Ртуть, электропроводность — Справочник химика 21
Простые вещества по свойствам составляющих их элементов делятся на металлы и неметаллы. Металлы имеют ряд общих свойств. Это — металлический блеск, высокая теплопроводность и электропроводность. Бее металлы, кроме ртути, при нормальных условиях (температура 0°С, давление 1 атм.) являются твердыми веществами, прочными и пластичными. Металлы обладают более высокими восстановительными свойствами, чем неметаллы. Подробнее о металлах и неметаллах разговор пойдет в главе 2 и в главе 7, В приведенной на форзаце Периодической системе элементов разными цветами выделены типичные металлы и неметаллы. [c.10]
Наиболее изученный из всех четырех элементов — лантан — проводит электрический ток почти вдвое лучше ртути. Электропроводность иттрия и скандия немного ниже. [c.228]
Способность тел проводить электричество называется их электропроводностью. Если принять электропроводность ртути при 0° С равной 1, то для других тел она выразится следующим образом [c.55]
Здесь и далее электропроводность ртути принята за единицу. [c.277]
Электропроводность расплавленных солей, как правило, с температурой увеличивается (исключение составляют соли ртути, индия и некоторые другие). Особенно быстро увеличивается электропроводность при температурах, незначительно превышающих температуры плавления. [c.452]
Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода). По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники —серебро и медь, затем золото, алюминий, железо и худшие —свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. [c.297]
Конвективный ток зарядов внутренней обкладки замыкается омическим током, который течет внутра капли ртути. Электропроводность ртути велика по сравнению с электропроводностью раствора, поэтому возникающим падением потенциала можно пренебречь. Это условие [c.500]
Существенные сведения относительно природы химической связи в металлах можно получить на основании двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электропроводностью и теплопроводностью, во-вторых, в обычных условиях являются кристаллическими веществами (за исключением ртути), структуры которых характеризуются высокими координационными числами. [c.104]
Ка —> Ка+ + е НгО + е —> ОН + 1/2Н2 В результате разложения образуются едкий натр и водород. Вследствие высокого перенапряжения водорода на ртути процесс протекает очень медленно. Для ускорения процесса разложения амальгаму натрия необходимо ввести в контакт с металлом или другим электропроводным материалом, имеющим низкое перенапряжение водорода. Металл и амальгама образуют короткозамкнутый элемент, при работе которого водород будет выделяться на металле, а натрий переходить в раствор. [c.162]
Электропроводность расплавленной ионной соли обычно на один-два порядка превышает электропроводность водного раствора того же электролита. Так, например, удельная электропроводность расплава КС1 при 800°С равна 24,2 См/м, тогда как удельная электропроводность водного раствора хлорида калия Проводимость расплавов остается, однако, на 3—4 порядка ниже проводимости жидких металлов, например ртути. Для сравнения электропроводности различных расплавленных солей, как и водных растворов, используют эквивалентную электропроводность. Однако при рассмотрении расплавов возникает проблема, связанная с сильной зависимостью Л от температуры и с необходимостью выбора соответствующей температуры сравнения, тем более что температуры плавления разных веществ существенно отличны. Особенно резкое изменение электропроводности происходит вблизи температуры плавления, так как при плавлении разрушается (диссоциирует) ионная решетка. Обычно сравнивают величины Л при абсолютных температурах, превышающих на 10% абсолютную температуру плавления. При этом, по-видимому, наступает практически полная диссоциация кристаллической решетки. [c.90]
Здесь и далее условно за единицу электропроводности принята электропроводность ртути. [c.372]
Лантаноиды ковки, имеют относительно невысокую твердость, по электропроводности сходны с ртутью. [c.551]
Металлические решетки образуют простые вещества большинства элементов периодической системы — металлы. По прочности. металлические решетки находятся между атомными и молекулярными кристаллическими решетками. Это связано с тем, что металлической связи присущи и характерные черты ковалентной связи, и отдельные черты дальнодействующей связи. Металлические решетки бывают и малопрочные, например, ртуть — жидкая. Металлам свойственны непрозрачность, характерный металлический блеск, хорошая тепло- и электропроводность и другие характерные свойства. Упрощенно металлическая решетка представляется в виде положительно заряженных ионов, располагающихся в узлах ее, и электронов, двигающихся между ними. Атомы металлов, с характерным для них дефицитом валентных электронов, должны иметь как можно больше соседних атомов, чтобы этот дефицит компенсировать за счет электронов соседей. Поэтому координационное число здесь достигает больших значений (8—12). [c.161]
По физическим свойствам все металлы — твердые вещества (кроме ртути, которая при обычных условиях жидкая), они отличаются от неметаллов особым видом связи (металлическая связь). Валентные электроны слабо связаны с конкретным атомом и внутри каждого металла существует так называемый электронный газ. Поэтому все металлы обладают высокой электропроводностью (т. е. они — проводники в отличие от неметаллов-диэлектриков), особенно медь, серебро, золото, ртуть и алюминий высока и теплопроводность металлов. Отличительным свойством многих металлов является их пластичность (ковкость), вследствие чего они могут быть прокатаны в тонкие листы (фольгу) и вытянуты в проволоку (олово, алюминий и др.), однако встречаются и достаточно хрупкие металлы (цинк, сурьма, висмут). [c.157]
Измерение электропроводности растворов уксуснокислых солей ртути, меди и других тяжелых металлов показывает, что такие соли очень мало дис
Ртуть: свойства, сфера применения, опасности для здоровья и экологии
Кроме того, ее очень легко выделить при обжиге из основного минерала – сульфида (киновари). Пары ртути легко конденсируются в блестящую, как серебро, жидкость. Ее плотность настолько велика (13,6 г/куб. см), что ведро с ртутью обычный человек даже не оторвет от пола.
Ртуть широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и другие соединения), в качестве пигмента (киноварь), в сельском хозяйстве в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами).
В домашних условиях ртуть может оказаться в дверном звонке, лампах дневного света, медицинском термометре.
Металлическая ртуть высокотоксична для любых форм жизни. Основную опасность представляют пары ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании ртуть попадает в кровь. В организме ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезёнке, ткани мозга и др.
Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма ртуть выводится через почки, кишечник, потовые железы и др.
Острые отравления ртутью и ее парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. Характерный признак отравления – появление по краю десен каймы сине-черного цвета; поражение десен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту.
При отравлениях органическими соединениями ртути (диэтилмеркурфосфатом, диэтил-ртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефало-полиневрит) и сердечно-сосудистой систем, желудка, печени, почек.
Основная мера предосторожности при работе с ртутью и ее соединениями – исключение попадания ртути в организм через дыхательные пути или поверхность кожи.
Пролитую в помещении ртуть надо собирать самым тщательным образом. Особенно много паров образуется в том случае, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например, между плитками паркета. Все эти капельки необходимо собрать.
Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же промытой азотной кислотой медной проволочкой. А те места, где ртуть еще могла бы задержаться, заливают 20%-ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути – тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была пролита ртуть.
Экологические последствия заражения парами ртути проявляются, прежде всего, в водной среде – подавляется жизнедеятельность одноклеточных морских водорослей и рыб, нарушается фотосинтез, ассимилируются нитраты, фосфаты, соединения аммония и т. д. Пары ртути фитотоксичны, ускоряют старение растений.
Электропроводность — ртуть — Большая Энциклопедия Нефти и Газа, статья, страница 2
Электропроводность — ртуть
Cтраница 2
В отличие от алмаза графит является хорошим проводником тепла и электрического тока, сравнимым с металлами. Монокристаллы графита имеют электропроводность, вдвое превышающую электропроводность ртути.
[16]
Литий — весьма пластичный металл с очень высоким значением удлинения, легко обрабатывается прокаткой, волочением, ковкой, штамповкой и вытяжкой. Удельная электропроводность лития составляет приблизительно Vs электропроводности серебра и в 11 раз выше электропроводности ртути.
[17]
В кристаллическом состоянии кремний хорошо проводит тепло. Его электропроводность составляет 0 007 ( для обычного) — 0 000001 ( для особо чистого) от электропроводности ртути, причем при нагревании она не понижается ( как то характерно для металлов), а повышается. Повышается она и с увеличением давления. Теплота плавления кремния равна 11, теплота атомизации-108 ккал / г-атом. Резко ( в 29 раз) возрастает при плавлении и электропроводность кремния.
[18]
В кристаллическом состоянии кремний хорошо проводит тепло. Его электропроводность составляет 0 007 ( для обычного) — 0 000001 ( для особо чистого) от электропроводности ртути, причем при нагревании она не понижается ( как то характерно для металлов), а повышается. Повышается она и с увеличением давления, а при 120 тыс. ат кремний приобретает свойства металла. Теплота плавления кремния равна 11, теплота атомизации-108 ккал / г-атом. Резко ( в 20 раз) возрастает при плавлении и электропроводность кремния.
[19]
Яков Ильич стремился развить в своих учениках способность критически относиться к теориям, в том числе и общепринятым, вошедшим в учебники. Хорошо помню его замечания в адрес зонной теории металлов, в том числе и замечание о том, что электропроводность ртути меняется всего на 30 % при переходе из твердого состояния в жидкое, где никаких зон нет. Любую теорию Яков Ильич склонен был считать скорее карикатурой, чем портретом действительности.
[20]
Ртуть представляет собой серебристо-белый жидкий металл. Удельная электропроводность ртути при 0 С равна 58 % электропроводности серебра. Электропроводность ртути является стандартной единицей сопротивления — столбик ртути сечением в 1 мм2 и длиной в 106 3 — см. оказывает сопротивление в 1 ом. Молекулы ртути в парах моноатомны.
[21]
Ртуть, как и цезий, обладает низкой критической температурой. Изохоры а приведены на рис. 2.12. Для этого плотность была определена экстраполяцией экспериментальных р-р — Т — данных, полученных при более высоких плотностях. На рис. 2.12 видно, что электропроводность ртути при постоянной плотности растет с температурой, если плотность не достигает критической р рс. С увеличением плотности наклон кривых уменьшается, указывая на то, что уменьшается энергетическая щель АЕ.
[23]
К тому же электропроводность нового материала близка к электропроводности ртути. Это дало основания говорить о том, что получен полимер с металлическими свойствами. Правда, здесь, видимо, уместно напомнить, что ртуть проводит электрический ток хуже всех металлов.
[24]
Еще в конце прошлого столетия изобретательская мысль часто обращалась к различным вариантам электролизеров с вертикальным катодом. В этом случае не возникает опасности оголения стальной основы катода и интенсивного выделения водорода. Однако электролизеры со струйчатыми катодами имею
Электропроводность — ртуть — Большая Энциклопедия Нефти и Газа, статья, страница 1
Электропроводность — ртуть
Cтраница 1
Электропроводность ртути достаточно мала.
[1]
Изотерма электропроводности ртути, представленная на рис. 4.4, дает ясное представление о характере перехода диэлектрик-металл. Область перехода растянута по плотности на порядок. Это указывает на то, что первый этап металлизации связан с наличием в плазме даль-нодействующих сил, проявляющихся еще при умеренных плотностях.
[2]
Результаты измерений электропроводности ртути в критической области [7,8] отличаются на два порядка.
[3]
Здесь и далее электропроводность ртути принята за единицу.
[4]
Здесь и далее условно за единицу электропроводности принята электропроводность ртути.
[5]
Электропроводность этих металлов, как правило, близка к электропроводности ртути. Интересным исключением является Yb, электропроводность которого примерно в 3 раза выше, чем других лантанидов.
[7]
Электропроводность этих металлов, как правило, близка к электропроводности ртути. Интересным исключением является Yb, электропроводность которого примерно в 3 раза выше, чем других лантанидов.
[9]
Электропроводность тория примерно в 5 раз, а урана в 3 раза выше электропроводности ртути.
[10]
Двуокись свинца имеет электронную проводимость, таковая составляет для плотной двуокиси величину, близкую к электропроводности ртути и висмута; на двуокиси свинца поэтому возможен процесс разряда и выделения кислорода 4) — главного анодного продукта, образующегося на свинце в сернокислом растворе. Сама защитная пленка двуокиси по мере электро-лиза постепенно осыпается, разрыхляясь выделяющимся кислородом, и это ведет к разрушению свинцового анода.
[11]
Благодаря делокализации электронов в слоях графита его электропроводность и теплопроводность велики: значение первой составляет 0 1 электропроводности ртути, а значение второй в 3 раза превышает теплопроводность ртути. Проводимость кристаллов графита вдоль слоев в 100 раз выше, чем в перпендикулярном направлении.
[12]
Самым замечательным свойством этих растворов является их высокая электропроводность, достиганЛцая в насыщенном растворе значений такого же порядка, как электропроводность ртути.
[13]
Чистые нефтяные продукты, в том числе и масла, обладают ничтожной электропроводностью порядка 10 — 6 — 10 — 18, если принять электропроводность ртути при 0 С равной единице. С повышением температуры электропроводность нефтепродуктов сильно возрастает.
[14]
Чрезвычайно много исследований посвящено определению электропроводности ртути в зависимости от температуры.
[15]
Страницы:
1
2
Ртуть — Википедия
Внешний вид простого вещества | |
---|---|
Свойства атома | |
Название, символ, номер | Ртуть / Hydrargyrum (Hg), 80 |
Атомная масса (молярная масса) | 200,592(3)[1] а. е. м. (г/моль) |
Электронная конфигурация | [Xe] 4f14 5d10 6s2 |
Радиус атома | 157 пм |
Химические свойства | |
Ковалентный радиус | 149 пм |
Радиус иона | (+2e) 110 (+1e) 127 пм |
Электроотрицательность | 2,00 (шкала Полинга) |
Электродный потенциал | Hg←Hg2+ 0,854 В |
Степени окисления | +2, +1 |
Энергия ионизации (первый электрон) | 1 006,0 (10,43) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 13,546 (20 °C) г/см³ |
Температура плавления | 234,32 K (-38,83 °C)[2] |
Температура кипения | 629,88 K (356,73 °C)[2] |
Уд. теплота плавления | 2,295 кДж/моль |
Уд. теплота испарения | 58,5 кДж/моль |
Молярная теплоёмкость | 27,98[3] Дж/(K·моль) |
Молярный объём | 14,81 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | ромбоэдрическая |
Параметры решётки | ahex=3,464 сhex=6,708 Å |
Отношение c/a | 1,94 |
Температура Дебая | 100,00 K |
Прочие характеристики | |
Теплопроводность | (300 K) 8,3 Вт/(м·К) |
Номер CAS | 7439-97-6 |
Эмиссионный спектр | |
80 | Ртуть |
4f145d106s2 |
Ртуть (Hg, от лат. Hydrargyrum) — элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть — переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты, контаминант. Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент — бром).
История
Астрономический символ планеты Меркурий
Ртуть известна с древних времён. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твёрдость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 году. Для представления элемента как у алхимиков, так и в настоящее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства в твёрдом состоянии: ковкость, электропроводность и др[4].
Происхождение названия
Русское название ртути происходит от праслав. *rьtǫtь, связанного с лит. rìsti «катиться»[5]. Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (от др.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).
Нахождение в природе
Ртуть — относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути — 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.
Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).
Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.
В обычных условиях киноварь и металлическая ртуть не растворимы в воде, но в присутствии некоторых веществ (Fe2(SO4)3, озон, пероксид водорода) растворимость в воде этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах щелочных металлов с образованием, например, комплекса HgS•nNa2S. Ртуть легко сорбируется глинами, гидроксидами железа и марганца, глинистыми сланцами и углями[6].
В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7. В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2. На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.
Месторождения
Ртуть считается редким металлом.
Одно из крупнейших в мире ртутных месторождений находится в Испании (Альмаден). Известны месторождения ртути на Кавказе (Дагестан, Армения), в Таджикистане, Словении, Киргизии (Хайдаркан — Айдаркен), Донбассе (Горловка, Никитовский ртутный комбинат).
В России находятся 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год), из них крупнейшие разведаны на Чукотке — Западно-Палянское и Тамватнейское.
В окружающей среде
Содержание ртути в ледниках за 270 лет
До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограммов на 1 кубический дециметр льда. Природные источники, такие, как вулканы, составляют примерно половину всех выбросов атмосферной ртути. Причиной появления остальной половины является деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля (главным образом в тепловых электростанциях) — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.
Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.
Изотопы
Природная ртуть состоит из смеси 7 стабильных изотопов: 196Hg (распространённость 0,155 %), 198Hg (10,04 %), 199Hg (16,94 %), 200Hg (23,14 %), 201Hg (13,17 %), 202Hg (29,74 %), 204Hg (6,82 %)[7]. Искусственным путём получены радиоактивные изотопы ртути с массовыми числами 171—210[8].
Получение
Ртуть получают обжигом киновари (сульфида ртути(II)) или металлотермическим методом[источник не указан 1712 дней]:
- HgS+O2⟶Hg+SO2↑{\displaystyle {\mathsf {HgS+O_{2}\longrightarrow Hg+SO_{2}\uparrow }}}
- HgS+Fe⟶FeS↓+Hg{\displaystyle {\mathsf {HgS+Fe\longrightarrow FeS\downarrow +Hg}}}
Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.
На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании[источник не указан 1712 дней]. В Новое время с ним стала конкурировать Идрия во владениях Габсбургов (современная Словения). Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г. ЮНЕСКО объявило промышленную инфраструктуру Альмадена и Идрии памятником Всемирного наследия человечества[9].
В надписях во дворце древнеперсидских царей Ахеменидов (VI—IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски[10].
Физические свойства
Металлическая ртуть
Переливание ртути из сосуда в сосуд
Ртуть — единственный металл, который находится в жидком состоянии при комнатной температуре. Температура плавления составляет 234,32 K (-38,83 °C)[2], кипит при 629,88 K (356,73 °C)[2], критическая точка — 1750 K (1477 °C), 152 МПа (1500 атм). Обладает свойствами диамагнетика. Образует со многими металлами жидкие и твёрдые сплавы — амальгамы. Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W, Co [11].
Плотность ртути при нормальных условиях — 13 546 кг/м3, при других температурах — в таблице[12]:
Температура в °С | Плотность (ρ), 103 кг/м3 | Температура в °С | Плотность (ρ), 103 кг/м3 |
0 | 13,5950 | 50 | 13,4725 |
5 | 13,5827 | 55 | 13,4601 |
10 | 13,5704 | 60 | 13,4480 |
15 | 13,5580 | 65 | 13,4358 |
20 | 13,5457 | 70 | 13,4237 |
25 | 13,5335 | 75 | 13,4116 |
30 | 13,5212 | 80 | 13,3995 |
35 | 13,5090 | 90 | 13,3753 |
40 | 13,4967 | 100 | 13,3514 |
45 | 13,4845 | 300 | 12,875 |
Химические свойства
Характерные степени окисления
Степень окисления | Оксид | Гидроксид | Характер | Примечания |
---|---|---|---|---|
+1 | Hg2O | <Hg2(OH)2 или Hg2O•H2O>* | Слабоосновный | Склонность к диспропорционированию |
+2 | HgO | <Hg(OH)2>** | Очень слабое основание, иногда — амфотерный |
- *Гидроксид не получен, существуют только соответствующие соли.
- **Гидроксид существует только в очень разбавленных (<10−4моль/л) растворах.
Для ртути характерны две степени окисления: +1 и +2. В степени окисления +1 ртуть представляет собой двухъядерный катион Hg22+ со связью металл-металл. Ртуть — один из немногих металлов, способных формировать такие катионы, и у ртути они — самые устойчивые.
В степени окисления +1 ртуть склонна к диспропорционированию. Оно протекает при нагревании:
- Hg22+→Hg+Hg2+{\displaystyle {\mathsf {Hg_{2}^{2+}\rightarrow Hg+Hg^{2+}}}}
подщелачивании:
- Hg22++2OH−→Hg+HgO+h3O{\displaystyle {\mathsf {Hg_{2}^{2+}+2OH^{-}\rightarrow Hg+HgO+H_{2}O}}}
добавлении лигандов, стабилизирующих степень окисления ртути +2.
Из-за диспропорционирования и гидролиза гидроксид ртути (I) получить не удаётся.
На холоде ртуть +2 и металлическая ртуть, наоборот, сопропорционируют. Поэтому, в частности, при реакции нитрата ртути (II) со ртутью получается нитрат ртути (I):
- Hg+Hg(NO3)2→Hg2(NO3)2{\displaystyle {\mathsf {Hg+Hg(NO_{3})_{2}\rightarrow Hg_{2}(NO_{3})_{2}}}}
В степени окисления +2 ртуть образует катионы Hg2+, которые очень легко гидролизуются. При этом гидроксид ртути Hg(OH)2 существует только в очень разбавленных (<10−4моль/л) растворах. В более концентрированных растворах он дегидратируется:
- Hg2++2OH−→HgO+h3O{\displaystyle {\mathsf {Hg^{2+}+2OH^{-}\rightarrow HgO+H_{2}O}}}
В очень концентрированной щёлочи оксид ртути частично растворяется с образованием гидроксокомплекса:
- HgO+OH−+h3O→[Hg(OH)3]−{\displaystyle {\mathsf {HgO+OH^{-}+H_{2}O\rightarrow [Hg(OH)_{3}]^{-}}}}
Ртуть в степени окисления +2 образует уникально прочные комплексы со многими лигандами, причём как жёсткими, так и мягкими по теории ЖМКО. С йодом (-1), серой (-2) и углеродом она образует очень прочные ковалентные связи. По устойчивости связей металл-углерод ртути нет равных среди других металлов, поэтому получено огромное количество ртутьорганических соединений.
Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d10 — электронной оболочки, что приводит к возможности существования соединений ртути(IV), но они крайне малоустойчивы, поэтому эту степень окисления скорее можно отнести к курьёзной, чем к характерной. В частности, при взаимодействии атомов ртути и смеси неона и фтора при температуре 4 К получен HgF4[14][15]. Однако более новые исследования не подтвердили его существование[16].
Свойства металлической ртути
Ртуть — малоактивный металл. Она не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке[17] с образованием тетрахлорортутной кислоты:
- 3Hg+2HNO3+12HCl→3h3[HgCl4]+2NO↑+4h3O{\displaystyle {\mathsf {3Hg+2HNO_{3}+12HCl\rightarrow 3H_{2}[HgCl_{4}]+2NO\uparrow +4H_{2}O}}}
и азотной кислоте:
- Hg+4HNO3→Hg(NO3)2+2NO2↑+2h3O{\displaystyle {\mathsf {Hg+4HNO_{3}\rightarrow Hg(NO_{3})_{2}+2NO_{2}\uparrow +2H_{2}O}}}
Также с трудом растворяется в серной кислоте при нагревании, с образованием сульфата ртути:
- Hg+2h3SO4→HgSO4+SO2↑+2h3O{\displaystyle {\mathsf {Hg+2H_{2}SO_{4}\rightarrow HgSO_{4}+SO_{2}\uparrow +2H_{2}O}}}
При растворении избытка ртути в азотной кислоте на холоде образуется нитрат диртути Hg2(NO3)2.
При нагревании до 300 °C ртуть вступает в реакцию с кислородом:
- 2Hg+O2→300∘C2HgO{\displaystyle {\mathsf {2Hg+O_{2}{\xrightarrow {300^{\circ }C}}2HgO}}}
При этом образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ.
- 2HgO→>340∘C2Hg+O2↑{\displaystyle {\mathsf {2HgO{\xrightarrow {>340^{\circ }C}}2Hg+O_{2}\uparrow }}}
Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.
При нагревании ртути с серой образуется сульфид ртути(II):
- Hg+S→t∘CHgS{\displaystyle {\mathsf {Hg+S{\xrightarrow {t^{\circ }C}}HgS}}}
Ртуть также реагирует с галогенами (причём на холоде — медленно).
Ртуть можно окислить также щелочным раствором перманганата калия:
- Hg+2KMnO4+3KOH→K[Hg(OH)3]+2K2MnO4{\displaystyle {\mathsf {Hg+2KMnO_{4}+3KOH\rightarrow K[Hg(OH)_{3}]+2K_{2}MnO_{4}}}}
и различными хлорсодержащими отбеливателями. Эти реакции используют для удаления металлической ртути.
Словенский город Идрия — крупнейший в Европе центр добычи ртути с XV века
Применение ртути и её соединений
Медицина
В связи с высокой токсичностью ртуть почти полностью вытеснена из медицинских препаратов. Её соединения (в частности, мертиолят) иногда используются в малых количествах как консервант для вакцин[18]. Сама ртуть сохраняется в ртутных медицинских термометрах (один медицинский термометр содержит до 2 г ртути).
Однако вплоть до 1970-х годов соединения ртути использовались в медицине очень активно[19]:
Известны случаи, когда при завороте кишок больному вливали в желудок стакан ртути. По мнению древних врачевателей, предлагавших такой метод лечения, ртуть благодаря своей тяжести и подвижности должна была пройти по кишечнику и под своим весом расправить его перекрутившиеся части[10].
Планета Меркурий (проявление ртути) в виде врача с лекарством. Миниатюра XV в.
Препараты ртути применяли с XVI в. (в СССР вплоть до 1963 года) для лечения сифилиса. Это было обусловлено тем, что бледная трепонема, вызывающая сифилис, обладает высокой чувствительностью к органическим и неорганическим соединениям, блокирующим сульфгидрильные группы тиоловых ферментов микроба — соединениям ртути, мышьяка, висмута и йода. Однако такое лечение было недостаточно эффективно и весьма токсично для организма больного, приводя к полному выпадению волос и высокому риску развития серьезных осложнений; причем возможности повышения дозы препаратов ртути или мышьяка при недостаточной противосифилитической активности стандартных доз ограничивались именно токсичностью для организма больного[20]. Также применялись методики общей меркуризации организма, при которой больной помещался в нагревающуюся емкость, куда подавались пары ртути. Данная методика, хотя и была относительно эффективна, но побочные эффекты и риск смертельного отравления ртутью привел к постепенному вытеснению ее из клинической практики.
Амальгаму серебра применяли в стоматологии в качестве материала зубных пломб до появления светоотверждаемых материалов.
Ртуть-203 (T1/2 = 53 сек) используется в радиофармакологии[источник не указан 1712 дней].
Техника
- Ртуть используется как рабочее тело в ртутных термометрах (особенно высокоточных), так как (а) обладает довольно широким диапазоном, в котором находится в жидком состоянии, (б) её коэффициент термического расширения почти не зависит от температуры и (в) обладает сравнительно малой теплоёмкостью. Сплав ртути с таллием используется для низкотемпературных термометров.
- Парами ртути заполняют люминесцентные лампы, поскольку пары светятся в тлеющем разряде. В спектре испускания паров ртути много ультрафиолетового света и, чтобы преобразовать его в видимый, стекло люминесцентных ламп изнутри покрывают люминофором. Без люминофора ртутные лампы являются источником жёсткого ультрафиолета (254 нм), в каковом качестве и используются для обеззараживания помещений. Такие лампы делают из кварцевого стекла, пропускающего ультрафиолет, поэтому они называются кварцевыми.
- Ртутные электрические вентили (игнитроны) в мощных выпрямительных устройствах, электроприводах, электросварочных устройствах, тяговых и выпрямительных подстанциях и т. п.[21] со средней силой тока в сотни ампер и выпрямленным напряжением до 5 кВ.
- Ртуть и сплавы на её основе используются в герметичных выключателях, включающихся при определённом положении.
- Ртуть используется в датчиках положения.
- В некоторых химических источниках тока (например, ртутно-цинковых), в эталонных источниках напряжения (Нормальный элемент Вестона).
- Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках[22].
- Ртуть ранее входила в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде. Сейчас запрещается использовать такого типа покрытия.
- Иодид ртути(I) используется как полупроводниковый детектор радиоактивного излучения[23].
- Фульминат ртути(II) («гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
- Бромид ртути(I) применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).
- Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.
- До середины XX века ртуть широко применялась в барометрах, манометрах и сфигмоманометрах (отсюда традиция измерять давление в миллиметрах ртутного столба).
- Низкое давление насыщенного пара определяет использование ртути в качестве вакуумного материала. Так, ртутные вакуумные насосы были основными источниками вакуума в XIX и начале XX веков.
- Ранее ртуть использовали для золочения поверхностей методом амальгамирования, однако в настоящее время от этого метода отказались из-за токсичности ртути.
- Соединения ртути использовались в шляпном производстве для выделки фетра.
Металлургия
- Металлическая ртуть применяется для получения целого ряда важнейших сплавов[каких?].
- Ранее различные амальгамы металлов, особенно золота и серебра, широко использовались в ювелирном деле, в производстве зеркал.
- Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей. Сейчас вместо ртутных катодов используют электролиз с диафрагмой.
- Ртуть используется для переработки вторичного алюминия (см. амальгамация)
- Ртуть хорошо смачивает золото, поэтому ей обрабатывают золотоносные глины для выделения из них этого металла. Эта технология распространена, в частности, в Амазонии.
Химическая промышленность
- Соли ртути использовали в качестве катализатора промышленного получения ацетальдегида из ацетилена (реакция Кучерова), однако в настоящее время ацетальдегид получают прямым каталитическим окислением этана или этена.
- Реактив Несслера используется для количественного определения аммиака.
- При производстве хлора и едких щелочей путем электролиза иногда применяется жидкий ртутный катод[24].
Сельское хозяйство
Высокотоксичные соединения ртути — каломель, сулему, мертиолят и другие — используют для протравливания семенного зерна и в качестве пестицидов.
Токсикология ртути
NFPA 704 для данного вещества (синее — опасность для здоровья, красное — огнеопасность, желтое — реакционноспособность)
Ртуть и все ее соединения ядовиты[25]. Воздействие ртути — даже в небольших количествах — может вызывать серьёзные проблемы со здоровьем и представляет угрозу для внутриутробного развития плода и развития ребёнка на ранних стадиях жизни.
Ртуть может оказывать токсическое воздействие на нервную, пищеварительную и иммунную системы, а также на легкие, почки, кожу и глаза.
ВОЗ рассматривает ртуть в качестве одного из десяти основных химических веществ или групп химических веществ, представляющих значительную проблему для общественного здравоохранения[26][27].
Наиболее ядовиты пары́ и растворимые соединения ртути. Сама металлическая ртуть менее опасна, однако она постепенно испаряется даже при комнатной температуре[28]. Пары могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, киноварь, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании — дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути, накапливающейся в рыбе. Ртуть — типичный представитель кумулятивных ядов.
Органические соединения ртути (диметилртуть и др.) в целом намного токсичнее, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма.
Гигиеническое нормирование концентраций ртути
Предельно допустимые уровни загрязнённости металлической ртутью и её парами[источник не указан 367 дней]:
- ПДК в населённых пунктах (среднесуточная) — 0,0003 мг/м³
- ПДК в жилых помещениях (среднесуточная) — 0,0003 мг/м³
- ПДК воздуха в рабочей зоне (макс. разовая) — 0,01 мг/м³
- ПДК воздуха в рабочей зоне (среднесменная) — 0,005 мг/м³
- ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) — 0,005 мг/л
- ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоёмов — 0,0005 мг/л
- ПДК рыбохозяйственных водоёмов — 0,00001 мг/л
- ПДК морских водоёмов — 0,0001 мг/л
Демеркуризация
Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы и хлорного железа FeCl3.
Запрет использования содержащей ртуть продукции
С 2020 года международная конвенция, названная в честь массового отравления ртутью и подписанная многими странами, запретит производство, экспорт и импорт нескольких различных видов ртутьсодержащих продуктов, применяемых в быту, в том числе электрических батарей, электрических выключателей и реле, некоторых видов компактных люминесцентных ламп (КЛЛ), люминесцентных ламп с холодным катодом или с внешним электродом, ртутных термометров и приборов измерения давления[29]. Конвенция вводит регулирование использования ртути и ограничивает ряд промышленных процессов и отраслей, в том числе горнодобывающую (особенно непромышленную добычу золота), производство цемента[29].
См. также
Примечания
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
- ↑ 1 2 3 4 Mercury: physical properties (англ.). WebElements. Проверено 17 августа 2013.
- ↑ Химическая энциклопедия: в 5 т. / Под ред. Н. С. Зефирова. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 278. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8.
- ↑ Первые шаги к открытию сверхпроводимости. К 250-летию открытия замерзания ртути
- ↑ Фасмер М. Этимологический словарь русского языка. — Прогресс. — М., 1964–1973. — Т. 3. — С. 509-510.
- ↑ Вольфсон Ф. И., Дружинин А. В. Главнейшие типы рудных месторождений. М., «Недра», 1975, 392 с.
- ↑ Juris Meija, Lu Yang, Ralph E. Sturgeon, Zoltán Mester. Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight. — 2010. — Vol. 25. — P. 384–389. — DOI:10.1039/B926288A.
- ↑ G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O.. Bersillon (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.
- ↑ Heritage of Mercury. Almadén and Idrija — UNESCO World Heritage Centre
- ↑ 1 2 Венецкий С.И. Серебряная вода // Рассказы о металлах.. — Москва, 1979. — С. 208-209. — 240 с. — 60 000 экз.
- ↑ Химическая энциклопедия / Редкол.: И. Л. Кнунянц и др.. — М.: Советская энциклопедия, 1995. — Т. 4. — 639 с. — ISBN 5-82270-092-4.
- ↑ H.L. Clever. Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements IUPAC SDS Vol 29 — Density of Liquid Mercury (англ.). IUPAC SOLUBILITY DATA. NIST (1987). Проверено 29 сентября 2017.
- ↑ Рассчитано по данным, взятым из: Справочник химика, т. 3, М.-Л.: Химия, 1965.
- ↑ Получен фторид Hg(IV): Новости химии @ChemPort.Ru
- ↑ Xuefang Wang, Lester Andrews, Sebastian Riedel, Martin Kaupp. Mercury Is a Transition Metal: The First Experimental Evidence for HgF4 (англ.) // Angewandte Chemie International Edition. — 2007. — Vol. 46. — P. 8371-8375. — DOI:10.1002/anie.200703710.
- ↑ Is mercury a transition metal? Архивировано 12 октября 2016 года.
- ↑ Реми Г. Курс неорганической химии. т. 2. М., Мир, 1966
- ↑ Государственная фармакопея российской федерации / «Издательство «Научный центр экспертизы средств медицинского применения», 2008
- ↑ Закусов В. В. Фармакология. М., Медицина, 1966
- ↑ Ртуть (Hg) | Основные средства лечения сифилиса. www.medical-enc.ru. Проверено 18 февраля 2017.
- ↑ Ртуть // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Приборостроение и автоматизация. Справочник. Изд. «Машиностроение» М. 1964
- ↑ Радиоактивные вещества: Полупроводниковые детекторы
- ↑ Катод ртутный — Справочник химика 21. chem21.info. Проверено 31 марта 2018.
- ↑ Мишин В.П., Рубцов А.Ф., Серебряков Л.А, Трахтенберг И.М., Цивильно М.А. Ртуть // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1984. — Т. 22. Растворители — Сахаров. — 544 с. — 150 800 экз.
- ↑ Информационный бюллетень ВОЗ N°361
- ↑ : Ha, E., et al., Current progress on understanding the impact of mercury on human health. Environ. Res. (2016), http://dx.doi.org/10.1016/j.envres.2016.06.042i
- ↑ Metallic Mercury — ToxFAQs / Agency for Toxic Substances and Disease Registry (ATSDR), CDC, США
- ↑ 1 2 Республика Беларусь подписала Минаматскую конвенцию о ртути, ООН (24.09.2014). Проверено 25 сентября 2014.
Ошибка в сносках?: Тег <ref>
с именем «trivia», определённый в <references>
, не используется в предшествующем тексте.
Ссылки
Ртуть, свойства атома, химические и физические свойства
Ртуть, свойства атома, химические и физические свойства.
Hg 80 Ртуть
200,592(3) 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2
Ртуть — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 80. Расположен в 12-й группе (по старой классификации — побочной подгруппе второй группы), шестом периоде периодической системы.
Атом и молекула ртути. Формула ртути. Строение атома ртути
Изотопы и модификации ртути
Свойства ртути (таблица): температура, плотность, давление и пр.
Физические свойства ртути
Химические свойства ртути. Взаимодействие ртути. Химические реакции с ртутью
Получение ртути
Применение ртути
Таблица химических элементов Д.И. Менделеева
Атом и молекула ртути. Формула ртути. Строение атома ртути:
Ртуть (лат. Hydrargyrum, русское название от праслав. *rьtǫtь, связанного с лит. rìsti «катиться», а латинское название от др.-греч. ὕδωρ – «вода» и ἄργυρος – «серебро») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Hg и атомным номером 80. Расположен в 12-й группе (по старой классификации – побочной подгруппе второй группы), шестом периоде периодической системы.
Ртуть – металл. Относится к группе переходных металлов.
Как простое вещество ртуть при нормальных условиях представляет собой тяжёлый жидкий металл (тяжёлую серебристо-белую жидкость), пары которой чрезвычайно ядовиты. Ртуть – один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент – бром).
Молекула ртути одноатомна.
Химическая формула ртути Hg.
Электронная конфигурация атома ртути 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2. Потенциал ионизации атома ртути равен 10,43 эВ (1006,0 кДж/моль).
Строение атома ртути. Атом ртути состоит из положительно заряженного ядра (+80), вокруг которого по шести оболочкам движется 80 электронов. При этом 78 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку ртуть расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и пятая – внутренние оболочки представлены s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлены s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома ртути на 6s-орбитали находятся два спаренных электрона. В свою очередь ядро атома ртути состоит из 80 протонов и 118 нейтронов. Ртуть относится к элементам d-семейства.
Радиус атома ртути составляет 157 пм.
Атомная масса атома ртути составляет 200,592(3) а. е. м.
Содержание ртути в земной коре составляет 6,7×10-6 %, в морской воде и океане – 5,0×10–9 %.
Ртуть – малоактивный металл.
Изотопы и модификации ртути:
Свойства ртути (таблица): температура, плотность, давление и пр.:
Общие сведения | |
Название | Ртуть/ Hydrargyrum |
Символ | Hg |
Номер в таблице | 80 |
Тип | Металл |
Открыт | Известен с древних времен |
Внешний вид и пр. | Тяжёлый жидкий металл серебристо-белого цвета |
Содержание в земной коре | 6,7×10-6 % |
Содержание в океане | 5,0×10-9 % |
Свойства атома | |
Атомная масса (молярная масса) | 200,592(3) а. е. м. (г/моль) |
Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 |
Радиус атома | 157 пм |
Химические свойства | |
Степени окисления | −1, +1, +3, +5 |
Валентность | +1, (+2), +3 |
Ковалентный радиус | 149 пм |
Радиус иона | (+2e) 110 (+1e) 127 пм |
Электроотрицательность | 2,0 (шкала Полинга) |
Энергия ионизации (первый электрон) | 1006,0 кДж/моль (10,43 эВ) |
Электродный потенциал | 0,854 В |
Физические свойства | |
Плотность (при нормальных условиях и 20 °C) | 13,546 г/см3 |
Температура плавления | -38,83 °C (234,32 K) |
Температура кипения | 356,73 °C (629,88 K) |
Уд. теплота плавления | 2,295 кДж/моль |
Уд. теплота испарения | 58,5 кДж/моль |
Молярная теплоёмкость | 27,98 Дж/(K·моль) |
Молярный объём | 14,81 см³/моль |
Теплопроводность (при 300 K) | 8,3 Вт/(м·К) |
Электропроводность в твердой фазе | 1,0х106 См/м |
Сверхпроводимость при температуре | |
Твёрдость | |
Структура решётки | ромбоэдрическая |
Параметры решётки | ahex = 3,464 Å, сhex=6,708 Å |
Отношение c/a | 1,94 |
Температура Дебая | 100 К |
Физические свойства ртути:
Химические свойства ртути. Взаимодействие ртути. Химические реакции с ртутью:
Получение ртути:
Применение ртути:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Найти что-нибудь еще?
Похожие записи:
карта сайта
ртуть атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле ртути ртуть
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности
374
Руководство по материалам электротехники для всех. Часть 2
Продолжение руководства по материалам электротехники. В этой части продолжаем разбирать проводники: Железо, Золото, Никель, Вольфрам, Ртуть.
Добро пожаловать под кат (ТРАФИК)
Железо
Fe — железо. Основной конструкционный материал в промышленности используется также и в электротехнике. Плохая, по сравнению с медью, электропроводность компенсируется очень низкой ценой. И, что важнее в России, меньшей привлекательностью для охотников за металлом, заземление из толстой ржавой трубы простоит без охраны дольше красивой медной шины.
В технике железо применяется почти исключительно в виде сплавов с углеродом — чугуна и сталей. Свойства сталей разных марок весьма различны: от мягких и до твердых инструментальных.
Примеры применения
Метизы. Винты, шайбы, гайки из стали изготавливаются огромными количествами на специально разработанном для этого оборудовании. Метизы из других металлов встречаются очень редко и значительно дороже. Поэтому, в большинстве случаев, медный наконечник медного провода будет притянут к медной же шине стальным болтом. Также важным является высокая прочность стали, медный болт не затянуть с усилием стального. Обратите внимание на цифры на головке болта: они обозначают его прочность. Чем больше число, тем сильнее можно затягивать болт.
Клеммные колодки, соединители. Всем известные «орехи» содержат стальные пластинки с защитным покрытием от коррозии. Также, применение стали необходимо для предотвращения гальванической коррозии при соединении медных и алюминиевых проводов.
Соединитель «орех». Внутри пластиковой оболочки комплект стальных пластин с винтами, позволяет сделать ответвление от жилы кабеля не разрезая саму жилу. Также позволяет перейти от алюминиевой жилы на медную.
Контуры заземления. Требования электробезопасности обязывают предусматривать заземление. Часто, в промышленных условиях, заземляющую шину изготавливают из стального проката, закрепленного по периметру стены. Плохая электропроводность стали компенсируется большим сечением проводника. Во многих случаях правила безопасности и стандарты предписывают делать детали заземления именно из стали по соображениям механической прочности.
Стальная полоса, огибающая колонну — шина заземления.
Широко используются магнитные свойства стали — из стальных пластин собирают сердечники трансформаторов, дросселей.
Недостатки
Коррозия. Железо ржавеет, при этом плотность ржавчины ниже плотности исходного железа, из-за этого конструкция распухает. Поэтому железо покрывают защитными покрытиями — оцинковка, лужение, хромирование, окраска и т.д. Разные марки стали подвержены коррозии в разной степени, причем по закону подлости сильнее всего ржавеют именно те, которые легче всего обрабатываются на станках.
Золото
Au — Золото. Самый бестолковый драгоценный металл. Имеет меньше всего применений в технике из всех драгоценных металлов, но является символом богатства. На удивление дороже платины (2017 г.), что лишено здравого смысла и является лишь результатом спекуляций.
Примеры применения
Покрытия контактов. Благодаря тому, что золото на воздухе не окисляется, контакты покрывают очень тонким слоем золота.
Золотое покрытие на различных электронных компонентах: покрытие на контактах платы для установки в слот, покрытие на контактах мембранных кнопок мобильного телефона, покрытие на штырьках процессора.
Защита от коррозии. В некоторых ответственных применениях используется золотое покрытие для защиты проводников от коррозии (в основном — военка). Когда-то покрытие золотом являлось единственным способом защитить детали электроники от коррозии в условиях джунглей, поэтому у многих старых радиодеталей позолочены даже корпуса. А сейчас обычно просто заливают плату компаундом в «кирпич».
Интересные факты о золоте
- Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий, медь — красноватая и в сплавах золотистая, осмий имеет голубой отлив).
- Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см3 у золота, 19,25 г/см3 ), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Возможно, это одна из причин, почему американцы никому не дают проверить подлинность их золотого запаса. И, возможно, поэтому они отдали Германии их золото не сразу.
- Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).
Никель
Ni — Никель. Замечательный металл, но в электронной технике основное применение — как дешевая альтернатива золоту — покрытие контактов. Если контакт покрыт белым блестящим металлом, то это скорее всего никель.
Примеры применения
Покрытие контактов. Наносится на медь, пластик, для надежного контакта и для декоративных целей. Жадные китайцы иногда вообще делают контакты из пластмассы, покрывая сверху слоем никеля и хрома, внешне выглядит нормальным, даже как то работает, но ни о какой надежности речи не идет.
Различные разъемы, покрытые никелем для надежного контакта.
У разъема справа для экономии металла сердцевина штыря сделана полой с заливкой пластиком. Латунная никелированная трубочка, из которой сделан штырь, не самый худший вариант.
Тоководы у ламп. Сплав Платинит (46% Ni, 0,15% C, остальное — Fe) не содержит платины, но имеет очень близкое к платине значение линейного температурного расширения, что позволяет делать из него надежные электроды, проходящие через стекло. Такие электроды при изменении температуры не вызывают растрескивания стекла и потерю герметичности.
Промежуточные защитные слои. Для защиты от коррозии, взаимной диффузии металлов при создании покрытий, могут формироваться промежуточные слои из никеля. Жала современных паяльников защищены слоем никеля, жало из голой меди медленно растворяется в олове, теряя форму.
Вольфрам
W — Вольфрам. Тугоплавкий металл, температура плавления 3422 градусов Цельсия, что определяет основное его использование — нити накала и электроды.
Примеры применения
Нити накала. В лампах накаливания, в галогеновых лампах спираль изготовлена из вольфрама, нагревается электрическим током до белого каления, при этом сохраняя свою форму. Также катоды в радиолампах изготавливаются из вольфрама, но раскаливаются не до таких высоких температур, как осветительные лампы, специальное покрытие на катоде позволяет протекать термоэлектронной эмиссии при невысоких температурах.
Мощная лампа накаливания от проектора. Даже тугоплавкий вольфрам со временем испаряется и оседает на стенках колбы в виде темного налета. Данного недостатка лишены галогеновые лампы.
Нить накаливания этой галогеновой лампы изготовлена из вольфрама. Галоген, обычно пары иода, химически связывает испаряющийся с нити вольфрам и возвращает его на нить, что позволяет повысить температуру накала спирали и уменьшить габарит лампы без страха, что вольфрам постепенно осядет на стенках колбы.
Электроды дуговых ламп и сварочные электроды. В ксеноновых дуговых лампах, ртутных дуговых лампах, электроды должны выдерживать температуру электрической дуги, при этом не расплавляясь и не изменяя своей формы, что под силу только вольфраму. Также электроды для сварки неплавящимся электродом изготовлены из вольфрама (TIG сварка).
Аноды рентгеновских трубок. Поток электронов от катода в рентгеновской трубке, разогнанный высоким напряжением тормозится бомбардируя анод, очень сильно нагревая его, поэтому такие аноды, особенно если они не имеют водяного охлаждения, зачастую изготавливаются из вольфрама. Однако в физических лабораториях часто применяют и аноды из меди или кобальта в связи с особенностями спектра рентгеновского излучения от таких
анодов.
Источники
Вольфрам — не очень пластичный материал, поэтому спиральку из лампы накаливания вряд ли удастся выпрямить и использовать по своему разумению. Если вдруг понадобится вольфрамовый стержень — вам пригодится любой магазин по сварочному делу, электрод для TIG-горелки без содержания лантана и других присадок. Проволоку для нитей накала самодельной техники нетрудно купить на eBay.
Цветовая маркировка электродов:
- Зеленый — чистый вольфрам.
- Красный, оранжевый — вольфрам + торий (Радиоактивно! Не шлифовать, не резать — пыль опасна!).
- Голубой — вольфрам + сложная смесь.
- Черный, желтый, синий — вольфрам + лантан.
- Серый — вольфрам + церий.
- Белый — вольфрам + цирконий.
Ртуть
Hg — Ртуть. При комнатной температуре — блестящий, собирающийся в шарики жидкий металл. По экологическим соображениям использование ртути сокращается, но она широко использовалась в старых приборах, поэтому заслуживает упоминания.
Как и большинство металлов, ртуть образует сплавы. Но ртуть, будучи жидкой при комнатной температуре, способна сплавляться с металлами без дополнительного нагревания, растворять их. Растворенный в ртути металл, сплав металла с ртутью называется «амальгама».
Примеры применения
Жидкий контакт в датчиках положения, ртутных электроконтактных термометрах.
Различные ртутные приборы. Слева — мощный ртутный переключатель, замыкающий/размыкающий цепь при наклоне. Ниже на чёрных платках — аналогичные китайские ртутные переключатели — датчики положения из детского набора с Arduino. Сверху — колба ртутного электроконтактного термометра. В стекло вплавлены проволочки так, что при температуре 70°С столбик ртути в капилляре замыкает цепь (температура указана на корпусе).
В термометрах. Низкая температура замерзания, высокая температура кипения и большой коэффициент теплового расширения делают ртуть одним из самых удобных веществ для лабораторных и медицинских термометрах. В бытовых термометрах ртуть уже очень давно не используется.
В манометрах и барометрах. Ртуть тяжелая, поэтому для уравновешивания атмосферного давления достаточно 70-80 см высоты столбика ртути. Хотя ртутные барометры в основном вышли из употребления, единицы измерения давления «миллиметр ртутного столба», а в вакуумной технике — «микрон ртутного столба» и «торр» (округленный вариант мм. рт. ст.) используются и по сей день. Нормальным атмосферным давлением считается 760 мм. рт. ст.
В нормальных элементах. Батарейка (Попытка запитать от такой батарейки самоделку обернется провалом — батарейка имеет большое внутренее сопротивление (порядка единиц кОм) и не предназначена отдавать токи больше сотых долей микроампера, да и то с
перерывами.) с электродами из жидкой ртути, в которой растворены сульфаты ртути и кадмия, имеет ЭДС, известную и стабильную до единиц микровольт (теоретически 1,018636 В при 20 °C). Такие элементы до сих пор используются в метрологии в качестве опорных источников напряжения, хотя и вытесняются полупроводниковыми схемами. Сосуд с ртутью в нормальном элементе запаян, однако он стеклянный, и ртути в нем много. Поэтому будьте осторожны, если найдете где-нибудь круглую железную банку с бакелитовой крышкой, клеммами и надписью «нормальный элемент» на бакелите. Внутри у нее — стеклянная колба с весьма опасными веществами.
Элемент нормальный насыщенный, НЭ-65, класс точности 0,005. Внешний вид корпуса нормальных элементов может различаться. Ниже — содержимое корпуса, видна ртуть в нижней части колб. Такие элементы должны утилизироваться специализированной организацией.
В диффузионных вакуумных насосах. Струя ртутного пара, выходящая из сопла с большой скоростью, захватывает молекулы воздуха и вытягивает их из откачиваемого объема. Затем ртутный пар конденсируется за счет охлаждения жидким азотом и используется снова. Насосы такого типа когда-то использовались для откачки радиоламп. Сейчас вместо ртути используются нетоксичные и не требующие жидкого азота силиконовые масла, но в
некоторых лабораториях до сих пор можно найти старые ртутные системы.
Пары ртути — рабочий газ люминесцентных ламп. Несмотря на то, что люминесцентная лампа должна содержать небольшое количество ртути, в некоторых лампах ртути добавлено от души, и видно, как в колбе перекатывается шарик ртути. Пары ртути при возбуждении их электрическим током излучают яркий свет, преимущественно в синей и ультрафиолетовой области. Помимо них в спектре ртути есть яркие желтый и зеленый дублеты, по наличию которых ртутную лампу легко отличить от любой другой, посмотрев на нее через призму или отражение в компакт-диске. Специальная ртутная лампа в лабораториях используется как источник зеленого света с известной длиной волны.
В мощных тиратронах и ртутных выпрямителях. Используется так же, как и в ртутных лампах. Мощные ртутные вентили широко использовались для питания локомотивов на железных дорогах и в других подобных задачах до появления полупроводниковых приборов.
Как растворитель для металлов при выделении золота и платины из сырья амальгамацией и в производстве зеркал. Ртуть выпаривается, металл остается. Иногда этот процесс неправильно называют «аффинаж», путая его с совершенно другим способом выделения драгметаллов.
В ртутных счетчиках времени наработки. В старой технике ртутный капиллярный кулономер использовался как счетчик часов, которые проработал прибор. Гениальная по простоте и надёжности конструкция. Увы в моей коллекции такого нет, но вот хорошее видео.
В амальгамных зубных пломбах. Встречаются и по сей день, особенно в США.
Токсичность
Все изделия, содержащие ртуть, должны утилизироваться специализированной службой. Недопустимо выбрасывать их с бытовым мусором во избежание скопления ртути на свалке.
Все разливы ртути должны быть собраны, а поверхности демеркуризованы. Ртуть хорошо испаряется при комнатной температуре, поэтому закатившийся в щель шарик ртути долгое время будет отравлять воздух.
Демеркуризация
Если у вас разбилось изделие с ртутью, то предпринимайте следующие действия:
1. Откройте форточки и обеспечьте проветривание.
2. Вызовите специализированную службу демеркуризации в вашем городе. Профессионалы не только грамотно уберут ртуть, но также и произведут замеры концентрации паров ртути
в помещении. Если вдруг в вашем городе не оказалось службы демеркуризации, вы находитесь вдали от цивилизации то процесс демеркуризации придется продолжить самостоятельно.
3. Соберите видимые шарики ртути в герметичную тару. Их удобно собирать вместе при помощи двух хорошо обрезанных листов бумаги, сливая шарики в подготовленную тару. Мельчайшие шарики ртути из щелей можно вытянуть при помощи спиринцовки, или щетки из металла, которые смачивает ртуть (например медь). Разумеется после использования такой «инструмент» окажется загрязнен ртутью и подлежит утилизации.
Затем при помощи химических средств оставшаяся, не видимая глазу ртуть переводится в нелетучие но по прежнему ядовитые соли, которые спокойно можно удалить с поверхности моющими средствами. Для этого используются 0,2% водный раствор перманганата натрия («марганцовка») подкисленный добавлением 0,5% соляной кислоты или 20% раствор хлорного железа (того, которым платы травят). Вопреки указаниям в старых книгах, засыпание места разлива порошком серы не эффективно.
4. Тщательно промыть обработанные площади водой с моющим средством.
5. Всю собранную ртуть и загрязненные предметы герметично упаковать и сдать в специализированную организацию.
Что однозначно не стоит делать при разливе ртути:
1. Паниковать и спешить. Иногда, при небольших авариях больше вреда наносит паника и спешка, чем сама авария. Вспоминается байка, записанная Ю.А.Золотовым:
Однажды, когда профессор МГУ Алексей Николаевич Кост вел практикум по органической химии, у одного из студентов разбилась колба с эфиром и его пары вспыхнули. Началась паника, кто-то прибежал с углекислотным огнетушителем и с трудом погасил пожар. Все это время Кост совершенно невозмутимо сидел за своим столом и с кем-то разговаривал. Потом, когда все успокоились, подошел к месту происшествия и приказал:
— Спички!
Ему дали коробок, он чиркнул спичкой и бросил ее в еще не просохшую эфирную лужу. Огонь вспыхнул вновь, все оторопели. А Кост, не суетясь, взял противопожарное одеяло, ловко накрыл им пламя и изрек:
— Гореть надо умеючи!
2. Пытаться собрать ртуть пылесосом, пылесос только в турборежиме раздробит и испарит шарики ртути, в итоге все помещение и сам пылесос окажутся загрязнены рутью. Аналогично не стоит использовать для сбора ртути веники, щетки — они только раскидывают и дробят шарики ртути.
3. Сливать ртуть в раковину или унитаз. Ртуть значительно тяжелее воды, поэтому навсегда осядет в первом попавшемся изгибе трубы — в гидрозатворе или колене.
Пару слов о токсикологии ртути
Некоторые в детстве играли шариками ртути, и «с ними ничего не было». Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.
Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, даже проглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют.
Растворимые соединения ртути намного опаснее, и именно они образуются, когда ртуть так или иначе попадает в организм человека, животных или в растений. Рекорд по токсичности принадлежит диметилртути — это ужасно токсичное из известных человечеству веществ, настолько токсичное, что при первой возможности ищут менее опасную альтернативу если предстоит работа с ней. Капля диметилртути способна убить человека сквозь резиновые перчатки, причем первые симптомы отравления могут появиться только на следующий день.
Если вы выкинув ртуть подальше от дома думаете, что проблема устранена — то вы серьезно ошибаетесь. Ртуть — яд кумулятивный, способный к накоплению в живых организмах и передаче дальше по пищевой цепочке. Примером отравления человека ртутью является болезнь Минамата. Ртуть из выброшенной люминесцентной лампы отравит если не вас, то ваших потомков.
Дополнительные сведения
Если вы нашли где-нибудь ртуть, не пытайтесь ее продать. Ртуть и ее соли считаются сильнодействующими ядовитыми веществами (ст. 234 УК РФ). На содержащие ртуть приборы заводского производства, соответствующие официальным стандартам, запрет не распространяется. Найденную ртуть и неисправные ртутьсодержащие приборы, следует сдавать на переработку в специализированные службы в вашем городе. Единственный широко доступный источник ртути (если вдруг понадобится в научной работе) — медицинские термометры.
Ссылки на части руководства:
1: Проводники: Серебро, Медь, Алюминий.
2: Проводники: Железо, Золото, Никель, Вольфрам, Ртуть.
3: Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
4: Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода.
5: Органические полусинтетические диэлектрики: Бумага, щелк, парафин, масло и дерево.
6: Синтетические диэлектрики на базе фенолформальдегидных смол: карболит (бакелит), гетинакс, текстолит.
7: Диэлектрики: Стеклотекстолит (FR-4), лакоткань, резина и эбонит.
8: Пластики: полиэтилен, полипропилен и полистирол.
9: Пластики: политетрафторэтилен, поливинилхлорид, полиэтилентерефталат и силиконы.
10: Пластики: полиамиды, полиимиды, полиметилметакрилат и поликарбонат. История использования пластиков.
11: Изоляционные ленты и трубки.
12: ФинальнаяСправочная таблица по электропроводности
Elements — Angstrom Sciences Справочная таблица по электропроводности
Elements — Angstrom Sciences
Перейти к навигации
Электропроводность | Имя | Символ | # |
---|---|---|---|
5.0E -24 10 6 / см Ω | Сера | S | 16 |
1.0E -17 10 6 / см Ω | фосфор | P | 15 |
8.0E -16 10 6 / см Ω | Йод | I | 53 |
1.0E -12 10 6 / см Ω | Селен | SE | 34 |
1.0E -12 10 6 / см Ω | Бор | B | 5 |
2.52E -12 10 6 / см Ω | Кремний | Si | 14 |
1.45E -8 10 6 / см Ом | Германий | Ge | 32 |
2.0E -6 10 6 / см Ω | Теллур | Te | 52 |
0,00061 10 6 / см Ω | Углерод | С | 6 |
0.00666 10 6 / см Ω | Плутоний | Pu | 94 |
0,00695 10 6 / см Ом | Марганец | Мн | 25 |
0,00736 10 6 / см Ом | Гадолиний | Gd | 64 |
0,00822 10 6 / см Ом | Нептуний | Np | 93 |
0,00867 10 6 / см Ом | Висмут | Bi | 83 |
0.00889 10 6 / см Ω | Тербий | Тб | 65 |
0,00956 10 6 / см Ом | Самарий | см | 62 |
0,0104 10 6 / см Ом | Меркурий | Hg | 80 |
0,0108 10 6 / см Ом | Диспрозий | Dy | 66 |
0,0112 10 6 / см Ом | Европий | Eu | 63 |
0.0115 10 6 / см Ω | Церий | CE | 58 |
0,0117 10 6 / см Ом | Эрбий | Er | 68 |
0,0124 10 6 / см Ом | Гольмий | Ho | 67 |
0,0126 10 6 / см Ом | Лантан | La | 57 |
0,0148 10 6 / см Ом | празеодим | Пр | 59 |
0.015 10 6 / см Ω | Тулий | Тм | 69 |
0,0157 10 6 / см Ом | Неодим | Nd | 60 |
0,0166 10 6 / см Ом | Иттрий | Y | 39 |
0,0177 10 6 / см Ом | Скандий | SC | 21 |
0,0185 10 6 / см Ом | Лютеций | Лю | 71 |
0.0219 10 6 / см Ω | Полоний | Po | 84 |
0,022 10 6 / см Ом | Америций | Am | 95 |
0,0234 10 6 / см Ом | Титан | Ti | 22 |
0,0236 10 6 / см Ом | Цирконий | Zr | 40 |
0,0288 10 6 / см Ом | Сурьма | Сб | 51 |
0.03 10 6 / см Ω | Франций | Fr | 87 |
0,03 10 6 / см Ом | Барий | Ba | 56 |
0,0312 10 6 / см Ом | Гафний | Hf | 72 |
0,0345 10 6 / см Ом | Мышьяк | как | 33 |
0,0351 10 6 / см Ом | Иттербий | Yb | 70 |
0.038 10 6 / см Ω | Уран | U | 92 |
0,0481 10 6 / см Ом | Свинец | Пб | 82 |
0,0489 10 6 / см Ом | Ванадий | В | 23 |
0,0489 10 6 / см Ом | Цезий | CS | 55 |
0,0529 10 6 / см Ом | Протактиний | Па | 91 |
0.0542 10 6 / см Ω | Рений | Re | 75 |
0,0617 10 6 / см Ом | Таллий | Tl | 81 |
0,0653 10 6 / см Ом | торий | Чт | 90 |
0,067 10 6 / см Ом | Технеций | Tc | 43 |
0,0678 10 6 / см Ом | Галлий | Ga | 31 |
0.0693 10 6 / см Ω | Ниобий | Nb | 41 |
0,0761 10 6 / см Ом | Тантал | Ta | 73 |
0,0762 10 6 / см Ом | Стронций | Sr | 38 |
0,0774 10 6 / см Ом | Хром | Кр | 24 |
0,0779 10 6 / см Ом | Рубидий | руб. | 37 |
0.0917 10 6 / см Ω | Олово | Sn | 50 |
0,095 10 6 / см Ом | Палладий | Pd | 46 |
0,0966 10 6 / см Ом | Платина | Pt | 78 |
0,0993 10 6 / см Ом | Утюг | Fe | 26 |
0,108 10 6 / см Ом | Литий | Li | 3 |
0.109 10 6 / см Ом | Осмий | Os | 76 |
0,116 10 6 / см Ом | Индий | В | 49 |
0,137 10 6 / см Ом | Рутений | Ру | 44 |
0,138 10 6 / см Ом | Кадмий | Кд | 48 |
0,139 10 6 / см Ом | Калий | К | 19 |
0.143 10 6 / см Ом | Никель | Ni | 28 |
0,166 10 6 / см Ом | Цинк | Zn | 30 |
0,172 10 6 / см Ом | Кобальт | Co | 27 |
0,187 10 6 / см Ом | Молибден | Пн | 42 |
0,189 10 6 / см Ом | Вольфрам | Вт | 74 |
0.197 10 6 / см Ω | Иридий | Ir | 77 |
0,21 10 6 / см Ом | Натрий | Na | 11 |
0,211 10 6 / см Ом | Родий | Rh | 45 |
0,226 10 6 / см Ом | Магний | мг | 12 |
0,298 10 6 / см Ом | Кальций | Ca | 20 |
0.313 10 6 / см Ом | Бериллий | Be | 4 |
0,377 10 6 / см Ом | Алюминий | Al | 13 |
0,452 10 6 / см Ом | Золото | Au | 79 |
0,596 10 6 / см Ом | Медь | Cu | 29 |
0,63 10 6 / см Ом | Серебро | Ag | 47 |
.
Электропроводность воды
Электропроводность воды определяет общее количество растворенных в воде твердых веществ — TDS, что означает общее количество растворенных твердых веществ. TDS измеряется в ppm (миллионных долях) или в мг / л.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ЭЛЕКТРОПРОВОДНОСТЬ ВОДЫ
Электропроводность воды зависит от температуры воды: чем выше температура, тем выше будет электропроводность.Электропроводность воды увеличивается на 2-3% при повышении температуры воды на 1 градус Цельсия. Многие счетчики EC в настоящее время автоматически стандартизируют показания до 25 o C.
Хотя электропроводность является хорошим индикатором общей солености, она все же не дает никакой информации об ионном составе воды.
Те же самые значения электропроводности могут быть измерены в воде низкого качества (например, в воде, богатой натрием, бором и фторидами), а также в воде для орошения высокого качества (например, вода, богатая натрием, бором и фторидами).г. правильно удобренная вода с соответствующими концентрациями и соотношениями питательных веществ).
ЕДИНИЦ ИЗМЕРЕНИЯ ЭЛЕКТРОПРОВОДНОСТИ ВОДЫ
Обычно используемые единицы измерения электропроводности воды:
- мкСм / см (микросименс / см)
или
Где: 1000 мкс / см = 1 дСм / м
TDS И ЭЛЕКТРОПРОВОДНОСТЬ
Так как электрическая проводимость является мерой способности воды проводить электрический ток, она напрямую связана с концентрацией солей, растворенных в воде, и, следовательно, с общим содержанием растворенных твердых веществ (TDS).Соли растворяются на положительно заряженные ионы и отрицательно заряженные ионы, которые проводят электричество.
Поскольку TDS трудно измерить в полевых условиях, в качестве меры используется электрическая проводимость воды.
Электропроводность воды можно быстро и недорого определить с помощью портативных счетчиков.
Дистиллированная вода не содержит растворенных солей, поэтому она не проводит электричество и имеет нулевую электрическую проводимость.
Тем не менее, когда концентрация соли достигает определенного уровня, электропроводность больше не связана напрямую с концентрацией солей. Это потому, что образуются ионные пары. Ионные пары ослабляют заряд друг друга, так что выше этого уровня более высокий TDS не приведет к столь же более высокой электропроводности.
EC можно преобразовать в TDS, используя следующий расчет:
TDS (ppm) = 0,64 X EC (мкСм / см) = 640 X EC (dS / м)
Это соотношение дает только оценку.
Легко составьте план внесения удобрений с помощью нашего программного обеспечения
Начните использовать и увеличьте урожай до 40%
Создайте свой план
.
Электропроводность воды — определение, единицы, значение, формула для удельной проводимости
- БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
- КОНКУРСНЫЕ ЭКЗАМЕНА
- BNAT
- Классы
- Класс 1-3
- Класс 4-5
- Класс 6-10
- Класс 110003 CBSE
- Книги NCERT
- Книги NCERT для класса 5
- Книги NCERT, класс 6
- Книги NCERT для класса 7
- Книги NCERT для класса 8
- Книги NCERT для класса 9
- Книги NCERT для класса 10
- NCERT Книги для класса 11
- NCERT Книги для класса 12
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
9plar
- RS Aggarwal
- RS Aggarwal Решения класса 12
- RS Aggarwal Class 11 Solutions
- RS Aggarwal Решения класса 10
- Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- RD Sharma
- RD Sharma Class 6 Решения
- RD Sharma Class 7 Решения
- Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- PHYSICS
- Механика
- Оптика
- Термодинамика
- Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- MATHS
- Статистика
- 9000 Pro Числа
- Числа
- Числа
- Число чисел Тр Игонометрические функции
- Взаимосвязи и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убытки
- Полиномиальные уравнения
- Деление фракций
- Microology
0003000
- Книги NCERT
- FORMULAS
- Математические формулы
- Алгебраные формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- 000 CALCULATORS
- 000
- 000 Калькуляторы по химии 900 Образцы документов для класса 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 1 1
- Образцы документов CBSE для класса 12
0003000
- Вопросники предыдущего года CBSE
- Вопросники предыдущего года CBSE, класс 10
- Вопросники предыдущего года CBSE, класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- HC Verma Solutions Класс 12 Физика
- Решения Лакмира Сингха
- Решения Лахмира Сингха класса 9
- Решения Лахмира Сингха класса 10
- Решения Лакмира Сингха класса 8
9000 Класс
9000BSE 9000 Примечания3 2 6 Примечания CBSE
Примечания
- Дополнительные вопросы по математике класса 8 CBSE
- Дополнительные вопросы по науке 8 класса CBSE
- Дополнительные вопросы по математике класса 9 CBSE
- Дополнительные вопросы по науке
- CBSE Class 9 Вопросы
- CBSE Class 10 Дополнительные вопросы по математике
- CBSE Class 10 Science Extra questions
- Class 3
- Class 4
- Class 5
- Class 6
- Class 7
- Class 8 Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для класса 11 по физике
- Решения NCERT для класса 11 Химия
- Решения NCERT для биологии класса 11
- Решение NCERT s Для класса 11 по математике
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Economics
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Commerce
- NCERT Solutions for Class 12
- Решения NCERT для физики класса 12
- Решения NCERT для химии класса 12
- Решения NCERT для биологии класса 12
- Решения NCERT для математики класса 12
- Решения NCERT, класс 12, бухгалтерия
- Решения NCERT, класс 12, бизнес-исследования
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Accountancy Part 1
- NCERT Solutions Class 12 Accountancy Part 2
- NCERT Solutions Class 12 Micro-Economics
- NCERT Solutions Class 12 Commerce
- NCERT Solutions Class 12 Macro-Economics
- NCERT Solut Ионы Для класса 4
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для класса 5
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6
- Решения NCERT для математики класса 6
- Решения NCERT для науки класса 6
- Решения NCERT для класса 6 по социальным наукам
- Решения NCERT для класса 6 Английский язык
- Решения NCERT для класса 7
- Решения NCERT для математики класса 7
- Решения NCERT для науки класса 7
- Решения NCERT для социальных наук класса 7
- Решения NCERT для класса 7 Английский язык
- Решения NCERT для класса 8
- Решения NCERT для математики класса 8
- Решения NCERT для науки 8 класса
- Решения NCERT для социальных наук 8 класса ce
- Решения NCERT для класса 8 Английский
- Решения NCERT для класса 9
- Решения NCERT для класса 9 по социальным наукам
- Решения NCERT для математики класса 9
- Решения NCERT для математики класса 9 Глава 1
- Решения NCERT для математики класса 9, глава 2
- для математики класса 9, глава 3
- Решения NCERT для математики класса 9, глава 4
- Решения NCERT для математики класса 9, глава 5
- для математики класса 9, глава 6
- Решения NCERT для математики класса 9, глава 7
- для математики класса 9, глава 8
- Решения NCERT для математики класса 9, глава 9
- Решения NCERT для математики класса 9, глава 10
- для математики класса 9, глава 11
- NCERT для математики класса 9 Глава 12
- для математики класса 9 Глава 13
- NCER Решения T для математики класса 9 Глава 14
- Решения NCERT для математики класса 9 Глава 15
Решения NCERT
Решения NCERT
Решения NCERT
Решения NCERT
Решения
Решения NCERT
- Решения NCERT для науки класса 9
- Решения NCERT для науки класса 9 Глава 1
- Решения NCERT для науки класса 9 Глава 2
- Решения NCERT для науки класса 9 Глава 3
- Решения NCERT для науки класса 9 Глава 4
- Решения NCERT для науки класса 9 Глава 5
- Решения NCERT для науки класса 9 Глава 6
- Решения NCERT для науки класса 9 Глава 7
- Решения NCERT для науки класса 9 Глава 8
- Решения NCERT для науки класса 9 Глава 9
- Решения NCERT для науки класса 9 Глава 10
- Решения NCERT для науки класса 9 Глава 12
- Решения NCERT для науки класса 9 Глава 11
- Решения NCERT для науки класса 9 Глава 13
- для науки класса 9 Глава 14
- Решения NCERT для класса 9 по науке Глава 15
Решения NCERT
- Решения NCERT для класса 10
- Решения NCERT для класса 10 по социальным наукам
- Решения NCERT для математики класса 10
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10, глава 2
- Решения NCERT для математики класса 10, глава 3
- Решения NCERT для математики класса 10, глава 4
- Решения NCERT для математики класса 10, глава 5
- Решения NCERT для математики класса 10, глава 6
- Решения NCERT для математики класса 10 Глава 7
- Решения NCERT для математики класса 10 Глава 8
- Решения NCERT для математики класса 10 Глава 9
- Решения NCERT для математики класса 10 Глава 10
- Решения NCERT для математики класса 10 Глава 11
- Решения NCERT для математики класса 10 Глава 12
- Решения NCERT для математики класса 10 Глава ter 13
- Решения NCERT для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
.
Электропроводность воды — Lenntech
Определение и описание
Электропроводность вещества определяется как « способность или мощность проводить или передавать тепло, электричество или звук ». Единицы измерения — Сименс на метр [См / м] в СИ и миллимош на сантиметр [ммхо / см] в обычных единицах США. Его символ — k или s.
Электропроводность (EC)
Электрический ток возникает в результате движения электрически заряженных частиц в ответ на силы, которые действуют на них из приложенного электрического поля.В большинстве твердых материалов ток возникает из-за потока электронов, который называется электронной проводимостью. Во всех проводниках, полупроводниках и многих изолированных материалах существует только электронная проводимость, а электрическая проводимость сильно зависит от количества электронов, доступных для участия в процессе проводимости. Большинство металлов являются чрезвычайно хорошими проводниками электричества из-за большого количества свободных электронов, которые могут быть возбуждены в пустом и доступном энергетическом состоянии.
В воде и ионных материалах или жидкостях может происходить чистое движение заряженных ионов. Это явление вызывает электрический ток и называется ионной проводимостью.
Электропроводность определяется как отношение плотности тока (Дж) к напряженности электрического поля (e) и является противоположностью удельного сопротивления (r, [Вт * м]):
s = J / e = 1 / r
Серебро имеет самую высокую проводимость из всех металлов: 63 x 10 6 См / м.
Проводимость воды
Чистая вода не является хорошим проводником электричества.Обычная дистиллированная вода в равновесии с углекислым газом воздуха имеет проводимость примерно 10 x 10 -6 Вт -1 * м -1 (20 дСм / м). Поскольку электрический ток переносится ионами в растворе, проводимость увеличивается с увеличением концентрации ионов.
Таким образом, проводимость увеличивается по мере растворения в воде ионных частиц.
Типичная проводимость воды:
Сверхчистая вода 5,5 · 10 -6 См / м
Питьевая вода 0.005 — 0,05 См / м
Морская вода 5 См / м
Электропроводность и TDS
TDS или общее количество растворенных твердых веществ — это мера общего количества ионов в растворе. ЕС фактически является мерой ионной активности раствора с точки зрения его способности передавать ток. В разбавленном растворе TDS и EC достаточно сопоставимы. TDS пробы воды на основе измеренного значения EC можно рассчитать с помощью следующего уравнения:
TDS (мг / л) = 0,5 x EC (dS / м или ммхо / см) или = 0.5 * 1000 x EC (мСм / см)
Вышеуказанное соотношение также можно использовать для проверки приемлемости химических анализов воды. Это не касается сточных вод.
По мере того, как раствор становится более концентрированным (TDS> 1000 мг / л, EC> 2000 мс / см), близость ионов раствора друг к другу снижает их активность и, следовательно, их способность передавать ток, хотя физическое количество растворенных твердых веществ не влияет. При высоких значениях TDS отношение TDS / EC увеличивается, и соотношение стремится к TDS = 0.9 х EC.
В этих случаях не следует использовать указанную выше взаимосвязь, и каждый образец следует характеризовать отдельно.
Для воды для сельскохозяйственных целей и орошения значения EC и TDS связаны друг с другом и могут быть преобразованы с точностью около 10% с помощью следующего уравнения:
TDS (мг / л) = 640 x EC (ds / м или ммхо / см).
В процессе обратного осмоса вода нагнетается через полугерметичную мембрану, оставляя примеси.Этот процесс позволяет удалить 95-99% TDS, обеспечивая чистую или сверхчистую воду.
Используйте калькуляторы Lenntech для расчета содержания TDS на основе анализа воды и для преобразования TDS в EC или наоборот.
.