вторая предназначена для обнаружения цепи переменного тока и управления или переключения цепи постоянного тока. Далее мы увидим управление цепью переменного тока с помощью цепи постоянного тока.
Оптопара для управления цепью переменного тока с использованием постоянного напряжения:
В верхней цепи Светодиод снова управляется батареей 9 В через резистор 10 кОм и состоянием переключателя.С другой стороны, используется оптрон на основе фото-TRIAC , который управляет ЛАМПОЙ переменного тока от розетки переменного тока 220 В. Резистор 68R используется для управления TRIAC BT136, который управляется фото-TRIAC внутри блока оптопары.
Этот тип конфигурации используется для управления электроприборами с использованием схемы низкого напряжения . В верхней схеме используется IL420, который представляет собой оптопару на основе фото-TRIAC.
Помимо этого типа схемы, в SMPS можно использовать оптрон для отправки информации о коротком замыкании или перегрузке по току вторичной стороны на первичную сторону.
Если вы хотите увидеть оптопару IC в реальном действии , проверьте следующие схемы:
Как используются оптопары / оптопары
Оптопары
используют свет от светоизлучающего диода для проведения тока через фототранзистор
Оптопары (также известные как оптопары) генерируют свет, используя светоизлучающий диод (LED) для генерации тока, который проходит через фототранзистор.
Рисунок 1.Схема внутренней эквивалентности
Здесь мы опишем, как используется оптопара общего назначения с этой базовой структурой.
Оптопары в основном используются для следующих целей:
- Как коммутирующее устройство для передачи импульсных сигналов
- Для передачи сигналов ошибки обратной связи в аналоговых импульсных регуляторах
Работа оптопар при использовании в качестве переключающих устройств более проста, поэтому мы начнем с описания этой операции.
Транзистор на выходной стороне работает как переключатель
Когда оптопары используются в качестве переключающих устройств, фототранзистор на выходной стороне работает просто как переключатель.Когда в качестве переключателя используется обычный транзистор, работа различается в зависимости от того, подключена ли нагрузка к эмиттеру (эмиттерный повторитель или общий коллектор) или к коллектору (общий эмиттер). Однако в случае оптопар общего назначения база фототранзистора остается неподключенной, поэтому ток базы всегда течет от коллектора. Это означает, что транзистор насыщен и переключается одинаково, независимо от того, подключена ли нагрузка к коллектору или к эмиттеру.Единственное отличие состоит в том, что полярность выходного сигнала становится противоположной.
Рисунок 2. Подключение нагрузки
Сколько равен выходному току?
Несмотря на то, что оптопару можно назвать переключателем, ее выходной контакт не может быть подключен к большой нагрузке, такой как двигатель. Если вы посмотрите на номинальные значения выходного тока для всех оптопар общего назначения, даже самые высокие, то ток никогда не превышает нескольких десятков миллиампер. Емкость цепи по току следует считать достаточной для зажигания светодиода.
Рисунок 3. Пример перегруженной цепи
Так сколько же на самом деле выходного тока протекает через оптопару?
В следующем пояснении рассматривается максимальный выходной ток. Если вы думаете о выходном токе менее 2–3 мА, это объяснение не применимо. В этом случае обратитесь к разделу «Сколько входного тока (I F ) требуется для генерации выходного тока?») Ниже.
- Максимальный номинальный входной ток (I F )
- Максимальный номинальный выходной ток, который может быть создан, когда входной ток (I F ) находится в допустимом диапазоне
- Снижение выходного тока (I C ) по мере ухудшения характеристик со временем
- Диапазон выходного тока (I C ), в котором выходное напряжение в открытом состоянии остается ниже определенного значения
Из них значение (1) одинаково как для однотранзисторных, так и для транзисторных оптопар Дарлингтона, тогда как значения (2), (3) и (4) различаются в зависимости от типа транзистора.Поэтому пояснение (1) ниже применимо ко всем типам транзисторов, а (2) будет объяснено отдельно для каждого типа.
Максимальный номинальный входной ток (I
F )
Первый вопрос: какой входной ток (I F ) можно подать на оптопару?
Максимальный номинальный входной ток (I F ) определяется на основе следующего:
- Номинальные значения силы тока и рассеиваемой мощности
- Ухудшение характеристик со временем
Самое строгое (наименьшее) из них указано как максимальное значение входного тока.
(i) Определение максимального значения входного тока на основе номинального тока и внутренней мощности рассеиваемой мощности.
Обычно для определения максимального значения входного тока используются как ток, так и внутренняя мощность рассеивания. Например, глядя на график P D и T A ниже, вы можете увидеть, что максимальное номинальное рассеивание составляет 75 мВт при максимальной рабочей температуре 75 ° C.
Рисунок 4. Пример допустимого рассеивания мощности светодиода (P D ) в зависимости отТемпература окружающей среды (T A )
В настоящее время, если характеристики светодиода на входе соответствуют показанным на графике ниже, рекомендуемый прямой ток (I F ) для достижения внутреннего рассеивания мощности светодиода 75 мВт при температуре окружающей среды 75 ° C. составляет около 60 мА (при прямом напряжении (V F ) чуть более 1,2 В).
Рисунок 5. Пример прямого тока светодиода (I F ) в зависимости от прямого напряжения (В F )
Если номинальный ток больше этого значения, это значение становится максимальным значением входного тока (I F ).
(ii) Определение максимального значения входного тока на основе ухудшения характеристик с течением времени.
Важно отметить, что светоизлучающая способность светодиода на входной стороне оптопары со временем ухудшается, что приводит к уменьшению коэффициента передачи тока (CTR), как показано на графике ниже.
Рисунок 6. Ухудшение CTR с течением времени
Входной ток (I F ) обычно определяется на основе расчетного срока службы, показанного на графике ниже.
Рисунок 7. Пример расчетного срока службы
В этом примере, если оптопара используется в течение 100 000 часов в месте, где максимальная температура составляет 50 ° C, максимальный входной ток (I F ), который может быть применен, составляет 20 мА. Это значение является самым строгим из вычисленных до сих пор, поэтому оно становится максимальным значением входного тока (I F ).
Теперь мы рассчитаем максимальный номинальный выходной ток, который может быть получен из этого входного тока для оптопары однотранзисторного типа и оптопары на транзисторах Дарлингтона.
С транзистором Далингтона I C резко возрастает, когда V CE приближается к 1 В, как показано на графике выше. Если вы попытаетесь установить для V CE значение менее 1 В так же, как и для одиночного транзистора, выходной ток может вообще не генерироваться. Поэтому обычно предполагается, что низкое выходное напряжение, полученное при использовании одного транзистора, не может быть получено при использовании транзистора Дарлингтона, поэтому для V CE установлено значение 1,5 В или меньше, 0.На 5В выше, чем при использовании одиночного транзистора. Таким образом, ток коллектора (I C ) в 25 мА все еще может генерироваться, даже когда срок службы оптопары подходит к концу.
Поскольку транзисторы Дарлингтона имеют высокое проводящее выходное напряжение по сравнению с одиночными транзисторами, оптопары, в которых используются транзисторы Дарлингтона, лучше подходят для приложений, в которых требуется генерировать больший выходной ток.
Однотранзисторный выход
(i) Максимальный номинальный выходной ток, который может быть создан, когда входной ток (I F ) находится в допустимом диапазоне.
Как вы можете видеть на графике зависимости коэффициента передачи тока (CTR) от прямого тока (I F ) ниже, CTR оптопары обычно быстро растет по мере того, как входной ток (I F ) возрастает от точки выборки, но затем снова падает, поскольку входной ток продолжает расти.
Рисунок 8. Пример коэффициента передачи тока (CTR) в зависимости от прямого тока (I F )
Характеристики оптопары могут варьироваться в пределах указанного диапазона, поэтому на этом графике нарисована кривая, оценивающая нижний предел значения CTR.Если мы предположим, что CTR составляет 80%, когда входной ток (I F ) равен 5 мА, нижний предел CTR можно оценить, как показано пунктирной линией на этом графике. Глядя на эту строку, можно рассчитать, что если приложен входной ток (I F ) 20 мА (определенный ранее), будет сгенерирован выходной ток 20 мА, потому что CTR, когда входной ток (I F ) составляет 20 мА — это 100%. Таким образом, максимально возможный выходной ток составляет 20 мА. Однако обратите внимание, что при использовании оптопары также необходимо учитывать следующий фактор:
(ii) Снижение выходного тока (I C ) по мере ухудшения характеристик со временем
Первое, что необходимо учитывать, это то, что указанное выше значение CTR является начальным значением.Если оптопара используется в течение периода времени, описанного в (ii) Определение максимального значения входного тока на основе ухудшения характеристик с течением времени в «(1) Максимальный номинальный входной ток (I F )» выше, CTR будет в конечном итоге упадет до половины этого значения.
Таким образом, генерируемый выходной ток (I C ) упадет до 10 мА, что составляет половину его начального значения.
(iii) Диапазон выходного тока (I C ), в котором выходное напряжение в открытом состоянии остается ниже определенного значения
Глядя на кривые характеристик CTR на приведенном выше графике, можно увидеть, что эти значения применимы, когда V CE = 5 В; но действительно ли подходит V CE = 5V?
Это обсуждение оптопар основано на использовании транзистора на выходной стороне в качестве переключателя, поэтому V CE , естественно, должен быть как можно меньше.
Из-за ограничений, таких как характеристики входного уровня логических схем, V CE обычно устанавливается на значение менее 1 В.
Значение генерируемого выходного тока (I C ) определяется на основе соотношения между током коллектора (I C ) и напряжением коллектор-эмиттер (V CE ), как показано на графике ниже.
Рисунок 9. Пример зависимости тока коллектора (I C ) от напряжения коллектор-эмиттер (В CE )
Если вы построите кривую на основе значений I C = 10 мА при V CE = 5 В, рассчитанных в разделе «(ii) Снижение выходного тока (I C ) по мере ухудшения характеристик с течением времени», это будет выглядят как пунктирная линия на графике.
Когда V CE равен 1 В на этой кривой, значение I C составляет около 5 мА. Это максимальный номинальный выходной ток, который может генерироваться в коммутационных приложениях, предполагая, что оптопара будет использоваться до конца своего срока службы. (Это просто пример; фактические значения будут отличаться в зависимости от продукта.)
Если оптопара используется в приложении, в котором генерируемый выходной ток больше указанного, это может вызвать такие проблемы, как отсутствие тока на выходе в начале (выходной сигнал слишком мал) или ухудшение характеристик продукта раньше. чем ожидалось.
Фактически разрешенный выходной ток обычно намного меньше максимального номинального значения.
Выход транзистора Дарлингтона
(i) Максимальный номинальный выходной ток, который может быть создан, когда входной ток (I F ) находится в допустимом диапазоне.
Транзистор Дарлингтона имеет то преимущество, что он имеет большой CTR.
Например, если нижний предел CTR при I F = 20 мА составляет не 100%, а 300%, выходной ток (I C ) 60 мА может быть сгенерирован при V CE = 5 В.
(ii) Снижение выходного тока (I C ) по мере ухудшения характеристик со временем.
Учитывая ухудшение характеристик с течением времени, как и у однотипного транзистора, I C становится 30 мА при В CE = 5 В.
(iii) Диапазон выходного тока (I C ), в котором выходное напряжение в открытом состоянии остается ниже определенного значения.
Кривая I F = 1 мА на графике ниже, показывающем ток коллектора транзистора Дарлингтона (I C ) в зависимости отНапряжение коллектор-эмиттер (V CE ) приблизительно соответствует значениям I C = 30 мА при V CE = 5 В.
Рис. 10. Пример зависимости тока коллектора Дарлингтона (I C ) от напряжения коллектор-эмиттер (В CE )
Однако с транзистором Дарлингтона I C резко возрастает, когда V CE приближается к 1 В, как показано на графике выше. Если вы попытаетесь установить V CE менее 1 В так же, как с одним транзистором, то выходной ток может вообще не генерироваться.
Поэтому обычно предполагается, что низкое выходное напряжение, полученное при использовании одного транзистора, не может быть получено при использовании транзистора Дарлингтона, поэтому V CE устанавливается на 1,5 В или меньше, на 0,5 В выше, чем при использовании одного транзистора. .
Таким образом, ток коллектора (I C ) 25 мА все еще может генерироваться, даже когда срок службы оптопары подходит к концу.
Поскольку транзисторы Дарлингтона имеют высокое проводящее выходное напряжение по сравнению с одиночными транзисторами, оптопары, в которых используются транзисторы Дарлингтона, лучше подходят для приложений, в которых требуется генерировать больший выходной ток.
Расчет нагрузки
Когда вы знаете максимальный выходной ток (I C ), который может быть сгенерирован, цепь нагрузки может быть спроектирована так, чтобы выходной ток оставался ниже максимального значения.
Давайте посмотрим на допустимый диапазон сопротивления нагрузки (R L ) при использовании одного транзистора с I C = 5 мА при V CE = 1 В в конфигурации схемы, подобной показанной ниже, исходя из полученных результатов далеко.
Рисунок 11.Пример общей конфигурации схемы
Предполагая, что ток, текущий в коллектор из схемы на следующем этапе (I N ), равен 1 мА, если напряжение источника питания (V CC ) составляет 5 В, нижний предел сопротивления нагрузки (R L ) можно рассчитать следующим образом:
Уравнение (1)
R L > (V CC -V CE ) / (I C -I N ) = (5V-1V) / (5mA-1mA) = 1kΩ
Если оптопара имеет допуск по высокому напряжению, ее можно использовать с высоким напряжением источника питания.Например, если используется источник питания 50 В (V CC = 50 В), нижний предел сопротивления нагрузки будет 13 кОм.
Как насчет верхнего предела сопротивления нагрузки?
Напряжение, создаваемое нагрузочным резистором (R L ), обычно устанавливается равным одной десятой или менее напряжения источника питания (V CC ), когда оптопара находится в состоянии отключения, а темновой ток коллектора (I CEO ) течет.
Этот темновой ток требует осторожности.
Если посмотреть в таблице данных, максимальное значение темнового тока равно 0.1 мкА, что кажется довольно маленьким.
Однако это значение применяется при температуре окружающей среды 25 ° C. Темновой ток (I утечка ) примерно пропорционален напряжению коллектор-эмиттер (V CE ) и становится в 10 раз выше с каждым повышением температуры на 25 градусов.
Уравнение (2)
Например, максимальное значение темнового тока (утечка I ) составляет 0,1 мкА при T A = 25 ° C и V CE = 50 В, но при условиях T A = 75 ° C и V CE = 5 В, темновой ток уменьшается до одной десятой своего предыдущего значения, потому что напряжение коллектор-эмиттер в 10 раз меньше, но затем становится в сто раз больше из-за повышения температуры, что приводит к 10-кратному увеличению увеличьте до значения 1 мкА.
I утечка = 0,1 мкА x 0,1 x 10 2 = 0,1 мкА x 10 = 1 мкА
Сопротивление нагрузки, необходимое для создания напряжения, составляющего одну десятую значения V CE (то есть 0,5 В или меньше) при темновом токе 1 мкА составляет 500 кОм. Исходя из этого, если V CC = 5 В, сопротивление нагрузки должно быть 1 кОм
Однако безопасность этого диапазона не может быть гарантирована во всех случаях.
Если сопротивление нагрузки чрезмерно высокое, могут возникнуть следующие проблемы:
- На уровень выходного сигнала могут влиять колебания нагрузки.
- Может возникнуть шум от периферийных цепей.
- Рабочая скорость может упасть.
Следовательно, верхний предел сопротивления нагрузки должен быть в пределах пятикратного значения нижнего предела, что в применении к приведенному выше примеру дает верхний предел 5 кОм, когда напряжение источника питания (V CC ) составляет 5 В.
Сколько входного тока (I
F ) требуется для создания выходного тока?
Например, если требуется выходной ток (I C ) всего 2 мА, а не 5 мА, сколько входного тока (I F ) требуется для его создания?
Работая в обратном направлении и вычисляя сначала с точки зрения срока службы оптопары, вы можете видеть, что генерируемый начальный выходной ток должен быть в два раза больше возможного значения; то есть 4 мА.
Если вы нарисуете кривую для I C = 4 мА при V CE = 1 В для тока коллектора (I C ) в зависимости от напряжения коллектор-эмиттер (V CE ), показанного в начале графика, он будет выглядит как пунктирная линия на графике ниже.
Рисунок 12. Пример зависимости тока коллектора (I C ) от напряжения коллектор-эмиттер (В CE )
Из этого графика видно, что I C составляет около 10 мА, когда V CE составляет 5 В.
Глядя на пунктирную кривую на графике выше, показывающую коэффициент передачи тока (CTR) в зависимости от прямого тока (I F ), вы можете увидеть, что CTR составляет приблизительно 100%, когда I F = 10 мА, поэтому, если При подаче входного тока 10 мА может быть сгенерирован вышеуказанный выходной ток, который является начальным значением 4 мА при V CE = 1 В и значением в конце срока службы 2 мА при V CE = 1 В.
Обратите внимание, однако, что входной ток здесь оценивается с учетом наихудшего сценария вариаций CTR и ухудшения со временем, поэтому, если используется оптопара с большим начальным CTR, и особенно в ранний период использования, входной ток может быть значительно больше требуемого значения.
В этом случае рабочая скорость имеет тенденцию быть ниже, чем скорость, которую можно было ожидать в соответствии со спецификациями.
Поэтому важно тщательно проверить и выбрать оптопару, которая позволяет достичь желаемой скорости работы.
Также может оказаться эффективным ограничить диапазон вариации, указав определенный рейтинг CTR.
Использование оптопары в активной области в аналоговых приложениях
В аналоговых приложениях оптопары обычно используются в контурах управления с обратной связью импульсных регуляторов, в которых первичный и вторичный домены изолированы.
Оптопары
используются, как показано на рисунке ниже, для решения проблемы обратной связи постоянного тока при изоляции первичного и вторичного доменов.
Рисунок 13. Пример использования оптопары в импульсном регуляторе
При использовании оптопары в импульсном стабилизаторе вход оптопары является выходом источника питания и наоборот.
Усилитель ошибки, который используется для сравнения выходного напряжения источника питания с опорным напряжением (то есть определения разности потенциалов), находится во вторичной цепи источника питания (на стороне выхода).Количество света, которое попадает на светодиод оптопары, различается в зависимости от этой разности потенциалов.
Коллекторный ток оптопары также различается в зависимости от количества света, излучаемого светодиодом.
Эти факторы вызывают изменение напряжения коллектор-эмиттер фототранзистора (V CE ), что приводит к увеличению или уменьшению входного тока источника питания и, как следствие, увеличению или уменьшению выходного напряжения источника питания.
В это время, как и при использовании оптопары в качестве переключающего устройства, нагрузочный резистор фототранзистора может быть подключен либо к коллектору, либо к эмиттеру (любой вариант подходит для работы оптопары). Подключение нагрузочного резистора в этом случае определяется в соответствии с общей схемой конфигурации.
Однако, в отличие от операции переключения, когда оптопара используется в аналоговой схеме, схема сконфигурирована так, что фототранзистор работает в области V CE > 1 В (активная область).
Рис. 14. Диапазон использования оптопары при использовании в контуре управления обратной связью импульсного регулятора
Кроме того, поскольку оптопары имеют тенденцию иметь очень большие вариации CTR, усиление управления входным током усилителя ошибки и источника питания необходимо установить на очень большие значения, чтобы справиться с этими вариациями CTR.
Это то же самое, что и использование усилительных схем в усилителях звука или операционных усилителях, коэффициент усиления которых в 100–1000 раз выше, чем коэффициент усиления, который фактически требуется.Эти высокие коэффициенты усиления затем снижаются с помощью схемы обратной связи, чтобы уменьшить вариацию и искажения сигнала.
Однако одна проблема с использованием такого типа контроллера обратной связи с высоким коэффициентом усиления заключается в том, что он может вызвать паразитный резонанс и другие типы нестабильности работы, требующие установки регулятора фазы для обеспечения достаточного запаса по фазе и стабилизации работы схемы.
Что такое оптопара и как она работает?
Если вы когда-либо разбирали зарядное устройство для телефона или импульсный блок питания, вы найдете несколько крошечных черных корпусов микросхем с необычным количеством контактов, в основном четыре или шесть, как в SMD-исполнении, так и в вариантах с сквозным отверстием.Что еще более необычно, так это то, что эти части обычно находятся над изоляционными пазами и зазорами, что делает их назначение более загадочным.
Эти компоненты называются оптопарами , или , оптоизоляторами или просто оптосами , и они выполняют важную функцию передачи сигналов между изолированными секциями схемы. Они используют свет для передачи сигналов между цепями.
Что такое оптопара и как она работает
Как мы уже узнали о транзисторах, идеальный транзистор не позволит току проходить через него, если базовый вывод не срабатывает.Но если вам аккуратно удастся отсоединить обычный дискретный транзистор и подать напряжение на выводы коллектора и эмиттера, вы заметите, что крошечный ток все еще течет! Это из-за света, падающего на основание открытого кристалла транзистора.
Это означает, что фотоны света действительно способны выбивать дырки и электроны в легированном полупроводниковом материале. Это приводит к некоторым очень интересным возможностям, первая из которых — это фототранзистор, в основном двухконтактный транзистор без вывода базы.Они очень похожи на диоды и поставляются в прозрачных корпусах. Здесь свет действует как базовый ток. Фотодиоды работают очень похожим образом; они меняют свое «сопротивление» в зависимости от количества падающего на них света.
Фотодиоды и транзисторы используются в таких устройствах, как датчики приближения, которые обнаруживают небольшие изменения напряжения или тока на этих устройствах в зависимости от количества падающего на них света.
Если мы можем поместить светодиод и фототранзистор в закрытую трубку, свет, исходящий от светодиода (конечно, при условии, что он правильно управляется), загорится «основание» фототранзистора и сделает его проводящим.Это оставляет нам устройство, которое может управлять переключающим элементом без какого-либо физического контакта! Такое устройство уже существует, и, как вы уже догадались, это оптрон !
Входы и выходы оптопары
Оптопары бывают разных форм, размеров и скоростей (это будет обсуждаться позже), но большинство из них имеют одни и те же основные характеристики — диодный вход и выход переключающего элемента.
Диод очень похож на любой другой светодиод, за исключением того факта, что вы не можете видеть свет (во-первых, потому что он находится в герметичной пластиковой упаковке, а во-вторых, потому что он в основном инфракрасный). Он требует, чтобы его приводили в действие те же токи и напряжения, которые требуются для обычных светодиодов, а именно несколько вольт и несколько десятков миллиампер.
Приведенная ниже анимация поможет вам понять, как работает. Используемая здесь оптопара — это микросхема фототранзистора MCT2E. Как вы можете видеть, логический вход светодиода управляет выходом транзистора.В этой ИС сторона выхода состоит из транзистора, но так должно быть в каждом случае.
Сторона выхода фототранзистора немного интереснее, потому что обычно она состоит из транзистора типа NPN, как показано выше, но иногда это также может быть SCR или TRIAC, а иногда даже полностью совместимый с логикой выход!
Следует помнить одну важную вещь: поскольку база в основном управляется светом, «базовый ток» очень, очень низкий — вы не можете ожидать полного насыщения от этих типов транзисторов, а поскольку базовый ток очень мал, время подъема и спада часто очень медленное, как я узнал на собственном горьком опыте.Конечно, доступны оптические устройства с логическим выходом (и согласованием скоростей), но для выходной стороны требуется отдельный источник питания.
Хорошая особенность опто-выхода заключается в том, что, поскольку он полностью гальванически изолирован от входной стороны, он может плавать при любом напряжении — или, другими словами, он действует как плавающий «переключатель», хотя и не очень хороший.
Например, вы можете разместить транзисторный выход на стороне низкого уровня и добавить подтяжку к коллектору, поэтому, когда диод загорается, транзистор проводит и подтягивает коллектор до низкого уровня.Вы также можете разместить транзистор на стороне высокого напряжения с резистором между эмиттером и землей выхода, чтобы, когда на входе высокий уровень, на выходе эмиттера тоже был высокий уровень.
Но будьте осторожны, большинство обычных оптопаров имеют высокое напряжение насыщения из-за ограниченного базового привода, иногда порядка 1 Вольт!
Из-за своей низкой скорости обычные оптопары используются как часть контуров обратной связи источника питания с дополнительным бонусом в виде полной изоляции.
Как вы уже догадались, optos не может делать то, что могут делать трансформаторы — обеспечивать питание.В то время как трансформатор может питать изолированные схемы, с помощью современных технологий мы не можем эффективно передавать энергию через свет.
Но оптопары делают то, что не могут сделать трансформаторы, — очень эффективно и очень быстро передавать сигналы между цепями, без необходимости использования отдельных драйверов. Мы можем подключить вход оптического сигнала непосредственно к выводу микроконтроллера, но мы не сможем сделать то же самое для сигнального трансформатора!
Практические советы по оптопарам
Для всех «медленных» целей, i.е. Сигналы порядка нескольких килогерц, я рекомендую использовать PC817, очень распространенный одиночный оптический сигнал, который поставляется в корпусе DIP4 или SMD. Подайте на вход не менее 5 мА.
Для более высоких скоростей я рекомендую TLP117, который имеет инвертированный логический выход, но требует питания 5 В на выходной стороне. Я получил 10 микросекундных импульсов из этого, что должно рассказать вам кое-что о его скорости!
Каким бы незначительным это ни казалось, если вы прочтете всю таблицу, вам лучше на самом деле это сделать.
Прочие устройства с оптической связью
Основываясь на той же технологии, мы находим ряд полезных устройств — опто-тиристоры , и опто-тиристоры , . Опто-TRIAC более известны как твердотельные реле или SSL. Они в основном действуют как обычные реле, но используют свет для срабатывания TRIAC с горячей стороны, который потребляет намного меньше тока, чем катушка реле.
Одним из недостатков является то, что полупроводниковые устройства имеют тенденцию закорачиваться при отказе, в то время как электромеханические реле не размыкаются.Об этом следует помнить при работе с критически важными приложениями.
Опто-тиристоры , с другой стороны, обычно используются для запуска тиристоров большей мощности по изолированному сигналу.
Руководство по выбору оптопар
: типы, характеристики, применение
Оптопары — это электронные компоненты, в которых используются световые волны для обеспечения гальванической развязки при передаче электрического сигнала. Иногда их называют оптоизоляторами, оптопарами или оптическими изоляторами.
Основы оптопары
Строительство
Все оптопары состоят из двух элементов: источника света — почти всегда светодиода (LED) — и фотодатчика — обычно фоторезистора, фотодиода, фототранзистора, кремниевого выпрямителя (SCR) или симистора. Оба эти элемента разделены диэлектрическим (непроводящим) барьером. Когда на светодиод подается входной ток, он включается и излучает инфракрасный свет; Затем фотодатчик обнаруживает этот свет и пропускает ток через выходную сторону схемы.И наоборот, когда светодиод не горит, через фотодатчик не будет протекать ток. С помощью этого метода два протекающих тока электрически изолированы.
На изображении ниже описаны основные операции оптопары. На сером изображении слева ток не подается через контакт 1, светодиод не горит, а в цепи, подключенной к контактам 4 и 5, ток не протекает. Когда питание подается на входную цепь, светодиод включается, датчик определяет свет, замыкает переключатель и инициирует прохождение тока в выходной цепи, как показано на изображении справа.
Работа оптопары. Изображение предоставлено: REUK
В качестве полупроводниковых устройств оптопары могут быть изготовлены в одном из нескольких различных форм-факторов.
- Поверхностный монтаж (SMT) Устройства монтируются на верхнюю часть печатной платы с помощью коротких проводов или плоских клемм. Эти изделия, как правило, небольшие, легкие и позволяют производить быструю и недорогую автоматизированную сборку.
- Устройства со сквозным отверстием (THT) оснащены длинными выводами, которые продеваются через отверстия на печатной плате и припаяны к другой стороне.В то время как THT постепенно вытесняется производством SMT из-за необходимости в больших компонентах и трудоемкой сборке, устройства со сквозным отверстием по-прежнему способны к прочному механическому соединению.
- Компоненты с выводами присоединяются к печатным платам с помощью длинных выводов.
(слева направо) Пакет THT (DIP), пакет SMT и корпус с выводами (TO-78).
Изображение предоставлено: Solarbotics | RoboticLab | Digikey
Приложения
Оптопары
могут использоваться для различных целей и приложений, в том числе:
- Переключение входа и выхода, особенно в среде с электронным шумом
- Импульсные источники питания
- Изоляция сигнала
- Регулятор мощности
- Связь с ПК / модемом
- Управляющие транзисторы и симисторы
Хотя подавляющее большинство оптопар выполняет относительно простое управление цепями включения-выключения, последние разработки позволили более «интеллектуальным» устройствам передавать кодированные сигналы путем изменения яркости источника света.
Оптопары
похожи на реле и развязывающие трансформаторы и часто выполняют связанные функции, но имеют несколько отличий и преимуществ. Оптопары обычно:
- меньше и легче реле
- имеет гораздо более быстрое переключение
- требует гораздо меньшего тока переключения для активации
- обладают минимальной усталостью благодаря своей твердотельной конструкции, особенно по сравнению с электромеханическими реле
По причинам, перечисленным выше, оптопары очень распространены в цифровых или микроэлектронных устройствах, которые требуют быстрого переключения и используют передачи низкого напряжения.
Следующее видео объясняет основную конструкцию оптопар, их основное применение и их сходство с реле.
Видео предоставлено: myvideoisonutube / CC BY-SA 4.0
Типы
Типы оптопар
определяются типом используемого детектора, как описано ниже. Некоторые типы имеют разные характеристики и поэтому лучше подходят для конкретных приложений. Оптопары часто называют их «типом выхода»; например, фототранзисторное устройство можно назвать оптопарой с выходом на фототранзистор.«
Фотоэлемент
Оптопары с фотоэлементами
, также известные как резистивные оптоизоляторы, представляют собой самую раннюю конструкцию оптопар. В качестве источника света они используют лампу накаливания, неоновую лампу или светодиод, а в качестве детектора — фоторезистор из сульфида кадмия (CS) или селенида кадмия (CSe). Фотоэлементы в значительной степени устарели из-за их очень медленного переключения (от 5 до 200 миллисекунд) и в период своего расцвета использовались в телефонных сетях, копировальных аппаратах и приложениях для промышленной автоматизации.Однако они уникальны среди оптопар в том, что они неполяризованы и поэтому подходят как для работы на переменном, так и на постоянном токе. Оптопары с фотоэлементами по-прежнему производятся в небольших количествах для использования в качестве дешевых регуляторов усиления или компрессоров в нишевых продуктах, таких как гитарные усилители и электронные музыкальные инструменты. Резистивные светодиодные оптоизоляторы иногда называют Vactrols .
Фотодиод
В фотодиодных оптопарах
в качестве источников света используются светодиоды, а в качестве детекторов — фотодиоды.Они способны к чрезвычайно быстрому переключению, но их коэффициент передачи тока — соотношение между выходным током и входным током, вызвавшим его, — обычно очень низкое, часто менее 1%. Фотодиодные оптопары могут быть оснащены встроенными драйверами светодиодов и буферными усилителями для достижения чрезвычайно быстрого переключения, которое компенсирует задержки на выходе светодиода; эти устройства известны как оптопары с полной логикой.
Фотодиодный оптрон в простой схеме. Изображение предоставлено: DAENotes
Фототранзистор
Как и фотодиодные устройства, оптопары на фототранзисторах оснащены светодиодными источниками света.Их выходные цепи управляются биполярным фототранзистором или фототранзистором Дарлингтона. Оба типа фототранзисторов способны проводить ток только в одном направлении, что делает их пригодными только для использования постоянного тока, а также для использования в контроллерах и приложениях для передачи сигналов. Транзисторные оптопары медленнее фотодиодных, но намного быстрее фотоэлементов. В зависимости от смещения отдельного устройства транзисторные устройства могут работать в широком диапазоне коэффициентов передачи тока, и оба типа хорошо подходят для «повышения» входного тока.С этой целью биполярные транзисторные оптопары обычно могут выдавать до 120% своего входного тока, в то время как устройства Дарлингтона могут выдавать до 600%.
Две схемы ниже представляют оптопару на фототранзисторе (слева) и транзисторе Дарлингтона (справа). Обратите внимание, что устройство Дарлингтона состоит из двух установленных друг на друга биполярных транзисторов в конфигурации Дарлингтона.
Изображение предоставлено: Power Topics | Ebay
SCR и симистор
Два других распространенных выхода оптопары — это тиристор и симистор.Оба типа имеют высокие коэффициенты передачи тока и обычно используются для управления цепями переменного тока с более высоким напряжением.
Оптоизолированные устройства SCR используют кремниевый выпрямитель (SCR) в качестве детектора. Эти оптопары обычно используются в качестве повышающих устройств и имеют скорость переключения от низкой до средней.
Схема оптопары SCR. Изображение предоставлено: teacher.en
Оптоизолированный симистор Устройства имеют симисторный выход (триод для переменного тока).Симисторы похожи по конструкции на тиристоры, но в то время как тиристоры позволяют току течь только в одном направлении, симисторы допускают прохождение тока в обоих направлениях. Как и оптоизолированные тиристоры, симисторные оптопары обычно имеют очень высокие коэффициенты передачи тока.
Симисторный оптрон, используемый в базовой цепи. Изображение предоставлено: roysoala
Технические характеристики и параметры выбора
Характеристики ввода / вывода
Оптопары
часто отличаются конфигурациями входных и выходных цепей.Например, входные характеристики состоят из информации об источнике света, такой как прямой ток светодиода, рассеиваемая мощность или длина волны. Спецификации вывода часто включают аналогичную информацию о детекторе устройства. Одна спецификация, общая для обеих цепей, — это напряжение изоляции.
Изоляционное напряжение иногда называют входным и выходным изолирующим напряжением , и это одна из наиболее важных спецификаций оптопары. Напряжение развязки представляет собой максимальное напряжение, которое может быть приложено как к входным, так и к выходным цепям при сохранении гальванической развязки.
Коэффициент передачи тока
Коэффициент передачи тока, или CTR, описывает соотношение между выходным током и входным током, который его вызвал. Это минимальное значение, выраженное в процентах от входного тока. Типичные характеристики CTR составляют около 10-50%; эти устройства работают аналогично понижающим изолирующим трансформаторам. Оптопары, предназначенные для повышения тока в выходной цепи, часто с выходами фотодарлингтона, могут достигать 600% и более. Коэффициент передачи тока достигает максимального значения, когда входной источник света самый яркий.Знание CTR устройства необходимо для его настройки, чтобы эффективно контролировать выходной ток.
Стандарты
Оптопары
могут быть спроектированы и изготовлены в соответствии с одним или несколькими стандартами. В частности, семейство стандартов SMD 5962 включает в себя различные конструкции оптопар, которые соответствуют MIL PRF 38534 (Общие спецификации для микросхем).
Список литературы
Учебные пособия по электронике — Оптрон
Tronix Stuff — Знакомство с оптопарой
Изображение предоставлено:
Avago | REUK
Как работает оптопара | ОРЕЛ
Необходимо защитить чувствительные низковольтные компоненты и изолировать цепи на вашей печатной плате? Оптопара может сделать эту работу.Да будет свет! Это устройство позволяет передавать электрический сигнал между двумя изолированными цепями, состоящими из двух частей: светодиода, излучающего инфракрасный свет, и светочувствительного устройства, которое обнаруживает свет от светодиода. Обе эти части содержатся в традиционном черном ящике с парой контактов для подключения. С первого взгляда легко перепутать оптопару с интегральной схемой (ИС).
Эта симисторная оптопара выглядит как ИС. (Источник изображения)
Как это работает
Сначала на оптопару подается ток
А, который заставляет инфракрасный светодиод излучать свет, пропорциональный току.Когда свет попадает на светочувствительное устройство, он включается и начинает проводить ток, как любой обычный транзистор.
Как работает оптрон. (Источник изображения)
Светочувствительное устройство по умолчанию обычно не подсоединяется, чтобы обеспечить максимальную чувствительность к инфракрасному свету. Его также можно подключить к земле с помощью внешнего резистора для большей степени контроля чувствительности переключения.
Оптопара эффективно изолирует выходную и входную цепи.(Источник изображения)
Это устройство в основном работает как переключатель, соединяющий две изолированные цепи на вашей печатной плате. Когда ток перестает течь через светодиод, светочувствительное устройство также перестает проводить и отключается. Все это переключение происходит через пустоту из стекла, пластика или воздуха без каких-либо электрических частей между светодиодом или светочувствительным устройством. Все дело в свете.
Преимущества и типы
Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения питания и т. Д.тогда вам понадобится способ защиты низковольтных устройств. При правильном использовании оптопара может эффективно:
- Удалить электрические помехи из сигналов
- Изолируйте низковольтные устройства от высоковольтных цепей
- Позволяет использовать небольшие цифровые сигналы для управления более высокими напряжениями переменного тока
Оптопары бывают четырех конфигураций. Каждая конфигурация использует один и тот же инфракрасный светодиод с другим светочувствительным устройством. К ним относятся:
Фототранзистор и Photo-Darlington , которые обычно используются в цепях постоянного тока, и Photo-SCR и Photo-TRIAC , которые используются для управления цепями переменного тока.
Четыре типа оптопар. (Источник изображения)
Если вы любите приключения, вы даже можете сделать самодельную оптопару с некоторыми запасными частями. Просто совместите светодиод и фототранзистор внутри светоотражающей пластиковой трубки.
Самодельная оптопара, состоящая всего из трех простых частей. (Источник изображения)
Типичные приложения
Оптопары
могут использоваться отдельно в качестве переключающего устройства или использоваться с другими электронными устройствами для обеспечения изоляции между цепями низкого и высокого напряжения.Обычно эти устройства используются для:
- Микропроцессорное переключение входов / выходов
- Контроль мощности постоянного и переменного тока
- Защита коммуникационного оборудования
- Регламент электропитания
В этих приложениях вы встретите различные конфигурации. Некоторые примеры включают:
Оптранзисторный переключатель постоянного тока
Эта конфигурация обнаруживает сигналы постоянного тока, а также позволяет управлять оборудованием с питанием от переменного тока. MOC3020 идеально подходит для управления подключением к сети или подачи импульса затвора на другой фото-симистор с токоограничивающим резистором.
(Источник изображения)
Симисторный оптрон
Эта конфигурация позволит вам управлять нагрузками с питанием от переменного тока, такими как двигатели и лампы. Он также способен проводить обе половины цикла переменного тока с обнаружением перехода через ноль. Это позволяет нагрузке получать полную мощность без значительных скачков тока при переключении индуктивных нагрузок.
(Источник изображения)
Рекомендации по компоновке печатной платы
Прежде чем добавлять оптопару в компоновку печатной платы, примите во внимание следующие три правила:
- Держите заземляющие соединения оптопары отдельно
Стандартная оптопара включает в себя два контакта заземления, один для светодиода, а другой — для светочувствительного устройства.Соединение обоих этих заземлений вместе откроет вашу чувствительную схему для любого шума от внешнего заземления. Чтобы избежать этого, всегда создавайте две точки подключения: одну для контактов внешнего заземления, а другую — для входных заземляющих проводов.
- Выберите правильное значение резистора ограничения тока
Выбор резистора ограничения тока, который работает при минимальном значении оптопары, приведет к нестабильному поведению. Также можно выбрать резистор, обеспечивающий слишком большой ток, при котором светодиод лопнет.При выборе значения для резистора обязательно найдите значение минимального прямого тока из таблицы коэффициента передачи тока в таблице данных оптопары. У Vishay есть отличное руководство по чтению таблицы данных оптопары здесь.
- Знайте, какой тип оптопары вам нужен
Не все оптопары созданы равными, и вам нужно будет выбрать правильный тип для вашего приложения. Например, опто-симистор используется, если вам нужно управлять нагрузкой переменного тока.Opto-Darlington предназначены только для малых входных токов. Если все, что вам нужно, это стандартная изоляция входа, то обычная оптопара PC817 справится с этой задачей. Эту статью от Nuts and Volts определенно стоит прочитать, чтобы понять типы и различия оптопар.
Библиотеки оптопар в EAGLE
Управляемые онлайн-библиотеки Autodesk EAGLE включают целую категорию оптопар для использования в вашем следующем проекте. Это лучше, чем создавать свои собственные пакеты и символы с нуля! Чтобы использовать эту библиотеку, убедитесь, что optocoupler.lbr активируется в панели управления Autodesk EAGLE, как показано ниже. Если это так, то в следующий раз, когда вам понадобится добавить компонент, у вас будет доступ ко всем этим устройствам.
Готовы начать изоляцию цепей и защиту низковольтных устройств? Загрузите Autodesk EAGLE бесплатно сегодня, чтобы начать использовать прилагаемые библиотеки оптопары!
.