22.01.2025

Характеристики транзисторов: Характеристики транзистора- основные параметры

Содержание

Характеристики транзистора- основные параметры

Характеристики транзистора – диаграмма, которая отображает взаимоотношения между электрическим током и напряжением транзистора в конкретной конфигурации. Учитывая, что схемы конфигураций транзисторов аналогичны по отношению к двухпортовым схемам, они могут быть проанализированы с использованием кривых для характеристик, которые могут быть следующих типов:

1. Характеристики входа: они описывают изменения в токе на входе с изменением значений напряжения на входе, удерживающим напряжение на выходе постоянным.

2. Характеристики выхода: это диаграмма, отображающая противостояние тока на выходе и напряжения на выходе при неизменном токе на входе.

3. Характеристики передачи тока: это кривая характеристик, показывающая изменение тока на выходе в соответствии с током на входе, при этом напряжение на выходе постоянное.

Транзистор, который включен по схеме с общей базой

При такой конфигурации базовый вывод транзистора будет общим между выводами входа и выхода, как показано на рисунке 1. Данная конфигурация демонстрирует низкое полное сопротивление на входе, высокое полное сопротивление на выходе, высокий коэффициент усиления сопротивления и высокий коэффициент усиления напряжения.

Рисунок 1 Схема с общей базой

Характеристики входа

Рисунок 2 показывает характеристики входа схемы вышеописанной конфигурации, которые описывают изменение тока на эмиттере, IE с напряжением на базе-эмиттере, VBE удерживает напряжение на коллекторе-базе, VCB постоянно.

Выражение для сопротивления на входе выглядит следующим образом:

Характеристики выхода

Характеристики выхода для такой конфигурации (Рисунок 3) демонстрируют изменение тока на коллекторе, IC с VCB, где ток на эмиттере, IE является удерживаемой постоянной. Из показанного графика следует, что сопротивление на выходе может быть получено как:

Рисунок 3 Характеристики выхода

Характеристики передачи тока

Рисунок 4 демонстрирует характеристики передачи тока для вышеназванной конфигурации, которые объясняют изменение IC с IE, удерживающим VCB постоянным. Получившийся коэффициент усиления тока имеет значение меньше единицы и может быть математически выражен следующим образом:

Рисунок 4 Характеристики передачи тока

Транзистор, который включен по схеме с общим коллектором

Эта конфигурация транзистора имеет общий вывод коллектора между выводами входа и выхода (Рисунок 5) и также имеет отношение к конфигурации эмиттера. Это обеспечивает высокое полное сопротивление на входе, низкое полное сопротивление на выходе, коэффициент усиления напряжения меньше единицы и значительный коэффициент усиления тока.

Рисунок 5 Схема с общим коллектором

Характеристики входа

Рисунок 6 демонстрирует характеристики входа для этой конфигурации, которые описывают изменение в IB в соответствии с VCB, для обеспечения постоянного значения напряжения на коллекторе-эмиттере, VCE.

Рисунок 6 Характеристики входа

Характеристики выхода

Рисунок 7 показывает характеристики выхода для данной конфигурации, которые демонстрируют изменения в IE против изменений в VCE для постоянных значений IB.

Рисунок 7 Характеристики выхода

Характеристики передачи тока

Эти характеристики данной конфигурации (Рисунок 8) показывают изменение IE с IB, удерживающим VCE постоянным.

Транзистор, который включен по схеме с общим эмиттером

В данной конфигурации вывод эмиттера является общим между выводами входа и выхода, как показано на рисунке 9. Эта конфигурация обеспечивает среднее полное сопротивление на входе, среднее полное сопротивление на выходе, средний коэффициент усиления тока и коэффициент усиления напряжения.

Рисунок 9 Схема с общим эмиттером

Характеристики входа

Рисунок 10 показывает характеристики входа для данной конфигурации, которая объясняет изменение в IB в соответствии с VBE, где VCE является постоянной.

Рисунок 10 Характеристики входа

Исходя из рисунка, сопротивление на входе может быть представлено как:

Характеристики выхода

Характеристики выхода у такой конфигурации (Рисунок 11) также рассматриваются как характеристики коллектора. Этот график показывает изменение в IC с изменениями в VCE, когда IB удерживается постоянной. Исходя из графика, можно получить сопротивление на выходе следующим образом:

Рисунок 11 Характеристики выхода

Характеристики передачи тока

Эти характеристики данной конфигурации показывают изменение IC с IB, удерживающим VCE в качестве постоянной. Это может быть математически выражено как:

Это соотношение рассматривается как коэффициент усиления тока с общим эмиттером, и оно всегда больше единицы.

Рисунок 12 Характеристики передачи тока

Наконец, важно отметить, что несмотря на то, что кривые характеристик были объяснены касательно биполярных плоскостных транзисторов, аналогичный анализ является подходящим даже по отношению к полевым транзисторам.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

История транзистора, часть 3: многократное переизобретение / Хабр

<< До этого: Из горнила войны

Более сотни лет аналоговая собака виляла цифровым хвостом. Попытки расширить возможности наших органов чувств – зрения, слуха, и даже, в каком-то смысле, осязания, вели инженеров и учёных на поиски лучших компонентов для телеграфа, телефона, радио и радаров. Лишь по счастливой случайности эти поиски обнаружили путь к созданию новых типов цифровых машин. И я решил рассказать историю этой постоянной экзаптации, во время которой инженеры электросвязи поставляли исходные материалы для первых цифровых компьютеров, а иногда даже сами проектировали и создавали эти компьютеры.

Но к 1960-м годам это плодотворное сотрудничество подошло к концу, а с ним и моя история. Изготовителям цифрового оборудования уже не нужно было заглядывать в мир телеграфа, телефона и радио в поисках новых, улучшенных переключателей, поскольку сам транзистор обеспечил неисчерпаемый источник улучшений. Год за годом они копали всё глубже и глубже, всегда находя способы экспоненциально увеличивать скорость работы и уменьшать стоимость.

Однако ничего этого бы не произошло, если бы изобретение транзистора остановилось бы на работе Бардина и Бреттейна.

Все статьи цикла:

  • История реле
  • История электронных компьютеров
  • История транзистора
  • История интернета
  • Эра фрагментации

Медленный старт

В популярной прессе не наблюдалось активного энтузиазма в связи с объявлением лабораторий Белла об изобретении транзистора. 1 июля 1948 года в The New York Times этому событию отвели три абзаца внизу сводки «Новостей радио». Причём эта новость появилась после других, очевидно, считавшихся более важными: например, часового радиошоу «Время вальса», которое должно было появиться на NBC. Задним умом мы, возможно, захотим посмеяться, или даже побранить неизвестных авторов – как же они не смогли распознать перевернувшее мир событие?

Но взгляд в прошлое искажает восприятие, усиливая те сигналы, значимость которых нам известно, хотя в то время они терялись в море шума. Транзистор 1948 года сильно отличался от транзисторов компьютеров, на одном из которых вы читаете эту статью (если вы не решили её распечатать). Отличались так сильно, что, несмотря на одинаковое название, и связывающую их непрерывную линию наследования, их нужно считать разными видами, если не разными родами. У них разные составы, разная структура, разный принцип функционирования, не говоря уже о гигантском различии в размерах. Только благодаря постоянным повторным изобретениям неуклюжее устройство, сооружённое Бардином и Бреттейном, смогло преобразовать мир и нашу жизнь.

На самом деле, германиевый транзистор с одной точкой контакта не заслуживал внимания большего, чем получил. У него было несколько дефектов, унаследованных от электронной лампы. Он, конечно, был гораздо меньше самых компактных ламп. Отсутствие раскалённой нити означало, что он выдаёт меньше тепла, потребляет меньше энергии, не перегорает и не требует прогрева перед использованием.

Однако накопление грязи на контактной поверхности приводило к отказам и сводило на нет потенциал к более долгому сроку службы; он давал более шумный сигнал; работал только при низких мощностях и в узком диапазоне частот; отказывал при наличии жары, холода или влажности; и его не получалось производить единообразно. Несколько транзисторов, созданных одним и тем же способом одними и теми же людьми, обладали бы вызывающе разными электрическими характеристиками. И всё это сопровождалось стоимостью в восемь раз большей, чем у стандартной лампы.

Только к 1952 году лаборатории Белла (и другие владельцы патента) решили проблемы производства достаточно для того, чтобы транзисторы с одной точкой контакта стали практичными устройствами, и даже тогда они не особенно распространились дальше рынка слуховых аппаратов, на котором чувствительность к ценам была относительно низкой, а преимущества, касающиеся времени работы от аккумулятора, превышали недостатки.

Однако тогда уже начались первые попытки превратить транзистор в нечто лучшее и более полезное. Они вообще-то начались гораздо раньше того момента, когда общественность узнала о его существовании.

Амбиции Шокли

К концу 1947 года Билл Шокли в большом возбуждении предпринял поездку в Чикаго. У него были смутные идеи по поводу того, как превзойти недавно изобретённый Бардиным и Бреттейном транзистор, но ему пока не представилось шанса разработать их. Поэтому вместо того, чтобы наслаждаться перерывом между этапами в работе, он провёл Рождество и Новый год в отеле, заполнив порядка 20 страниц блокнота своими идеями. Среди них было предложение нового транзистора, состоящего из полупроводникового сэндвича – ломтика из германия p-типа между двумя кусочками n-типа.

Подбадриваемый наличием такого туза в рукаве, Шокли предъявил Бардину и Бреттейну претензии по их возвращению в Мюррей-Хилл, требуя всей славы за изобретение транзистора. Разве не его идея о полевом эффекте заставила Бардин и Бреттейна засесть в лаборатории? Разве не нужно из-за этого передать все права на патент ему? Однако хитрость Шокли вышла ему боком: патентные юристы лабораторий Белла выяснили, что неизвестный изобретатель, Юлий Эдгар Лилиенфельд, запатентовал полупроводниковый усилитель на полевом эффекте почти за 20 лет до этого, в 1930. Лилиенфельд, конечно, так и не воплотил свою идею, учитывая состояние материалов на то время, но риск пересечения был слишком велик – лучше было полностью избежать упоминания полевого эффекта в патенте.

Так что, хотя лаборатории Белла и выдали Шокли щедрую долю славы изобретателя, в патенте они упомянули только Бардина и Бреттейна. Однако, сделанного не воротишь: амбиции Шокли уничтожили его взаимоотношения с двумя подчинёнными. Бардин прекратил работу над транзистором, и сконцентрировался на сверхпроводимости. Он ушёл из лабораторий в 1951. Бреттейн остался там, но отказался вновь работать с Шокли, и настоял на перевод в другую группу.

Из-за неспособности работать с другими людьми Шокли так и не продвинулся в лабораториях, поэтому тоже ушёл оттуда. В 1956 он вернулся домой в Пало-Альто, чтобы основать собственную компанию по производству транзисторов, Shockley Semiconductor. Перед отъездом он расстался с женой Джин, когда она восстанавливалась от рака матки, и сошёлся с Эмми Леннинг, на которой вскоре женился. Но из двух половин его калифорнийской мечты – новая компания и новая жена – исполнилась лишь одна. В 1957 лучшие его инженеры, разгневанные его стилем управления и направлением, в котором он вёл компанию, ушли от него, чтобы основать новую фирму, Fairchild Semiconductor.

Шокли в 1956

Так что Шокли бросил пустую оболочку своей компании и устроился в департамент электротехники в Стэнфорде. Там он продолжал отталкивать от себя своих коллег (и своего старейшего друга, физика Фреда Зейтца) заинтересовавшими его теориями расового вырождения и расовой гигиены – темами, непопулярными в США со времени окончания последней войны, особенно в академических кругах. Он находил удовольствие в развязывании споров, взвинчивании СМИ и вызывании протестов. Он умер в 1989 году, отдалившись от детей и коллег, и посещаемый только вечно преданной ему второй женой, Эмми.

Хотя его жалкие попытки на поприще предпринимательства провалились, Шокли уронил зерно в плодотворную почву. Область залива Сан-Франциско произвела на свет множество небольших фирм, производящих электронику, которые сдабривало финансированием федеральное правительство во время войны. Fairchild Semiconductor, случайный отпрыск Шокли, породил десятки новых фирм, парочка которых известна и сегодня: Intel и Advanced Micro Devices (AMD). К началу 1970-х эта область заслужила насмешливое прозвище «Кремниевая долина». Но постойте-ка – ведь Бардин и Бреттейн создали германиевый транзистор. Откуда взялся кремний?

Так в 2009 году выглядело заброшенное место в Маунтин-Вью, где ранее находилась Shockley Semiconductor. Сегодня здание снесено.

К кремниевому перекрёстку

Судьба нового типа транзистора, придуманного Шокли в чикагском отеле, была гораздо счастливее, чем у его изобретателя. Всё благодаря стремлению одного человека выращивать единые чистые полупроводниковые кристаллы. Гордон Тил, физический химик из Техаса, изучавший бесполезный тогда германий для своей докторской, в 30-х годах устроился на работу в лаборатории Белла. Узнав о транзисторе, он уверился в том, что его надёжность и мощность можно значительно улучшить, создав его из чистого монокристалла, а не из использовавшихся тогда поликристаллических смесей. Шокли отверг его попытки, считая их бесполезной тратой ресурсов.

Однако Тил упорствовал и добился успеха, с помощью инженера-механика Джона Литла создав аппарат, достающий крохотный зародыш кристалла из расплавленного германия. Охлаждаясь вокруг зародыша, германий расширял его кристаллическую структуру, создавая непрерывную и почти чистую полупроводящую решётку. К весне 1949 года Тил и Литл могли создавать кристаллы по заказу, и испытания показали, что они оставляют далеко позади своих поликристаллических конкурентов. В частности, добавленные в них неосновные переносчики могли выживать внутри сотню микросекунд или даже дольше (против не более чем десяти микросекунд в других пробах кристаллов).

Теперь Тил мог позволить себе больше ресурсов, и набрал в свою команду больше людей, среди которых был ещё один физический химик, пришедший в лаборатории Белла из Техаса – Морган Спаркс. Они начали менять расплав для изготовления германия p-типа или n-типа, добавляя шарики соответствующих примесей. Ещё за год они усовершенствовали технологию до такой степени, что могли выращивать германиевый n-p-n сэндвич прямо в расплаве. И он работал именно так, как предсказывал Шокли: электрический сигнал материала p-типа модулировал электрический ток между двумя проводниками, соединёнными с окружающими его кусочками n-типа.

Морган Спаркс и Гордон Тил за верстаком в лабораториях Белла

Этот транзистор с выращенным переходом превзошёл своего предка с одним точечным контактом почти по всем статьям. В особенности, он стал более надёжным и предсказуемым, выдавал гораздо меньше шума (и, следовательно, был более чувствительным), и чрезвычайно энергоэффективным – потребляя в миллион раз меньше энергии, чем типичная электронная лампа. В июле 1951 года лаборатории Белла организовали ещё одну пресс-конференцию, чтобы объявить о новом изобретении. Ещё до того, как первый транзистор сумел выйти на рынок, он, по сути, уже стал несущественным.

И всё же это было лишь начало. В 1952 году General Electric (GE) объявила о разработке нового процесса создания транзисторов с переходом, сплавного метода. В его рамках два шарика индия (донор p-типа) сплавлялись с двух сторон тонкого ломтика из германия n-типа. Этот процесс был проще и дешевле, чем выращивание переходов в сплаве, такой транзистор давал меньше сопротивления и поддерживал большие частоты.

Выращенные и сплавные транзисторы

В следующем году Гордон Тил решил вернуться в свой родной штат, и устроился на работу в Texas Instruments (TI) в Далласе. Компания была основана под именем Geophysical Services, Inc., и сначала производила оборудование для разведывания нефтяных месторождений, TI открыла подразделение электроники во время войны, и теперь выходила на рынок транзисторов по лицензии от Western Electric (производственного подразделения лабораторий Белла).

Тил принёс с собой новые навыки, полученные в лабораториях: способность выращивать и легировать монокристаллы кремния. Самой очевидной слабостью германия была его чувствительность к температуре. Подвергаясь воздействию тепла, атомы германия в кристалле быстро сбрасывали свободные электроны, и он всё больше превращался в проводник. При температуре в 77 °C он вообще переставал работать, как транзистор. Главной целью продаж транзисторов были вооружённые силы – потенциальный потребитель с низкой ценовой чувствительностью и огромной потребностью в стабильных, надёжных и компактных электронных компонентах. Однако чувствительный к температуре германий не пригодился бы во многих случаях военного применения, особенно в аэрокосмической области.

Кремний был гораздо стабильнее, однако расплачиваться приходилось гораздо более высокой точкой плавления, сравнимой с точкой плавления стали. Это вызывало огромные трудности, учитывая, что для создания высококачественных транзисторов требовались очень чистые кристаллы. Горячий расплавленный кремний впитывал бы загрязнения из любого тигля, в котором бы находился. Тил с командой из TI сумели преодолеть эти трудности при помощи сверхчистых образцов кремния от DuPont. В мае 1954 на конференции института радиоинженеров в Дайтоне (Огайо) Тил продемонстрировал, что новые кремниевые устройства, произведённые в его лаборатории, продолжали работать, даже будучи погружёнными в горячее масло.

Успешные выскочки

Наконец, примерно через семь лет после первого изобретения транзистора, его можно было изготавливать из материала, с которым он стал синонимом. И ещё примерно столько же времени пройдёт до появления транзисторов, грубо напоминающих ту форму, что используется в наших микропроцессорах и чипах памяти.

В 1955 году учёные из лабораторий Белла успешно научились делать кремниевые транзисторы с новой технологией легирования – вместо того, чтобы добавлять твёрдые шарики примесей в жидкий расплав, они внедряли газообразные добавки в твёрдую поверхность полупроводника (термодиффузия). Тщательно контролируя температуру, давление и длительность процедуры, они достигали точно необходимой глубины и степени легирования. Усиление контроля над производственным процессом дало усиление контроля над электрическими свойствами конечного продукта. Что ещё важно, термодиффузия дала возможность производить продукт партиями – можно было легировать большую плиту кремния, а потом нарезать её на транзисторы. Военные обеспечили финансирование лабораторий Белла, поскольку на организацию производства требовались высокие предварительные траты. Им требовался новый продукт для ультравысокочастотной линии раннего радиолокационного обнаружения («линии Дью»), цепочке арктических радарных станций, предназначенных для обнаружения советских бомбардировщиков, летящих со стороны Северного полюса, и они готовы были выложить по $100 за транзистор (это были времена, когда новый автомобиль можно было купить за $2000).

Легирование вместе с фотолитографией, управлявшей расположением примесей, открыли возможность вытравливать весь контур целиком на одной полупроводниковой подложке – до этого одновременно додумались в Fairchild Semiconductor и Texas Instruments в 1959. «Планарная технология» от Fairchild использовала химическое осаждение металлических плёнок, соединяющих электрические контакты транзистора. Она избавляла от необходимости создания проводки вручную, уменьшала стоимость производства и увеличивала надёжность.

Наконец, в 1960-м два инженера из лабораторий Белла (Джон Аталла и Дэвон Кан) реализовали оригинальную концепцию Шокли транзистора на полевом эффекте. Тонкий слой оксида на поверхности полупроводника смог эффективно подавлять поверхностные состояния, в результате чего электрическое поле от алюминиевого затвора проникало внутрь кремния. Так родился MOSFET [metal-oxide semiconductor field-effect transistor] (или МОП-структура, от металл-оксид-полупроводник), который оказалось так легко миниатюризировать, и который до сих пор используется почти во всех современных компьютерах (интересно, что Аталла был родом из Египта, а Кан из Южной Кореи, и практически только эти двое инженеров из всей нашей истории не имеют европейских корней).

Наконец, спустя тринадцать лет после изобретения первого транзистора, появилось нечто, напоминающее транзистор вашего компьютера. Его было проще производить, он использовал меньше энергии, чем плоскостной транзистор, однако он довольно медленно реагировал на сигналы. Только после распространения крупных интегральных схем с сотнями или тысячами компонентов, расположенными на едином чипе, преимущества полевых транзисторов вышли на первый план.

Иллюстрация из патента на полевой транзистор

Полевой эффект стал последним серьёзным вкладом лабораторий Белла в разработку транзистора. Крупные производители электроники, такие, как лаборатории Белла (с их Western Electric), General Electric, Sylvania и Westinghouse наработали впечатляющий объём исследований полупроводников. С 1952 по 1965 только лаборатории Белла зарегистрировали более двух сотен патентов на эту тему. И всё же коммерческий рынок быстро перешёл в руки таких новых игроков, как Texas Instruments, Transitron и Fairchild.

Ранний рынок транзисторов был слишком маленьким для того, чтобы на него обращали внимание крупные игроки: порядка $18 млн в год в середине 1950-х, по сравнению с общим объёмом рынка электроники в $2 млрд. Однако исследовательские лаборатории этих гигантов служили непреднамеренными тренировочными лагерями, где молодые учёные могли впитывать знания, касающиеся полупроводников, чтобы после переходить к продаже своих услуг менее крупным фирмам. Когда рынок ламповой электроники в середине 1960-х начал серьёзно ужиматься, для лабораторий Белла, Westinghouse и остальных было уже слишком поздно состязаться с выскочками.

Переход компьютеров на транзисторы

В 1950-х транзисторы вторглись в мир электроники в четырёх наиболее значимых областях. Первыми двумя были слуховые аппараты и портативные радиоприёмники, в которых низкое энергопотребление, и, как следствие, долгая работа от батареи, пересиливали остальные соображения. Третьей было военное применение. Армия США возлагала большие надежды на транзисторы, как на надёжные и компактные компоненты, которые можно использовать везде, от полевого радио до баллистических ракет. Однако в первое время их траты на транзисторы больше были похожи на ставку на будущее технологии, чем на подтверждение их тогдашней ценности. И, наконец, были ещё цифровые вычисления.

В компьютерной области недостатки переключателей на электронных лампах были хорошо известны, причём некоторые скептики до войны даже считали, что электронный компьютер не удастся сделать практичным устройством. Когда тысячи ламп собирали в одном устройстве, они пожирали электроэнергию, выдавая огромное количество тепла, а в плане надёжности можно было положиться только на их регулярное выгорание. Поэтому мало потребляющий, холодный и не имеющий нити транзистор стал спасителем компьютерных производителей. Его недостатки как усилителя (к примеру, более шумный выходной сигнал) не представляли такой уж проблемы при использовании его в качестве переключателя. Единственным препятствием была стоимость, и в своё время она начнёт резко падать.

Все ранние американские эксперименты с транзисторными компьютерами происходили на пересечении желания военных изучить потенциал многообещающей новой технологии, и желания инженеров перейти на улучшенные переключатели.

В лабораториях Белла в 1954 году построили TRADIC для ВВС США, чтобы посмотреть, дадут ли транзисторы возможность установить цифровой компьютер на борту бомбардировщика, заменив им аналоговую навигацию и помощь в поиске целей. Лаборатория Линкольна из MIT разработала компьютер TX-0 в рамках обширного проекта ПВО в 1956. Машина использовала ещё один вариант транзистора, поверхностно-барьерный, хорошо подходивший для высокоскоростных вычислений. Philco построила свой компьютер SOLO по контракту с ВМФ (однако реально – по запросу АНБ), закончив его в 1958 (используя ещё один вариант поверхностно-барьерного транзистора).

В Западной Европе, не настолько обеспеченной ресурсами в ходе Холодной войны, история была совсем другой. Такие машины, как Manchester Transistor Computer, Harwell CADET (ещё одно название, вдохновлённое проектом ENIAC, и зашифрованное написанием задом наперёд), и австрийский Mailüfterl были побочными проектами, использовавшими ресурсы, которые их создатели могли наскрести – включая транзисторы с одной точкой контакта первого поколения.

Идёт множество споров по поводу титула первого компьютера, использовавшего транзисторы. Всё, конечно, упирается в выбор правильных определений таких слов, как «первый», «транзисторный» и «компьютер». В любом случае известно, где история заканчивается. Коммерциализация транзисторных компьютеров началась почти сразу. Год за годом компьютеры за одну и ту же цену становились всё более мощными, а компьютеры одной мощности становились всё дешевле, и этот процесс казался настолько неумолимым, что его возвели в ранг закона, рядом с гравитацией и сохранением энергии. Нужно ли нам спорить о том, какой камушек стал первым в обвале?

Откуда взялся закон Мура?

Приближаясь к окончанию истории переключателя, стоит задать вопрос: что привело к появлению этого обвала? Почему закон Мура существует (или существовал – поспорим об этом в другой раз)? Для самолётов или пылесосов закона Мура нет, как нет его для электронных ламп или реле.

Ответ состоит из двух частей:

  1. Логические свойства переключателя как категории артефакта.
  2. Возможность использовать чисто химические процессы для изготовления транзисторов.

Сначала о сути переключателя. Свойства большинства артефактов обязаны удовлетворять широкому спектру неумолимых физических ограничений. Пассажирский самолёт должен выдерживать общий вес множества людей. Пылесос должен уметь засасывать определённое количество грязи за определённое время с определённой физической площади. Самолёты и пылесосы будут бесполезными, если уменьшить их до наномасштабов.

У переключателя же – автоматического переключателя, которого никогда не касалась рука человека – физических ограничений гораздо меньше. У него должно быть два различных состояния, и он должен уметь сообщать другим таким же переключателям изменение их состояний. То есть, всё, что он должен уметь, это включаться и выключаться. Что же такого особенного в транзисторах? Почему другие виды цифровых переключателей не испытали таких экспоненциальных улучшений?

Тут мы подходим ко второму факту. Транзисторы можно изготавливать при помощи химических процессов без механического вмешательства. С самого начала ключевым элементом производства транзисторов было применение химических примесей. Затем появился планарный процесс, устранивший последний механический шаг из производства – присоединение проводов. В результате он избавился от последнего физического ограничения на миниатюризацию. Транзисторам уже не нужно было быть достаточно крупными для пальцев человека – или для любого механического устройства. Всё делала простая химия, на невообразимо маленьком масштабе: кислота для травления, свет для управления тем, какие части поверхности будут противостоять травлению, и пары для внедрения примесей и металлических плёнок на вытравленные дорожки.

А зачем вообще нужна миниатюризация? Уменьшение размера давало целую плеяду приятных побочных эффектов: увеличение скорости переключения, уменьшение потребления энергии и стоимости отдельных экземпляров. Эти мощные стимулы побудили всех заниматься поиском способов дальнейшего уменьшения переключателей. И полупроводниковая индустрия за время жизни одного человека перешла от изготовления переключателей размером с ноготь до упаковки десятков миллионов переключателей на квадратный миллиметр. От запроса восьми долларов за один переключатель до предложения двадцати миллионов переключателей за доллар.

Чип памяти Intel 1103 от 1971 года. Отдельные транзисторы, размером всего в десятки микрометров, уже неразличимы глазом. А с тех пор они уменьшились ещё в тысячу раз.

Что ещё почитать:

  • Ernest Bruan and Stuart MacDonald, Revolution in Miniature (1978)
  • Michael Riordan and Lillian Hoddeson, Crystal Fire (1997)
  • Joel Shurkin, Broken Genius (1997)

Далее: Опорная сеть >>

Зарубежные транзисторы и их отечественные аналоги — замена транзисторов на отечественные



Транзистор – популярный полупроводниковый прибор, выполняющий в электросхемах функции формирования, усиления или преобразования электросигналов и переключения электроимпульсов. Выделяют три типа этих приборов:

  • Однопереходные – иначе называются «двухбазовыми диодами». Представляют собой трехэлектродные полупроводники с одним p-n переходом;
  • Биполярные – имеют два p-n перехода;
  • Полевые – специальный класс, могут служить выключателями или регуляторами тока.

Домашним мастерам, специалистам по ремонту радиоаппаратуры, конструкторам часто требуется подобрать отечественный аналог импортных приборов или наоборот. В некоторых случаях это необходимо для экономии средств – российская продукция гораздо дешевле импортной. Это можно сделать несколькими способами:

  • Найти data sheets – техническую документацию к зарубежным электронным компонентам, в которой указываются основные параметры, обозначение на схемах и краткое описание. Затем воспользоваться справочниками на отечественные устройства. И методом подбора найти российские аналоги транзисторов или близкие по характеристикам устройства. Это длительный и сложный путь.
  • Использовать таблицу, представленную на нашем сайте. Она поможет заменить зарубежный транзистор отечественным или уменьшить диапазон поиска до нескольких экземпляров.

В нашем каталоге транзисторов вы можете подобрать и купить отечественные аналоги зарубежных транзисторов.


Таблицы зарубежных аналогов транзисторов


Если вы нашли неточность в таблицах аналогов или хотите дополнить их — напишите об этом в комментариях внизу страницы!


Таблица аналогов биполярных транзисторов

Зарубежные Отечественные
2SC3217 2T9155A
2SC3660 2T9155B
2SC3218 2T9155Б
Bak0510-50 2T9156БС
BF423C 2Т3129В9-Г9,2Т3152В
KF423 2Т3129Д9, 2Т3152Б
BFY80 2Т3130А9
2N2463 2Т3130Б9
2N2459 2Т3130В9
2N735A 2Т3130Г9
2N844 2Т3130Д9
PBC108A, B 2Т3133А2
2N4260 2Т3135А1
2N4261 2Т3135Б1
S923TS 2Т3152А, Г, Д
PBC107B 2Т3158А2
2N2906A 2Т3160А2
DC5108 2Т370А9
CX954 2Т370Б9
BD825 2Т642А2
2N2218 2Т649А2
SF123A 2Т672А2
BD202 2Т818А
1561-1015 2Т874А
1561-1008 2Т874Б
SDT69504 2Т880Д
2N3584 2Т881Д
2SA1009AM 2Т887А, Б
BLY47A 2Т892А, 2Т892Б
2N5050 2Т892В
2SC2093 2Т9102А2, Б2, 2Т9103Б2
2307(A) 2Т9103А2
NE243499 2Т9108А2
NE080481E-12 2Т9109А
THA-15 2Т9111А
THX-15 2Т9111Б
AM1416200 2Т9114А, Б
SDR075 2Т9117А, 2Т9118А
2DR405B 2Т9117Б
MRF846 2Т9117В
LDR405B 2Т9118Б
MRF846 2Т9118В
NE3001 2Т9119А2
PZB27020V 2Т9122А
Ph2214-60 2Т9122Б
MSC81400M 2Т9127В, Г
MSC81325M 2Т9127Д, Е
TN20 2Т9130А
2SA1584 2Т9143А
2023-6 2Т9146А
2023-12 2Т9146Б
2023-16 2Т9146В
2SC3217 2Т9155А
2SC3218 2Т9155Б, КТ9142А
2SC3660 2Т9155В, КТ9152А
222430 2Т9158А
2023-6 2Т9158Б
MRF544 2Т9159А
AM1416200 2Т986А, Б
MPF873 2Т987А
AM1416200 2Т994А2—2Т994В2
2N5177 2Т998А
2SC3218* KT9142A
2SC3660* KT9152A
SD1483 KT9174A
SD1492* Г101A
ADY25 ГТ 701А, П210Б
SD1492 ГТ101А
AC128 ГТ402И
AC127 ГТ404Б
AD162 ГТ703Г
AU106 ГТ810А, КТ812Б
BC239B КТ 3102Ж
SS9012 КТ209
2N2784 КТ3101АМ
BC109BP КТ3102И
BC455D КТ3107Е1
BC456B КТ3107И1
BC526C КТ3107К1-Л1
BF680 КТ3109А1
BF979 КТ3109Б1
BF970 КТ3109В1
2N2615 КТ3132Д2
2N2616 КТ3132Е2
2N2906 КТ313А1
2N2906A КТ313Б1
2SA1090 КТ313В1
2SA876H КТ313Г1
PXT2222 КТ3153А9
BFP720 КТ315В1
2N3397 КТ315Р1
2SD1220Q КТ3169А9, 2Т3129А9
2SA1660 КТ3171А9, 2Т3129Б9
2SD814 КТ3176А9
MPS6513 КТ3184Б9
TBC547A КТ3186А
BCW47B КТ3187А
BC408 КТ342А
BC107B КТ342Б, КТ3102Б
2SC404 КТ359А3
SS9015 КТ361, КТ3107
2SA556 КТ361Ж (И)
BSW62A КТ361К (Л, М)
BSW63A КТ361Н (П)
MD5000A КТ363А
2N3839 КТ370А9
2N5651 КТ370Б9
BC147 КТ373А
2N3904 КТ375А, КТ375Б
2SC601 КТ396А2
2N709 КТ397А2
MJE13001 КТ538А
2SC64 КТ6110А (Б)
2N1051 КТ6110В (Г, Д)
BF337 КТ6113А (Б, В)
BF338 КТ6113Г (Д, Е)
2SA738B КТ6116А (Б)
2N3114 КТ6117А
2N3712 КТ6117Б
BD136 КТ626Е, КТ6109А
BC527-6 КТ629А2
BD386 КТ629А3
2N2368 КТ633А
2N3303 КТ635А
BD370A6 КТ639А1
BD372 КТ639Б1
2N2218A КТ647А2
MPS706 КТ648А2
2SA715C КТ664Б9
BF177 КТ671А2, 2Т3130Е9
BF179B КТ682Б2
BD166 КТ720А
2N4238 КТ721А
BD168 КТ722А
2N3054 КТ723А
BD170 КТ724А
BD165 КТ728А
BUY90 КТ8107В (Г)
MIE13005 КТ8121А2
MIE13004 КТ8121Б2
2SD401A КТ8146А
2SC4055 КТ8146Б
TIP41C КТ8212А—В
BU2506D КТ8248А1
BUD44D2 КТ8261А
STD18202 КТ828Г
BU205 КТ838Б
2SB834 КТ842В
2SD1279 КТ846Б
BVX14 КТ846В
BD223 КТ856А1
BD944 КТ856Б1
2N5839 КТ862Б
2N5840 КТ862В
2SC1173 КТ862Г
2SC1624 КТ863Б
2SC1625 КТ863В
2SC2794 КТ866А
2N4913 КТ866Б
BU508 КТ872
2SA1682-5 КТ9115А, Б, КТ9143А, Б, В
SD1015 КТ9116А
MRF422 КТ9116А, В
I02015A КТ9116Б
2SC3596F КТ9142А
TCC2023-6L КТ9150А, 2Т9155В
2SC3812 КТ9151АС
2023-15T КТ9152А
27AM05 КТ9170А
SDT3207 КТ9171А, Б
LT1739 КТ9171В
2SB596 КТ9176А
MJE2801T КТ9177А
SD1483 КТ917А
2N6180 КТ9180А, Б, 2Т877Г
2N6181 КТ9180В, Г
D44H7 КТ9181А, Б
MRF430 КТ9181В, Г
2N5102 КТ921А, В
2N2219 КТ928Б
BC303 КТ933А
2N5996 КТ945Б
2N5642 КТ945В, Г
2N5643 КТ949А
2SC2331 КТ961, КТ9171
2N4440 КТ972В
2N5995 КТ972Г
LOT-1000D1-12B КТ979А
2N4976 КТ996А2
2SC976 КТ996Б2
2N4128 КТ997В
MP42 МП42Б
ASZ18 П217В, ГТ711


Биполярные транзисторы до 40 В


Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
SG769 2Т3133А npn 0.3 ТО-126
2Т837В,Е pnp 8 ТО-220
2SA1020 2Т860В pnp 2 ТО-39
2Т877В pnp 20 ТО-3
KT315H n-p-n 20 0.1
KT503A n-p-n 25 0.15
KT503B n-p-n 25 0.15
KT686F p-n-p 25 0.8
KTJ107B p-n-p 25 0.1
авзтт p-n-p 30 7.5
ГТ313А p-n-p 15 0.03
ГТ313Б p-n-p 15 0.03
ГТ313В p-n-p 15 0.03
ГТ328А p-n-p 15 0.01
ГТ328Б p-n-p 15 0.01
ГТ328В p-n-p 15 0.01
ГТ346А p-n-p 20 0.01
ГТ346Б p-n-p 20 0.01
ГТ346В p-n-p 20 0.01
К13115Г-2 n-p-n 7 0.08
КГ117Г n-база 30 0.05
КГ201А(М) n-p-n 20 0.02
КТ117А n-баэа 30 0.05
КТ117Б n-баэа 30 0.05
КТ117В n-база 30 0.05
КТ201Б(М) n-p-n 20 0.02
КТ201В(М) n-p-n 10 0.02
КТ201Г(М) n-p-n 10 0.02
КТ201Д(М) n-p-n 10 0.02
КТ203Б(М) p-n-p 30 0.01
КТ203В(М) p-n-p 15 0.01
КТ208А(1) p-n-p 20 0.3
КТ208Б(1) p-n-p 20 0.3
КТ208В(1) p-n-p 20 0.3
КТ208Г(1) p-n-p 30 0.3
КТ208Д(1) p-n-p 30 0.3
КТ208Е(1) p-n-p 30 0.3
КТ209А p-n-p 15 0.3
КТ209Б p-n-p 15 0.3
КТ209Б1 p-n-p 15 0.3
КТ209В p-n-p 15 0.3
КТ209В1 p-n-p 15 0.3
КТ209В2 p-n-p 15 0.3
КТ209Г p-n-p 30 0.3
КТ209Д p-n-p 30 0.3
КТ209Е p-n-p 30 0.3
КТ306Б(М) n-p-n 10 0.03
кт306в(М) n-p-n 10 0.03
кт306г(М) n-p-n 10 0.03
кт306д(М) n-p-n 10 0.03
КТ3101А-2 n-p-n 15 0.02
КТ3102K(M) n-p-n 20 0.1
КТ3102В(М) n-p-n 30 0.1
КТ3102Г(М) n-p-n 20 0.1
КТ3102Д(М) n-p-n 30 0.1
КТ3102Е(М) n-p-n 20 0.1
КТ3102Ж(М) n-p-n 20 0.1
КТ3102И(М) n-p-n 20 0.1
КТ3107Г p-n-p 25 0.1
BC179AP КТ3107Д p-n-p 25 0.1
BC179 КТ3107Е p-n-p 20 0.1
КТ3107Ж p-n-p 20 0.1
КТ3107К p-n-p 25 0.1
КТ3107Л p-n-p 20 0.1
КТ3109А p-n-p 25 0.05
КТ3109Б p-n-p 20 0.05
КТ3109В p-n-p 20 0.05
КТ3115А-2 n-p-n 10 0.08
КТ3115В-2 n-p-n 10 0.08
КТ3120А n-p-n 15 0.02
КТ3123А-2 p-n-p 15 0.03
КТ3123Б-2 p-n-p 15 0.03
КТ3123В-2 p-n-p 10 0.03
КТ3126А p-n-p 20 0.02
КТ3126Б p-n-p 20 0.02
КТ3127А p-n-p 20 0.02
кт3128А(1) p-n-p 40 0.02
КТ3129В-9 p-n-p 30 0.1
КТ3129Г-9 p-n-p 30 0.1
КТ3129Д-9 p-n-p 20 0.1
КТ312А n-p-n 20 0.03
BFY39 КТ312Б n-p-n 35 0.03
КТ312В n-p-n 20 0.03
КТ3130В-9 n-p-n 30 0.1
КТ3130Г-9 n-p-n 20 0.1
КТ3130Д-9 n-p-n 30 0.1
КТ3130Е-9 n-p-n 20 0.1
КТ3130Ж-9 n-p-n 30 0.1
2N2712 КТ315А n-p-n 25 0.1
2N2926 КТ315Б n-p-n 20 0.1
КТ315В n-p-n 40 0.1
КТ315Г n-p-n 35 0.1
BFP722 КТ315Г1 n-p-n 35 0.1
2SC634 КТ315Д n-p-n 40 0.1
КТ315Е n-p-n 35 0.1
2SC641 КТ315Ж n-p-n 20 0.05
КТ315Р n-p-n 35 0.1
КТ3168А-9 n-p-n 15 0.03
КТ316А(М) n-p-n 10 0.05
КТ316Б(М) n-p-n 10 0.05
КТ316В(М) n-p-n 10 0.05
КТ316Г(М) n-p-n 10 0.05
КТ316Д(М) n-p-n 10 0.05
КТ325А(М) n-p-n 15 0.03
КТ325Б(М) n-p-n 15 0.03
КТ325В(М) n-p-n 15 0.03
КТ326А(М) p-n-p 15 0.05
КТ326Б(М) p-n-p 15 0.05
КТ339А(М) n-p-n 25 0.03
КТ339Б n-p-n 15 0.03
КТ339В n-p-n 25 0.03
КТ339Г n-p-n 25 0.03
КТ339Д n-p-n 25 0.03
КТ342А(М) n-p-n 30 0.05
КТ342Б(М) n-p-n 25 0.05
КТ342В(М) n-p-n 10 0.05
КТ342ГМ n-p-n 30 0.05
КТ342ДМ n-p-n 25 0.05
КТ345А p-n-p 20 0.2
КТ345Б p-n-p 20 0.2
КТ345В p-n-p 20 0.2
КТ347А p-n-p 15 0.05
КТ347Б p-n-p 9 0.05
КТ347В p-n-p 6 0.05
КТ349А p-n-p 15 0.05
BC178 КТ349Б p-n-p 15 0.05
КТ349В p-n-p 15 0.05
КТ350А p-n-p 20 0.6
КТ351А p-n-p 15 (-0.4)
КТ351Б p-n-p 15 (-0.4)
КТ352А p-n-p 15 (-0.2)
КТ352Б p-n-p 15 (-0.2)
КТ355АМ n-p-n 15 0.03
2SA555 КТ361А p-n-p 25 0.1
КТ361Б p-n-p 20 0.1
КТ361В p-n-p 40 0.1
КТ361Г p-n-p 35 0.1
КТ361Г1 p-n-p 35 0.1
КТ361Д p-n-p 40 0.05
КТ361Е p-n-p 35 0.05
BC251 КТ361И p-n-p 15 0.05
КТ363А(М) p-n-p 15 0.03
КТ363Б(М) p-n-p 12 0.03
КТ368А(М) n-p-n 15 0.03
КТ371А n-p-n 10 0.02
КТ372А n-p-n 15 0.01
КТ372Б n-p-n 15 0.01
КТ382А(М) n-p-n 10 0.02
КТ382Б(М) n-p-n 10 0.02
КТ391А-2 n-p-n 10 0.01
КТ391Б-2 n-p-n 10 0.01
КТ391В-2 n-p-n 10 0.01
КТ399А n-p-n 15 0.02
КТ399АМ n-p-n 15 0.03
2N3906 КТ501 Ж,И,К pnp 0.3 ТО-92
КТ501А p-n-p 15 0.3
КТ501Б p-n-p 15 0.3
КТ501В p-n-p 15 0.3
КТ501Г p-n-p 30 0.3
КТ501Д p-n-p 30 0.3
КТ501Е p-n-p 30 0.3
КТ502А p-n-p 25 0.15
КТ502Б p-n-p 25 0.15
КТ502В p-n-p 40 0.15
КТ502Г p-n-p 40 0.15
2SC1815 КТ503 А,Б npn 0.15 ТО-92
КТ503В n-p-n 40 0.15
КТ503Г n-p-n 40 0.15
КТ603А n-p-n 30 0.3
КТ603Б n-p-n 30 0.3
Кт603в n-p-n 15 0.3
КТ603Г n-p-n 15 0.3
Кт603д n-p-n 10 0.3
КТ603Е n-p-n 10 0.3
Кт603и n-p-n 30 0.3
BC547  КТ6111 (А-Г) npn 0.1 ТО-92
2SA1266  КТ6112 (А-В) pnp 0.1 ТО-92
КТ6127Г p-n-p 30 2
КТ6127Д p-n-p 12 2
КТ6127Е p-n-p 12 2
2N4403  КТ626А pnp 0.5 ТО-126
КТ626Г p-n-p 20 0.5
КТ626Д p-n-p 20 0.5
BD136 КТ639А,Б,В pnp 1.5 ТО-126
КТ639И p-n-p 30 1.5
КТ644В p-n-p 40 0.6
КТ644Г p-n-p 40 0.6
2N3904 КТ645Б n-p-n 40 0.3 ТО-92
2N4401  КТ646Б n-p-n 40 1 ТО-126
BC337  КТ660А npn 0.8 ТО-92
КТ660Б n-p-n 30 0.8
BC557  КТ668 (А-В) pnp 0.1 ТО-92
КТ680А n-p-n 25 0.6
КТ681А p-n-p 25 0.6
BC635 КТ684А npn 1 ТО-92
КТ685 А,В pnp 40 0.6 ТО-92
КТ685д p-n-p 25 0.6
КТ685Е p-n-p 25 0.6
КТ685Ж p-n-p 25 0.6
BC327 КТ686 А,Б,В pnp 45 0.8 ТО-92
КТ686Г p-n-p 25 0.8
КТ686Д p-n-p 25 0.8
КТ686Ж p-n-p 25 0.8
BC636 КТ692А pnp 1 ТО-39
КТ695А n-p-n 25 0.03
КТ698Г n-p-n 30 2
КТ698Д n-p-n 12 2
КТ698Е n-p-n 12 2
КТ8111Б’ n-p-n 40 0.02
КТ8111В» n-p-n 30 0.02
КТ8130А* p-n-p 40 4
КТ8131А* n-p-n 40 4
КТ814А pnp 25 1.5 ТО-126
КТ814Б p-n-p 40 1.5
BD135 КТ815А npn 30 1.5 ТО-126
BD434 КТ816А p-n-p 40 3
КТ816А2 p-n-p 40 3
2SB856 КТ816Б pnp 3 ТО-126
BD435 КТ817А,Б npn 40 3 ТО-126
TIP33 КТ818А pnp 40 10 ТО-220
КТ818АМ p-n-p 40 15
TIP34 КТ819А,Б npn 40 10 ТО-220,
9527 КТ819АМ n-p-n 40 15
КТ825Е* p-n-p 30 0.02
КТ829Г npn 8 ТО-220
КТ835А p-n-p 30 3
КТ835Б pnp 7.5 ТО-220
КТ837Ж p-n-p 30 7.5
КТ837И p-n-p 30 7.5
КТ837К p-n-p 30 7.5
FMMT717 КТ852Г pnp 2 ТО-220
КТ853Г pnp 8 ТО-220
2SD1062 КТ863А npn 30 10 ТО-220
КТ896В* p-n-p 30 0.02
КТ943А npn 2 ТО-126
КТ972Б npn 4 ТО-126
2SB857 КТ973Б  pnp 4 ТО-126
ктзб1Ж p-n-p 10 0.05
ктзевБ(М) n-p-n 15 0.03
КТЗОвА(М) n-p-n 10 0.03
КТЭ72В n-p-n 15 10
СТ837У p-n-p 30 7.5
СТ837Ф p-n-p 30 7.5


Биполярные транзисторы до 60 В


Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т708Б pnp 2.5 ТО-39
MJE2955 2Т709В pnp 10  ТО-3
2Т709В2* p-n-p 60 10
BDX85 2Т716В,В1 npn 60 10 ТО-3
BDX78 2Т818В p-n-p 60 15
2Т819В p-n-p 60 15
2Т825В pnp 20 ТО-3
2Т825В2 pnp 60 15 ТО-220
2Т830Б pnp 2 ТО-39
2Т831Б npn 2 ТО-39
2Т836В pnp 3 ТО-39
2Т837Б,Д pnp 8 ТО-220
MJE3055 2Т875В npn 10 ТО-3
2Т877Б pnp 20 ТО-3
2Т880В pnp 2 ТО-39
2Т881В npn 2 ТО-39
2SC3402  503В,Г npn 0.15 ТО-92
ICT814B p-n-p 60 1.5
KT6S8B n-p-n 50 2
ГТ806Г p-n-p 50 15
ГТ905Б p-n-p 60 3
КТ203А(М) p-n-p 60 0.1
КТ208Ж(1) p-n-p 45 0.3
КТ208И(1) p-n-p 45 0.3
КТ208К(1) p-n-p 45 0.3
КТ208Л(1) p-n-p 60 0.3
КТ208М(1) p-n-p 60 0.3
КТ209Ж p-n-p 45 0.3
КТ209И p-n-p 45 0.3
КТ209К p-n-p 45 0.3
КТ209Л p-n-p 60 0.3
КТ209М p-n-p 60 0.3
BC182 КТ3102А(М) n-p-n 50 0.1
КТ3102Б(М) n-p-n 50 0.1
BC212 КТ3107А p-n-p 45 0.1
BCY78 КТ3107Б p-n-p 45 0.1
BCY78 КТ3107И p-n-p 45 0.1
КТ3108А p-n-p 60 0.2
КТ3108Б p-n-p 45 0.2
КТ3108В p-n-p 45 0.2
PN5132 КТ3117А(1) n-p-n 60 0.4
КТ3129А-9 p-n-p 50 0.1
КТ3129Б-9 p-n-p 50 0.1
КТ3130А-9 n-p-n 50 0.1
КТ3130Б-9 n-p-n 50 0.1
КТ313А(М) p-n-p 60 0.35
2N2907 КТ313Б(М) p-n-p 60 0.35
КТ315И n-p-n 60 0.05
КТ361К p-n-p 60 0.05
КТ501Ж p-n-p 45 0.3
КТ501И p-n-p 45 0.3
КТ501К p-n-p 45 0.3
КТ501Л p-n-p 60 0.3
КТ501М p-n-p 60 0.3
КТ502Д p-n-p 60 0.15
КТ502Е p-n-p 60 0.15
BSR41 КТ530А npn 1 TO-92
КТ6127В p-n-p 50 2
BD138  КТ626Б pnp 60 0.5 ТО-126
BC637  КТ630Д,Е npn 1 ТО-39
КТ639А p-n-p 45 1.5
КТ639Б p-n-p 45 1.5
КТ639В p-n-p 45 1.5
КТ639Г p-n-p 60 1.5
BD138 КТ639Г,Д pnp 60 1.5 ТО-126
2N3545 КТ644(А-Г) pnp 60 0.6 ТО-126
КТ645А npn 60 0.3 ТО-92
BD137  КТ646А npn 0.5 ТО-126
КТ659А npn 1.2 ТО-39
2SA684  КТ661А  pnp 0.6 ТО-39
BC556 КТ662А pnp 0.4 ТО-39
КТ668А p-n-p 45 0.1
КТ668Б p-n-p 45 0.1
КТ668В p-n-p 45 0.1
КТ683Д n-p-n 60 1
2SD1616 КТ683Д,Е npn 60 1 ТО-126
КТ685Б p-n-p 60 0.6
BC638 КТ685Б,Г pnp 60 0.6 ТО-92
SA1245 КТ686А p-n-p 45 0.8
КТ686Б p-n-p 45 0.8
КТ686В p-n-p 45 0.8
2SC2655  КТ698В npn 2 ТО-92
КТ801Б n-p-n 60 2
КТ8106Б n-p-n 45 0.02 ТО-220
КТ8111А’ n-p-n 50 0.02
КТ8111В9 npn 20 ТО-218
КТ8116В npn 8 ТО-220
КТ8118Б* n-p-n 60 8
2SA1469  КТ8130Б pnp 60 4 ТО-126
КТ8131Б’ n-p-n 60 4
КТ815Б n-p-n 45 1.5
2SB1366  КТ816В pnp 60 3 ТО-126
КТ817Б n-p-n 45 3
КТ817Б2 n-p-n 45 3
2N5191  КТ817В npn 60 3 ТО-126
КТ818Б p-n-p 50 10
9535 КТ818БМ p-n-p 50 15
КТ819Б n-p-n 50 10
2N3055 КТ819БМ n-p-n 50 15
КТ825Д* p-n-p 60 20
КТ827В npn 60 20 ТО-3
TIP3055 КТ8284А npn 12 ТО-220
TIP120 КТ829В npn 60 8 ТО-220
КТ837Б p-n-p 60 7.5
КТ837В p-n-p 60 7.5
КТ837Г p-n-p 45 7.5
КТ837Д p-n-p 45 7.5
КТ837Л p-n-p 60 7.5
КТ837М p-n-p 60 7.5
КТ852В pnp 2 ТО-220
КТ853В pnp 8 ТО-220
КТ896Б pnp 20 ТО-220
КТ908А n-p-n 60 10
КТ908Б n-p-n 60 10
BD137 КТ961В npn 45 1.5 ТО-126
BD677 КТ972А npn 60 4 ТО-126
BD678  КТ973А pnp 4 ТО-126
КТ973А’ p-n-p 60 4
КТ997А n-p-p 45 10
КТ997Б n-p-n 45 10
КТМ7Е p-n-p 45 7.5
ОГ837Н p-n-p 60 7.5
СГ837П p-n-p 45 7.5
СГ837Р p-n-p 45 7.5
Т852В* p-n-p 60 2.5
Т852Г p-n-p 45 2.5
Т853В* p-n-p 60 8
Т853Г p-n-p 45 8
Тв37С p-n-p 45 7.5


Биполярные транзисторы до 70 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т831В npn 2 ТО-39
2Т837А,Г pnp 8 ТО-220
2Т860Б pnp 2 ТО-39
2Т875Б npn 10 ТО-3
2Т876Б pnp 10  ТО-3
КТ6127Б p-n-p 70 2
КТ698Б npn 2 ТО-92
КТ69ВБ n-p-n 70 2
КТ808ГМ npn 10 ТО-3
КТ814В pnp 65 1.5 ТО-126
КТ815В npn 1.5 ТО-126
КТ818В pnp 70 10 ТО-220,
КТ818ВМ p-n-p 70 15
КТ919В n-p-n 70 10
КТ919ВМ n-p-n 70 15
КТ943 Б,Д npn 2 ТО-126


Биполярные транзисторы до 80 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
TIP33B 2Т709Б pnp 10 ТО-3
2Т709Б2* p-n-p 80 10
2Т716Б,Б1 npn 10 ТО-3
2Т716б1* n-p-n 80 10
BD204 2Т818Б p-n-p 80 15
2Т819Б p-n-p 80 15
2Т825Б pnp 20 ТО-3
2Т825Б2 pnp 80 15 ТО-220
BD140  2Т830В pnp 2 ТО-39
2Т836А,Б pnp 3 ТО-39
2Т875А,Г npn 10 ТО-3
2Т876А,Г pnp 10 ТО-3
2Т877А pnp 20 ТО-3
2Т880Б pnp 2 ТО-39
BD139 2Т881Б npn 2 ТО-39
ГТ806А p-n-p 75 15
ГТ905А p-n-p 75 3
ГТ906А(М) p-n-p 75 6
КДТ8281А pnp 60 ТО-218
PN3691 КТ3117Б n-p-n 75 0.4
2SC1627 КТ503Д npn 0.15 ТО-92
КТ602В n-p-n 80 0.075
КТ602Г n-p-n 80 0.075
2SA935 КТ626В pnp 80 0.5 ТО-126
КТ684Б npn 1 ТО-92
КТ801А n-p-n 80 2
КТ808ВМ npn 10 ТО-3
КТ8106А npn 80 20 ТО-220
TIP151 КТ8111Б9 npn 20 ТО-218
2SD2025  КТ8116Б npn 80 8 ТО-220
КТ8130В* p-n-p 80 4
КТ8131В* n-p-n 80 4
TIP34B КТ819Б,В* npn 10 ТО-220
КТ827Б npn 80 20 ТО-3
КТ8284Б npn 12 ТО-220
BD679  КТ829Б npn 80 8 ТО-220
КТ837А p-n-p 80 7.5
КТ852Б pnp 2 ТО-220
BDX34B КТ853Б pnp 8 ТО-220
2N6039 КТ943В,Г npn 2 ТО-126
КТ961Б npn 1.5 ТО-126
КТД8280А npn 60 ТО-218
КТД8283А pnp 60 ТО-218
Т852Б* p-n-p 80 2.5
Т853Б’ p-n-p 80 8


Биполярные транзисторы до 130 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
1Т813А p-n-p 100 30
1Т813Б p-n-p 125 30
2Т708А pnp 2.5 ТО-39
BDX34C 2Т709А pnp 100 10  ТО-3
BDX33C 2Т716А,А1 npn 10 ТО-3
2Т716АГ* n-p-n 100 10
2Т819А p-n-p 100 15
2Т825А pnp 20 ТО-3
2Т825А2 pnp 15 ТО-220
2Т830Г pnp 2 ТО-39
SD1765 2Т831Г npn 2 ТО-39
2Т860А pnp 2 ТО-39
2Т880А,Г pnp 2 ТО-39
2Т881А,Г npn 2 ТО-39
2Т935Б npn 20 ТО-220
ГТ806Б p-n-p 100 15
ГТ806В p-n-p 120 15
КТ503Е npn 0.15 ТО-92
SK3835 КТ601А,АМ npn 100 0.03 ТО-126
КТ602А,АМ npn 0.075 ТО-126
КТ602Б(М) n-p-n 100 0.075
2SA715D КТ6102А pnp 1.5 ТО-92
BF336 КТ6103А npn 1.5 ТО-92
КТ6127А p-n-p 90 2
КТ6127Ж p-n-p 120 2
BSY52 КТ630А n-p-n 120 1 ТО-39
КТ630Б n-p-n 120 1 ТО-39
2N1613 КТ630Г n-p-n 100 1 ТО-39
2SC2240 КТ638А,Б npn 0.1 ТО-92
КТ639Е p-n-p 100 1.5
КТ6836 n-p-n 120 1
КТ683Б npn 120 1 ТО-126
КТ683В n-p-n 120 1 ТО-126
КТ683Г n-p-n 100 1 ТО-126
BC639 КТ684В npn 1 ТО-92
BD237 КТ698А npn 2 ТО-92
КТ698Ж n-p-n 120 2
2N4237 КТ719А npn 1.5 ТО-126
КТ802А n-p-n 130 5
КТ805БМ,ВМ npn 5 ТО-220
КТ807А n-p-n 100 0.5
КТ807А,Б npn 100 0.5 ТО-126
КТ808 АМ,БМ npn 10 ТО-3
TIP150 КТ8111А9 npn 20 ТО-218
КТ8115А pnp 8 ТО-220
КТ8116А npn 100 8 ТО-220
2N5400  КТ814Г pnp 1.5 ТО-126
КТ815Г npn 85 1.5 ТО-126
TIP42C  КТ816Г pnp 90 3 ТО-126
КТ817Г npn 90 3 ТО-126
КТ817Г2 n-p-n 90 3
TIP33B  КТ818Г pnp 90 10 ТО-220
КТ818ГМ p-n-p 90 15
TIP34C КТ819А,Г npn 100 10 ТО-220
2N3055 КТ819ГМ n-p-n 100 15
КТ8246 А,Б npn 15 ТО-220
КТ825* p-n-p 90 20
КТ827А npn 100 20 ТО-3
КТ8284В npn 12 ТО-220
TIP122 КТ829А npn 100 8 (5) ТО-220
КТ852А pnp 2 ТО-220
КТ853А pnp 8 ТО-220
BD946 КТ896А pnp 20 ТО-220
КТ961А npn 1.5 ТО-126
ктвзэж p-n-p 100 1.5
КТД8257А npn 20 ТО-220
КТД8278Б,В npn 20 ТО-220
КТД8280Б npn 60 ТО-218
КТД8281Б pnp 60 ТО-218
КТД8283Б pnp 60 ТО-218
ПИЛОН-3А npn 15 ТО-220
Т852А- p-n-p 100 2.5
Т853А- p-n-p 100 8


Биполярные транзисторы до 160 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
1Т813В p-n-p 150 30
ГТ806Д p-n-p 140 15
2N5401 КТ6116 pnp 0.6 ТО-92
2N5551 КТ6117 npn 0.6 ТО-92
2SC2383 КТ630В npn 150 1 ТО-39
КТ663А n-p-n 150 1
КТ683А npn 1 ТО-126
КТ698И n-p-n 160 2
2SA1186 КТ712Б pnp 10 ТО-220
КТ805АМ npn 5 ТО-220
BU289 КТ8101А n-p-n 160 16 ТО-218
КТ8101Б npn 16 ТО-218
2SA1294  КТ8102А p-n-p 160 16 ТО-218
2SA1216 КТ8102Б pnp 16 ТО-218
КТ8123А npn 150 2 ТО-220
КТ8246В,Г npn 15 ТО-220
КТ850В npn 2 ТО-220
2SA940  КТ851В pnp 2 ТО-220
КТ855Б p-n-p 150 5
КТ855Б,В pnp 150 5 ТО-220
2SC3907 КТ863БС npn 12 ТО-220
КТ899А npn 150 8 ТО-220
КТ940В npn 160 0.1 ТО-126
2N5996 КТ945А n-p-n 150 15 ТО-3
КТД8257Б npn 20 ТО-220
ПИР-2 (КТ740А) npn 20 ТО-220
2SC2230  Т611В,Г npn 0.1 ТО-126
Т850В n-p-n 150 2
Т851В p-n-p 150 2


Биполярные транзисторы до 200 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
КГвИ AM n-p-n 180 0.1
КТ504Б npn 200 1 ТО-39
2SC1473  КТ611А,Б npn 0.1 ТО-126
КТ611БМ n-p-n 180 0.1
КТ6127К p-n-p 200 2
КТ698К n-p-n 200 2
КТ712А pnp 10  ТО-220
КТ8105А n-p-n 200 20
КТ8124А n-p-n 200 7
КТ8124Б n-p-n 200 7
КТ8140А n-p-n 200 7
КТ842Б pnp 5 ТО-3
КТ851А pnp 2 ТО-220
BU406 КТ864А npn 10 ТО-3
КТ865А pnp 10 ТО-3
BVR11 КТ867А npn 25 ТО-3
КТ879А npn 200 50 КТ-5
BVT91 КТ879Б n-p-n 200 50
КТ897Б npn 200 20 ТО-218
2N6077 КТ898Б npn 200 20 ТО-218
КТД8257(А-Г) npn 20 ТО-220
КТД8278А npn 20 ТО-220
Т850А n-p-n 200 2
Т851А p-n-p 200 2


Биполярные транзисторы до 250 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т862А,Б npn 15 ТО-3
2Т882В npn 1 ТО-220
2SA1837 2Т883Б pnp 1 ТО-220
КТ3157А p-n-p 250 0.03
КТ504В npn 1 ТО-39
КТ505Б pnp 250 1 ТО-39
КТ604А(М) n-p-n 250 0.2
КТ604Б(М) n-p-n 250 0.2
КТ605А(М) n-p-n 250 0.1
0.1 КТ605А,Б npn 250 0.1 ТО-126
КТ844А npn 10 ТО-3
КТ850А,Б npn 2 ТО-220
КТ851Б pnp 2 ТО-220
КТ855А pnp 5 ТО-220
MJE15032 КТ857А npn 250 7 ТО-220
КТ940Б npn 250 0.1 ТО-126
КТ969А npn 0.1 ТО-126
КТ999А n-p-n 250 0.05
КТЭвЭА n-p-n 250 0.1
Т850Б n-p-n 250 2
Т851Б p-n-p 250 2
Т855А p-n-p 250 5


Биполярные транзисторы до 300 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
MJE340  2Т882Б npn 1 ТО-220
2Т883А pnp 1 ТО-220
MJE13002 КТ504А npn 1 ТО-39
КТ505А p-n-p 300 1
2SA1371 КТ6104А pnp 0.15 ТО-92
BFJ57 КТ6105А npn 0.15 ТО-92
КТ8109А,Б npn 7 ТО-220
КТ8109Б* n-p-n 300 7
КТ8121Б npn 300 4 ТО-220
КТ8124В npn 7 ТО-220
КТ812В n-p-n 300 8
КТ8232А,Б npn 20 ТО-218
КТ8258Б npn 4 ТО-220
КТ8259Б npn 8 ТО-220
КТ8260А npn 15 ТО-220
КТ8285А npn 30 ТО-218
КТ842А pnp 5 ТО-3
КТ854Б npn 10 ТО-220
КТ890(А-В) npn 20 ТО-218
КТ892А,В npn 15 ТО-3
КТ897А npn 20 ТО-218
КТ898А npn 20 ТО-218
2SA1091  КТ9115А pnp 300 0.1 ТО-126
КТ940А n-p-n 300 0.1
КТД8252(А-Г) npn 15 ТО-220
КТД8262(А-В) npn 7 ТО-220
КТД8279(А-В) npn 10 ТО-220
MJE350 Т505А pnp 1 ТО-39
2SC2482  Т940А npn 0.1 ТО-126


Биполярные транзисторы до 400 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2SA1625  2Т509А pnp 0.02 ТО-39
MJE13009  2Т862В npn 10 ТО-3
2SC4138 2Т862Г npn 10 ТО-3
MJE13003  2Т882А npn 1 ТО-220
2Т885А npn 40 ТО-3
ав40Б n-p-n 350 8
BUX84 КТ704Б,В npn 2.5
КТ809А n-p-n 400 3
BU208A КТ8104А n-p-n 350 20
2SC2625 КТ8117А npn 400 10 ТО-218
КТ8121А npn 400 4 ТО-220
2SC3039 КТ8124А,Б npn 7 ТО-220
MJE13007 КТ8126А npn 8 ТО-220
КТ8136А n-p-n 400 10
MJE13005 КТ8258А npn 4 ТО-220
2SC4834 КТ8259А npn 8 ТО-220
КТ8260Б npn 15 ТО-220
КТ8285Б npn 30 ТО-218
КТ834В npn 400 15 ТО-3
2SD1409 КТ840А,Б npn 6 ТО-3
2SC3306 КТ841Б npn 10 ТО-3
BUT11 КТ845А npn 5 ТО-3
КТ848А npn 15 ТО-3
2SC2335 КТ858А npn 400 7 ТО-220
2N4914 КТ890А* n-p-n 350 20
2N4915 КТ890Б* n-p-n 350 20
КТ890В* n-p-n 350 20
MI10000 КТ892Б npn 400 15 ТО-3
КТД8279А npn 10 ТО-220
Т840А n-p-n 400 6
Т848А n-p-n 400 15
Т854Б n-p-n 400 10


Биполярные транзисторы до 500 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т812Б n-p-n 500 10
2Т856В npn 10 ТО-3
2Т885Б npn 40 ТО-3
ICT8110B n-p-n 450 7
KT8120A n-p-n 450 8
SF123C КТ6107А npn 0.13 ТО-92
BD140 КТ6108А pnp 0.13 ТО-92
2SC3970 КТ704А npn 2.5
КТ8108А n-p-n 500 5
КТ8108Б n-p-n 500 5
КТ8110А n-p-n 450 7
КТ8110Б n-p-n 450 7
BUL310 КТ8120А npn 3 ТО-220
КТ812Б npn 500 8 ТО-3
КТ8260В npn 15 ТО-220
КТ8285В npn 30 ТО-218
КТ834А n-p-n 500 15
КТ834А,Б npn 450 15 ТО-3
КТ854А npn 10 ТО-220
ПИР-1 npn 20 ТО-218


Биполярные транзисторы до 600 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2SC5249 2Т884Б npn 2 ТО-220
КТ506Б npn 600 2 ТО-39
КТ8107В n-p-n 600 5
КТ8144Б npn 25 ТО-3
2SC5386 КТ8286А npn 5 ТО-218
2SC2027 КТ828Б n-p-n 600 5
2SD2499  КТ828Б,Г npn 5 ТО-3
2SC5387 КТ841А,В npn 10 ТО-3
2SC4706  КТ847А npn 15 ТО-3
ST1803 КТ856А1,Б1 npn 10 ТО-218
КТ878В npn 600 30 ТО-3
2SA1413 КТ887Б pnp 2 ТО-3
КТ888Б pnp 0.1 ТО-39
СТ841А n-p-n 600 10
СТ841В n-p-n 600 10
Т854А n-p-n 600 10


Биполярные транзисторы до 700 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т812А n-p-n 700 10
2Т856Б npn 10 ТО-3
КТ8107(А-Г) npn 700 8 ТО-220
КТ8114А n-p-n 700 8
КТ8127А(1) n-p-n 700 5
КТ8127Б(1) n-p-n 700 5
КТ8127В(1) n-p-n 700 5
КТ8129А n-p-n 700 5
BUh200 КТ812А npn 700 10 ТО-3
КТ8137А npn 1.5 ТО-126
КТ826(А-В) npn 700 1 ТО-3
КТ8286Б npn 5 ТО-218
КТ887А pnp 2 ТО-3
Т847А n-p-n 650 15


Биполярные транзисторы до 800 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т884А npn 2 ТО-220
КТ506А npn 2 ТО-39
КТ8118А npn 800 3 ТО-220
2SC3998 КТ8144А npn 25 ТО-3
КТ8286В npn 5 ТО-218
SML804 КТ828А,В npn 800 5 ТО-3
2SC3150 КТ859А npn 800 3 ТО-220
2SC5002  КТ868Б npn 6 КТ-9
BVP38 КТ878Б npn 800 30 ТО-3
СТ841Б n-p-n 800 10


Биполярные транзисторы до 900 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
КТ888А pnp 0.1 ТО-39
2SC3979 КТ868А npn 6 КТ-9
2Т856А npn 10 ТО-3
КТ878А npn 30 ТО-3


Биполярные транзисторы до 1500 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
BU108 КТ8107А n-p-n 1500 8
BU508 КТ838А npn 5 ТО-3
BU2520 КТ839А npn 10 ТО-3
BU2506 КТ846А npn 5 ТО-3
BU2508  КТ872А,Б npn 8 ТО-218
2SC5270 КТ886А1 npn 10 ТО-218
BU1508 КТ886Б1 npn 8 ТО-218
Т846А n-p-n 1500 5
Т846В n-p-n 1500 5
Т848Б n-p-n 1200 5


Биполярные транзисторы свыше 2000 В

Зарубежные Отечественные Тип перехода U max, В I max, А Корпус
2Т713А npn 2500 3 ТО-3
КТ710А npn 5 ТО-3


Однопереходные транзисторы



Зарубежные Отечественные
2N1573 КТ117ВМ
2N1923 КТ117АМ


Мощные полевые транзисторы


Импортные Отечественные
IRFZ10 КП739Б
IRFZ15 КП739В
IRF740 КП740
IRFZ24 КП740А
IRFZ20 КП740Б
IRFZ25 КП740В
IRFZ48 КП741А
IRFZ46 КП741Б
STH75N06 КП742А
STH75N05 КП742Б
IRF510 КП743А
IRF511 КП743Б
IRF512 КП743В
IRF520 КП744А
IRF521 КП744Б
IRF522 КП744В
IRL520 КП744Г
IRF530 КП745А
IRF531 КП745Б
IRF532 КП745В
IRL530 КП745Г
IRF540 КП746А
IRF541 КП746Б
IRF542 КП746В
IRL540 КП746Г
IRFP150 КП747А
IRF610 КП748А
IRF611 КП748Б
IRF612 КП748В
IRF620 КП749А
IRF621 КП749Б
IRF622 КП749В
IRF640 КП750А
IRF641 КП750Б
IRF642 КП750В
IRL640 КП750Г
IRF720 КП751А
IRF721 КП751Б
IRF722 КП751В
IRF730 КП752А
IRF731 КП752Б
IRF732 КП752В
IRF830 КП753А
IRF831 КП753Б
IRF832 КП753В
STP40N10 КП771А
IRF820 КП820
IRF830 КП830
IRF840 КП840
IRF150 КП150
IRF240 КП240
IRF250 КП250
IRF340 КП340
IRF350 КП350
BF410C КП365А
BF960 КП382А
IRF440 КП440
IRF450 КП450
ZVN2120 КП501А
BSS124 КП502
BSS129 КП503
BSS88 КП504
BSS295 КП505
IRF510 КП510
IRF520 КП520
IRF530 КП530
IRF540 КП540
IRF610 КП610
IRF620 КП620
IRF630 КП630
IRF640 КП640
BUZ90 КП707Б1
IRF710 КП710
IRF350 КП717Б
BUZ45 КП718А
IRF453 КП718Е1
IRF720 КП720
BUZ36 КП722А
IRFZ44 КП723А
IRFZ45 КП723Б
IRFZ40 КП723В
IRLZ44 КП723Г
MTP6N60 КП724А
IRF842 КП724Б
TPF450 КП725А
BUZ90A КП726А
BUZ71 КП727А
IRFZ34 КП727Б
IRLZ34 КП727В
BUZ80A КП728А
IRF730 КП730
IRGPH50F КП730А
IRF710 КП731А
IRF711 КП731Б
IRF712 КП731В
IRF630 КП737А
IRF634 КП737Б
IRF635 КП737В
IRFZ14 КП739А


Слабые полевые транзисторы


Импортные Отечественные
U1899E КП329A
2N2841 КП301Г
2N3332 КП301Б
2N3365 КП329A
2N3368 КП329A
2N3369 КП333A
2N3331 КП307B
2N3370 КП329A
2N3436 КП329A
2N3438 КП333A
2N3458 КП333A
2N3459 КП329A
2N3460 КП329A
2N3796 КП303B
2N3797 КП303Г
2N3819 КП307Б
2N3823 КП329A
2N3909 КП301B
2N3971 КП902A
2N3972 КП902A
2N4038 КП329A
2N4091 КП902A
2N4092 КП902A
2N4220 КП329Б
2N4220A КП329Б
2N4221 КП333A
2N4221A КП329A
2N4222A КП329A
2N4224 КП329A
2N4302 КП329Б
2N4303 КП329Б
2N4304 КП329Б
2N4351 КП333A
2N4352 КП304A
2N4360 КП301B
2N4393 КП902A
2N4416A КП329A
2N4860 КП333Б
2N4867 КП333A
2N5078 КП333A
2N5163 КП307Ж
2N5458 КП304A
2N5457 КП307E
2N5459 КП307Б
2N5654 КП329Б
2N6656 КП801Б
2SK11 КП303Д
2SK12 КП303Г
2SK15 КП303Г
2SK68A КП329A
2SK21H КП306A
2SK39 КП350A
BFW11 КП333Б
BF244 КП329А
BF245 КП329А
BF256B КП329А
BF960 КП327А
BF981 КП327Б
BSV79 КП333А
BSV80 КП333А
BUZ20 КП704А
CP652 КП907B
E100 КП333Б
E102 КП333Б
E111 КП329Б
E112 КП333Б
IRF120 КП922Б
MPF103 КП307Б
MPF102 КП303E
M103 КП304A
TIS68 КП307E
UC714 КП329Б
U1897E КП333A


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме

описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.
  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

 

КТ315 характеристики транзистора, цоколевка и российские аналоги

Характеристики транзистора КТ315 – сделали его самым популярным и самый известным во времена СССР, изготавливался в пластиковом корпусе по эпитаксиально-планарной технологии. По своему устройству является кремниевым, биполярным, NPN-транзистором, малой мощности и высокой частоты. Начал выпускаться в далеком 1967 г., а в уже 1968 г. на его основе стали производить первые электронные приборы.

С ростом современных технологий популярность этого транзистора начала резко таять. Однако на многих форумах молодые радиолюбители продолжают спорить со старожилами о качестве данного устройства и возможности его применения. Сравнения ведутся зачастую с современными зарубежными решениями. На наш взгляд такое сравнение некорректно. Несомненно, современные аналоги обгоняют кт315 по своим свойствам и параметрам. Однако стоит признать, что для своего времени он был действительно прорывным и технически совершенным.

Распиновка

В советское и перестроечное время производился в корпусе КТ-13, который никогда не использовался зарубежными производителями. Притом, что КТ315 рабочая лошадка советской радиопромышленности. В наши дни, его продолжают выпускать в корпусе КТ-26 (TO-92) и КТ-46А (SOT-23), а так же в ограниченных количествах в КТ-13. Посмотрите внимательней на фотографии цоколевки КТ315 в разных корпусах и на буквы обозначающие назначение его электродов. 

Несмотря на внешние различия транзисторов, их распиновка совпадает. Так, если смотреть на маркировку любого из них, то электроды слева на право будут всегда иметь следующее назначение: эмиттер (Э), коллектор (К) и база (Б), соответственно. Исходя из этого, становится понятной аббревиатура из трех букв «ЭКБ», которая встречается на технических форумах.

Характеристики

Технические свойства этого биполярника на удивление хороши, даже по сегодняшним меркам. К сожалению, в даташит современного производителя КТ315, представлена только основная информация. В них не найти графиков, отражающих поведение устройство в различных условиях эксплуатации, которыми наполнены современные технические описания на другие подобные устройства от зарубежных производителей.

Максимальные характеристики

Максимальные значения допустимых электрических режимов эксплуатации КТ315 до сих пор впечатляют начинающих радиолюбителей. Например, максимальный ток коллектора может достигать уровня в 100 мА, а рабочая частота у некоторых экземпляров превышает заявленные 250 МГц. Его более дорогие современники из серии КТ2xx/3xx, даже имея металлический корпус, не могли похвастаться такими показателями. КТ315 был долгое время своеобразным техническим лидером, пока ему на смену не пришёл усовершенствованный КТ3102. Рассмотрим максимально допустимые электрические режимы эксплуатации КТ315, в корпусе ТО-92, белорусского ОАО «Интеграл». В конце обозначения таких приборов присутствует цифра «1».

Основные электрические параметры

Будьте внимательны, несмотря на свои достаточно хорошие характеристики, КТ315 не может конкурировать с современными устройствами по некоторым параметрам. Так у современной серии КТ315, как и 50 лет назад, относительно небольшой диапазон рабочих температур от — 45 до + 100°C. А коэффициент шума (КШ) достигает 40 Дб, что уже много для современного устройства, предназначенного для усиления в низкочастотных трактах.

Классификация

Кроме основных параметров, в техническом описании можно найти распределение устройств по группам. Таблица классификации дает представление о параметрах всей серии КТ315. Используя её можно подобрать нужное устройство, путем сравнения основных характеристик всей серии.

Комплементарная пара

У КТ315 имеется комплементарная пара – КТ361. Эти устройства довольно часто применялись вместе, особенно в бестрансформаторных двухтактных схемах. Совместное применение данной пары безусловно вошло в историю российской электроники.

Историческая справка

Созданию первого транзистора по планарной технологии способствовали знания и опыт, полученные СССР при разработке интегральных микросхем. Их разработка в 60-е годы велась в НИИ «Пульсар», НИИ-35 и различных опытно-конструкторских бюро на предприятиях советской промышленности. В 1962 году в НИИ «Пульсар» перешли на планарную кремневую технологию, которая в последующем дала жизнь КТ315.

В 1962 году, под руководством инженера Осокина Ю.Н., были созданы первые советские германиевые микросхемы Р12–2 (Рижский завод полупроводниковых приборов). Эти микросхемы были своеобразным ответом СССР на первые подобные устройства появившиеся в США у компании Texas Instruments.

Небольшой временной период от разработки до серийного выпуска этого устройства, позволяет судить о высоком уровне развития электронной промышленности СССР в те времена. Судите сами, на сколько быстро и оперативно это было сделано. В 1966 г. министр энергетической промышленности Шокин А.И. узнал о появлении в США технологии промышленного изготовления транзисторов по планарной технологии. Уже в 1967 г. Фрязинский завод полупроводниковых приборов так же начинает выпускать первый в СССР высокочастотник в пластиковом корпусе, по аналогичной технологии – КТ315.

В 1968 г. начался выпуск первого электронного калькулятора — «Электроника-68», в котором насчитывалось около 400 транзисторов данного вида. А к 1973 он стал основой для разработки более 20 подобных полупроводниковых устройств. Примерно до начала 90-х годов КТ315 оснащалась почти вся отечественная электроника, так как, несмотря на свою дешевизну, он получился весьма надежным и технологичным. В настоящее время, в мире насчитывается более 7 миллиардов этих транзисторов. Они были выпущены не только в нашей стране, но и за рубежом по государственной лицензии от СССР.

Аналоги

Зарубежные аналоги КТ315, с похожими параметрами являются: BC547, 2SC9014, 2N3904, PN2222. Российской заменой можно считать усовершенствованный КТ3102 (ТО-92), но он имеет другую цоколевку. Зарубежных аналогов в корпусе КТ-13 в настоящее время не существует. Для министерства обороны СССР выпускались идентичные устройства в метало-стеклянных корпусах с маркировкой 2Т312, 2Т316.

Маркировка

По маркировке кт315 можно точно понять, что перед нами именно он, рассмотрим его в корпусе КТ13. Он имеет цифробуквенное обозначение и может отличается от своих собратьев цветом. Чаще всего встречается в оранжевом исполнении. В правом верхнем углу корпуса размещен знак завода-изготовителя, а в левом группа коэффициента усиления. Под условными обозначениями группы и предприятия-изготовителя указана дата выпуска. Вот их фотографии во всем цветовом разнообразии.

Устройства в таком исполнении до 1986 года имели золоченные контакты. После 1986 года количество содержания драгметаллов в них значительно снизилось. А в современных устройствах его практически нет. Усовершенствованный KT315 выпускается в корпусах для дырочного КТ-26 (TO-92) и поверхностного монтажа КТ-46А (SOT-23). На фотографии пример такого устройства — КТ315Г1 (TO-92).

Цифра «1», в конце указывает на современный КТ315(TO-92), а предпоследняя буква «Г» на группу, к которой относится транзистор из этой серии. На основе значений параметров в  группе, можно определить его основное назначение. Например, КТ315Н1 использовался ранее в цветных телевизорах, а KT315P и КТ315Р1 применялись в видеомагнитофонах «Электроника ВМ».

Схема мультивибратора

Этот транзистор до сих пор применяется в учебных целях в различных радиолюбительских кружках. В сети интернет представлено множество схем, собранных на его основе. Наиболее популярная у начинающих радиолюбителей схема мультивибратора на кт315.

Проверка мультиметром

С помощью мультиметра можно проверить кт315, да и собственно любой полупроводниковый триод в два этапа. На первом этапе надо посмотреть состояние p-n переходов между базой и другими выводами. Как известно, p-n переходы у транзистора представляют собой два диода. Для их проверки надо установить на мультиметре режим измерения для диодов.

Далее приложите положительный щуп «+» мультиметра к базе, а отрицательны «-» на любой из электродов. Если переходы рабочие, то падение напряжения на них должно быть в пределах 500-700 милливольт. При подключения тестера по другому, когда отрицательный щуп  установлен на базе,  на экране мультиметра должна отображается единица. Единица указывает на бесконечно большое сопротивление перехода. Если эти условия не выполняются, то транзистор не проходит первый этап проверки и считается не исправным.

Падение напряжения на переходе база-эммитер должно быть больше  чем на базе-коллектор. Обычно так определяют его контакты.

На втором этапе проверяется проводимость между выводами коллектора и эммитера. Щупы прикладываются разными способами между этими электродами, при этом на мультиметре должна отображаться единица. Если это не так –полупроводниковый прибор не исправен.

Нестандартное применение

А вот пример нестандартного применения нашего героя. На одном из технических форумов выложена интересная поделка из радиодеталей. Таким изящным образом радиолюбители продлевают жизнь давно вышедшим из строя, но дорогим сердцу радиодеталям.

Производители

В настоящее время производство данного транзистора значительно снизилось. Многие предприятия больше его не выпускают, в связи растущим применением в электронике более современных решений. Небольшими партиями транзистор КТ315 иногда впускается в корпусе КТ-13 компанией СКБ «Элькор» в Республике Кабардино-Балкария г. Нальчик. Белорусский конкурент ОАО «Интеграл» (холдинг завод «Транзистор») производит его в корпусе ТО-92. Скачать полную версию datasheet на этот прибор в формате pdf можно по ссылке.

Биполярные транзисторы. Назначение, виды, характеристики

Транзисторы предназначены  для решения задач усиления  и переключения электрических сигналов. Время бурного развития транзисторов –  50 –  80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные компоненты используются в схемах не так часто. Массово они применяются только внутри интегральных схем.

Различают  транзисторы  двух  видов:  биполярные  и  униполярные  (полевые).

В  биполярных транзисторах  в создании токов участвуют как электроны (отрицательно  заряженные  частицы),  так  и  дырки  (положительно  заряженные частицы). Отсюда название вида транзисторов.

Биполярные транзисторы устроены сложнее полупроводниковых диодов, они имеют два pn-перехода и три вывода,  называемых  база,  эмиттер  и  коллектор.  Различают  два  вида  БТ:  NPN и PNP.

Устройство, особенности и схемотехнику  будем рассматривать на при-мере  NPN-транзисторов  –  наиболее  используемых  в  современной  практике, для  PNP-транзисторов рассуждения аналогичны и различия заключаются толь-ко в подключении питающих напряжений.

Устройство и принцип действия биполярных транзисторов

Устройство и принцип действия  NPN-транзисторов  показаны  на  рисунке 2.19.

NPN-транзистор  имеет  три  микроэлектронные  области:  две  –  с  N-проводимостью и одну  –  с  P  –  проводимостью. Каждая область имеет вывод с указанными на рисунке названиями.

Структуру  NPN-БТ можно также представить в уже более понятных обозначениях: как два диода, соединённых анодами в области базы.

На рисунке  2.20   показан наиболее распространённый способ использования биполярных транзисторов, когда на базу и коллектор подаются положительные (+) потенциалы  по отношению  к  эмиттеру.  При  этом  положительный  потенциал  коллектора выше потенциала базы!  Другими словами, коллекторный  pn-переход  смещён в обратном направлении  (смотрите,  коллекторный диод формально  закрыт), а базовый – в прямом.

При этом если в базу задать ток, то в силу структурной особенности кристалла  биполярного транзистора,  этот  базовый  ток  Iб будет  «подсасывать»  из  коллекторной  области электроны и формировать коллекторный ток

Iк= β*Iб ,  (2.7)

где β> 1 называется коэффициентом усиления тока базы.

Типовые паспортные значения β = 20÷500. Ток эмиттера, таким образом, в соответствии с первым законом Кирхгофа

Iэ = (β +1)*Iб   (2.8)

Линейный режим работы биполярных транзисторов

В линейном режиме работы биполярный транзистор усиливает входные сигналы.

Простейшие транзисторные схемы, с помощью которых можно усиливать малые напряжения  показаны на рисунке 2.21.  Схемы  такой конфигурации  принято называть схемами (каскадами) с общим эмиттером (схемы ОЭ), т.к. один из выводов БТ  –  эмиттер,  используется для  формирования как входного, так и выходного сигнала  –  является общим для них.  Поясним работу такого усилителя.

Пусть  усиливаемый  сигнал  –  переменное  синусоидальное  напряжение, которое  подаётся  на  вход  схемы  общего эмиттера.  Усиленный  сигнал  снимается  с  выхода схемы ОЭ.  Усиленный сигнал имеет ту же форму синусоиды, но следует в противофазе с входным: когда входная синусоида возрастает, выходная синусоида спадает.

Основная  характеристика  усилителя  –  коэффициент  усиления  входного напряжения, который рассчитывается как

Кус=ΔUвых/ΔUвх ≈ R2/rэ,   (2.9)

где  rэ  –  сопротивление  эмиттера.  Сопротивление  эмиттера  можно  подсчитать по формуле:

rэ= ϕт/Iэ = k*T/q*Iэ ≈ k*T/q*Iк,    (2.10)

где  k — постоянная Больцмана,

Т – температура в кельвинах,

q – заряд электрона.

При температуре +25ºС (300 К) ϕт = 26 мВ.

Примечания

  1. Существует графический  способ  оценки  rэ.  Для  этого  требуется  знание  входной вольт-амперной характеристики выбранного биполярного транзистора;
  2. Коэффициент усиления сигнала по напряжению, как видно из формулы, зависит от температуры. В том случае, когда диапазон работы усилительной схемы широк, применяют чуть более сложные модификации схемы объединенных эмиттеров, более устойчивые к изменению температуры.

Следует иметь в виду, что выражение для  Кус приблизительное и оно будет тем более справедливо, чем больше β, хорошо, если β >100.

Расчёт схемы ОЭ по постоянному току

На этом этапе нам необходимо рассчитать значения  R1и  R2, которые  задают  режим по постоянному току, а  R2кроме  того входит в выражение для Кус.

Работа биполярного транзистора описывается входными и выходными характеристиками (показано  на  рисунке  2.22).  Входная  характеристика  Iб=ʄ(Uэ),  как  и  следовало  ожидать,  аналогична  характеристике  п/п  диода.  Однако  у  транзистора  поведение этой  характеристики  зависит  (несильно)  ещё  и  от  напряжения  Uкэ.  Поэтому  в технических  описаниях  на  выбранный  транзистор  даются  семейства  входных характеристик, где параметром является  Uкэ. Выходная характеристика ‒ также семейство зависимостей типа Iк= ʄ (Uкэ), параметром для которых является базовый ток Iб.

Оба семейства имеют принципиально нелинейное поведение, однако, это не мешает их использовать для режима линейного усиления. Для этого надо построить  нагрузочную прямую  на выходном семействе,  рассчитать положение на ней рабочей точки (РТ) и определить из графика начальный ток базы.

Нагрузочная прямая строится, как и раньше для диода, между двумя аналогичными точками: 

Iк=  Eпит/R2  и  Uкэпит. В нашем расчёте  мы задались  значениями  Епит=15 В и  Iк =  Eпит/R2  =30 мА. Тогда  R2=15/0,03 = 500 Ом. Строим прямую и выбираем положение РТ  –  это середина  линейного участка    (показано  на  рисунке  2.22). Линейным участком  будем называть участок нагрузочной прямой  между  напряжением  насыщения  и  напряжением  отсечки.  Параметры РТ в нашем примере соответствуют следующим значениям (показано  на рисунке 2.23): 

Uкэ.рт  ≈ 7 В,  Iк.рт  ≈ 16 мА,  Iб.рт ≈ 0,3 мА.

Далее: выбираем из семейства входных ту характеристику, которая соответствует найденному значению Uкэ≈ 7,0 В, задаём Iб = 0,3 мА, и определяем Uбэ≈ 0,65 В. Строим актуальный участок входной нагрузочной прямой и рассчитываем R1= (15-0,65) В/ 0,3 мА = 45 кОм.

Примечание   –  На практике расчёт проводиться несколько сложнее.

Рассчитаем коэффициент усиления каскада при t°=25 °С.

Кус = Iэ R2/ ϕт = 16 мА × 500 Ом/ 26 мВ ≈ 308.

Важно  теперь  проверить:  не  превышает  ли  мощность,  рассеиваемая  на коллекторе, номинальное паспортное значение выбранного биполярного транзистора.

Расчёт ведётся в рабочей точке:  Uкэ.рт  ×Iк.рт  = 7 В×16 мА=112 мВт. Это значение постоянно и не меняется в режиме усиления входного сигнала, когда напряжения и токи коллектора меняются в широком диапазоне. Это объясняется тем, что напряжение и ток коллектора меняются в этой схеме в  противофазе: когда ток увеличивается, напряжения уменьшается, и наоборот.

Расчёт схемы ОЭ по переменному току

Пример формирования выходных сигналов схемы с ОЭ под воздействием изменения тока базы показан на рисунке 2.23. Под воздействием синусоидально изменяющегося тока базы (синусоида, изображённая пунктиром)  РТ смещается вдоль нагрузочной прямой  сначала вверх до своего максимума, а затем вниз до своего минимума.

По рисунку видим, что при изменении тока базы в диапазоне  от  0,05  до 0,55  мА  с  амплитудой  (0,55-0,05)/2  =  250  мкА,  ток  коллектора  изменяется  в диапазоне примерно от 3 мА до 29 мА с амплитудой (29-3)/2 =  13 мА. Имеем отсюда следующее значение коэффициента усиления по току:

Кi= 13 000/250 = 52

Напряжение коллектора изменяется в диапазоне примерно от 0,5 В до 13 В с амплитудой (13-0,5)/2 = 6,25 В. Ещё раз подчеркнём, что изменение напряжения коллектора осуществляется в противофазе  с изменением входного (усиливаемого) тока: при увеличении тока базы увеличивается коллекторный ток и уменьшается коллекторное напряжение!

Пока мы ничего не говорили о конденсаторах  С1и  С2.  Это  так называемые    разделительные конденсаторы. Они не пропускают  постоянные составляющие усиливаемых напряжений  и пропускают только переменные. Их значения  должны  быть  достаточно  большими:  чем  больше  значения  ёмкостей,  тем меньше  ʄн –  минимальная  усиливаемая  частота.  Обычно  эти  конденсаторы имеют значения от 1 до 100 мкФ.

Ключевой режим работы биполярных транзисторов

Смотрим на выходные характеристики БТ.  При  подаче большого тока  в базу (>0,3 мА) напряжение  Uкэ уменьшается до своего минимального значения (типовое  значение  0,2  В).  Говорят  «транзистор  переходит  в  режим  насыщения».

С  другой  стороны,  если  в  базу  ток  не  подавать  (Iб ~ 0),  то  коллекторный ток прерывается и напряжение на выходе каскада будет равно напряжению питания Епит ‒ биполярный транзистор будет находится в «режиме отсечки».

Собственно эти два состояния БТ и описывают  ключевой режим его работы:  ключ (транзистор) включён или выключен, нагрузка подключена к питанию или отключена. Простейшие  ключевые схемы  на БТ показаны на рисунке 2.24.  На  представленных  принципиальных  схемах  показано,  что  управление схемами осуществляется с помощью цифровых сигналов: логического нуля  («0»)и  логической единицы  («1»). В современной практике такие сигналы формируются чаще всего микроконтроллерами.

Обращаем внимание, что оба вида БТ используется в схемах с плюсовым (положительным) питанием (+Епит) и нагрузка  в обоих случаях расположена в коллекторной  цепи  БТ.  При  этом:  логическая  единица  в  одном  из  случаев (NPN-транзистор) замыкает ключ, а в другом (PNP-транзистор) – размыкает.

Условие замыкания ключа: Iб  *  β  >Iк.нас  ≈  Епит/Rнагр. Ток базы приближённо можно рассчитать для обоих случаев так: Iб= (Епит-0,6)/R1.

Зная  напряжение  питания,  сопротивление  нагрузки  и  коэффициент  усиления тока базы β, можно рассчитать по указанным формулам R1.

Конструктивные разновидности биполярных транзисторов

Конструктивные разновидности биполярных транзисторов показаны на рисунке 2.25.

Проверка работоспособности биполярных транзисторов

Многие  мультиметры  позволяют  измерять  коэффициент  усиления  тока базы (β; h21) транзисторов  с гибкими выводами.  На рисунке  2.26    показано типовое решение этой задачи. В специальный разъём, соблюдая указанный на лицевой панели порядок, подключается транзистор.  Значение  β  высвечивается на дисплее.

Примечания 

  1. NPN- и PNP-транзисторы имеют раздельные гнёзда для подключения.
  2. Для обоих типов транзисторов предусмотрено по два гнезда для подключения эмиттера. Это связано с возможными конструктивными различиями в цоколёвках транзисторов.

Характеристики транзистора — характеристики входа, выхода и тока

Конфигурация транзистора

Любой тип транзисторной схемы может быть разработан с использованием трех упомянутых выше характеристик транзистора. Конфигурация транзисторов основана на выводах транзисторов. Существует три типа конфигурации схемы транзистора:

Каждая конфигурация схемы имеет свою характеристическую кривую.Исходя из требований схемы, выбирается соответствующая конфигурация транзистора.

Несколько вещей необходимо учитывать при использовании правильного транзистора для схемы. Это максимальное номинальное напряжение между эмиттером и коллектором (UCEmax), максимальная мощность для построения цепи и максимальный ток коллектора (ICEmax). Электрическая цепь не должна превышать эти максимальные значения для правильной работы. При превышении допустимого значения может произойти необратимое повреждение цепи. Также важно поддерживать правильное усиление тока и частоту.

Конфигурация с общим эмиттером

В такой конфигурации эмиттер используется как общая клемма для входа и выхода. Он работает как схема инвертирующего усилителя. В этом случае вход применяется в области база-эмиттер, а выход получается между выводами коллектора и эмиттера.

В этом случае

VBE — это входное напряжение,

IB — входной ток,

VCE — выходное напряжение, а

IC — выходной ток.

Конфигурация с общим эмиттером обычно основана на транзисторных усилителях. В этом случае ток эмиттера эквивалентен сумме тока базы и тока коллектора.

Следовательно,

IE = IC + IB

(изображение будет загружено в ближайшее время)

Это уравнение является уравнением транзистора для конфигурации CE. Отношение тока коллектора к току эмиттера дает коэффициент усиления по току альфа в конфигурации с общей базой. Точно так же отношение тока коллектора к току базы дает коэффициент усиления по току бета в конфигурации с общим эмиттером.

Соотношение между двумя коэффициентами усиления по току:

Коэффициент усиления по току (α) = IC / IE

Коэффициент усиления по току (β) = IC / IB

Ток коллектора IC = αIE = βIB

В этой конфигурации используется одно из трех схемы конфигурации. Он имеет средние входные и выходные значения импеданса. Он также имеет средний коэффициент усиления по току и напряжению. Выходной сигнал этой конфигурации имеет фазовый сдвиг 180 °, что означает, что вход и выход обратно пропорциональны друг другу.

(изображение будет загружено в ближайшее время)

Входные и выходные характеристики конфигурации с общим эмиттером

  1. Входные характеристики транзистора

Входная характеристика транзистора получается между входным током IB и входным напряжением VB посредством имеющий постоянное выходное напряжение VCE. Поддерживая постоянное выходное напряжение VCE и изменяя входное напряжение VBE в разных точках, мы можем проверить значения входного тока в каждой из точек.Теперь, используя значения, полученные из разных точек, строят график, отображая значения IB и VBE при постоянном VCE.

Rin = VBE / IB (при постоянном VCE)

Это уравнение, необходимое для расчета входного сопротивления Rin.

(изображение будет скоро загружено)

  1. Выходные характеристики

Выходная характеристика общего эмиттера получается между выходным напряжением VCE и выходным током IC при постоянном входном токе IB.Сохраняя постоянный базовый ток IB и изменяя значение выходного напряжения VCE в разных точках, мы можем вычислить значение IC коллектора для каждой точки. Теперь, если мы построим график между IC и VCE, мы получим выходные характеристики общей конфигурации эмиттера.

Rout = VCE / IC (при постоянном IB)

Это уравнение для расчета выходного сопротивления.

(изображение будет загружено в ближайшее время)

Типы конфигураций транзисторов — характеристики с таблицей сравнения

Транзисторы являются основным оборудованием, необходимым для создания устройств.Следовательно, разработка этих транзисторов была заменой электронных ламп. Базовый транзистор может быть образован комбинацией полупроводника p-типа и полупроводника n-типа. Эта комбинация находится между одним p-типом и двумя n-типами. Другая комбинация состоит из двух p-типов и одного n-типа. Поэтому образуются транзисторы N-P-N и P-N-P.

Эти транзисторы можно классифицировать на основе проводимости, по которой очевиден несущий поток. Если проводимость обусловлена ​​как основными, так и неосновными носителями заряда, транзистор классифицируется как биполярный.Если проводимость возникает только у большинства, она называется униполярной. Таким образом формируются биполярные переходные транзисторы (BJT) и полевые транзисторы (FET).

Схема транзистора

Транзистор сконструирован таким образом, что он состоит из трех выводов, обычно известных как эмиттер, база и коллектор. Основная причина разработки таких конфигураций заключается в том, что для обеспечения входных и выходных соединений схемы требуется четыре клеммы.Следовательно, это можно сделать возможным, сделав один общий вывод, который может быть базой, эмиттером или коллектором.

Эта конструкция предназначена для использования этой схемы в различных приложениях. Разработанные конфигурации, основанные на его требованиях, используются в электронных модулях.

Различные конфигурации транзисторов

Для этих транзисторов возможны три конфигурации, известные как общая база, общий эмиттер и общий коллектор.Каждая конфигурация имеет свое значение с точки зрения усиления.

  1. В конфигурации с общей базой нет усиления по току, но есть усиление по напряжению.
  2. В общем коллекторе есть усиление по току, но не будет усиления по напряжению.
  3. Общий эмиттер — это конфигурация, в которой присутствует усиление как по току, так и по напряжению.

Таким образом, наиболее широко используются конфигурации с общим эмиттером.

1) Общая базовая конфигурация

Как следует из названия, конфигурация является общей клеммной базой, она остается общей для соединений входной и выходной цепи.Напряжение подается на стыке эмиттера и базы. Здесь эмиттер и база называются входной стороной, а коллектор — выходной стороной схемы подключения.

Значение тока, протекающего от клеммной базы к эмиттеру, должно быть более высоким. Это указывает на то, что значение тока на коллекторе меньше, чем значение тока, протекающего через эмиттер. Характеристики входа основаны на напряжении, приложенном к клеммам база и эмиттер, и току на клеммах эмиттера.Выходная характеристика для этой конфигурации основана на параметрах напряжения, приложенного на выводах базы и коллектора, и тока, генерируемого на выводе коллектора.

Общая базовая конфигурация

Значение текущего усиления в этом случае либо равно, либо считается меньшим, чем значение единицы. Генерируемые входные и выходные сигналы останутся синфазными. Такая конфигурация имеет наибольшее значение импеданса, а не выхода.Характеристики выходных сигналов демонстрируют сходство с диодом, работающим в прямом смещении.

Входные характеристики

Входные характеристики для этого типа конфигурации измеряются по изменению значения напряжения на выводах эмиттера и базы в разных точках, поддерживая постоянное значение напряжения на коллекторе и базе. . Отсюда измеряется входное значение тока эмиттера. На основании чего строится график.

Общие базовые входные характеристики

Выходные характеристики

График построен между напряжением на выходе и током, сохраняя входное значение тока постоянным, что дает выходные характеристики для этой конфигурации.

Характеристики выхода с общей базой

2) Конфигурация с общим коллектором

Это конфигурация, в которой клемма коллектора является общей для входных и выходных соединений схемы.При этом напряжение на выводе эмиттера следует за напряжением на выводе базы. Следовательно, эта схема называется схемой, следующей за эмиттером. Такая схема полезна в приложениях в качестве буфера.

Конфигурация общего коллектора

Входное значение импеданса высокое. Следовательно, они применимы во время согласования методов импеданса. Рассмотренные входные сигналы прикладываются между выводами коллектора и базы. Выход должен быть взят или считаться между выводами коллектора и эмиттера.

Сгенерированные входной и выходной сигналы остаются синфазными. Входными параметрами являются напряжение между клеммной базой и коллектором и ток на клеммной базе. Выходными параметрами являются ток коллектора и напряжение на выводах эмиттера и коллектора.

Входные характеристики

Характеристики для этого типа конфигурации сильно отличаются по сравнению с другими конфигурациями. Здесь напряжение на коллекторе и выводе базы определяется уровнем напряжения на эмиттере и коллекторе.

Характеристики входа общего коллектора

Поддерживая постоянные значения напряжения на коллекторе и эмиттере, строится график между параметрами тока базы и значением напряжения на клеммах коллектора и базы.

Выходные характеристики

Поскольку известно, что конфигурация коллектора соответствует конфигурации эмиттера, работа выхода аналогична работе конфигурации эмиттера. В этой конфигурации, если к клемме базы не приложено напряжение, в схеме не будет очевидного протекания тока.

Выходные характеристики общего коллектора

График построен между током эмиттера и напряжением на выводах коллектора и эмиттера при поддержании постоянного значения тока базы.

3) Конфигурация с общим эмиттером

Это наиболее широко используемая конфигурация, потому что усиление как по напряжению, так и по токам увеличивает значение усиления мощности. При этом входное напряжение прикладывается между выводами эмиттера и базы.Выходной сигнал берется через выводы эмиттера и коллектора. Отсюда эта схема инвертирующего типа.

Конфигурация с общим эмиттером

Параметры входа для этого типа конфигурации — это напряжение на базе и эмиттере, а также ток на клемме базы. Параметры, на основе которых характеризуются выходные сигналы, — это напряжение на выводах коллектора и эмиттера, а также ток на выводе коллектора.

Это наиболее широко используемые конфигурации по сравнению с другими конфигурациями в схеме усилителя.Значение тока на оконечном эмиттере представляет собой сумму отдельных токов на базе и коллекторе. Импеданс на входе и выходе имеет минимальное значение. Это делает конфигурацию более эффективной.

Коэффициент усиления между отношением тока на выводе коллектора и выводе эмиттера измеряется в единицах альфа. Коэффициент усиления отношения между токами клеммы коллектора и базы измеряется в единицах бета. Сгенерированный выходной сигнал имеет сдвиг по фазе примерно на 180 градусов, что соответствует входному и выходному сигналам, которые обратно пропорциональны фазам.

Входные характеристики

График построен между током на базе и значением напряжения на выводах базы и эмиттера.

Общие входные характеристики эмиттера

Выходные характеристики

График построен между значениями тока коллектора и значением напряжения на выводах коллектора и эмиттера.

Выходные характеристики общего эмиттера

Таблица сравнения конфигураций транзисторов

В основном биполярный переходный транзистор (BJT) состоит из выводов эмиттера, базы и коллектора.Для этих клемм были разработаны эти конфигурации, основанные на том, чтобы сделать одну клемму общей, чтобы она могла действовать совместно как для входных, так и для выходных цепей.

84

84

Конфигурации транзисторов

Общая база

Общий коллектор

8

904 9007 9007 9007 9007 9008

1. Значение коэффициента усиления по току составляет

Низкое значение

Высокое

Среднее значение

2. Значение коэффициента усиления по напряжению14 составляет

902

Высокий

Низкий

Средний

3. Значение коэффициента усиления мощности составляет

Низкое

Низкое

Низкое

Высокая

4. Значение фазового соотношения между сигналами входа и выхода составляет

Нулевая степень

Нулевая степень

Градус

5. Сопротивление на входе

Низкое

Высокое

9

6 Среднее

4 9002

6. Сопротивление на выходе

Высокое

Низкое

Среднее

Выше существует три конфигурации терминальных транзисторов на основе трех в этом. Эти конфигурации имеют определенное сходство, а также определенные различия с точки зрения конструкции, учета входных и выходных параметров. Значения также различаются, если учесть усиление мощности, напряжения и тока.Чаще всего используется конфигурация с обычным излучателем.

Он состоит из усиления как напряжения, так и тока. Следовательно, это увеличивает общий прирост мощности. В общей базовой конфигурации транзистора обычно используются однокаскадные схемы усилителя. Следовательно, конфигурация базы, которая является общей, имеет самые высокие частотные характеристики. Эти транзисторы могут быть использованы в усилителях радиочастот. Можете ли вы сказать, по какой причине общий коллектор известен как эмиттер-последователь?

Глава 8: Транзисторы [Analog Devices Wiki]

В этой главе мы рассмотрим наши первые активные устройства.

8.1 Основные принципы

Активное устройство — это компонент любого типа, способный электрически управлять потоком тока (управлять одним электрическим сигналом другим электрическим сигналом). Чтобы схема называлась электронной, она должна содержать хотя бы одно активное устройство. Все активные устройства контролируют прохождение тока через них. Один тип активного устройства использует напряжение для управления током, в то время как другой тип активных устройств использует другой ток в качестве управляющего сигнала.Устройства, использующие напряжение в качестве управляющего сигнала, неудивительно, называются устройствами, управляемыми напряжением. Устройства, работающие по принципу контроля одного тока другим током, известны как устройства с регулируемым током. Первым успешно продемонстрированным типом транзисторов стало устройство с регулируемым током.

В качестве примечания: происхождение термина «транзистор» — это сокращение от «варистор крутизны», поскольку
предложенный Bell Telephone Laboratories. Иногда это ошибочно приписывают сокращению транс-сопротивления.

Простой и общий вид такого устройства показан на рисунке 8.1.1. Имеет три терминала; назовем их пока X, Y и Z. Предположим также, что управляемый ток течет на клемму X и выводит ее обратно на клемму Y. Третья клемма, Z, является клеммой управления. Чтобы описать функцию этого блока, нам сначала необходимо определить токи на клеммах IX , IY и IZ , и напряжения на клеммах VXY и VZY , как показано на рисунке.Поскольку ток протекает на клемму X, мы обычно предполагаем, что напряжение на клемме X больше, чем на клемме Y, а напряжение VXY является положительным числом. То же самое можно сказать и о напряжении на клемме Z относительно клеммы Y, и о напряжении VZY является положительным числом.

Рисунок 8.1.1 Общая модель

В случае устройства, управляемого током, предположим, что управляющий ток IZ, протекает на клемму Z и выходит обратно на клемму Y.Сохранение заряда говорит нам, что сумма токов, текущих в коробку, должна равняться сумме вытекающих токов. Таким образом, IY = IX + IZ . Чтобы устройство было полезным, было бы желательно, чтобы управляющий ток IZ был очень мал по сравнению с гораздо большим контролируемым током IX . Отношение IX к IZ — это коэффициент усиления устройства, и для обозначения этого коэффициента используется греческая буква β (бета).Отношение IX к IY , которое всегда меньше единицы, также является мерой усиления устройства и чаще всего обозначается греческой буквой α (альфа).

Для устройства, управляемого напряжением, давайте предположим, как мы делали раньше, что ток течет на клемму X и выходит на клемму Y. Напряжение на клемме Z теперь управляет величиной тока на клеммах X и Y. Теперь это напряжение необходимо соотнести с относительно одного из двух других терминалов, и здесь мы будем использовать терминал Y для наших целей.Кроме того, поскольку в этом случае управляющим сигналом является напряжение, мы будем предполагать, что ток не течет на клемму Z (или не выходит из нее). Сравнивая это с устройством, управляемым током, мы можем сказать, что α = 1 и β бесконечно. Соотношение между выходным током и управляющим напряжением, выраженное в амперах / вольт, является размерной проводимостью, и для обозначения проводимости чаще всего используется буква g . Этот параметр транзистора называется крутизной, и обычно используется gm .

Мы также можем описать дополнительные устройства, изменив направление токов на обратное, так что теперь управляемый ток течет из клеммы X в клемму Y, как показано на рисунке 8.1.2. Поскольку направление тока теперь меняется на противоположное, мы обычно предполагаем, что напряжение на Y больше, чем на клемме X, а напряжение VXY является отрицательным числом. То же самое можно сказать и о напряжении на клемме Z относительно клеммы Y, и о напряжении VZY — отрицательное число.Для случая с управлением по току мы также меняем направление управляющего тока I Z , который теперь вытекает из клеммы Z.

Рисунок 8.1.2 Дополнительная модель

Подводя итог, мы описали четыре типа активных устройств: источник тока, управляемый положительным током, и его дополнительную отрицательную форму, а также источник тока, управляемый положительным напряжением, и его дополнительную отрицательную форму.

8.1.1 Характеристики простой модели

Теперь мы рассмотрим передаточные характеристики этих простых моделей транзисторов и то, как их можно модифицировать или расширять, чтобы сделать их более реалистичными.Сначала мы исследуем зависимость выходного тока от выходного напряжения простого (идеального) источника тока, управляемого напряжением, при ступенчатом изменении напряжения на управляющем входе. Результаты для управляемого источника с крутизной 1 мА / В показаны на рисунке 8.1.3, поскольку В XY изменяется от 0 до 5 В, а управляющее напряжение В ZY ступенчато с шагом 0,4 В от 0,1 В до 2,1 В . Идеальный источник тока, управляемый током, имел бы по существу те же характеристики, за исключением того, что каждая горизонтальная линия будет представлять другой управляющий ток (на клемме Z), а не другое управляющее напряжение.

Рисунок 8.1.3 Характеристики источника тока с идеальным управлением напряжением (или током)

Из этих характеристических кривых мы можем узнать следующее; Во-первых, ток действительно не зависит от напряжения на клеммах X и Y. Во-вторых, ток I XY равен 1 мА на вольт, приложенный к клемме Z по отношению к клемме X (рисунок 8.1.1). Однако очевидна одна вещь, которая не может произойти в реальном устройстве, и это то, что I XY будет отличаться от нуля, когда напряжение В XY равно нулю.Это означает, что устройство содержит источник энергии, и мы знаем, что это невозможно. В противном случае у нас было бы решение мирового энергетического кризиса. Более реалистичный набор характеристик больше похож на показанный на рисунке 8.1.4.

Кривые, подобные приведенным на рисунке 8.1.4, имеют больше физического смысла, но все же обладают некоторыми свойствами, которых не могут иметь реальные устройства. На графике видны резкие изломы кривых, где наклонная линия, проходящая через начало координат, пересекает горизонтальную линию при постоянном контролируемом значении тока.Этот переход никогда не может быть таким резким и должен каким-то образом плавно переходить от одной линии к другой.

Еще одним свойством этих простых кривых является идеально горизонтальный характер линий тока и напряжения. Реальное устройство покажет некоторые изменения, обычно увеличение из-за конечного реального сопротивления с напряжением на X и Y.

Рисунок 8.1.4 Ток VCCS должен быть равен нулю, когда В XY = 0

Более полная сложная математическая модель реального физического транзистора показана на рисунке 8.1.5. Мы исследуем эту более полную модель в следующих разделах этой главы.

Рисунок 8.1.5 Сложная математическая модель устройства

8.2 Обозначения транзисторов

Этим основным моделям активных устройств соответствуют четыре типа транзисторов. Их схематические символы показаны на рисунке 8.2.1. Управляемым током устройством n-типа является биполярный транзистор NPN (BJT). Управляемым по току устройством p-типа является PNP BJT.Устройство n-типа, управляемое напряжением, представляет собой NMOS FET (металлооксидный полупроводниковый полевой транзистор). И, наконец, управляемое напряжением устройство p-типа — PMOS FET. Вместо того, чтобы давать клеммам устройства общие имена, такие как X, Y и Z, установленное соглашение для BJT — Коллектор и Эмиттер для клемм источника тока и База для клеммы управления током. Точно так же соглашение для MOS-устройства — сток и источник для клемм источника тока и затвор для клеммы управления напряжением,

Рисунок 8.2.1 символы транзисторов

Примечание. Если читатель не занимается производством устройства, обычно менее важно понимать внутреннюю работу транзисторов. Описания, которые можно получить, углубляясь в внутренние свойства, не особенно подходят для схемотехники и могут быть трудными для понимания. Скорее для анализа и проектирования схем обычно достаточно понять внешние свойства транзисторов, рассматривая их более или менее как черный ящик. Добавление некоторого обсуждения тонкостей, которые возникают из-за физики, происходящей внутри черного ящика, конечно, необходимо для надежного проектирования схем.

8.3 Основные сведения о биполярных переходных транзисторах

Транзистор с биполярным переходом (BJT) представляет собой электронное устройство с тремя выводами, построенное из легированного полупроводникового материала, и может использоваться в приложениях для усиления или переключения. Биполярные транзисторы названы так потому, что в их работе участвуют как электроны, так и дырки. Поток заряда в BJT обусловлен двунаправленной диффузией носителей заряда через соединение между двумя областями с разной концентрацией заряда. По конструкции большая часть коллекторного тока БЮТ обусловлена ​​потоком зарядов, вводимых от эмиттера с высокой концентрацией в базу, где они являются неосновными носителями, которые диффундируют к коллектору, и поэтому БЮТ классифицируются как устройства с неосновными носителями. Этот режим работы отличается от транзисторов с большинством носителей, таких как полевые транзисторы, в которых только основные носители участвуют в протекании тока из-за дрейфа.

Типичное поперечное сечение планарного NPN-транзистора показано на рисунке 8.3.1. NPN-транзистор можно рассматривать как два диода с PN-переходом с очень тонким общим анодом, P-слоем. При типичной работе переход база-эмиттер смещен в прямом направлении, а переход база-коллектор — в обратном направлении. В NPN-транзисторе, например, когда к переходу база-эмиттер прикладывается положительное напряжение, равновесие между термически генерируемыми носителями и отталкивающим электрическим полем обедненной области становится несбалансированным, позволяя термически возбужденным электронам инжектироваться в базовую область.Эти электроны блуждают (или «диффундируют») через очень тонкую базу из области высокой концентрации рядом с эмиттером к области низкой концентрации возле коллектора. Электроны в базе называются неосновными носителями, потому что база легирована p-типом, что делает дырки основными носителями в базе.

Рисунок 8.3.1 Поперечное сечение планарного NPN-транзистора

Чтобы свести к минимуму процент носителей, которые рекомбинируют до достижения слоя истощения коллекторно-базового перехода, базовая область транзистора должна быть достаточно тонкой, чтобы носители могли диффундировать по ней за гораздо меньшее время, чем время жизни неосновных носителей полупроводника.В частности, толщина основания должна быть намного меньше диффузионной длины электронов. Коллектор-база-переход смещен в обратном направлении, поэтому инжекция электронов от коллектора к базе происходит незначительно, но электроны, которые диффундируют через базу к коллектору, уносятся в коллектор электрическим полем в обедненной области коллектор-база. соединение. Тонкая общая база и асимметричное легирование коллектор-эмиттер — это то, что отличает биполярный транзистор от двух отдельных диодов с противоположным смещением, установленных последовательно.

8.3.1 Контроль напряжения, тока и заряда

Ток коллектора-эмиттера можно рассматривать как управляемый током база-эмиттер (управление током) или напряжением база-эмиттер (управление напряжением). Эти представления связаны между собой соотношением тока и напряжения в переходе база-эмиттер, которое представляет собой обычную экспоненциальную кривую вольт-амперной характеристики PN-перехода (диода).

Физическое объяснение тока коллектора — это количество заряда неосновных носителей заряда в базовой области.

Подробные модели действия транзисторов, такие как модель Гаммеля-Пуна, явно объясняют распределение этого заряда, чтобы более точно объяснить поведение транзистора. Представление управления зарядом легко обрабатывает фототранзисторы, где неосновные носители в базовой области создаются за счет поглощения фотонов, и управляет динамикой выключения или временем восстановления, которое зависит от рекомбинации заряда в базовой области. Однако, поскольку базовый заряд не является сигналом, видимым на выводах, при проектировании и анализе схем обычно используются режимы управления током и напряжением.

При проектировании аналоговых схем иногда используется представление управления током, поскольку оно приблизительно линейно. То есть ток коллектора примерно? F умноженный на базовый ток. Некоторые базовые схемы могут быть спроектированы, исходя из предположения, что напряжение эмиттер-база приблизительно постоянно, а ток коллектора в бета умножен на ток базы. Однако для точного и надежного проектирования надежных цепей BJT чаще используется модель управления напряжением (например, Ebers-Moll).Модель управления напряжением требует учета экспоненциальной функции. Следующее уравнение для тока коллектора I C показывает экспоненциальную зависимость от V BE .

Достаточно стандартный транзистор, работающий на токе около 100 мкА, может иметь В BE около 650 мВ при комнатной температуре, где q / kT составляет около 0,039 / мВ (или тепловое напряжение kT / q составляет 25 мВ). Экспоненциальный множитель в уравнении будет порядка 10 11 .В этом случае мы можем без серьезной ошибки опустить член -1 в уравнении. Взяв натуральный логарифм, мы получаем уравнение для V BE .

Когда эта экспонента линеаризуется так, что транзистор может быть смоделирован как крутизна, как в модели Эберса-Молла, проектирование таких схем, как усилители, снова становится в основном линейной проблемой, поэтому часто предпочтение отдается управлению напряжением. Для транслинейных схем, в которых экспоненциальная кривая I- В является ключевой для работы, транзисторы обычно моделируются как управляемые по напряжению с крутизной, пропорциональной току коллектора.Как правило, проектирование схем на уровне транзисторов выполняется с использованием SPICE или аналогичного имитатора аналоговых схем, поэтому математическая сложность модели обычно не имеет большого значения для разработчика.

8.3.2 Транзистор альфа и бета

Доля электронов, способных пересечь базу и достигнуть коллектора, является мерой эффективности БЮТ. Асимметричное сильное легирование эмиттерной области и легкое легирование базовой области вызывает инжекцию гораздо большего количества электронов из эмиттера в базу, чем дырок, инжектируемых из базы в эмиттер.Общий эмиттер ток Коэффициент усиления представлен как ß F или h fe и представляет собой приблизительно отношение постоянного тока коллектора к постоянному току базы в прямой активной области. Обычно оно больше 100 для малосигнальных транзисторов, но может быть меньше в транзисторах, предназначенных для мощных приложений. Другой важный параметр — коэффициент усиления по току общей базы, F . Коэффициент усиления по току с общей базой приблизительно равен коэффициенту усиления по току от эмиттера к коллектору в прямой активной области.Это отношение обычно имеет значение, близкое к единице; от 0,98 до 0,998. Альфа и бета более точно связаны следующими тождествами (транзистор NPN):

Биполярный транзистор состоит из трех областей полупроводника с различным легированием: области эмиттера, области базы и области коллектора. Этими областями являются, соответственно, тип p , тип p и тип p в PNP и тип n , тип p и тип n в транзисторе NPN.Каждая полупроводниковая область подключена к клемме, обозначенной соответствующим образом: эмиттер (E), база (B) и коллектор (C).

База физически расположена между эмиттером и коллектором и изготовлена ​​из слегка легированного материала с высоким сопротивлением. Коллектор окружает эмиттерную и базовую области (рис. 8.3.1), что делает практически невозможным выход электронов, инжектированных в базовую область из эмиттерной области, в результате чего результирующее значение становится очень близким к единице, и поэтому , давая транзистору большое ß.Вид в разрезе BJT, рисунок 8.3.1, показывает, что переход коллектор-база имеет гораздо большую площадь, чем переход эмиттер-база.

Биполярный переходный транзистор, в отличие от полевого МОП-транзистора, который мы вскоре подробно обсудим, обычно не является симметричным устройством. Это означает, что перестановка коллектора и эмиттера заставляет транзистор выйти из прямого активного режима и начать работать в так называемом обратном активном режиме.

Поскольку внутренняя структура транзистора обычно оптимизирована для работы в прямом режиме, перестановка коллектора и эмиттера делает значения a и ß в обратном режиме намного меньше, чем в прямом режиме; часто а обратного режима ниже 0.5. Отсутствие симметрии в первую очередь связано с относительными степенями легирования эмиттера и коллектора. Эмиттер сильно легирован, а коллектор слегка легирован, что позволяет приложить большое обратное напряжение смещения до того, как разомкнется переход коллектор-база. Коллектор-база при нормальной работе имеет обратное смещение. Причина, по которой эмиттер сильно легирован, состоит в том, чтобы увеличить эффективность инжекции эмиттера: соотношение носителей, введенных эмиттером, к тем, которые введены базой.Для высокого коэффициента усиления по току большая часть носителей, вводимых в переход эмиттер-база, должна исходить от эмиттера.

Низкопроизводительные «боковые» биполярные транзисторы, которые иногда используются в КМОП-процессах, иногда проектируются симметрично, то есть без разницы между прямым и обратным режимом работы, рисунок 8.3.2. Однако, поскольку ширина основания часто намного больше, чем у вертикальной структуры на рисунке 8.3.1, ß и а не так высоки. Метод компоновки для повышения эффективности сбора состоит в том, чтобы полностью окружить эмиттерную область со всех четырех сторон областью коллектора в форме кольца или пончика.Конечно, эта структура больше не симметрична.

Рисунок 8.3.2 Боковое сечение NPN

Небольшие изменения напряжения, приложенного к клеммам база-эмиттер, приводят к значительному изменению тока, протекающего между эмиттером и коллектором. Этот эффект можно использовать для усиления входного напряжения или тока. BJT можно рассматривать как источники тока с управлением по напряжению, но их проще охарактеризовать как источники тока с управлением по току или усилители тока из-за относительно низкого импеданса, наблюдаемого на базе.

Ранние транзисторы были сделаны из германия, но большинство современных BJT сделаны из кремния. Устройства специального назначения также изготавливаются из полупроводниковых соединений элементов III- V , таких как арсенид галлия, особенно для приложений с очень высокими частотами.

8.3.3 НПН

NPN — это один из двух типов биполярных транзисторов, в которых буквы «N» (отрицательный) и «P» (положительный) относятся к основным носителям заряда внутри различных областей транзистора.Производимые сегодня биполярные транзисторы с лучшими характеристиками — это NPN-транзисторы, потому что подвижность электронов выше подвижности дырок в полупроводниках, что обеспечивает большие токи и более быструю работу.

Транзисторы NPN состоят из слоя полупроводника с примесью фосфора («основа»), помещенного между двумя слоями с примесью азота. Небольшой ток, поступающий на базу в режиме с общим эмиттером, усиливается на выходе коллектора. Другими словами, NPN-транзистор «включен», когда его база поднята высоко относительно эмиттера.Стрелка в символе транзистора NPN находится на плече эмиттера и указывает в направлении обычного тока, когда устройство находится в прямом активном рабочем режиме.

Одно мнемоническое устройство для идентификации символа для NPN-транзистора: « n ot p ointing i n , или« n ot p ointing, n ointing »

8.3.4 PNP

Другой тип BJT — это PNP с буквами «P» и «N», обозначающими основные носители заряда в различных областях транзистора.Транзисторы PNP состоят из слоя полупроводника с примесью азота, расположенного между двумя слоями материала с примесью фосфора. Небольшой ток, выходящий из базы в режиме общего эмиттера, усиливается на выходе коллектора. Другими словами, PNP-транзистор включен, когда его база опущена относительно эмиттера.

Стрелка в символе транзистора PNP находится на плече эмиттера и указывает направление обычного тока, когда устройство находится в прямом активном режиме.

8.3.5 BJT Регионы присутствия

Биполярные транзисторы имеют пять различных областей работы, определяемых способом смещения переходов. Чтобы наглядно представить режимы работы, нарисуйте NPN-транзистор с коллектором вверху, базой в середине и эмиттером внизу. Теперь есть две разницы напряжения: между коллектором и базой и между базой и эмиттером. Обратите внимание на два момента: V CB = — V BC , а «соединение база-коллектор с обратным смещением» означает V BC <0 или V CB > 0.Проще говоря, это означает, что коллектор имеет более высокое напряжение, чем база (если зондировать). Механическим аналогом может быть труба и вентиль.

Клапан является базовым, а две стороны трубы — коллекторным и эмиттерным. Теперь количество протекающей воды (тока) зависит от того, насколько открыт клапан (напряжение от базы к эмиттеру) и сколько воды у вас наверху трубы (напряжение от коллектора до базы). Если вы запишете смещения в терминах приложенных напряжений ( V CB , V BE ) вместо смещения перехода, режимы работы можно описать как:

  1. Прямое включение: база выше эмиттера, коллектор выше базы (в этом режиме ток коллектора пропорционален току базы на β F ).

  2. Насыщенность: База выше эмиттера, но коллектор не выше базы.

  3. Отсечка: база ниже эмиттера, но коллектор выше базы. Это означает, что транзистор не пропускает обычный ток через коллектор к эмиттеру.

  4. Reverse Active: База ниже эмиттера, коллектор ниже базы: обратный условный ток проходит через транзистор.

С точки зрения смещения перехода: («соединение база-коллектор с обратным смещением» означает В BC <0 или В CB > 0)

  1. Вперед активный (или просто активный): переход база-эмиттер смещен в прямом направлении, а переход база-коллектор — в обратном направлении.Большинство биполярных транзисторов спроектированы так, чтобы обеспечить максимальное усиление по току с общим эмиттером β F в прямом активном режиме. В этом случае ток коллектор-эмиттер приблизительно пропорционален току базы, но во много раз больше при небольших изменениях тока базы.

  2. Обратный активный (или обратный активный или инвертированный): при изменении условий смещения в прямой активной области биполярный транзистор переходит в обратно-активный режим.В этом режиме области эмиттера и коллектора меняются ролями. Поскольку большинство BJT предназначены для максимального увеличения тока в прямом активном режиме, β F в инвертированном режиме в несколько (2-3 для обычного германиевого транзистора) раз меньше. Этот транзисторный режим используется редко, обычно рассматривается только для условий отказоустойчивости и некоторых типов биполярной логики. Напряжение пробоя обратного смещения к базе может быть на порядок ниже в этой области.

  3. Насыщение: с обоими переходами, смещенными в прямом направлении, BJT находится в режиме насыщения и обеспечивает проведение сильного тока от эмиттера к коллектору.Этот режим соответствует логическому «включению» или замкнутому переключателю.

  4. Отсечка: в отсечке присутствуют условия смещения, противоположные насыщению (оба перехода смещены в обратном направлении). Ток очень слабый, что соответствует логическому «выключению» или размыканию переключателя.

  5. Лавина поломка регион

Хотя эти области хорошо определены для достаточно большого приложенного напряжения, они частично перекрываются при малых (менее нескольких сотен милливольт) смещениях.Например, в типичной конфигурации с заземленным эмиттером NPN BJT, используемого в качестве понижающего переключателя в цифровой логике, состояние «выключено» никогда не включает в себя переход с обратным смещением, поскольку базовое напряжение никогда не опускается ниже земли; тем не менее прямое смещение достаточно близко к нулю, чтобы ток практически не протекал, поэтому этот крайний предел прямой активной области можно рассматривать как область отсечки.

8.4.1 Биполярный переходной транзистор большого сигнала Модель

Как мы только что узнали, биполярный переходный транзистор (BJT) может работать в одной из трех областей:

  1. Область отсечки: транзистор выключен и ток между коллектором и эмиттером не течет ( i.е. , сопротивление коллектор-эмиттер бесконечно).
  2. Активная область: Транзистор действует как источник тока с регулируемым током между коллектором и эмиттером, как и в базовой модели.

  3. Область насыщения: когда напряжение между коллектором и эмиттером падает ниже определенного уровня (обычно, когда напряжение коллектора и базы равно нулю или меньше), ток базы увеличивается, и отношение I C к I B , или β намного меньше, чем в активной области.

В активной области транзистор регулирует ток коллектора на? умножить на базовый ток. Если базовый ток I B падает до 0, транзистор входит в область отсечки и закрывается. Когда напряжение коллектора становится меньше или равным базовому напряжению, ток базы увеличивается, а β падает. В этом случае транзистор переходит в область насыщения. Чтобы не допустить попадания транзистора в область насыщения, общее практическое правило состоит в том, что напряжение на коллекторе должно быть более положительным, чем напряжение на базе.То есть переход коллектор-база всегда имеет обратное смещение.

Простая модель работы NPN и PNP BJT транзисторов в активной области показана на рисунке 8.4.1. Это требует знания коэффициента усиления по току β, чтобы спроектировать схему. В обеих этих моделях

I C = βI B , I E = (β + 1) I B и

Эмиттер отделен от базы диодом. Чтобы этот диод проводил ток, в случае устройства на основе кремния, он должен быть смещен в прямом направлении на ~ 0.65В.

Рисунок 8.4.1 (a) Активная область NPN (b) Активная область PNP

Диод база-эмиттер: всегда помните о рисунке 8.4.1. Модель Эберса-Молла BJT рассматривает соотношение тока и напряжения в переходе база-эмиттер точно так же, как идеальный диод Шокли, ток которого отражается в коллекторе с усилением. Когда V B и V E неочевидны, помните о диоде база-эмиттер.

8.4.2 Ранний эффект (модуляция базовой ширины)

Ранний эффект был впервые обнаружен и объяснен Джеймсом Эрли, когда он работал в Bell Labs. В нашем идеальном устройстве ток коллектора должен быть равен току базы, умноженному на постоянный коэффициент усиления β. Но, как мы видели выше, каждый p-n-переход имеет два обедненных слоя. Для перехода коллектор-база один истощающий слой проходит в коллектор, а другой — в основание. База почти всегда более сильно легирована, чем коллектор, поэтому ее обедненный слой довольно неглубокий.Однако основание также очень тонкое, поэтому даже неглубокий обедненный слой занимает значительную часть ширины основания. С увеличением напряжения на коллекторе обедненные слои расширяются. В области коллектора это имеет небольшой эффект (до тех пор, пока он не попадает в другую сторону коллектора), но в области основания он сужает ширину основания. Поскольку коэффициент усиления биполярного транзистора очень сильно зависит от ширины базы, коэффициент усиления просто увеличивается при уменьшении эффективной ширины базы. Если вы проведете прямую линию, увеличивающую наклон в передней активной области (от 0.От 4 до 15 вольт, например) в отрицательный квадрант и дайте ему пересечься с линией нулевого тока, вы получите раннее напряжение В A . В преувеличенном случае, показанном на рисунке 8.4.2, раннее напряжение будет -15 В (но обычно выражается как 15 В). В зависимости от ширины основания, предусмотренной в производственном процессе, она может быть больше или меньше указанной, с соответственно меньшим или большим уклоном.

Рисунок 8.4.2 Раннее напряжение

8.5.1 Базовая конструкция и принцип работы

Полевой транзистор металл-оксид-полупроводник n-типа (MOSFET) состоит из истока и стока, двух высокопроводящих полупроводниковых областей n-типа, которые изолированы от подложки p-типа PN-диодами с обратным смещением. Затвор из поликристаллического кремния покрывает область между истоком и стоком, но отделен от полупроводника изолирующим слоем оксида. Базовая структура полевого МОП-транзистора n-типа и соответствующее обозначение схемы показаны на рисунке 8.5.1.

Рисунок 8.5.1 Поперечное сечение и условное обозначение схемы металл-оксид-полупроводник-полевой транзистор n-типа (MOSFET)

Как видно на рисунке, области истока и стока идентичны. Именно приложенные напряжения определяют, какая область n-типа обеспечивает электроны и становится источником, в то время как другая область n-типа собирает электроны и становится стоком. Напряжения, приложенные к электроду стока и затвора, а также к подложке посредством обратного контакта, относятся к потенциалу истока, как также показано на рисунке.

Вид сверху того же полевого МОП-транзистора показан на рисунке. 8.5.2, где указаны длина ворот L и ширина ворот W. Обратите внимание, что длина затвора не равна физическому размеру затвора, а скорее равна расстоянию между областями истока и стока под затвором. Перекрытие между затвором и областью истока и стока требуется, чтобы гарантировать, что инверсионный слой образует непрерывный проводящий путь между областью истока и стока. Обычно это перекрытие делается как можно меньше, чтобы минимизировать его паразитную емкость.

Рисунок 8.5.2 Вид сверху на полевой транзистор металл-оксид-полупроводник n-типа (MOSFET)

Поток электронов от истока к стоку контролируется напряжением, приложенным к затвору. Положительное напряжение, приложенное к затвору, притягивает электроны к границе раздела между диэлектриком затвора и полупроводником. Эти электроны образуют проводящий канал между истоком и стоком, называемый инверсионным слоем. Ток затвора не требуется для поддержания инверсионного слоя на границе раздела, поскольку оксид затвора блокирует любой поток носителей.В итоге ток между стоком и истоком регулируется напряжением, приложенным к затвору.

Типичные характеристики тока в зависимости от напряжения (I- V ) полевого МОП-транзистора показаны на рисунке ниже.
Реализована квадратичная модель полевого МОП-транзистора.

8,6 МОП-транзистор, большой сигнал, модель

8.6.1 Режимы работы

Работа полевого МОП-транзистора может быть разделена на три различных режима в зависимости от напряжений на клеммах.В следующем обсуждении используется упрощенная алгебраическая модель, точная только для старых технологий. Характеристики современных MOSFET требуют компьютерных моделей, которые имеют более сложное поведение.

Для расширения режим , n-канальный MOSFET, три рабочих режима:

Режим отсечки, подпорога или слабой инверсии
Когда:
Где В th — пороговое напряжение устройства.

Согласно базовой пороговой модели, транзистор выключен, и между стоком и истоком нет проводимости.В действительности, распределение энергии электронов Больцмана позволяет некоторым более энергичным электронам в источнике проникать в канал и течь в сток, в результате чего возникает подпороговый ток, который является экспоненциальной функцией напряжения затвор-исток. В то время как ток между стоком и истоком в идеале должен быть равен нулю, когда транзистор используется в качестве выключенного ключа, существует слабый ток инверсии, иногда называемый подпороговой утечкой. При слабой инверсии ток изменяется экспоненциально в зависимости от смещения затвор-исток В GS , что приблизительно равно:

Где:
I D0 = ток при В GS = В th

а коэффициент наклона n определяется как

С участием:

C D = емкость обедненного слоя

А также

C OX = емкость оксидного слоя.

В устройстве с длинным каналом отсутствует зависимость тока от напряжения стока В DS » В T , но по мере уменьшения длины канала уменьшение индуцированного стоком барьера приводит к зависимости напряжения стока, которая зависит от сложным образом от геометрии устройства (например, легирование канала, легирование перехода и т. д.). Часто пороговое напряжение В th для этого режима определяется как напряжение затвора, при котором возникает выбранное значение тока I D0 , например, I D0 = 1 мкА, что может не совпадать с V th — значение, используемое в уравнениях для следующих режимов.

Некоторые аналоговые схемы микромощностей предназначены для использования преимущества подпороговой проводимости. Работая в области слабой инверсии, полевые МОП-транзисторы в этих схемах обеспечивают максимально возможное отношение крутизны к току, а именно:

Что почти то же самое, что и биполярный транзистор.

Подпороговая кривая I- В экспоненциально зависит от порогового напряжения, что приводит к сильной зависимости от любых производственных изменений, влияющих на пороговое напряжение; например: изменения толщины оксида, глубины перехода или легирования тела, которые изменяют степень снижения барьера, вызванного стоком.Возникающая в результате чувствительность к вариациям изготовления усложняет оптимизацию утечек и производительности.

Триодный режим или линейная область (также известный как резистивный режим)

когда

а также

Транзистор включается, и создается канал, который позволяет току течь между стоком и истоком. МОП-транзистор работает как резистор, управляемый напряжением затвора относительно напряжений истока и стока.Ток от стока к истоку моделируется как:

Где:
μ n — эффективная подвижность носителей заряда,
W — ширина затвора,
L — длина затвора,
C ox — емкость оксида затвора на единицу площади.

Переход от экспоненциальной подпороговой области к триодной области не такой резкий, как предполагают уравнения.

Насыщенность или активный режим,

когда

а также

Переключатель включен, и был создан канал, который позволяет току течь между стоком и истоком.Поскольку напряжение стока выше, чем напряжение затвора, электроны распространяются, и проводимость происходит не через узкий канал, а через более широкое, двух- или трехмерное распределение тока, простирающееся от границы раздела в глубину подложки. Начало этой области также известно как pinch- off, чтобы указать на отсутствие области канала около стока. Ток стока теперь слабо зависит от напряжения стока и регулируется в основном напряжением затвор-исток и моделируется очень приблизительно как:

Дополнительный фактор, включающий λ, параметр модуляции длины канала, моделирует зависимость тока от напряжения стока из-за эффекта Раннего или модуляции длины канала.Согласно этому уравнению, ключевым параметром конструкции, крутизной MOSFET является:

Комбинация называется напряжением перегрузки. Другим ключевым параметром конструкции является выходное сопротивление полевого МОП-транзистора r O , определяемое по формуле:

r out является обратным g ds где

V DS — выражение в области насыщения.

Если ? принимается равным нулю, в результате получается бесконечное выходное сопротивление устройства, что приводит к нереалистичным предсказаниям схемы, особенно в аналоговых схемах.Поскольку длина канала становится очень короткой, эти уравнения становятся неточными. Возникают новые физические эффекты. Например, перенос носителей в активном режиме может быть ограничен насыщением скорости. Когда преобладает насыщение по скорости, ток стока при насыщении более близок к линейному, чем к квадратичному в V GS . На еще меньших длинах носители транспортируются с почти нулевым рассеянием, известным как квазибаллистический транспорт. Кроме того, на выходной ток влияет снижение порогового напряжения, вызванное стоком.

8.7 Малосигнальные модели Hybrid-pi

Модель гибридного Пи — это популярная схемная модель, используемая для анализа поведения слабого сигнала биполярных переходных и полевых транзисторов. Модель может быть достаточно точной для низкочастотных цепей и может быть легко адаптирована для более высокочастотных цепей с добавлением соответствующих межэлектродных емкостей и других паразитных элементов.

8.7.1 Параметры биполярного перехода (BJT)

Модель hybrid-pi представляет собой приближение линеаризованной двухпортовой сети к BJT с использованием напряжения база-эмиттер слабого сигнала v быть и напряжения коллектор-эмиттер v ce в качестве независимых переменных, а базовый ток слабого сигнала i b и ток коллектора i c в качестве зависимых переменных.Базовая низкочастотная гибридная пи-модель биполярного транзистора (NPN) показана на рисунке 8.7.1.

Рисунок 8.7.1 Модель BJT Hybrid-pi

Вот различные параметры:

Крутизна, г м , в сименсах, определяется следующим уравнением:

где:

I C — это ток покоя коллектора (также называемый током смещения коллектора или постоянным током коллектора)

— тепловое напряжение, рассчитанное на основе постоянной Больцмана k , заряда электрона q и температуры транзистора в кельвинах T .При 300 K (приблизительно комнатная температура) V T составляет около 26 мВ .

где:
— текущий коэффициент усиления на низких частотах (также обозначается как h FE ).

Здесь I B — базовый ток точки покоя. Это параметр, специфичный для каждого транзистора, его можно найти в таблице данных; ß — это функция выбора тока коллектора.

Выходное сопротивление из-за раннего эффекта ( В A — раннее напряжение).

Связанные термины:

Величина, обратная выходному сопротивлению, называется выходной проводимостью.

Величина, обратная величине г м , называется внутренним сопротивлением r E

8.7.2 Параметры MOSFET

Базовая низкочастотная гибридная пи-модель для полевого МОП-транзистора (n-типа) показана на рисунке 8.7.2.

Рисунок 8.7.2 Модель MOSFET Hybrid-pi

Вот различные параметры:

gm — крутизна в сименсах, оцениваемая по току стока I D .
где:

I D — это ток стока покоя (также называемый смещением стока или постоянным током стока)
В th = пороговое напряжение и В GS = напряжение затвор-исток.

Комбинация: часто называется напряжением перегрузки.

r o — выходное сопротивление из-за модуляции длины канала с использованием аппроксимации для параметра модуляции длины канала λ.

Здесь V E — это параметр, связанный с технологией (около 4 V / мкм для технологического узла 65 нм), а L — длина расстояния между истоком и стоком.

Величина, обратная выходному сопротивлению, называется проводимостью стока.

8.8 Модель T

Модель hybrid-pi, безусловно, является самой популярной моделью слабого сигнала для транзисторов BJT и MOS. Альтернативой является T-модель, которая полезна в определенных ситуациях. Модель T также имеет две версии:

Т-модели слабого сигнала для транзисторов PNP BJT и PMOS идентичны показанным здесь для транзисторов NPN и NMOS. Важно отметить, что нет никаких изменений полярностей (напряжения или тока) для моделей p-типа по сравнению с моделями n-типа.Опять же, эти модели слабого сигнала идентичны. Модель может быть достаточно точной для низкочастотных цепей и может быть легко адаптирована для более высокочастотных цепей с добавлением соответствующих межэлектродных емкостей и других паразитных элементов.

Базовая низкочастотная Т-модель для MOSFET и BJT показана на рисунке 8.8.1.

Рисунок 8.8.1 Модель MOSFET и BJT T

Некоторые важные МОП-уравнения.

Некоторые важные уравнения БЮТ.

Лабораторная деятельность

университет / курсы / электроника / текст / chapter-8.txt · Последнее изменение: 06 июня 2017 г., 17:13, автор: dmercer

Структура, работа и характеристики VI

Транзистор — это полупроводниковое устройство, которое было изобретен в 1947 году в Bell Lab Уильямом Шокли, Джоном Бардином и Уолтером Хаузером Браттейном. Это базовый строительный блок любых цифровых компонентов.Самым первым изобретенным транзистором был транзистор с точечным контактом . Основная функция транзистора — усиливать слабые сигналы и соответственно регулировать их. Транзистор состоит из полупроводниковых материалов, таких как кремний, германий или арсенид галлия. Они подразделяются на два типа в зависимости от их структуры: биполярный транзистор BJT (транзисторы, такие как транзистор, транзистор NPN, транзистор PNP) и полевой транзистор FET (транзисторы, такие как транзистор с функцией перехода и металлооксидный транзистор, N-канальный MOSFET). , P-канальный MOSFET), а также функциональность (например, малосигнальный транзистор, малый переключающий транзистор, силовой транзистор, высокочастотный транзистор, фототранзистор, однопереходные транзисторы).Он состоит из трех основных частей: эмиттера (E), базы (B) и коллектора (C) или источника (S), стока (D) и затвора (G).

Что такое силовой транзистор?

Трехконтактное устройство, которое разработано специально для управления высоким номинальным током — напряжением и обработки большого количества уровней мощности в устройстве или цепи, представляет собой силовой транзистор. Классификация силового транзистора включает следующее.

Биполярный переходной транзистор

Биполярный транзистор — это биполярный переходной транзистор, который может обрабатывать две полярности (дырки и электроны), его можно использовать как переключатель или как усилитель, а также известный как устройство контроля тока.Ниже приведены характеристики Power BJT :

  • Он имеет больший размер, чтобы через него мог протекать максимальный ток.
  • Напряжение пробоя высокое
  • Он имеет более высокую токопроводящую способность и высокую мощность. возможности
  • Он имеет более высокое падение напряжения в открытом состоянии.
  • Применение с высокой мощностью.

МОП-металл-оксид-полупроводник-полевой транзистор (МОП-транзисторы) -FETs

МОП-транзистор является подклассом полевых транзисторов. Это трехконтактное устройство, содержащее клеммы истока, базы и стока.Функциональность MOSFET зависит от ширины канала. То есть при широкой ширине канала работает качественно. Ниже приведены характеристики полевого МОП-транзистора:

  • Он также известен как контроллер напряжения.
  • Входной ток не требуется.
  • Высокое входное сопротивление.

Транзистор статической индукции

Это устройство с тремя выводами, высокой мощностью и частотой, которое ориентировано вертикально. Основным преимуществом транзистора статической индукции является то, что он имеет более высокое напряжение пробоя по сравнению с полевым транзистором FET.Ниже приведены характеристики транзистора статической индукции

транзистора статической индукции

  • Длина канала мала
  • Шум меньше
  • Включение и выключение составляет несколько секунд
  • Сопротивление на клеммах низкое.

Биполярный транзистор с изолированным затвором (IGBT)

Как следует из названия, IGBT представляет собой комбинацию полевого и биполярного транзисторов, функция которых основана на его затворе, при этом транзистор может быть включен или выключен в зависимости от затвора.Они обычно применяются в устройствах силовой электроники, таких как инверторы, преобразователи и источники питания. Ниже приведены характеристики биполярного транзистора с изолированным затвором (IGBT),

биполярного транзистора с изолированным затвором (IGBT)

  • На входе схемы потери меньше
  • более высокий коэффициент усиления мощности.

Структура силового транзистора

Силовой транзистор BJT — это вертикально ориентированное устройство с большой площадью поперечного сечения с чередующимися слоями P и N, соединенными вместе.Он может быть разработан с использованием транзистора P-N-P или N-P-N.

pnp-and-npn-transistor

Следующая конструкция показывает тип P-N-P, который состоит из трех выводов: эмиттера, базы и коллектора. Если вывод эмиттера соединен с высоколегированным слоем n-типа, ниже которого присутствует умеренно легированный p-слой с концентрацией 1016 см-3, и слаболегированный n-слой с концентрацией 1014 см-3, который также называется Область дрейфа коллектора, где область дрейфа коллектора определяет напряжение пробоя устройства, а внизу он имеет слой n +, который представляет собой высоколегированный слой n-типа с концентрацией 1019 см-3, где коллектор вытравливается на пользовательский интерфейс.

NPN-power-transistor-construction

Operation of Power Transistor

Power Transistor BJT работает в четырех рабочих областях, а именно:

  • Область отсечки
  • Активная область
  • Область квази-насыщения
  • Область жесткого насыщения.

Говорят, что силовой транзистор находится в режиме отсечки, если силовой транзистор npn подключен с обратным смещением, где

случай (i): Клемма базы транзистора подключена к отрицательной клемме и клемме эмиттера транзистор подключен к плюсу, а

случай (ii): Коллекторный вывод транзистора подсоединен к отрицательному, а базовый вывод транзистора подсоединен к плюсу, то есть база-эмиттер, а коллектор-эмиттер находится в обратном смещении. .

силовой транзистор с отсечкой

Следовательно, не будет потока выходного тока на базу транзистора, где IBE = 0, а также не будет выходного тока, протекающего через коллектор к эмиттеру, поскольку IC = IB = 0, что указывает на то, что транзистор находится в выключенном состоянии, то есть в отключенной области. Но небольшая часть токов утечки отбрасывает транзистор от коллектора к эмиттеру, то есть ICEO.

Транзистор считается неактивным только тогда, когда область база-эмиттер имеет прямое смещение, а область коллектор-база — обратное смещение.Следовательно, будет протекание тока IB в базе транзистора и протекание тока IC через коллектор к эмиттеру транзистора. Когда IB увеличивается, IC также увеличивается.

транзистор с активной областью мощности

Транзистор считается находящимся в стадии квазинасыщения, если база-эмиттер и коллектор-база соединены в прямом смещении. Говорят, что транзистор находится в состоянии жесткого насыщения, если база-эмиттер и коллектор-база соединены с прямым смещением.

область насыщения-транзистор мощности

Выходные характеристики V-I силового транзистора

Выходные характеристики могут быть откалиброваны графически, как показано ниже, где ось x представляет VCE, а ось y представляет IC.

output-характеристики

  • На приведенном ниже графике представлены различные области, такие как область отсечки, активная область, область жесткого насыщения, область квазинасыщения.
  • Для разных значений VBE существуют разные значения тока IB0, IB1, IB2, IB3, IB4, IB5, IB6.
  • Отсутствие тока означает, что транзистор выключен. Но мало текущих потоков, которые являются ICEO.
  • Для увеличенного значения IB = 0, 1,2, 3, 4, 5. Где IB0 — минимальное значение, а IB6 — максимальное значение.Когда VCE увеличивается, ICE тоже немного увеличивается. Где IC = ßIB, следовательно, устройство известно как устройство управления током. Это означает, что устройство находится в активной области, которая существует в течение определенного периода.
  • Как только микросхема достигает максимума, транзистор переключается в область насыщения.
  • Где есть две области насыщения, область квазинасыщения и область жесткого насыщения.
  • Транзистор считается находящимся в области квазинасыщения тогда и только тогда, когда скорость переключения с включения на выключение или с выключения на включение высокая.Этот тип насыщения наблюдается в среднечастотном приложении.
  • Принимая во внимание, что в области жесткого насыщения транзистору требуется определенное количество времени, чтобы переключиться из включенного в выключенное или выключенного во включенное состояние. Этот тип насыщения наблюдается в низкочастотных приложениях.

Преимущества

Преимущества силового BJT:

  • Повышение напряжения высокое
  • Плотность тока высокая
  • Прямое напряжение низкое
  • Прирост полосы пропускания большой.

Недостатки

Недостатки силового BJT:

  • Низкая термическая стабильность
  • Более шумный
  • Управление немного сложнее.

Приложения

Области применения силового BJT:

  • Импульсные источники питания (SMPS)
  • Реле
  • Усилители мощности
  • Преобразователи постоянного тока в переменный
  • Цепи управления мощностью.

Часто задаваемые вопросы

1).Разница между транзистором и силовым транзистором?

Транзистор — это электронное устройство с тремя или четырьмя выводами, в котором при приложении входного тока к паре выводов транзистора можно наблюдать изменение тока на другом выводе этого транзистора. Транзистор действует как переключатель или усилитель.

В то время как силовой транзистор действует как радиатор, защищающий схему от повреждений. По размеру он больше обычного транзистора.

2).В какой области транзистора он быстрее переключается с включения на выключение или с выключения на включение?

Силовой транзистор, когда он находится в квазинасыщении, быстрее переключается из включенного состояния в выключенное или выключенного во включенное.

3). Что означает N в транзисторе NPN или PNP?

N в транзисторах типа NPN и PNP представляет собой тип используемых носителей заряда, который в N-типе является основным носителем заряда электроны. Следовательно, в NPN два носителя заряда N-типа зажаты между двумя носителями заряда P-типа, а в PNP один носитель заряда N-типа зажат между двумя носителями заряда P-типа.

4). Какая единица измерения у транзистора?

Стандартными единицами измерения транзистора для электрических измерений являются Ампер (А), Вольт (В) и Ом (Ом) соответственно.

5). Транзистор работает на переменном или постоянном токе?

Транзистор — это переменный резистор, который может работать как с переменным, так и с постоянным током, но не может преобразовывать переменный ток в постоянный или постоянный в переменный.

Транзистор — базовый компонент цифровой системы, они бывают двух типов в зависимости от их структуры и функциональности.Транзистор, который используется для управления большим напряжением и током, представляет собой силовой BJT (биполярный транзистор), являющийся силовым транзистором. Он также известен как устройство управления током-напряжением, которое работает в 4-х областях: отсечка, активная, квазинасыщение и жесткое насыщение в зависимости от источников питания, подаваемых на транзистор. Основным преимуществом силового транзистора является то, что он действует как устройство регулирования тока.

Характеристики транзистора — Big Chemical Encyclopedia

Полевые транзисторы (FET), 19 155 22 144, 162-166.См. Также Характеристики транзисторов, 22 164–166 в логических схемах КМОП, 22 251–253 составных полупроводников в, 22 160, 161–162 … [Pg.356]

Специально разработанный транзистор был использован для исследования влияния примеси в PIQ на характеристики транзисторов. Электроды этого транзистора не закрывают полностью контактные отверстия эмиттера и базы. Эта структура очень чувствительна к загрязнениям. [Стр.126]

Синтез PIQ высокой чистоты. PIQ не должен ухудшать характеристики устройства.Влияние применения PIQ на характеристики транзистора оценивалось с помощью теста npn … [Pg.130]

В большинстве случаев, однако, полевой транзистор насыщается и большую часть цикла зарядки ЖК-дисплея работает как ток. -ограничивающее устройство. В этом случае характеристики транзистора больше не могут определяться минимальным сопротивлением во включенном состоянии. Скорее теперь нам нужно указать минимальный ток сток-исток / SD. V (t) зависит от / SD как … [Pg.124]

Транзисторы на основе a-Si H не подчиняются уравнению Боркана-Веймера (Borkan and Weimer, 1963), поскольку характеристики a-Si H транзисторы зависят от плотности состояний в зазоре.Для экспоненциальной плотности распределения состояний хвоста соответствующие теории были сформулированы еще в 1975 году (Neudeck and Malhotra, 1975, 1976), которые впоследствии получили дальнейшее развитие (Kishida et al., 1983). Если плотность состояний изменяется неэкспоненциальным образом, необходимо использовать численные методы для получения характеристик транзистора. Обратная задача — вывод плотности состояний из измерений полевого эффекта — обсуждается в главе 2 Коэном в томе 21С. [Pg.125]

В результате захвата характеристики транзистора зависят от времени и сильно отличаются при измерении под постоянным током (рис.9) или в импульсном (рис.10) режимах. Обратите внимание, что в последнем случае стробируемый транзистор GD Si3N4 переключает ток более 30 мкА, и его характеристики становятся сопоставимыми с транзисторами, описанными в предыдущей главе. Как обсуждается ниже, ограниченное количество треппинга, если оно не накапливается, допустимо и даже полезно в дисплеях TFT. [Стр.132]

Рашми В.Р. Балакришнан, А. Капур, В. Кумар, С.К. Джайн, Р. Мертенс, С. Ан-напорни, Влияние поля зависимой занятости ловушки на характеристики органических тонкопленочных транзисторов, J.Appl. Phys. 94 (2003) 5302-5306. [Pg.165]

Tsujimura, T. (2004). Характеристики аморфного / микрокристаллического кремниевого тонкопленочного транзистора для вождения больших OLED-телевизоров, fpn. J. Appl. Phys., VoL 43, 5122-5128, ISSN 0021A922 … [Pg.177]

В этом разделе будут показаны характеристики транзисторов, использующих различные диэлектрики затвора. Для интерпретации результатов сначала вводится способ определения характеристик транзистора. [Pg.376]

Все электрические измерения для электретных пленок были выполнены группой Хиллингмана в Падербоме.Темный экранированный металлический ящик с использованием полупроводникового анализатора параметров HP 4156A определил характеристики транзистора. Влияние границы раздела между верхними контактами Au и пленкой ПК измерялось пикоамперметром Keithley как в темноте, так и при освещении. [Pg.405]

Конечно, эти уравнения не учитывают подвижность, зависящую от поля и плотности носителей заряда, что приведет к небольшим отклонениям в характеристиках транзистора. Похожая модель, расширенная за счет подвижности, зависящей от поля, была представлена ​​Smits et al.[4]. Кроме того, подпороговое поведение транзистора не представлено. Тем не менее расширенные уравнения Шокли весьма полезны для качественной интерпретации полученных экспериментальных результатов. [Pg.515]

В этой главе мы исследуем и обсуждаем термические, оптические и электрические свойства производных олиготиофена с помощью дифференциальной сканирующей калориметрии (ДСК), термогравиметрического анализа (ТГА) и УФ-видимой спектроскопии. Тонкие пленки этих соединений, полученные методами литья из раствора и вакуумного осаждения, характеризуются измерениями AFM в контактном и бесконтактном режиме, а также дифракцией рентгеновских лучей.Наконец, построен ультратонкий OFET и определены характеристики транзистора. [Pg.680]

Металлическая платина (Pt) не используется в современных микроэлектронных КМОП-приложениях. Платина как примесь в кремнии имеет электронные состояния, расположенные близко к середине запрещенной зоны. Он демонстрирует высокий коэффициент диффузии и большие сечения захвата неосновных носителей. Таким образом, присутствие платины может серьезно изменить характеристики КМОП-транзистора и недопустимо внутри фабрики кремниевой микроэлектроники.[Стр.155]

Оценка чувствительных свойств была достигнута путем измерения переходных характеристик Ids-Vg в N2 и в потоке насыщенных паров 1-бутанола. Типичный пример представлен на рисунке 6а. На рисунках 6b и 6c показаны стандартные характеристики транзистора, измеренные при воздействии на устройство N2 или 1-бутанола (11250 частей на миллион). [Стр.205]

Антрацен (la) (рис. 3.1.2) — наименьший член ряда аценов с заявленными характеристиками транзисторов. Монокристаллические OFET показали подвижность… [Pg.162]

Хотя самый длинный коммерчески доступный олигоацен, пентацен, также демонстрирует наивысшие характеристики OTFT, сообщалось об очень небольшом количестве более длинных аценов или их производных. Недавно были синтезированы силилэтинилированные производные гексацена и гептацена (рис. 3.1.3), но об их транзисторных характеристиках не сообщалось. [78] … [Pg.165]

Как и в случае с пентаценами, силилэтинилированные производные антрадитиофена (9e-9g) (рис. 3.1.4) с заместителями в центральном ароматическом кольце.[92] OTFT, изготовленные из триметил (9e) и триизопропил (9g) производных, показали пренебрежимо малые характеристики транзистора, в то время как OTFT с триэтильным производным (9f), нанесенным из раствора, дали подвижность 1,0 см V-s «с отношением включения / выключения 10. Превосходные характеристики 9f были приписаны усиленному перекрытию Jt-орбиталей, наблюдаемому в его кристаллической тонкопленочной структуре. [Pg.168]

Янг, С.Ю., Шин, К., и Парк, К.Э., Эффект затворного диэлектрика. Поверхностная энергия на морфологию пентацена и характеристики органических полевых транзисторов, Adv Func.Mat, 15, 1806, 2005. [Pg.369]

Однако основная проблема метода с использованием предшественника пентацена заключается в том, что остаточное количество аддукта Дильса-Альдера остается в пленке и ограничивает подвижность носителя в конечной пленке пентацена. [54]. Чтобы ограничить эту проблему, недавно появились предшественники пентацена с меньшими или более легко удаляемыми аддуктами Дильса-Альдера, но характеристики полевых транзисторов этих новых производных еще не опубликованы (рис. 5.3.9c) [55,56]. [Pg.410]

Обычно нестабильность напряжения смещения относится к долгосрочным изменениям характеристик транзистора, которые не достигают насыщения, а продолжаются без ограничений, пока устройство не станет бесполезным.Гистерезис относится к кратковременным обратимым сдвигам характеристик, которые приводят к зацикливанию измеренных характеристик, в зависимости от направления, в котором изменяются напряжения смещения. Нет четкого различия между нестабильностью напряжения смещения и гистерезисом, и они могут возникать по одним и тем же или аналогичным физическим причинам. [Pg.561]

РИСУНОК 6.4.6 Гистерезис приводит к зацикливанию характеристик транзистора, как видно из передаточных характеристик линейной области этого OTFT, сделанного с использованием пентацена на термическом SiO2.Ток стока показан в линейном масштабе (левая вертикальная ось) и логарифмическом масштабе (правая вертикальная ось). [Pg.562]

Рис. 4. (a) Внешняя крутизна g как функция симметричных контактных сопротивлений, (b) уменьшение тока возбуждения в зависимости от контактного сопротивления, (c) идеальная характеристика транзистора по сравнению с (d), где предполагается контактное сопротивление 50 кОм. Кружки на (а) и (б) обозначают соответствующие значения для случая Rs = Rd = 50 кОм.[Pg.530]


Схема общей базы транзистора и характеристики »Примечания по электронике

Общая конфигурация базового усилителя широко не используется, за исключением высокочастотных усилителей, где она имеет некоторые явные преимущества.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов
Конфигурации схемы
Общий эмиттер
Общая схема эмиттера
Эмиттер-повторитель
Общая база

См. Также:
Типы транзисторных схем


Усилитель с общей базой — наименее широко используемый из трех конфигураций транзисторных усилителей.Конфигурации с общим эмиттером и общим коллектором (эмиттерным повторителем) используются гораздо более широко, потому что их характеристики обычно более полезны.

Конфигурация усилителя с общей базой проявляет себя на высоких частотах, где стабильность может быть проблемой.

Обладая низким уровнем входного и выходного импеданса, он также подходит для ряда приложений проектирования ВЧ-схем, где используются уровни импеданса 50 Ом.

Основы транзисторного усилителя с общей базой

Тип конфигурации усилителя с общей базой несколько отличается от конфигурации других конфигураций электронных схем.Обычно входной сигнал подается на базу, но в случае с общей базой это соединение заземлено, и на самом деле его иногда называют схемой заземленной базы.

Конфигурация

схемы общей базы транзистора Как для схем NPN, так и для схем PNP, можно видеть, что для схемы усилителя с общей базой вход подается на эмиттер, а выход снимается с коллектора. Общая клемма для обеих цепей является базой. База заземлена для сигнала, хотя по причинам смещения потенциал постоянного тока будет выше уровня земли.

Конфигурация усилителя с общей базой не используется так широко, как конфигурации транзисторных усилителей. Однако он находит применение в усилителях, которым требуются низкие уровни входного сопротивления. Одно из применений — предусилители микрофонов с подвижной катушкой — эти микрофоны имеют очень низкие уровни импеданса.

Другое применение — разработка схем ВЧ в усилителях УКВ и УВЧ ВЧ, где низкий входной импеданс позволяет точно согласовать импеданс фидера, который обычно составляет 50 Ом или 75 Ом.Конфигурация также улучшает стабильность в результате заземления основания. Поскольку базой является электрод, который находится между эмиттером и коллектором, тот факт, что он заземлен для радиочастотных сигналов, снижает уровень нежелательной ложной обратной связи в конструкции схемы.

Стоит отметить, что коэффициент усиления по току усилителя с общей базой всегда меньше единицы.

Однако коэффициент усиления по напряжению больше, но это функция входного и выходного сопротивлений (а также внутреннего сопротивления перехода эмиттер-база).В результате коэффициент усиления по напряжению усилителя с общей базой может быть очень высоким.

Обзор характеристик транзисторного усилителя с общей базой

В таблице ниже приведены основные характеристики транзисторного усилителя с общей базой.

Общие характеристики
Параметр Характеристики
Коэффициент усиления по напряжению Высокая
Коэффициент усиления по току Низкий
Прирост мощности Низкий
Соотношение фаз вход / выход 0 и град.
Входное сопротивление Низкий
Выходное сопротивление Высокая

Схема с общей базой не находит многих применений для низкочастотных цепей — обычно желательны высокий входной импеданс и низкий выходной импеданс.Однако он находит применение в некоторых усилителях высокой частоты, например, в УКВ и УВЧ. В конфигурации с общей базой входная емкость не страдает от эффекта Миллера, который ухудшает пропускную способность конфигурации с общим эмиттером. Также существует относительно высокая изоляция между входом и выходом, а это означает, что обратная связь между выходом и входом незначительна, что приводит к высокой стабильности.

Как работает схема с общей базой

Что касается потока сигналов, схема общей базы значительно отличается от схемы с общим эмиттером или общим коллекторно-эмиттерным повторителем.

Поскольку в двух других схемах базовый электрод используется в качестве входной точки схемы, то же самое не может быть верно для конструкции общей базовой схемы, поскольку она заземлена.

Конструкция / конфигурация электронной схемы транзистора с общей базой
В этой схеме используется транзистор NPN, но конфигурация в равной степени применима к транзисторам PNP, но с обратной полярностью батареи.

Схема усилителя на транзисторах с общей базой

На схеме ниже показано, как можно реализовать схему обычного базового усилителя.На нем показана очень стандартная конфигурация конструкции электронной схемы для смещения, а также приложение сигналов к схеме.

Те же ограничения смещения применяются к общей цепи базы, но сигналы применяются по-разному, что позволяет заземлить базу и, следовательно, использовать ее как для входных, так и для выходных цепей.

Конструкция схемы транзисторного усилителя с общей базой

В этой типичной конструкции электронной схемы для транзисторного усилителя с общей базой условия смещения очень похожи на те, которые используются для смещения других форм конфигурации, таких как общий эмиттер

С точки зрения конструкции электронной схемы, резисторы R 1 и R 2 образуют делитель потенциала, который устанавливает точку смещения для базы.Эмиттер транзистора будет на 0,6 В ниже этого значения, если используется кремниевый транзистор.

Эмиттерный резистор R 4 определяет ток, протекающий через эмиттерный резистор. Поскольку через коллектор будет протекать практически такой же ток, необходимо следить за тем, чтобы резистор R 3 был выбран так, чтобы сигнал не вызывал каких-либо ограничений.

Конденсаторы C 1 и C 2 обеспечивают связь по переменному току для цепи, и значения следует выбирать так, чтобы их полное сопротивление было низким на рабочих частотах.

Для приложений проектирования ВЧ-схем на значения R 3 и R 4 , вероятно, будет влиять полное сопротивление, необходимое для системы. Если для этих резисторов выбраны низкие значения, это повлияет на ток, который должен протекать в цепи.

Хотя схема транзистора с общей базой не так широко используется, как схемы с общим эмиттером или общим коллекторно-эмиттерным повторителем, тем не менее, она имеет свое место в библиотеке проектирования электронных схем.Он уникально имеет низкое входное и выходное сопротивление и способен обеспечить улучшенную стабильность на высоких частотах в результате заземления базы.

По количеству используемых электронных компонентов он очень похож на другие конфигурации основных схем.

Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем

Вернуться в меню «Конструкция схемы».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *