17.06.2024

Электросхемы для начинающих: Простые схемы для начинающих радиолюбителей

Содержание

Светодиодная акустическая мигалка

В интернете есть множество различных схем светодиодных мигалок – простых, сложных, с микросхемами и без. Но обычным мигающим светодиодом сейчас уже никого не удивишь, поэтому появляется необходимость собрать что-то более продвинутое. Например, акустическую мигалку – микрофон улавливает звук и превращает его во вспышки светодиодов. Схема представлена ниже.

Схема

На схеме присутствует электретный микрофон, который и превращает звуковые колебания в электрические. Найти его можно в сломанных телефонных гарнитурах, либо в магазине радиодеталей. Транзисторы Т1 и Т2 усиливают сигнал таким образом, чтобы его хватило для зажигания светодиодов. Можно применить практически любые маломощные n-p-n транзисторы, например, BC547, КТ315, КТ3102. Светодиоды используются обычные 3-х вольтовые любого цвета, можно поставить две штуки, как указано на схеме, а можно и больше. Конденсатор С1 служит для подавления пульсаций питания, его ёмкость может лежать в пределах 10-100 мкФ. Напряжение питания схемы от 3-х до 5-ти вольт.

Сборка мигалки

Схема собирается на миниатюрной печатной плате размерами 45 х 15 мм, сделать которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Обратите внимание, что плата рассчитана на установку транзисторов BC547, при использовании аналогичных транзисторов с другой цоколевкой придётся поменять местами их выводы на плате. Ниже представлены несколько фотографий процесса изготовления платы.

Дорожки желательно залудить, это защитит медь от окисления и облегчит дальнейшую пайку деталей. В первую очередь на плату устанавливаются мелкие детали – резисторы, транзисторы, а уже затем конденсаторы и светодиоды. Для подключения проводов питания удобнее всего использовать винтовой клеммник. При установке микрофона обязательно нужно соблюдать его полярность – минусовая ножка микрофона соединяется с его металлическим корпусом, её нужно запаять на минус схемы. После завершения сборки с платы нужно смыть остатки флюса и проверить правильность монтажа.

Настройка и испытания

Подаём питание на плату и смотрим за реакцией светодиодов – они должны быть полностью погашены при отсутствии звука. Если светодиоды светятся непрерывно, значит нужно в 1,5 – 2 раза увеличить сопротивление резисторов R2 и R3, до того момента, пока светодиоды не погаснут, в этом заключается единственная настройка схемы. После этого светодиоды будут моментально вспыхивать, если рядом раздаётся любой звук, хлопок, щелчок или даже музыка. При использовании чувствительного микрофона дальность обнаружения звука составляет примерно 6-7 метров. Схема будет прекрасной игрушкой для детей – ведь смотреть, как светодиоды загораются при малейшем звуке довольно увлекательно. Также схему можно использовать для проверки чувствительности электретных микрофонов. Удачной сборки.

Смотрите видео

Схемы для начинающих радиолюбителей и электронщиков

11. 01. 2020
 
·  
Просмотры:

Post Views:
2 086

Один из простых вариантов усилителя мощности низкой частоты на микросхеме К174УН7. Выходная мощность от 4 Вт до 5 Вт. Нагрузка до 4 Ом.
Обновление: В принципиальной схеме были ошибки. Исправлена полярность…

Далее

28. 08. 2019
 
·  
Просмотры:

Post Views:
6 292

Транзистор КТ315 очень популярен у начинающих радиолюбителей старой закалки. Этот биполярный транзистор был разработан в 1967 году. Причина его популярности — массовое использование в бытовой радиоаппаратуре. Он…

Далее

27. 08. 2019
 
·  
Просмотры:

Post Views:
2 375

Чтобы собрать какую-либо схему, достаточно придерживаться несколько простых правил:
Использовать только проверенные детали;
Не перегревать контакты;
Без ошибок делать платы.
Мультивибратор на двух…

Далее

03. 05. 2018
 
·  
Просмотры:

Post Views:
3 206

Мультивибратор — это электронный генератор прямоугольных электрических импульсов. Выполняет различные функции. Например, выполняет связь непосредственная между каскадами усилителей, генерирует звук и…

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
346

Как сделать простую защиту для нагрузки, не повредив источник питания? С этим справится электронный предохранитель, схема которого представлена ниже.
Открыть в полном размере
Принцип работы электронного…

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
2 573

Схема усилителя мощности звуковой частоты, построенная на транзисторах.
Открыть в полном размере
Краткое описание схемы усилителя
Устройство может питаться от источника с напряжением от 10 В до 15 В. Номинальная…

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
1 313

Простейшая цветомузыкальная установка.
Открыть в полном размере
Как работает цветомузыка на транзисторах
На входе устройства стоят два частотных фильтра – C1 R4 и R3 C2. Первый фильтр пропускает высшие частоты, а. ..

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
813

Транзисторный метроном на КТ315 и КТ361.
Предлагаемая схема является метрономом. По сути, она является генератором коротким импульсов.
Открыть в полном размере
Следующие с  определенной частотой эти импульсы…

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
903

Датчик температуры на КТ361 и КТ315.
Открыть в полном размере
Как работает ртутный термометр? Очень просто. Столбик поднимается при повышении температуры тела. В этом случае датчик является ртуть, расширяющаяся с…

Далее

25. 03. 2018
 
·  
Просмотры:

Post Views:
1 143

Имитатор звука на транзисторах.
Открыть в полном размере
Принцип работы схемы
Продолжительность импульса тока, протекающего через телефон BF1, постоянна и зависит в основном от емкости конденсатора С1, значение…

Далее

Простые электросхемы. Восемь простых схем на транзисторах для начинающих радиолюбителей

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте
, на мой ответ, что в инете море информации на эту тему, занимайся — не хочу, я услышал от обоих примерно одинаковое, — что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 — 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 — 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги — дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно — утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet
), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип
. Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта — AKV
.

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Подборка простых и интересных схем для начинающих радиолюбителей. Основной акцент предлагаемых конструкций сделан именно на простоту и понимание работы основ электроники. Кроме того рассмотрены различные методы по проверки основных радиоэлектронных компонентов таких как диоды, транзисторы и оптопары, рассмотрена и работа последних.

В этой статье в простой и удобной форме вы овладеете навыками использования мультиметра. Узнаете о способах проверки основных радиокомпонентов из которых будем собирать наши первые электронные самоделки. Вы узнаете как прозвонить мультиметром собранную схему, проверить на работоспособность диод, транзистор и конденсатор.

В это статье начинающие радиолюбители смогут познакомится с принятым в мировой радиолюбительской практике условно-графическим обозначением различиных типов радиодеталей в принципиальных схемах

Простые схемы начинающих Ардуинщиков

Цикл статей и обучающих схем с радиолюбительскими экспериментами на плате Arduino для начинающих. Ардуино — радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой начинающий в электронике может собрать полноценное работающее устройство, подходящее для профессионального прототипирования так и для любительских опытов при изучении электроники. А кроме того Arduino полезная электронная штучка в умном домашнем хозяйстве.

Как устроен и работает полупроводниковый прибор называемый транзистором, почему он так часто встречается в радиаппаратуре и почему без него почти никогда нельзя обойтись.

Индикатор намагниченности
— Обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки и стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко. Собранный из нескольких деталей индикатор оказывается совершенно неинерционным и сравнительно чувствительным, чтобы, к примеру, определить намагниченность лезвия бритвы или часовой отвертки. Кроме того, подобный прибор пригодится в школе во время демонстрации явления индукции и самоиндукции
Индикатор переменного электромагнитного поля
Вокруг проводника с током образуется магнитное поле. Если включить, скажем, настольную лампу, то такое поле будет вокруг проводов, подводящих к лампе сетевое напряжение. Причем поле будет переменным, изменяющимся с частотой сети 50 Гц. Правда, напряженность поля невелика, и обнаружить его можно лишь чувствительным индикатором
Искатель скрытой проводки
. Переменное электромагнитное поле можно обнаружить с помощью электронных устройств, познакомимся с более чувствительным индикатором, способным уловить слабое поле сетевых проводов, по которым течет переменный ток. Речь пойдет об искателе скрытой проводки в вашей квартире. Такой индикатор предупредит о повреждении сетевых проводов при сверлении отверстий в стене
Индикатор потребляемой мощности
«Показания» предыдущих индикаторов зависят от напряженности магнитного. либо электрического (как в последнем индикаторе) поля, создаваемого протекающим по проводам током. Чем больше ток, тем сильнее поле. А ведь ток — не что иное, как характеристика мощности, потребляемой нагрузкой от сети переменного тока. Поэтому нетрудно догадаться, что индикатор, к примеру с индуктивным датчиком, можно приспособить в схемах контроля и измерения потребляемой мощности. Кроме того, такая схема индикатора, установленная вблизи входной двери, будет сигнализировать перед уходом из квартиры об оставленных включенными приборах. Лучшее место установки датчика — у ввода проводов в квартиру, вблизи разветвительной коробки. Потому здесь протекает общий ток всех потребителей, включенных в любую розетку квартиры. Правда, переменное напряжение на выводах катушки датчика будет небольшим, и понадобится усилитель

Световой сигнализатор телефонных звонков
Если в комнате громко работает телевизор телефонный звонок можно и не услышать. Вот здесь
и нужен световой сигнализатор, который включит схему индикатора, как только будет телефонный звонок.

Основой схемы автомата-сигнализатора служит датчик,
реагирующий на телефонные звонки, выполненный на катушке индуктивности.
Она расположена рядом с телефонным аппаратом, поэтому ее витки
находятся в магнитном поле электромагнита звонка вызова. Сигнал
вызова индуцирует в катушке датчика переменную ЭДС.

«Бесшумный» звук схема начинающих
Иногда хочется послушать радиоприемник, посмотреть телевизор, не мешая окружающим? Конечно, включить в дополнительные гнезда наушники — скажете вы. Все верно, однако подобная система связи неудобна —
соединительный провод наушников не позволяет удаляться
на значительное расстояние, а тем более ходить по комнате. Всего этого можно избежать, если воспользоваться «беспроводной»
схемой связи, состоящей из передатчика и приемника.

Электронная «мина»
Воспользовавшись принципом индуктивной связи, можно собрать своими руками интересную схему используемую в организации соревнований по поиску «мин»- замаскированных в земле или в помещении миниатюрных
передатчиков, работающих на звуковой частоте.

Каждая такая «мина» представляет собой схему мультивибратора, работающего на частоте примерно 1000 Гц. В эмиттерную цепь транзистора схемы мультивибратора включен усилитель мощности с катушкой индуктивности в качестве нагрузки. Вокруг нее образуется электромагнитное поле звуковой частоты

    Прерывистая сирена
    Начнем с самой простой конструкции, имитирующей звук сирены.
    Встречаются сирены однотональные, издающие звук одной тональности,
    прерывистые, когда звук плавно нарастает и спадает, а затем
    прерывается либо становится однотональным, и двухтональные, в которых
    тональность звука периодически изменяется скачком.

    Схема прерывистой электронной сирены собрана на
    транзисторах VT 1 и VT 2
    по схеме несимметричного мультивибратора.
    Простота схемы генератора объясняется использованием транзисторов
    разной структуры, что позволило обойтись без многих деталей,
    необходимых в схеме постройки мультивибратора на транзисторах
    одинаковой структуры.

    Двухтональная сирена.
    Взглянув на схему этого имитатора, нетрудно заметить уже
    знакомый узел — генератор, собранный на транзисторах VT 3
    и VT 4. По такой схеме был собран предыдущий
    имитатор. Только в данном случае мультивибратор работает не в ждущем,
    а в обычном режиме. Для этого на базу первого транзистора (VT 3)
    подано напряжение смещения с делителя R 6 R 7.
    Заметьте, что транзисторы VT 3 и VT 4
    поменялись местами по сравнению с предыдущей схемой из-за
    изменения полярности напряжения питания.

    Двигатель внутреннего сгорания.
    Так можно сказать про следующий имитатор послушав его звучание. И действительно, издаваемые динамической головкой звуки напоминают выхлопы, характерные во время работы двигателя автомобиля, трактора или тепловоза.

    Под звуки капели
    Кап… кап… кап… — доносятся звуки с улицы, когда идет
    дождь, весной падают с крыши капли тающего снега. Эти звуки на
    многих людей действуют успокаивающе, а по отзывам некоторых,
    даже помогают засыпать. Ну что ж, возможно, вам понадобится такой
    имитатор. На постройку схемы уйдет лишь с десяток деталей

    Имитатор звука подскакивающего шарика
    Хотите послушать, подскакивающий стальной шарик от шарикоподшипника на стальной и чугунной плите? Тогда соберите имитатор по этой схеме начинающих электронщиков.

    Морской прибой… в комнате
    Подключив небольшую приставку к усилителю радиоприемника,
    магнитофона или телевизора, вы сможете получить звуки, напоминающие
    шум морского прибоя. Схема такой приставки-имитатора состоит из
    нескольких узлов, но главный из них — генератор шума

    Костер… без пламени
    Почти в каждом пионерском лагере устраивают пионерский костер.
    Правда, не всегда удается собрать столько дров, чтобы пламя было
    высоким, а костер громко потрескивал.

    А если дров поблизости вообще нет? Или вы хотите соорудить незабываемый пионерский костер в школе? В этом случае поможет предлагаемый электронный имитатор, создающий характерный звук потрескивания горящего костра. Останется лишь изобразить«пламя» из красных лоскутов ткани, развеваемых скрытым на полу вентилятором.

    Как поет канарейка?
    Эта схема начинающего радиолюбителя сравнительно простого имитатора
    звуков канарейки. Это уже известная вам схема мультивибратор, но несимметричный ее вариант (сравните емкости конденсаторов С1 и СЗ
    частотозадающих цепей — 50 мкФ и 0,005 мкФ!). Кроме того, между
    базами транзисторов установлена цепочка связи из конденсатора С2 и
    резистора R3. Элементы мультивибратора
    подобраны так, что он генерирует сигналы, которые, поступая на
    головной телефон BF 1, преобразуются им в
    звуковые колебания, похожие на трели канарейки

    Трели соловья
    На разные голоса
    Использовав часть предыдущей конструкции, можно собрать новый
    имитатор — трелей соловья. В нем всего один
    транзистор, на котором выполнен блокинг-генератор с двумя цепями
    положительной обратной связи. Одна из них, состоящая из дросселя и конденсатора, определяет тональность звука, а вторая,
    составленная из резисторов и конденсатора, — период повторения трелей.

    Как стрекочет сверчок?
    Имитатор стрекота сверчка отличная схема начинающего электронщика состоит из мультивибратора и RC -генератора. Схема мультивибратора собрана на транзисторах. Отрицательные импульсы мультивибратора (когда закрывается один из транзисторов) поступают через диод VD1
    на конденсатор С4, являющийся «аккумулятором» напряжения смещения транзистора генератора.

    Кто сказал «мяу»?
    Этот звук донесся из небольшой шкатулки, внутри которой
    разместился электронный имитатор. Схема его немного
    напоминает схему предыдущего имитатора, не считая усилительной части
    — здесь применена аналоговая интегральная микросхема.

    Звуколокатор
    Эта простая игрушка — всего лишь демонстрация «работы»
    звука. Названа она так потому, как и настоящий локатор излучает сигнал, а затем принимает его уже отраженным от каких-либо
    препятствий. Как только до какого-нибудь препятствия останется
    определенное расстояние, принятый звуковой сигнал возрастет до
    уровня, при котором сработает автоматика и выключит
    электродвигатель

    Автомат «Тише»
    Шум мешает любым занятиям — это ясно каждому. Но порою мы
    слишком поздно спохватываемся, когда в классе или другом помещении, где
    идет работа, уже давно громкость нашего разговора или спора
    превышает допустимую. Надо бы говорить тише, а мы увлеклись и не
    замечаем, что мешаем окружающим.

    Если же установить в помещении автомат, следящий за громкостью звука,
    то при достижении определенного, заранее заданного, уровня громкости
    автомат сработает и зажжет настенное табло «Тише»
    либо подаст звуковой сигнал.

    «Дрессированная змея»
    Акустический автомат, реагирующий на звуковой сигнал, может
    срабатывать не только при определенной громкости звука, но и при
    соответствующей частоте. Таким избирательным свойством обладает
    предлагаемая ниже схема игрушки.

    Одно, 2-х, 3-х, и 4-х канальный акустический
    выключатель
    А теперь поговорим об схемах автоматов, которые по звуковым сигналам способны включать и отключать нагрузку. Скажем, при одном сравнительно
    громком сигнале (хлопок в ладоши) автомат включает нагрузку в
    сеть, при другом выключает. Перерывы между хлопками могут быть сколь
    угодно большими, и все это время нагрузка будет либо включена, либо
    выключена. Подобный автомат и получил название акустический
    выключатель.

    Если автомат управляет только одной нагрузкой, его можно считать одноканальным, например схема одноканального акустического выключателя

Схема простого электромузыкального инструмента
. Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность последнего зависит от частоты колебаний генератора. Когда в схеме генератора использован набор резисторов разных сопротивлений и их включают в частотозадающую схему обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии.

Схема Терменвокс для начинающих
Это первый инструмент, положивший начало новому направлению в радиоэлектронике — электронной музыке (сокращенно
электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста — самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной и двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Электронный барабан схема начинающего электронщика
Барабан — один из популярных, но в то же время громоздких
музыкальных инструментов. Уменьшить его габариты и сделать более
удобным в транспортировке — желание едва ли не каждого
ансамбля. Если воспользоваться услугами электроники и собрать
приставку к мощному усилителю (а он сегодня — неотъемлемая
часть аппаратуры ансамбля), можно получить имитацию звучания
барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть»
звук барабана, то удастся обнаружить следующее. Сигнал на экране
осциллографа промелькнет в виде всплеска, напоминающего падающую
каплю воды. Правда, падать она будет справа налево. Это значит, что
левая часть «капли» имеет крутой фронт, обусловленный
ударом по барабану, а затем следует затухающий спад — он
определяется резонансными свойствами барабана. Внутри же «капля»
заполнена колебаниями почти синусоидальной формы частотой 100…400
Гц — это зависит от размеров и конструктивных особенностей
данного инструмента.

Приставки к электрогитаре
Популярность электрогитары сегодня во многом объясняется возможностью
подключать к ней электронные приставки, позволяющие получать
самые разнообразные звуковые эффекты. Среди
музыкантов-электрогитаристов можно услышать незнакомые для
непосвященных слова «вау», «бустер»,
«дистошн», «тремоло» и другие. Все это —
названия эффектов, получаемых во время исполнения мелодий на
электрогитаре.

О некоторых приставках с подобным эффектом и пойдет рассказ. Все они рассчитаны на работу как с промышленными
звукоснимателями, устанавливаемыми на обычную гитару, так и с
самодельными, изготовленными по описаниям в популярной
радиолюбительской литературе.

«Бустер»-приставка. Если ударить медиатором по одной из
струн гитары и посмотреть на осциллографе форму электрических
колебаний, снимаемых с выводов звукоснимателя, то она напомнит
импульс с заполнением. Фронт «импульса» более крутой по
сравнению со спадом, а «заполнение» — не что иное,
как почти синусоидальные колебания, промодулированные по амплитуде.
Это значит, что громкость звука при ударе по струне нарастает
быстрее, чем спадает. Время нарастания звука музыканты называют
атакой.

Динамика исполнения на гитаре возрастет, если ускорить атаку, т. е.
увеличить скорость нарастания звука. Получающийся при этом эффект
звучания получил название «бустер». Схема приставки для
получения такого эффекта рассмотрена в этой статье. Она рассчитана на
работу с бас-гитарой, которой обычно отводится важная роль в
вокально-инструментальных ансамблях. Выполняя ритмический рисунок
музыкальной композиции, бас-гитара нередко становится и солирующим
инструментом.

    Цветомузыкальная
    приставка-индикатор
    Если встроить схему такой приставки в радиоприемник, то в такт с музыкой
    будет освещаться разноцветными огнями шкала настройки либо вспыхивать
    три цветовых сигнала на лицевой панели — приставка станет
    цветовым индикатором настройки. Как и в подавляющем большинстве цветомузыкальных приставок и установок, в предлагаемом устройстве применено
    частотное разделение сигналов звуковой частоты, воспроизводимых
    радиоприемником, по трем каналам.

    Приставка с малогабаритными лампами
    Предлагаемая схема приставки более
    серьезная конструкция, способная управлять разноцветным освещением
    небольшого экрана. Сигнал на вход приставки
    по-прежнему поступает с выводов динамической головки усилителя
    звуковой частоты радиоприемника или другого радиоустройства. Переменным
    резистором R1 устанавливают общую
    яркость экрана, особенно по каналу высших частот, собранному на
    транзисторе VT1. Яркость же свечения ламп
    других каналов можно устанавливать «своими» переменными
    резисторами — R2 и R3.

    Приставка с автомобильными
    лампами
    Многие из вас после изготовления простой цветомузыкальной приставки
    захотят сделать конструкцию, обладающую большей яркостью свечения
    ламп, достаточной освещения экрана внушительных размеров. Задача
    выполнимая, если воспользоваться автомобильными лампами мощностью 4. ..6 Вт. С такими лампами работает
    схема с автомобильнми лампами

    Приставка на тринисторах
    Увеличение числа ламп накаливания требует применения в выходных каскадах схемы транзисторов, рассчитанных на допустимую мощность в несколько десятков и даже сотен ватт. В широкую продажу подобные транзисторы не поступают, поэтому на помощь приходят тринисторы. В
    каждом канале достаточно использовать один тринистор — он
    обеспечит работу лампы (или ламп) накаливания мощностью от сотни до
    тысячи ватт! Маломощные нагрузки совершенно безопасны для
    тринистора, а для управления мощными его укрепляют на радиаторе,
    позволяющем отвести от корпуса тринистора излишнее тепло.

    Четырехканальная цветомузыкальная
    приставка Эту схему начинающего можно считать более совершенной (но и
    более сложной) по сравнению с предыдущей. Т.к она содержит не три, а четыре цветовых канала и в каждом канале установлены мощные
    осветители. Кроме того, вместо пассивных фильтров используются
    активные, обладающие большей избирательностью и возможностью
    изменять полосу пропускания (а это нужно в случае более четкого
    разделения сигналов по частоте).

Подборка несложных схем юных электронщиков от популярного журнала моделист-конструктор из старых выпусков.

На нашем сайте опубликованы материалы, которые вы найдете для себя не только интересными, но и очень полезными. Этот раздел посвящен «Практическим схемам разных устройств», в нем много справочных материалов, информации для начинающих радиолюбителей и не только, профессионалы также найдут для себя что-нибудь полезное. Ведь люди, которые хотят развиваться, учатся на протяжении всей жизни. Говорят, что невозможно знать все, эту гипотезу подтверждаем и мы, выкладывая все новые и новые материалы, которые освещают науку, электронику и дают постоянно новые знания.

Опытным радиолюбителям предлагаем сотрудничество, они могут делиться своим опытом на страницах нашего сайта с начинающими, то есть еще совсем любителями. Наш сайт будет полезен тем, что участники могут писать комментарии к статьям, обсуждать свои проблемы на форуме, тем самым делиться опытом друг с другом.

В случае, если вы хотите развиваться, но у вас просто мало опыта наш сайт даст вам большую пользу, подача информации не на самом сложном уровне, но, чтобы разобраться в электросхемах разных устройств, познакомиться с описанием принципов их работы, нужно немного и поработать. Поэтому, если вы ленивы и неусидчивы, не хотите поработать, чтобы чего-либо достичь, то проходите мимо, наш сайт не для вас. Кнопки «Хочу все знать» на нашем сайте нет.

Изначальной и первостепенной нашей задачей стоит цель — оправдать надежды наших пользователей. Мы хотим, чтобы вы расширили свои технические знания или укрепили имеющиеся. Они вам обязательно понадобятся, так как для многих хобби — радиолюбительство часто перерастает в вид активного заработка.

Статья обновлена:25.03.2019

В данной статье мы рассмотрим дифференциальный манометр, что это такое, какова его функция, и для чего используется. Дифференциальный манометр — это устройство, которое измеряет разницу давления между двумя местами. Дифференциальные манометры могут варьироваться от устройств, достаточно простых для создания дома, до сложного цифрового оборудования. Функция Стандартные манометры используются для измерения давления в контейнере путем сравнения его …

Статья обновлена:18.02.2019

Статья обновлена:17.02.2019

Статья обновлена:14.02.2019

Статья обновлена:10.02.2019

Статья обновлена:31.01.2019

Статья обновлена:30.01.2019

Статья обновлена:13.11.2018

Навигация по записям

    • Практические схемы разных устройств

Радиолюбительская технология.
В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.

Цифровая электроника для начинающих.
Основы цифровой электроники изложены простым и доступным для начинающих способом — путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.

Осциллографы. Основные принципы измерений.
Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Самоделки юного радиолюбителя.
В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей

Школьная радиостанция ШК-2 — Алексеев С.М.
В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.

Electronics For Dummies

Build your electronics workbench — and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You»ll get charged up as you transform theory into action in chapter after chapter!

Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий — электронные игрушки и сувениры.

Как освоить радиоэлектронику с нуля.
Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы
, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.

Паять просто — пошаговое руководство для начинающих.
Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.

Электроника для любознательных.
Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.

Энциклопедия юного радиолюбителя.
Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.

Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, — «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги — радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.

Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя.
Основное и единственное назначение этой книги — приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов — через знакомство — к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Схемы с пояснениями простых устройств для радиолюбителей. Как читать электрические схемы. Схемы самодельных измерительных приборов

Схемы самодельных измерительных приборов

Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.

Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают
процесс налаживания, даже если есть осциллограф.

Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды

Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.

При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях

Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного
контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.

Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.

Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы

Радиолюбительская технология.
В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.

Цифровая электроника для начинающих.
Основы цифровой электроники изложены простым и доступным для начинающих способом — путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.

Осциллографы. Основные принципы измерений.
Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Самоделки юного радиолюбителя.
В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей

Школьная радиостанция ШК-2 — Алексеев С. М.
В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.

Electronics For Dummies

Build your electronics workbench — and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You»ll get charged up as you transform theory into action in chapter after chapter!

Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий — электронные игрушки и сувениры.

Как освоить радиоэлектронику с нуля.
Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы
, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.

Паять просто — пошаговое руководство для начинающих.
Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.

Электроника для любознательных.
Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.

Энциклопедия юного радиолюбителя.
Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.

Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, — «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги — радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.

Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя.
Основное и единственное назначение этой книги — приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов — через знакомство — к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали

Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка

Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка

VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот

HL1, HL2Светодиод

АЛ307Б

2В блокнот

C1100мкФ 10В1В блокнот

C2Конденсатор0. 1 мкФ1В блокнот

R1, R2Резистор

100 кОм

2В блокнот

R3Резистор

620 Ом

1В блокнот

BF1Акустический излучательТМ21В блокнот

SA1Геркон1В блокнот

GB1Элемент питания4.5-9В1В блокнот

Имитатор звука подскакивающего металлического шарика

Биполярный транзистор

КТ361Б

1В блокнот

Биполярный транзистор

КТ315Б

1В блокнот

C1Электролитический конденсатор100мкФ 12В1В блокнот

C2Конденсатор0. 22 мкФ1В блокнот

Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот

GB1Элемент питания9 Вольт1В блокнот

Имитатор звука мотора

Биполярный транзистор

КТ315Б

1В блокнот

Биполярный транзистор

КТ361Б

1В блокнот

C1Электролитический конденсатор15мкФ 6В1В блокнот

R1Переменный резистор470 кОм1В блокнот

R2Резистор

24 кОм

1В блокнот

T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот

Универсальный имитатор звуков

DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот

Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот

C1Конденсатор1 мкФ1В блокнот

C2Конденсатор1000 пФ1В блокнот

R1-R3Резистор

330 кОм

1В блокнот

R4Резистор

10 кОм

1В блокнот

Динамическая головкаГД 0. 1…0.5Ватт 8 Ом1В блокнот

GB1Элемент питания4.5-9В1В блокнот

Фонарь-мигалка

VT1, VT2Биполярный транзистор

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО
. К УГО мы вернемся дальше в этой статье.

Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Обозначение источников питания


Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.

Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G
.

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G
пишут букву E
, которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей
. На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB
. Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах


Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение общего провода


В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи
й или масса
или шасси
или земля
.

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля
.

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p

n

p
структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей


Основу любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB
1
, резистора R
1
и светодиода VD
1
. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R
, после которой ставится его порядковый номер, например R
1
, R
2
, R
5
и т. д.

Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD
, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально


Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB
1
, резистора R
1
и светодиода VD
1
.

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I
, который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I
от положительной клеммы GB
1
через резистор R
1
, светодиод VD
1
к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R
1
и светодиод VD
1
.

Если измерить вольтметром напряжение на R
1
и VD
1
, а затем полученные значения сложить, то их сумма будет равна напряжению на GB
1
: V
1 =
V
2 +
V
3
.

Соберем по данному чертежу реальное устройство.

Добавляем радиодетали


Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB
1,
напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K
1.1
электромагнитного реле K
1
, резистора R
1
и светодиода VD
1
. Далее по чертежу находится кнопка SB
1
.

Третья параллельная ветвь состоит из электромагнитного реле K
1
, шунтированного в обратном направлении диодом VD
2
.

В четвертой ветви имеются нормально разомкнутые контакты K
1. 2
и бузер BA
1
.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB
1
– это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K
1
. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K
1
, обозначаются K
1.1
, K
1.2
и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер


Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер –

для переменного тока.

Активный бузер –

для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K
1.1
находятся в замкнутом положении. Поэтому ток протекает по цепи от GB
1
через K
1.1
, R
1
, VD
1
и возвращается снова к GB
1
.

При нажатии кнопки SB
1
ее контакты замыкаются, и создается путь для протекания тока через катушку K
1
. Когда реле получило питание ее нормально замкнутые контакты K
1.1
размыкаются, а нормально замкнутые контакты K
1. 2
замыкаются. В результате гаснет светодиод VD
1
и раздается звук бузера BA
1
.

Теперь вернемся к параметрам электромагнитного реле K
1
. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS
‑4078‑
DC
5
V
. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB
1
= 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD
2
серии 1
N
4148
предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB
1
. Но если ее размыкает транзистор или тиристор, то VD
2
нужно обязательно устанавливать.

Учимся читать схемы с транзисторами


На данном чертеже мы видим VT
1
и двигатель M
1
. Для определенности будем применять транзистор типа 2
N
2222
, который работает в .

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n

p

n
типа; для p

n

p
типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA
1
с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M
1
постоянного тока.

В исходном состоянии цепь разомкнута контактами SA
1
. При нажатии кнопки SA1
создается несколько путей протеканию тока. Первый путь – «+» GB
1
– контакты SA
1
– резистор R
1
– переход база-эмиттер транзистора VT
1
– «-» GB
1
. Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB
1
SA
1
– катушка реле K
1
– коллектор-эмиттер VT
1
– «-» GB
1
.

Получив питание, реле K
1
замыкает свои разомкнутые контакты K
1.1
в цепи двигателя M
1
. Таким образом, создается третий путь: «+» GB
1
SA
1
K
1.1
M
1
– «-» GB
1
.

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс . Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Книги для начинающих радиолюбителей


 


Самоучители по электронике в помощь начинающим радиолюбителям.

Сборник книг по радиоэлектронике для самостоятельного изучения основ электроники начинающими радиолюбителями.


 




Книга справочник по схемотехнике для радиолюбителя. В справочнике приводится справочный материал по радиолюбительской схемотехнике. Содержатся схемы цифровых и аналоговых фильтров, устройств импульсной и вычислительной техники, автоматики, телемеханики, радио-любительских конструкций. Рассмотрены методы настройки и расчета электронных схем, измерения их электрических параметров.
Формат книги djvu. Размер файла —  4.6Mb. СКАЧАТЬ

Книга Введение в электронику. В книге детально изложены принципы работы измерительных и полупроводниковых приборов, интегральных микросхем, общие принципы микроэлектроники, алгоритмов цифровой обработки информации и многое другое. Приводится большое количество примеров, задач и упражнений для лучшего восприятия материала.

Формат книги djvu. Размер файла — 4.7Mb. СКАЧАТЬ

 


Книга Первые шаги в электронику для школьников. В книге рассказывает о базовых сведениях в области электротехники и электромонтажных работ. Приводятся описания простейших радиоэлектронных устройств, способы их сборки и настройки.

Формат книги djvu. Размер файла — 2.1Mb. СКАЧАТЬ

Книга Радиоэлектроника для начинающих. Приводится описание основных материалов и компонентов используемых в электронике, принципов работы с этими материалами, рассказывается о различных радиоэлектронных устройствах для самостоятельной сборки радиолюбителями.

Формат книги djvu. Размер файла — 6.6Mb. СКАЧАТЬ

Книга Радиоэлектроника для чайников. В книге рассказывается о всех основных нюансах электроники. Что такое электрический ток, что такое резистор, как проверить или измерить тот или иной параметр или компонент — все это , и многое другое, можно узнать из этой книги.     

Формат книги djvu. Размер файла — 10.3Mb. СКАЧАТЬ


 


Книга Самоучитель по радиоэлектронике. В книге приведены практические рекомендации по проектированию, изготовлению и наладке различных электронных устройств. Так же приводятся основные принципы конструирования, примеры сборки электронных  устройств, порядок тестирования компонентов, проведения измерений в электрических схемах и ремонта устройств.

Формат книги djvu. Размер файла — 3.7Mb. СКАЧАТЬ

 



Книга Электроника курс лекций. В книге описаны элементы электронной техники, аналоговые интегральные микросхемы, цифровые интегральные микросхемы, линейные электронные устройства, не линейные электронные устройства, аналого-цифровые функциональные устройства, источники электропитания электронных устройств.

Формат книги djvu. Размер файла — 9.1Mb. СКАЧАТЬ

Книга Радиолюбительская азбука. Самоучитель для тех, кто хочет самостоятельно научится разбираться в радиоэлектронике. Книга посвящена основам цифровой техники. В ней рассматриваются принципы работы и особенности применения логических микросхем, приведены примеры конструирования.

Формат книги djvu. Размер файла — 5Mb. СКАЧАТЬ


 


Книга Шпаргалка по общей электронике и электротехнике. В книге приводятся большое количество ответов на самые часто задаваемые вопросы из области электроники. Книга довольно не плохо подходит для самостоятельного изучения радиоэлектроники.

Формат книги djvu. Размер файла — 1Mb. СКАЧАТЬ

Книга Электроника. В книге рассматриваются разделы электроники: плазменная и вакуумная электроника, полупроводниковая и микроэлектроника, оптическая и квантовая электроника, функциональная электроника.

Формат книги djvu. Размер файла — 12.4Mb. СКАЧАТЬ


 


Книга Электротехника. В книге изложены основные теоретические сведения, примеры решения типовых задач, задачи и контрольные задания по основным разделам курса «Электротехника». Приведены указания и справочные таблицы позволяющие решать задачи без дополнительного справочного материала.

Формат книги djvu. Размер файла — 3.2Mb. СКАЧАТЬ

 



Книга Большой справочник радиолюбителя. В книге приводится описание компонентов, материалов, физических и электрических свойств элементов. Книга является без преувеличения не заменимым помощником для всех радиолюбителей!

Формат книги djvu. Размер файла — 4.6Mb.  СКАЧАТЬ


 


Читать далее — Книги по электронным самоделкам


Популярные книги по электронике:


Справочники по радиодеталям


Книги по ремонту и модернизации компьютера


С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте.  Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте, на мой ответ, что в инете море информации на эту тему, занимайся — не хочу, я услышал от обоих примерно одинаковое, — что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной программе Splan.

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 — 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 — 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги – дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно — утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую программу Sprint-layout 6, это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип. Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта Радиосхемы — AKV.

   Форум для начинающих

   Форум по обсуждению материала С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ


Электронные самоделки

Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, самодельное зарядное устройство для аккумулятора. На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.

Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы. В этом случае хорошим помощником будет наш краткий обзор всех условных обозначений на электрических схемах.

Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр. Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, как сделать простой паяльник своими руками и тот же сварочный аппарат.

Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.

Когда все будет готово – инструменты собраны, запчасти подысканы и минимальные знания получены, можно переходить к сборке любительских электронных самоделок в домашних условиях. Тут-то как раз, наш небольшой справочник Вам и поможет. Каждая предоставленная инструкция включает в себя не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами, а также видео уроками, в которых наглядно показывается весь процесс изготовления. Если же Вы какой-то момент не поняли, то можете уточнить его под записью в комментариях. Наши специалисты постараются своевременно проконсультировать Вас!

Напоследок хотелось бы отметить – если Вы знаете, как создать какой-нибудь интересный электроприбор своими руками, и желаете поделиться опытом, можете отправить собственную инструкцию нам на почту через форму Обратной связи. В свою очередь, мы обещаем сохранить авторство за Вами, чтобы остальные посетители знали, чья это электронная самоделка!

Схема подключения

— все, что вам нужно знать о схеме подключения

Что такое электрическая схема?

Схема подключения — это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи. Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.

Когда и как использовать электрическую схему

Используйте электрические схемы, чтобы помочь в создании или производстве схемы или электронного устройства.Также они пригодятся при ремонте.

Энтузиасты DIY используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.

Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов, используя схему подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.

Как нарисовать принципиальную схему

SmartDraw поставляется с готовыми шаблонами электрических схем. Создавайте сотни электрических символов и быстро вставляйте их в свою электрическую схему.Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.

Чтобы нарисовать провод, просто нажмите на опцию Draw Lines в левой части области рисования. Если вы щелкнете правой кнопкой мыши по линии, вы можете изменить цвет или толщину линии и при необходимости добавить или удалить стрелки. Перетащите символ на линию, и он вставится и встанет на место. После подключения он останется подключенным, даже если вы переместите провод.

Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Дополнительно .Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.

Щелкните Установить переходы между линиями в SmartPanel, чтобы показать или скрыть переходы между линиями в точках пересечения. Вы также можете изменить размер и форму перемычек. Выберите Показать размеры , чтобы показать длину проводов или размер компонента.

Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.

Чем электрическая схема отличается от схемы?

Схема показывает план и функции электрической цепи, но не касается физического расположения проводов.На схемах подключения показано, как подключаются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.

Чем электрическая схема отличается от графической схемы?

В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.

Стандартные символы электрических схем

Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют.Например, выключатель будет разрывом линии с линией под углом к ​​проводу, очень похоже на выключатель, который вы можете включать и выключать. Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна представляет собой прямую линию с тремя маленькими линиями, отходящими на ее конце, как настоящая антенна.

  • Провод токопроводящий
  • Предохранитель, отключается, когда ток превышает определенную величину
  • Конденсатор для хранения электрического заряда
  • Тумблер, останавливает ток при открытии
  • Кнопочный переключатель, мгновенно разрешает ток при нажатии кнопки, прерывает ток при отпускании
  • Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
  • Резистор, ограничивает ток
  • Провод заземления, используемый для защиты
  • Автоматический выключатель, используемый для защиты цепи от перегрузки по току
  • Индуктор, катушка, создающая магнитное поле
  • Антенна, принимает и передает радиоволны
  • Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
  • Лампа, излучает свет при протекании тока через
  • Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
  • Микрофон, преобразует звук в электрический сигнал
  • Электродвигатель
  • Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
  • Наушники
  • Термостат
  • Электророзетка
  • Распределительная коробка

Примеры электрических схем

Лучший способ понять электрические схемы — это посмотреть на несколько примеров электрических схем.

Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw

Как читать электрические схемы

Электрическая схема — это схема, на которой показано, как соединены все провода и компоненты в электронной схеме. Они похожи на карту для построения или устранения неисправностей схем и могут рассказать вам почти все, что вам нужно знать, чтобы понять, как работает схема.

Умение читать электрические схемы — действительно полезный навык. Чтобы начать развивать свои способности к чтению схем, важно запомнить наиболее распространенные схематические символы. Каждый физический компонент (например, резистор, конденсатор, транзистор) имеет уникальный схематический символ. Основная цель этого руководства — показать вам основные компоненты схемы, которые вы должны знать.

Недостаточно просто уметь распознавать компоненты в схеме. Вы также должны иметь возможность получить общее представление о том, как работает схема, просто взглянув на нее.После этой статьи я рекомендую прочитать «Как анализировать схемы», где мы обсуждаем более продвинутые методы анализа схем, такие как закон Кирхгофа по току и закон Кирхгофа по напряжению.

ИСТОЧНИКИ ПИТАНИЯ

Источники питания поставляют электрическую энергию в цепь в виде напряжения и тока. Каждая функциональная электронная схема должна иметь источник постоянного или переменного тока.

Источники питания постоянного тока

Источники питания постоянного тока (DC) вырабатывают электрический ток, который течет в постоянном направлении.Это схематический символ источника питания постоянного тока:

.

Источник питания переменного тока с

Источники питания переменного тока (AC) вырабатывают электрический ток, протекающий в двух направлениях. Это схематический символ источника питания переменного тока:

Тесто х годов

Батарея — это распространенный тип источника постоянного тока. Схематический символ батареи состоит из коротких и длинных параллельных линий. Более длинная линия представляет собой положительную клемму аккумулятора, а более короткая линия представляет отрицательную клемму:

Земля

Земля — ​​это общий обратный путь цепи, по которому ток возвращается к своему источнику.Это часто называют отрицательной стороной схемы. Это схематический символ заземления:

.

Клеммы

Клеммы — это точки подключения к внешним цепям. Для внешних подключений клеммы обозначены пустыми кружками:

Концевые соединения отличаются от узлов или соединений, обозначенных сплошными кружками:

Переключатели

Переключатели замыкают или разрывают соединение в цепи.Они также позволяют вам изменить путь тока.

Переключатель SPST es

Переключатель SPST (однополюсный, однопозиционный) — это переключатель включения и выключения. Два схематических символа ниже показывают различные состояния переключателя SPST. Верхний символ указывает на то, что переключатель находится в выключенном положении, что блокирует прохождение тока. Нижний символ указывает на то, что переключатель включен, что позволяет току проходить через переключатель.

Переключатель SPDT es

Переключатели

SPDT (однополюсные, двухпозиционные) могут направлять путь тока к различным частям цепи.В зависимости от положения переключателя существует два пути прохождения тока в этом переключателе:

Переключатель мгновенного действия es

Переключатели мгновенного действия остаются разомкнутыми или замкнутыми только при нажатии. Кнопочные переключатели являются наиболее распространенным типом переключателей мгновенного действия. Эти переключатели либо нормально разомкнутые, либо нормально замкнутые. Верхний схематический символ ниже показывает нормально разомкнутый кнопочный переключатель в разомкнутом положении, а нижний символ показывает нормально замкнутый кнопочный переключатель в замкнутом положении:

Многоточечный переключатель es

Многоточечные переключатели позволяют переключать путь входного тока на несколько различных выходных путей.

Выключатели

DPST (двухполюсные, однопозиционные) имеют 2 входа и 2 выхода. Эти переключатели позволяют управлять током на два выхода. Поскольку переключатели одноходовые, две выходные клеммы будут включаться и выключаться одновременно. Приведенные ниже схематические символы показывают разомкнутый переключатель DPST (слева) и замкнутый переключатель DPST (справа):

Переключатели

DPDT (двухполюсные, двухпозиционные) имеют две клеммы для входного тока и четыре клеммы для выходного тока. Эти переключатели позволяют переключать путь двух входных токов на четыре отдельных пути вывода.Вот схематический символ переключателя DPDT:

Резистор с

Резистор

A — это один из самых основных пассивных компонентов схемы. Резисторы обладают электрическим сопротивлением, ограничивающим ток. Схематический символ резистора показан ниже. Символ слева — это соглашение, используемое в Соединенных Штатах, а символ справа — международный стандарт:

.

Переменный резистор с

Переменный резистор может увеличивать или уменьшать свое сопротивление в зависимости от внешнего входа.Аналоговые датчики, такие как фоторезисторы и термисторы, являются типами переменных резисторов, поскольку их сопротивление изменяется в зависимости от уровня освещенности или температуры. Схематическое обозначение переменного резистора аналогично фиксированному резистору, но диагональная стрелка помещена посередине:

Потенциометр с

Потенциометр — это трехконтактный переменный резистор, который используется для регулировки напряжения и тока в цепи. Два вывода резистора — это V + и земля.Стрелка представляет собой дворник потенциометра, где выходное напряжение берется из:

Фоторезистор s

Фоторезисторы, также известные как светозависимые резисторы (LDR), представляют собой светочувствительные переменные резисторы, которые изменяют сопротивление в зависимости от уровня освещенности. Это схематическое обозначение фоторезистора:

.

Конденсатор с

Конденсаторы — это пассивные электронные компоненты, накапливающие электрический заряд. Есть два распространенных типа конденсаторов — неполяризованные и поляризованные.

Конденсатор неполяризованный с

Неполяризованные конденсаторы не имеют полярности, поэтому не имеет значения, какая сторона подключена к плюсу, а какая — к минусу. Эти конденсаторы обычно имеют меньшую емкость, чем поляризованные конденсаторы:

Поляризованный конденсатор с

Поляризованные конденсаторы имеют полярность, поэтому имеет значение, какая сторона подключена к плюсу, а какая — к земле. Поляризованные конденсаторы обычно имеют более высокие значения емкости по сравнению с неполяризованными конденсаторами.Вот схематический символ поляризованного конденсатора:

.

Катушки индуктивности

Катушки индуктивности — это пассивные компоненты, которые создают магнитное поле, когда через них протекает ток. Индукторы могут быть такими же простыми, как катушка с проволокой. Схематическое обозначение индуктора похоже на катушку:

Трансформаторы

Трансформаторы

используются для повышения или понижения напряжения. Они состоят из двух катушек, намотанных вокруг железного сердечника, поэтому на схематическом изображении есть две катушки с прямыми линиями между ними.Линии представляют собой железный сердечник:

Реле

Реле — это переключатель с электрическим управлением. Реле в основном представляют собой электромагниты, подключенные к исполнительному механизму, который размыкает и замыкает переключатель при подаче тока на катушку:

Диоды

Диод — это поляризованное устройство, пропускающее ток только в одном направлении. Будучи поляризованным, он имеет положительный вывод (анод) и отрицательный вывод (катод). Плоский край треугольника — анод, линия — катод:

Транзисторы

Транзисторы используются либо для усиления напряжения, либо для переключения электрических токов.Наиболее распространенными транзисторами являются транзисторы с биполярным переходом (BJT). Есть два основных типа BJT-транзисторов — NPN и PNP. Транзисторы NPN включаются, когда ток течет через базу транзистора, в то время как транзисторы PNP включаются, когда на базе транзистора нет тока. Верхний схематический символ показывает транзистор NPN, а нижний символ показывает транзистор PNP:

Интегральные схемы

Интегральные схемы

— это схемы, содержащие от сотен до миллионов резисторов, конденсаторов и транзисторов в небольшом корпусе.Интегральные схемы выполняют множество функций. Существуют интегральные схемы для усилителей звука, таймеров, микропроцессоров и многого другого. Три наиболее часто используемых интегральных схемы — это таймер 555, аудиоусилитель LM386 и операционный усилитель LM358.

Таймер

555

Чаще всего таймер 555 используется для обеспечения синхронизированных электрических задержек. Однако его также можно использовать как осциллятор и как элемент триггера. На схеме ниже показано фактическое расположение контактов таймера 555 с внутренней схемой IC:

.

Второе изображение является схематическим обозначением таймера 555, используемого в схемах:

Операционный усилитель с

Операционные усилители — это усилители напряжения со входами и обычно с одним выходом.Их также называют операционными усилителями. Условное обозначение операционного усилителя выглядит так:

Модель

LM386

Аудиоусилитель LM386 — это операционный усилитель, специально разработанный для маломощного усиления звука. Будучи маломощным, он идеально подходит для аудиоустройств с батарейным питанием, таких как гитары, радио и любых других схем, издающих звук. Вот схема контактов LM386:

И это символ, используемый на принципиальных схемах:

Модель

LM358

LM358 — это интегральная схема двойного операционного усилителя, работающая от общего источника питания.Обычно используется в качестве усилителя преобразователя, интегратора, дифференциатора или повторителя напряжения. Вот схема контактов LM358:

А вот символ, используемый на схемах:

Схематические символы для операционных усилителей обычно не показывают контакты, которые не используются в цепи, как в случае с символом LM358 выше, где показаны только пять из восьми контактов.

Логические ворота

Логические вентили — это электронные схемы, обрабатывающие сигналы, представляющие истинные или ложные значения.Четыре стандартные логические функции — это И, ИЛИ, НЕ и XOR. В дополнение к этим функциям есть также логические вентили И-НЕ, ИЛИ-ИЛИ и ИСКЛЮЧИТЕЛЬНОЕ НЕ.

И

Выход логического элемента И истинен, когда все его входы истинны. Вот схематический символ логического элемента И:

ИЛИ

Выход логического элемента ИЛИ является истинным, если хотя бы один из его входов истинен. Вот схематический символ ворот OR:

НЕ

Логический элемент НЕ выводит сигнал, противоположный входу, поэтому его также называют инвертором.Следовательно, выход истинен, когда вход ложен. Вот схематический символ ворот НЕ:

XOR

Элемент «исключающее ИЛИ» или исключающее ИЛИ имеет два входа. Выход логического элемента XOR может быть истинным только тогда, когда один вход является истинным, а другой — ложным. Вот схематический символ логического элемента XOR:

NAND

Логический элемент «НЕ-И» или «НЕ-И» может иметь два или более входа. Выход логического элемента И-НЕ истинен, если какой-либо из входов ложен.Вот схематический символ логического элемента И-НЕ:

НОР

Элемент «НЕ-ИЛИ» или «НЕ-ИЛИ» имеет два или более входов. Выход логического элемента ИЛИ-НЕ истинен, когда все его входы ложны. Вот схематический символ ворот ИЛИ:

XNOR

Элемент «исключающее ИЛИ-ИЛИ» или ИСКЛЮЧАЮЩЕЕ ИЛИ имеет два входа. Выход логического элемента XNOR истинен только тогда, когда оба его входа истинны или когда оба его входа ложны. Вот схематический символ ворот XNOR:

Оптоэлектронные устройства

Оптоэлектронные устройства — это устройства, которые используют свет и электричество для различных целей.Оптоэлектронные устройства можно разделить на две категории — светочувствительные и светоизлучающие. Например, вот схематический символ светочувствительного устройства, называемого фотодиодом:

В отличие от этого, вот схематический символ светового устройства, называемого светоизлучающим диодом (LED):

Динамик с

Динамик преобразует электрическую энергию в звуковую. Его схематический символ выглядит как реальный динамик:

Микрофон s

Микрофоны — это преобразователи, преобразующие звуковые волны в электрический сигнал.Вот схематический символ микрофона:

Предохранитель с

Предохранители — это предохранительные устройства, обеспечивающие защиту от перегрузки по току в электрической цепи. Основным элементом предохранителя является провод узкого сечения, который плавится, когда через него протекает слишком большой ток. Вот схематический символ предохранителя:

.

Двигатель с

Двигатель преобразует электрическую энергию в кинетическую. Его схематический символ — круг с буквой «M», а положительные и отрицательные клеммы слева и справа:

Антенна с

Антенна — это устройство, которое принимает или передает радиосигналы.Вот схематический символ антенны:

Провода и соединения на схемах

Теперь, когда вы знакомы с общими символами, используемыми в схематических диаграммах, давайте посмотрим, как читать соединения и пересечения проводов. Провода представлены линиями, а соединения — точками.

На изображениях ниже показаны схематические обозначения проводов, когда они физически соединены в цепь. Точки над перекрестками называются узлами:

Отсутствие узла означает, что провода не соединены, а просто проходят друг мимо друга, вот так:

Есть еще один способ показать неподключенные провода на схеме с полукругом над точкой пересечения проводов, например:

Теперь, когда вы знакомы с основными условными обозначениями и подключениями проводов, вы готовы читать простую схему.Не забывайте помнить о полярностях. Ниже представлена ​​простая схема, состоящая всего из трех элементов — батареи, светодиода и резистора:

Батарея 9 В питает цепь, а резистор ограничивает ток батареи, чтобы не перегорел светодиод. Помните, что положительная сторона диода — это плоский край треугольника, а отрицательная сторона — прямая линия.

Понимание того, как читать схемы, также поможет вам при желании изменить схему.Но это также важно для многих других целей, например, для поиска и устранения неисправностей схем и проектирования печатных плат.

Надеюсь, вы нашли этот урок полезным! Не стесняйтесь оставлять комментарии ниже, если у вас есть какие-либо вопросы…

Схема подключения

— определение, как создавать и бесплатные примеры

Что такое электрическая схема?

Электросхема — это просто графическое представление всех электрических соединений в конкретной цепи.На схеме подключения разные компоненты цепи показаны разными формами и символами. Эти схемы — эффективный способ показать, как провода соединяются с различными компонентами системы.

Использование схемы подключения

Электрические схемы в основном используются, когда пытаются показать систему соединений в цепи. Он в основном используется проектировщиками зданий , архитекторами и электриками для демонстрации соединений проводки в здании, комнате или даже в простом устройстве.Они могут помочь при обнаружении неисправности в соединениях, установке новых проводов и устройств, обнаружении электрических розеток и т. Д.

Схема подключения VS Принципиальная схема

Принципиальные схемы — это электрические схемы, в которых основное внимание уделяется основному плану и функциям, а не его физическому расположению. Напротив, электрическая схема показывает, как провода подключаются к устройству и каково их точное физическое расположение в цепи.Давайте посмотрим на их различия с помощью таблицы.

Функции Схема подключения Схематическая диаграмма
Электрические соединения Сосредоточен на связях между устройствами и элементами в цепи. Сосредоточен на логической работе схемы.
Символы Он использует упрощенные формы для представления электрических компонентов. Для обозначения компонентов используются абстрактные графические символы.
Линии Линии представляют собой проводку в цепи и между компонентами. Линии представляют собой поток системы и выходную мощность.
Цель Чтобы показать связь между компонентами. Чтобы показать электрическую работу схемы.

Схема 4-битного счетчика (Викимедиа)

Схема подключения и графическая схема

Среди всех схем электропроводки графическая схема является наименее производительной.На этих схемах используются фотографии вместе с подробными чертежами компонентов для объяснения проводки. Для обывателя эти рисунки бесполезны. Их может понять только тот, кто хорошо разбирается в электрических компонентах и ​​проводке. По сравнению с этим, электрическая схема проста и понятна.

Схема подключения дверного звонка (Викимедиа)

Обозначения на стандартных схемах подключения

Чтобы прочитать схему подключения, необходимо знать основные символы, линии и соединения.Основные компоненты обычно включают в себя провода, лампочку, переключатель, элемент / аккумулятор, резисторы, конденсаторы, логические вентили и многое другое. Символы являются абстрактным рисунком исходного компонента и стандартны для понимания всеми.

Без лишних слов, давайте обсудим десять основных символов схем, которые должен знать каждый.

1. Переключатель: Переключатель на схеме подключения управляет потоком энергии между различными компонентами и зонами.Символ может обозначать различные типы переключателей, такие как кнопочный переключатель, концевой переключатель, двухпозиционный переключатель, переключатель DPST, переключатель DPDT, переключатель SPDT и т. Д.

2. Провода: Провода представляют собой соединения между различными компонентами цепи. Затем символы различаются для обозначения соединенных, а не соединенных проводов. В то время как соединенные образуют два Т-образных соединения, несоединенные пересекаются друг с другом.

3. Батарея: Одна или несколько ячеек, соединенных вместе, чтобы образовать батарею.Он указывает потребляемую мощность в цепи. Батареи — важный компонент в электрических цепях.

4. Резистор: Резисторы показывают ограничение протекания тока в цепи. В основном они используются для деления напряжения. Резисторы бывают часто, но две основные категории — это переменный резистор и неизменный резистор.

5. Конденсатор: Это небольшое устройство для хранения заряда. Для этого компонента есть два основных символа: один показывает поляризованный конденсатор, а другой — неполяризованный.Он также иногда сочетается с резистором, чтобы представить фильтр, который пропускает сигналы переменного тока, но блокирует постоянный ток.

6. Двигатель: Двигатель — это устройство, преобразующее подводимую электрическую мощность в кинетическую энергию.

7. Динамик: По определению, динамик — это устройство, которое преобразует цифровой ввод в аналоговые звуковые волны. Динамики в основном используются в телевизорах, мобильных телефонах, компьютерах и т. Д.

8. Индуктор: Это электрические компоненты / катушки с двумя выводами, которые накапливают энергию при нахождении в магнитном поле.Он также имеет разные символы, такие как полудиндуктор, индуктор передатчика положения, взаимная индуктивность и т. Д.

9. Логический вентиль: Они являются важным компонентом для хранения и вывода данных. Логические ворота принимают 1 и 0 для преобразования их в выход в зависимости от их состояния и случая.

10. Полупроводник: Символы полупроводников обычно используются для обозначения диодов, выпрямителей, управляемых переключателей, диодов, симисторов и т. Д.

Как читать схему подключения

Чтобы прочитать электрическую схему, вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.

Шаг 1: Распознать символы на электрических схемах

Чтобы прочитать электрическую схему, во-первых, вы должны знать, какие основные элементы включены в электрическую схему и какие графические символы используются для их представления.Общие элементы электрической схемы — это заземление, источник питания, провода и соединения, выходные устройства, переключатели, резисторы, логический вентиль, лампы и т. Д. Список электрических символов и описаний можно найти на странице «электрические символы».

Шаг 2: Line Junction

Линия представляет собой провод. Провода используются для соединения компонентов. Все точки вдоль провода идентичны и соединены. В некоторых местах провода должны пересекаться друг с другом, но это не обязательно означает, что они соединяются.Черная точка используется для обозначения соединения двух линий. Основные линии представлены L1, L2 и так далее. Обычно для различения проводов используются разные цвета. На схеме подключения должна быть легенда, рассказывающая, что означает каждый цвет.

Шаг 3: Типы подключений

Обычно схемы с более чем двумя компонентами имеют два основных типа соединений: последовательное и параллельное. Последовательная цепь — это цепь, в которой компоненты соединены одним путем, поэтому ток течет через один компонент, чтобы перейти к следующему.

В последовательной цепи напряжения складываются для всех компонентов, включенных в цепь, и токи одинаковы для всех компонентов. В параллельной схеме каждое устройство напрямую подключено к источнику питания, поэтому каждое устройство получает одинаковое напряжение. Ток в параллельной цепи течет по каждой параллельной ветви и повторно объединяется, когда ветви снова встречаются.

EdrawMax

Программное обеспечение для создания диаграмм All-in-One

Создавайте более 280 типов диаграмм без усилий

С легкостью приступайте к построению диаграмм с помощью различных шаблонов и символов

  • Превосходная совместимость файлов: Импорт и экспорт чертежей в файлы различных форматов, например Visio
  • Кросс-платформенная поддержка (Windows, Mac, Linux, Интернет)

Как нарисовать схему подключения

Как легко сделать электрическую схему? Использование EdrawMax для создания вашей собственной схемы подключения.

Шаг 1: Откройте настольное программное обеспечение EdrawMax или веб-приложение EdrawMax .

Шаг 2: Перейдите в [Создать]> [Электротехника]> [Базовая электрическая часть]

Шаг 3: Выберите один шаблон схемы соединений для редактирования или щелкните значок [+], чтобы начать с нуля. Кроме того, вы можете использовать массивные символы схем проектирования электрических соединений и элементы из библиотек в левом меню, чтобы настроить схему проектирования электрических соединений.

Шаг 4: Завершив создание, вы можете экспортировать файл в нескольких форматах, включая графику, PDF, редактируемый файл MS Office, SVG и файл Visio vsdx.

Шаг 5: Кроме того, вы можете поделиться своей диаграммой с другими через социальные сети и веб-страницу. Или опубликуйте свою схему в галерее шаблонов EdrawMax, чтобы показать свою работу другим.

Если вы все еще не понимаете, как создать электрическую схему в EdrawMax , вот видео-руководство, которое поможет вам подробно понять, как создать профессиональную электрическую схему.

Примеры монтажных схем

Вместо того, чтобы напрягать свой мозг и составлять схему разводки, вы можете легко использовать бесплатные шаблоны EdrawMax , которые помогут создать самые профессиональные схемы за минуту. Благодаря разнообразию шаблонов и огромному количеству инструментов и спецэффектов вы можете рисовать электрические схемы для чего угодно. Давайте посмотрим на некоторые топовые схемы разводки.

Пример 1: Схема электрических соединений пускателя двигателя

Это простая электрическая схема пускателя двигателя.Он показывает расположение компонентов и связи между ними. Схема проста для чтения и понимания и может помочь сориентироваться в подключении контроллера. Стрелки и открытые клеммы показывают соединения, используемые людьми.

Пример 2: План электропроводки дома

На этой схеме изображен подробный план электропроводки дома. Он имеет дело с внутренними и внешними соединениями через стены и потолок, а также обслуживает другие основные и второстепенные потребности в электропроводке в доме.В плане подробно описаны все розетки и то, как провода будут проходить по дому. Такая схема электропроводки может оказаться большим подспорьем при строительстве здания или дома.

Пример 3: Схема электрических соединений трехпозиционного переключателя

Трехпозиционный переключатель помогает управлять определенным устройством, например лампочкой, из двух разных мест в цепи. На схеме показано, как трехжильный кабель проходит между обоими переключателями, а двухжильный кабель проходит между лампочкой.

Источник: do-it-yourself-help.com

Пример 4: Схема подключения жгута

На этой схеме подключения жгута показано, как согласовать провода для каждого соединения с жгутом проводов.

Пример 5: Схема электрических соединений

Создайте электрическую схему подключения, чтобы отобразить соединения проводов и физическую компоновку электрической системы или цепи.

Пример 6: Схема полупроводников и электронов

Полупроводники широко используются в электрических цепях, и большинство из них представляют собой кристаллы, изготовленные из кремния.

EdrawMax: создавайте продуманные и точные схемы подключения

EdrawMax — это мощное, но простое в использовании программное обеспечение для схемы соединений , которое позволяет легко создавать профессиональные схемы соединений на основе предварительно отформатированных шаблонов схем и примеров — без необходимости рисования.Символы интеллектуальных схем подключения имеют стрелки автоматического создания, что позволяет пользователям легко добавлять и соединять фигуры.

EdrawMax доступен для Windows, macOS и Linux. Инструмент имеет несколько категорий почти для всех типов отраслей, и каждая категория дополнительно имеет множество шаблонов на выбор, что позволяет сэкономить много времени, которое в противном случае вы бы потратили на построение схемы, схемы соединений для этого примера с нуля.

Согласно этой статье, в основном есть четыре части, чтобы проиллюстрировать, что такое электрическая схема, рассказать вам символы схемы подключения и показать вам, насколько простым и полезным является инструмент для создания электрических схем EdrawMax , а затем показывает некоторую схему подключения шаблоны и примеры.Создание идеальной электрической схемы с EdrawMax — эффективный способ проектирования.

EdrawMax — это самый простой универсальный инструмент для построения диаграмм, вы можете с легкостью создавать схемы соединений и любые другие типы диаграмм! С помощью значительных символов электрических схем и клипартов создание электрических схем может быть настолько простым, насколько это возможно. Кроме того, он поддерживает экспорт вашей работы в несколько форматов и возможность делиться своей работой с другими. Приступайте к работе с и создайте свои электрические схемы прямо сейчас!

Советы экспертов:

  1. Хорошая электрическая схема должна быть технически правильной и понятной для чтения.Позаботьтесь о каждой детали. Например, схема должна показывать правильное направление положительных и отрицательных выводов каждого компонента;
  2. Используйте правильные символы. Изучите значения основных символов схемы и выберите правильные для использования. На некоторые символы стоит присмотреться. Вы должны уметь различать различия, прежде чем применять их;
  3. Соединительные провода нарисуйте прямыми линиями. Используйте точку для обозначения пересечения линий или используйте переходы для обозначения пересекающихся линий, которые не соединяются;
  4. Обозначьте такие компоненты, как резисторы и конденсаторы, их номиналами.Убедитесь, что размещение текста выглядит чистым;
  5. В общем, хорошо размещать положительный (+) источник питания вверху, а отрицательный (-) — внизу, и логический поток слева направо;
  6. Постарайтесь организовать размещение, уменьшив количество пересечений проводов.
Статьи по Теме

Программное обеспечение для монтажных схем

Что такое план этажа?

Создатель схем

Руководство по принципиальным схемам для начинающих »Школы электротехники

Первый взгляд на принципиальную схему может сбить с толку, но если вы умеете читать карту метро, ​​вы можете читать и схемы.Цель та же: добраться из точки А в точку Б. Буквально цепь — это путь, по которому течет электричество. Если вы знаете, что искать, это станет вашей второй натурой. Вначале вы просто будете их читать, но со временем вы начнете создавать свои собственные. Это руководство покажет вам несколько общих символов, которые вы обязательно встретите в своей будущей карьере электротехника.

Язык схемотехники

Во-первых, давайте посмотрим на некоторые термины, которые вам необходимо знать:

  • Напряжение : Измеренное в вольтах (В) напряжение — это «давление» или «сила» электричества.Обычно это обеспечивается батареей (например, батареей 9 В) или «электросетью», розетки в вашем доме работают от 120 В. Розетки в других странах работают от другого напряжения, поэтому в поездках вам понадобится преобразователь.
  • Ток : Ток — это поток электричества или, более конкретно, поток электронов. Он измеряется в амперах (амперах) и может течь только при подключенном источнике напряжения.
  • Сопротивление : Сопротивление измеряется в Омах (R или Ω) и определяет, насколько легко электроны могут проходить через материал.Такие материалы, как золото или медь, называются проводниками и , поскольку они легко допускают движение (низкое сопротивление). Пластик, дерево и воздух являются примерами изоляторов , препятствующих движению электронов (высокое сопротивление).
  • DC (постоянный ток) . Постоянный ток — это непрерывный ток в одном направлении. Постоянный ток может течь не только через проводники, но и через полупроводники, изоляторы и даже через вакуум.
  • AC (переменный ток) . В переменном токе ток периодически меняется в двух направлениях, часто образуя синусоидальную волну.Частота переменного тока измеряется в герцах (Гц) и обычно составляет 60 Гц для электричества в жилых и деловых целях.

Схема

А теперь самое интересное. Получение степени инженера-электрика, а затем получение работы в поле означает, что вы увидите много-много этих схем. Важно точно понимать, что с ними происходит. Хотя они могут (и будут) быть очень сложными, это лишь некоторые из распространенных графических элементов, на которые вы можете опираться.

Начинаешь понимать? Это основы, которые могут даже показаться вам очевидными или интуитивно понятными, например, провода и подключены ли они. Всякий раз, когда вы определяете свою конкретную область электротехники, вы можете увидеть более сложные диаграммы и символы. Вы также узнаете, что в разных странах используются разные символы. Например, из двух обозначений резисторов, представленных выше, первый используется в США, а второй — в Европе. Вы также узнаете о различных символах, используемых для переключателей, других источников питания, индукторов, счетчиков, ламп, светодиодов, транзисторов, антенн и многого другого.

Обдумывая, какая программа по электротехнике подходит вам, важно помнить об основах этой области. Как упоминалось ранее, эти символы и схемы будут повсюду. Чем раньше вы познакомитесь со словесными и графическими языками инженерии, тем более подготовленными вы будете к получению ученой степени. Если вы хотите увидеть больше: 1) это означает, что вы на правильном пути; 2) считайте эту таблицу своей цифровой шпаргалкой.

Общие сведения о электрических чертежах



Голы

1.Распознавайте символы, часто используемые на схемах двигателей и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочитать электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов.
моторов.

5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.

6. Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей.
и их схемы управления. Чтобы облегчить создание и чтение
электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение
символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических
рисунки. В разделе также объясняется моторная терминология и поясняется
это с практическим применением.


ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы

Обозначения двигателя

Цепь управления двигателем может быть определена как средство подачи питания
к и отключение питания от двигателя. Символы, используемые для обозначения
различные компоненты системы управления двигателем можно рассматривать как тип
технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем.
и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как
цепи соединены друг с другом. К сожалению, не все электрические
и электронные символы стандартизированы. Вы найдете немного разные
символы, используемые разными производителями. Также символы иногда выглядят
ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы.
FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы.Заглавные буквы
используются для большинства сокращений. Ниже приводится список некоторых из
сокращения, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий
Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение
Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи
Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально
замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS
положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный
1PH однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя
3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе схемы, устройства.
расположение оборудования и инструкции по подключению.Символы, используемые для представления
переключатели состоят из узловых точек (мест, где
друг друга), контактные полосы и конкретный символ, обозначающий
конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только
Используемые в схеме контакты представлены на контрольных чертежах.

Различные схемы управления и чертежи используются для установки, обслуживания,
и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы,
электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается
некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании
цепи, а не физическое расположение устройства. Например, два
кнопки остановки могут физически находиться на противоположных концах длинного конвейера,
но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя
вертикальные линии и любое количество горизонтальных линий.Вертикальные линии
(называемые рельсами) подключаются к источнику питания и обозначаются как линия
1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются
через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с
вверху слева и читать слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке.
через работу цепи.Большинство программируемых логических контроллеров
(ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования.
язык.

FGR. 1 Символы управления двигателем.

FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.

FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления.
подключен к L1 и L2, а не к трехфазной цепи питания
мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть:
как тяжелые, так и легкие проводники. Жирные линии используются для
силовая цепь с более высоким током и более светлые линии для более слаботочной
цепь управления.

Представлены проводники, которые пересекаются друг с другом, но не имеют электрического контакта.
пересекающимися линиями без точки.

Проводники, которые входят в контакт, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания.
цепи или от понижающего управляющего трансформатора, подключенного к источнику питания.
схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления.
цепи при питании цепи питания трехфазного двигателя с повышенным
напряжение (480 В переменного тока) для более эффективной работы двигателя.

Лестничная диаграмма дает необходимую информацию для упрощения следования
последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает,
эффект, который открытие или закрытие различных контактов оказывает на других устройствах в
схема. Все переключатели и релейные контакты классифицируются как обычные.
открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах,
электрические характеристики каждого устройства, которые будут обнаружены при его
куплен и не подключен ни в какую цепь. Это иногда называют
как «готовое» или обесточенное состояние.Это важно
чтобы понять это, потому что он также может представлять положение обесточивания
в цепи. Обесточенное положение относится к положению компонента.
когда цепь обесточена или в цепи нет питания.
Эта точка отсчета часто используется в качестве отправной точки в анализе.
работы схемы.

FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов.
им — поместить букву или буквы в круг, представляющий
катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь
буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число
добавляется к письму для обозначения контактного номера. Хотя там
являются стандартными значениями этих букв, на большинстве диаграмм представлен список ключей
показать, что означают буквы; обычно они взяты из названия
устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию.
питание подается от L1 к L2.Катушки управления, соленоиды, рожки и пилот
огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство.
на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление
устройства будут переключать разомкнутую цепь на короткое замыкание между
L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки,
и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь
контактов параллельно с нагрузкой также может привести к короткому замыканию
когда контакт замыкается.Ток в цепи будет минимальным.
сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с
к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого
Правило — размещение нормально замкнутых контактов, контролируемых
устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа
сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки
должны быть запитаны одновременно, они должны быть подключены в
параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет
появляются при каждой загрузке. Если нагрузки подключены последовательно, ни
получит все необходимое для правильной работы сетевое напряжение. Отзывать
что при последовательном соединении нагрузок приложенное напряжение делится между
каждая из нагрузок. При параллельном подключении нагрузок напряжение на
каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление
переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку.
параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. За
например, несколько пусковых кнопок, управляющих одним и тем же пускателем двигателя.
катушка будет подключена параллельно, а несколько кнопок останова
будут подключены последовательно (FGR.7). Все устройства управления идентифицированы
с соответствующей номенклатурой устройства (например,г., стоп, старт).
Точно так же все нагрузки должны иметь сокращения для обозначения
тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой
суффикс используется для различения нескольких устройств одного типа. За
Например, цепь управления с двумя пускателями двигателя может идентифицировать
катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).

FGR. 6 Нагрузки размещены справа, а контакты слева.

FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.

FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма
увеличивается в размере, что затрудняет чтение и поиск контактов
контролируются какой катушкой. «Нумерация звеньев» используется для помощи
в чтении и понимании больших лестничных диаграмм. Каждая ступенька
обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступени
и чтение вниз. Ступеньку можно определить как полный путь от L1 до
L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в
линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл
кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается с помощью кнопки реверса, реле
контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень
2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку.
нагрузка. Причина в том, что либо кнопка запуска цикла, либо
контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и
соленоид SOL A.

«Цифровые перекрестные ссылки» используются вместе с
нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в
цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости
на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти
эти контакты, номера звеньев указаны справа от L2 в скобках.
на ступеньке катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах на линии.
диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают
расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют
без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием.
или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов:
1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Для правильного
подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя.
FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи
присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства.
блок питания обозначен номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новым номером
назначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода обозначены одинаковыми номерами.

• После обозначения первого провода, напрямую подключенного к L2 (в
в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены.
с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет
номер провода для проводников, напрямую подключенных к L2.

FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор
правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор
неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.При использовании этого метода все провода, напрямую подключенные к L1, обозначаются 1, а
все подключенные к L2 обозначены 2. После всех проводов с 1
и 2 отмечены, остальные номера присваиваются в последовательном порядке
начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую.
до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию
описаний, расположенных справа от L2, которые используются для документирования
функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делайте
ошибка чтения ломаной линии как части электрической цепи.
В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода
указывают, что их нормально замкнутые и нормально разомкнутые контакты механически
связанный. Таким образом, нажатие на кнопку откроет один набор контактов.
и закрыть другой. Пунктирная линия между катушками F и R указывает
что эти два механически заблокированы.Следовательно, катушки F и R не могут
одновременное закрытие контактов благодаря механическому блокирующему действию
устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий
заземлен, заземление должно быть выполнено так, чтобы случайное заземление
в цепи управления не запустит двигатель или не сделает кнопку остановки
или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления.
трансформатор должным образом заземлен на сторону L2 цепи.Когда
цепь исправна, вся цепь слева от катушки M является
Незаземленная цепь (это «горячая» нога). Путь неисправности к земле
в незаземленной цепи вызовет короткое замыкание, вызывая
предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему
неправильно заземлен на L1. В этом случае короткое замыкание на массу на
слева от катушки M возбудит катушку, неожиданно запустив двигатель.
Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но
тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала
было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую
к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо
можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов,
нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются
из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки.
К какому типу кнопок это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на
полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь
нагрузок необходимо использовать? Почему?

9. Одним из требований для конкретного двигателя является наличие шести давлений
выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи
переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического
панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию электрического
Схема ошибочно принята за проводник и подключена как таковая. Какие два типа
проблем, к которым это могло привести?


ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы

Электрические схемы

FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются
с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами.
электрической системы, а иногда и их физического отношения друг к другу.
Они могут включать идентификационные номера проводов, присвоенные проводникам в
лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и
как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут
делаться именно так, как показано на схеме. Схема подключения дает
необходимая информация для фактического подключения устройства или группы
устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение,
По такому рисунку сложно определить работу схемы.

FGR. 15 Прокладка проводов в кабелях и коробах.

FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя
опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует
типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано,
как можно точнее, фактическое расположение всех составных частей
устройства. Открытые клеммы (отмечены открытым кружком) и стрелки
представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают
силовая цепь, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15,
является важной частью электрической схемы. Схема компоновки кабелепровода указывает
начало и конец электропроводки и показаны приблизительные
путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный
с чертежом такого рода — кабелепровод и спецификация кабеля, которые
сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также
включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они
попытаться показать полную информацию о монтажной плате или оборудовании. В
схема подключения FGR. 15, приведенный к более простому виду, показан на FGR.
16 без внутренних соединений магнитного пускателя. Провода
заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на
текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью
цепи управления нижнего напряжения и рассчитаны на текущие требования
управляющего трансформатора.

FGR. 17 Комбинированная разводка и лестничная диаграмма.

FGR. 18 Однолинейная схема моторной установки.

FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для
упростить понимание процесса управления. Примером этого является
проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление.
схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы
более четкое понимание его работы. Следуя лестничной диаграмме
видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда
стартер находится под напряжением.

Силовая цепь для ясности опущена, так как ее можно проследить.
легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с
единой линией, чтобы показать все основные компоненты электрической цепи.Немного
производители оборудования для управления двигателем используют однолинейный рисунок, например
тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля
инсталляции. Установка сведена к максимально простой форме,
тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут
географически распространяться на очень большие территории. По большей части они
также трехфазные сети — каждая силовая цепь состоит из трех проводов
и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители
и Т. Д.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что
полная стандартная схема, показывающая все соединения, непрактична.
В этом случае использование однолинейной схемы — это краткий способ
сообщая базовую компоновку компонентов энергосистемы. FGR.
19 показана однолинейная схема малой системы распределения электроэнергии. Эти
типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных
системы блоками, а не символами.Отдельные компоненты и провода
не показаны. Вместо этого каждый блок представляет электрические цепи, которые
выполнять определенные функции в системе. Функции, которые выполняют схемы
написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока.
пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока.
Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя
частота, подаваемая на двигатель.Привод также регулирует мощность
напряжение пропорционально выходной частоте, чтобы обеспечить относительно
постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется
характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В
Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную
Напряжение переменного тока в напряжение постоянного тока.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока.
напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока.
включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой
и напряжение.

FGR. 20 Структурная схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации
провода на схеме подключения?

3. Какую роль может сыграть электрическая схема в поиске неисправностей двигателя?
цепь управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно будет найти в канале.
и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с
с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните функцию выпрямительного и инверторного блоков переменной частоты.
Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и
коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в движение электродвигателями.
Отрасли перестанут функционировать без должным образом спроектированных, установленных,
и обслуживаемые системы управления двигателем. В целом моторы классифицируются
в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя
операции. «Генеалогическое древо» моторных типов довольно обширно,
как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и радиоэлектронике
(IEEE) устанавливает стандарты моторного тестирования и методологий тестирования,
в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит
стандарты характеристик двигателя и классификации.

Дополнительно должны быть установлены двигатели в соответствии со Статьей 430.
Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, потому что соотношение скорость-крутящий момент
можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость.
плавно спускаемся до нуля, сразу после чего разгон в обратном
направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз.
номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока
подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока
энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока
в приложениях, требующих быстрой остановки, что устраняет необходимость в
или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого
составной двигатель постоянного тока.

FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный
часть двигателя называется статором, который содержит серию
обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда
указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения,
а Fl и F2 обозначают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, который отличает
один тип двигателя постоянного тока от другого; конструкция арматуры
ничего общего с классификацией мотора.Есть три основных типа
двигателей постоянного тока, классифицируемых по способу возбуждения поля как
следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением.
обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно
(шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением.
обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно
с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие
витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько
витков толстого провода) последовательно с якорем.


FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов
мудрое и правое вращение. Для дифференциального соединения, обратное
S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, выполнены против часовой стрелки.
и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора).
Одна из целей нанесения маркировки на клеммы двигателей в соответствии с
к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение
направление обязательно.Это может быть тот случай, когда неправильное вращение может
привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется
пометить только те клеммы, к которым необходимо подключать извне
схемы.

Направление вращения двигателя постоянного тока зависит от направления
магнитное поле и направление тока в якоре. Если либо
направление поля или направление тока, протекающего через
якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение,
если оба этих фактора поменять местами одновременно, двигатель будет
продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня,
что составляет более 90 процентов установленной мощности электродвигателей. Индукция
двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях,
размерами от долей лошадиных сил до десятков тысяч
лошадиных сил.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800,
или 3600 об / мин — либо оснащаться регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором.
(FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки.
внутри железных пластин ротора. Нет физического электрического
подключение к беличьей клетке. Ток в роторе индуцируется
вращающееся магнитное поле статора.

Роторные модели, у которых витки проволоки вращают обмотки ротора,
также доступны. Это дорого, но обеспечивает больший контроль над двигателем.
эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента
приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.

FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНОГО ДВИГАТЕЛЯ

Большинство однофазных асинхронных двигателей переменного тока сконструированы в дробном исполнении.
мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там
это несколько типов однофазных двигателей, они в основном идентичны
кроме средств запуска. «Двухфазный двигатель»
наиболее широко используется для приложений со средним запуском (FGR.26). Операция
сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением.
при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя.
и отключается центробежным переключателем при приближении к рабочей скорости.
Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке,
пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения
включают в себя вентиляторы, нагнетатели, бытовую технику, такую ​​как стиральные машины и сушилки, и
инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после
двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке.
или основной обмотки, но не к обеим. Обычно отраслевой стандарт
поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка
разделен на две части и может быть подключен для работы от 120-вольтной
или источник 240 В. Две обмотки подключаются последовательно при работе.
от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключается к линиям питания низкого напряжения.
и по одной линии до середины ходовых обмоток для высокого напряжения.
Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны.
работать в.Чтобы изменить направление вращения разветвителя с двойным напряжением
фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом.
схема подключения на паспортной табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В.
любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда
возможен выбор между напряжениями. Мотор использует столько же
мощности и производит такое же количество лошадиных сил при работе от
напряжение питания 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В
до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном
уровень тока позволяет использовать проводники цепи меньшего размера и снижает
потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров.
обмотки для оптимизации разности фаз между пусковой и рабочей обмотками
для запуска.Результат — более высокий пусковой крутящий момент, чем у расщепленной фазы.
мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные.
пуск, при котором фаза конденсатора находится в цепи только при пуске;
постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи
как для запуска, так и для запуска; и двухзначный конденсатор, в котором
— разные значения емкости для запуска и работы. Перманентный раскол
конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор
соединены последовательно с одной из обмоток статора. Эта конструкция ниже
по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов
системы. Установки включают компрессоры, насосы, станки, воздушные
кондиционеры, конвейеры, воздуходувки, вентиляторы и другие труднодоступные для запуска приложения.

ПОДКЛЮЧЕНИЯ ТРЕХФАЗНОГО ДВИГАТЕЛЯ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих
и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, потому что они
неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные
двигатели не запускаются самостоятельно на своих рабочих обмотках, как трехфазные.
моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных
намотанные катушки. Независимо от количества отдельных катушек, индивидуальные
катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех
отдельные обмотки, которые называются фазой A, фазой B и фазой
С.Все трехфазные двигатели подключены таким образом, чтобы фазы были подключены друг к другу.
конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВИГАТЕЛЯ ДВОЙНОГО НАПРЯЖЕНИЯ

FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.

Обычной практикой является производство трехфазных двигателей, которые могут быть подключены
работать на разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460.
В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения.
номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение.
таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один
конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена
последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением
операция.Согласно номенклатуре NEMA, эти выводы имеют маркировку от T1 до
Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых
таблица соединений и клеммная колодка двигателя. Тот же принцип серии
Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек
для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. В любом случае
обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения.
для желаемого уровня напряжения.

Прод. к части 2 >>

Базовая схема подключения для управления двигателем — Руководство по техническим данным

Схемы подключения

На схемах показаны подключения к контроллеру. Схемы подключения, иногда называемые « основной » или « конструкция », схемы , показывают фактические точки подключения проводов к компонентам и клеммам контроллера.

Основная проводка для управления двигателем — Технические характеристики

Они показывают взаимное расположение компонентов.Их можно использовать в качестве руководства при подключении контроллера. Рисунок 1 — это типичная электрическая схема для трехфазного магнитного пускателя двигателя .

Рисунок 1 — Типовая электрическая схема

Линейные диаграммы показывают схемы работы контроллера

Линейные диаграммы , также называемые « схема » или « элементарная ». контроллера. Они не указывают на физические отношения различных компонентов в контроллере.Они являются идеальным средством для поиска неисправностей в цепи.

На Рисунке 2 показана типичная линия или схематическая диаграмма.

Рисунок 2 — Типовая линейная или принципиальная схема

Стандартизированные символы упрощают чтение схем

Как линейные, так и электрические схемы представляют собой язык изображений. Выучить основные символы несложно. Как только вы это сделаете, вы сможете быстро читать схемы и часто сможете понять схему с первого взгляда. Чем больше вы работаете с линейными и электрическими схемами, тем лучше вы их анализируете.

Американская ассоциация стандартов ( ASA ) и Национальная ассоциация производителей электрооборудования ( NEMA ) являются агентствами, которые несут ответственность за установление и поддержание стандартов символов.

Благодаря этим стандартам вы сможете читать все диаграммы, встречающиеся на вашем рабочем месте.

Базовая проводка для управления двигателем

Соответствующее содержание EEP с рекламными ссылками

Электрические чертежи и обзор схем

Проектирование, установка и устранение неисправностей электрических систем требует использования различных чертежей, чтобы дать инженерам, установщикам и техническим специалистам визуальное представление систем, с которыми они работают.

Электрооборудование и схемы часто выражаются в виде символов и линий, которые представляют различные компоненты и соединения внутри системы. Уровень сложности электрического чертежа будет варьироваться в зависимости от предполагаемого назначения и персонала, работающего с чертежом.

Инженеры-конструкторы и технические специалисты

используют схемы для построения и устранения неисправностей сложных цепей, в то время как операторы предприятий используют однолинейные схемы и схемы стояков для облегчения операций переключения в своей распределительной системе.Умение читать и интерпретировать различные типы электрических чертежей — важный навык, которым должны обладать все электротехники для эффективного выполнения своих задач.

Символы и линии на электрическом чертеже говорят на языке, который все участники должны понимать, чтобы проектировать, строить и устранять неисправности электрических систем. В этой статье мы кратко опишем несколько типов общих электрических схем, встречающихся в полевых условиях, и объясним их назначение.

Схема однолинейная

Однолинейная схема распределительного устройства Medoum-Voltage

.Фотография: General Electric

.

Когда вам нужен вид энергосистемы с высоты птичьего полета, однолинейная схема часто оказывается первым чертежом, к которому следует обратиться. Эти рисунки, также называемые однолинейными диаграммами, показывают поток электроэнергии или ход электрических цепей и то, как они связаны.

Физические взаимосвязи обычно не учитываются на однолинейной схеме, однако они должны отображать все основные компоненты в энергосистеме и перечислять все важные характеристики. Напряжение системы, полное сопротивление трансформатора, номинальные параметры отключения и ток короткого замыкания — это лишь некоторые из основных элементов, включенных в однолинейную схему.

Эти чертежи должны храниться на дисплее в главной диспетчерской на предприятии, чтобы помочь в управлении операциями переключения путем определения фидеров и нагрузок, которые они обслуживают. Обычно включаются напряжение системы, частота, фаза и нормальные рабочие положения.

Другие элементы, такие как коэффициенты измерительного трансформатора и защитные реле, можно найти на однолинейной схеме. Если диаграмма не может охватить все задействованные компоненты, можно нарисовать дополнительные диаграммы вместе с основной диаграммой.

Связанные: Обозначения на однолинейных электрических схемах


Трехлинейная схема

Трехпроводная схема шины 4160 В. Фото: NRC.gov

Для более детального представления системы распределения электроэнергии используется трехлинейная диаграмма, показывающая соотношение фаз. В многофазных системах переменного тока эти чертежи иллюстрируют различные соединения для A, B, C, нейтрали и заземления, каждое из которых представлено своей собственной линией.

Трехлинейные схемы дополняют однолинейные, предоставляя базовое визуальное руководство по реальной прокладке питающих кабелей, подключению измерительного трансформатора и защитным устройствам.На этих чертежах показано, как соединены фазы и конкретные конфигурации обмоток без учета их физического расположения.


Схема подъема

Схема электрического стояка

. Фото: BGR Engineers.

Чтобы проиллюстрировать электрическую распределительную систему многоуровневого здания, используется диаграмма стояка. Эти чертежи похожи на однолинейные чертежи, но часто фокусируются на том, как энергия перетекает с одного уровня здания на другой.

На схемах

Riser показаны компоненты распределения, такие как стояки для шин, шинные вилки, щитовые панели и трансформаторы, от точки входа до небольших ответвлений на каждом уровне.Эти чертежи иногда могут использоваться совместно с системами охранной сигнализации, телекоммуникационными и интернет-кабелями.


Принципиальная схема

Пример электронной принципиальной схемы. Фото: DOE.gov

Основная цель принципиальной схемы — выделить элементы схемы и то, как их функции соотносятся друг с другом. Схемы — чрезвычайно ценный инструмент для поиска и устранения неисправностей, который определяет, какие компоненты включены последовательно или параллельно, и как они соединяются друг с другом.

Компоненты, которые обычно встречаются на принципиальных схемах, включают резисторы, конденсаторы, катушки индуктивности, диоды, логические вентили, контакты предохранителей, переключатели и многое другое.Каждый компонент на принципиальной схеме имеет свой собственный символ, обозначающий его.

Схематические диаграммы должны быть расположены для простоты и легкости понимания без учета фактического физического расположения любого компонента, уделяя внимание только тому, как они соединяются друг с другом. Эти схемы всегда должны быть нарисованы с переключателями и контактами, показанными в обесточенном положении.

Связано: Объяснение схемы управления автоматическим выключателем


Схема подключения

Схема подключения реле датчика нагрузки

Exmpale.Фото: Площадь Д.

Основная цель электрической схемы — показать все компоненты в электрической цепи и расположить их так, чтобы показать их фактическое физическое расположение. В отличие от принципиальной схемы, которую можно рассматривать как концептуальный рисунок, схема подключения предназначена для конечных пользователей и установщиков, которые сосредоточены на выполнении подключений и устранении неполадок компонентов.

На схемах подключения

должны быть указаны все части оборудования, устройства и клеммные колодки с их соответствующими номерами, буквами или цветами.Обозначения клемм и соединений между компонентами четко обозначены, чтобы облегчить сборку или ремонт оборудования, показанного на чертеже.


Блок-схема

Пример блок-схемы. Фото: Mercer.edu

.

Возможно, самый простой тип электрических чертежей, блок-схемы представляют основные компоненты сложной системы в виде блоков, соединенных между собой линиями, которые показывают их отношение друг к другу. Эти диаграммы не следует путать с однолинейными чертежами, поскольку они не передают никакой технической информации, а только основные компоненты сложной системы.

Блок-схема дает концептуальное представление о том, как завершается процесс, без учета электрических символов или терминов. Каждый блок представляет собой сложную схему, которая может быть объяснена с помощью других чертежей, таких как схемы и электрические схемы.


Логическая схема

Логическая схема реле отказа выключателя

. Фото: SEL, Inc.

.

В современных реле защиты используются логические схемы для представления сложных цепей и процессов, в которых сигнал рассматривается в двоичном формате (1 или 0).Логические функции на этих схемах представлены соответствующими символами, тогда как блоки используются для представления сложной логической схемы.

Блоки на логической схеме помечены для лучшего понимания без знания внутренней структуры и соединены линиями, которые представляют входы и выходы для двоичных сигналов. Логические схемы обычно не показывают электрические характеристики, такие как напряжение, ток и мощность.


Расписания

Примеры расписания двигателей и питателей.Фотография: Волусский уезд, Флорида

При перечислении таких позиций, как автоматические выключатели и размеры проводов для конкретного проекта или части распределительного оборудования, используется расписание. Термин «график» может также относиться к датам, в которые должно быть завершено определенное действие, обычно называемое «графиком проекта».

Что касается распределения электроэнергии, то графики часто включаются в чертежи распределительных щитов и щитов, чтобы указать количество автоматических выключателей, их размер и нагрузки, которые они обслуживают.Расписания фидеров используются для определения размера и количества проводов, используемых для входящих и исходящих грузов в рамках строительного проекта.

Расписания

обычно представлены в табличной форме и организованы таким образом, чтобы не требовать пояснений, что упрощает быстрый поиск информации. Информация в расписании обычно не включает однолинейные схемы или схемы соединений, но они обычно идентифицируют эту информацию со справочными чертежами, легендами и примечаниями.


Рабочие чертежи

Каждый раз, когда строительный проект завершается, «Как построено» представляет собой измененный чертеж, созданный и отправленный подрядчиком, чтобы выделить любые изменения, которые были внесены в первоначальные проектные чертежи в процессе строительства.Эти чертежи являются точным отражением проекта после того, как он был завершен, и должны содержать подробные сведения о форме, размерах и точном расположении всех элементов в рамках проекта.

Любые модификации, независимо от того, насколько они малы, должны быть включены в готовую конструкцию, если они отличаются от указанных в первоначальном плане. Строительные чертежи должны включать в себя записи об утверждениях, чтобы соответствовать внесенным изменениям.


Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *