Как работает импульсный источник питания — Moy-Instrument.Ru
Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…
Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:
встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;
или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.
В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:
1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;
2. импульсных блоках питания.
Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.
Трансформаторные блоки питания
Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.
После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.
За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.
Импульсные блоки питания (ИБП)
Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:
доступностью комплектования распространенной элементной базой;
надежностью в исполнении;
возможностями расширения рабочего диапазона выходных напряжений.
Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.
В состав основных деталей источников питания входят:
сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;
накопительная фильтрующая емкость;
ключевой силовой транзистор;
схема обратной связи, выполненная на транзисторах;
импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;
выпрямительные диоды выходной схемы;
цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;
силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;
Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.
Как работает импульсный блок питания
Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.
Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.
Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:
1. с гальваническим отделением сети питания от выходных цепей;
2. без выполнения подобной развязки.
Импульсный блок питания с гальванической развязкой
В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.
Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.
В таких устройствах работают три взаимосвязанных цепочки:
2. каскад из силовых ключей;
3. импульсный трансформатор.
Как работает ШИМ-контроллер
Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.
Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.
Типовые изменения ШИП-последовательностей показаны на графике.
Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.
В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.
Работа каскада из силовых ключей
Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.
Силовые ключи могут быть включены по различным схемам:
со средней точкой.
Импульсный трансформатор
Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.
Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.
Импульсные блоки питания без гальванической развязки
В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.
Особенности стабилизации выходного напряжения
Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.
Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:
1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;
2. применения оптрона.
В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.
При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.
Преимущества импульсных блоков питания над обычными аналоговыми
При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:
1. уменьшенный вес;
2. повышенный КПД;
3. меньшая стоимость;
4. расширенный диапазон питающих напряжений;
5. наличие встроенных защит.
1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.
За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.
2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.
В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.
3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.
4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.
5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.
У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:
маломощных цепей управления сложной бытовой техники;
слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).
Недостатки импульсных блоков питания
В/ч помехи
Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.
В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.
Ограничения по мощности
Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.
Импульсные источники питания — общие принципы, преимущества и недостатки
Сегодня уже трудно в каком-нибудь бытовом приборе или блоке питания обнаружить трансформатор на железе. В 90-е годы они начали быстро уходить в прошлое, уступая место импульсным преобразователям или импульсным источникам питания (сокращенно ИИП).
Импульсные источники питания превосходят трансформаторные по габаритам, качеству получаемого постоянного напряжения, они имеют широкие возможности регулировки выходного напряжения и тока, а также традиционно оснащены защитой от перегрузки по выходному току. И хотя считается, что импульсные блоки питания являются основными поставщиками помех в бытовую сеть, тем не менее широкое их распространение вспять уже точно не повернуть.
Трансформаторный источник питания:
Импульсный источник питания:
Своей повсеместной распространенностью импульсные блоки питания обязаны полупроводниковым ключам — полевым транзисторам и диодам Шоттки. Именно полевой транзистор, работающий совместно с дросселем или трансформатором, является сердцем любого современного импульсного источника питания: в инверторах, сварочных аппаратах, источниках бесперебойного питания, во встроенных блоках питания телевизоров, мониторов и т. д. — нынче практически везде используются только импульсные схемы преобразования напряжения.
Общий принцип функционирования импульсного преобразователя основан на законе электромагнитной индукции, и в этом он сходен с любым трансформатором. Разница лишь в том, что на обычный сетевой трансформатор переменное напряжение с частотой сети 50 Гц подается сразу на первичную обмотку и преобразуется непосредственно, (после чего, если нужно, выпрямляется) а в импульсном блоке питания сетевое напряжение сначала выпрямляется и превращается в постоянное, и уже после — преобразуется в импульсное, с тем чтобы далее быть повышенным либо пониженным при помощи специальной высокочастотной (по сравнению с сетевыми 50 герцами) схемы.
Схема импульсного источника питания включает в себя несколько главных составных частей: сетевой выпрямитель, ключ (или ключи), трансформатор (или дроссель), выходной выпрямитель, блок управления, а также блок стабилизации и защиты. Выпрямитель, ключ и трансформатор (дроссель) — основа силовой части схемы ИИП, в то время как электронные блоки (включая ШИМ-контроллер) относятся к так называемому драйверу.
Итак, сетевое напряжение подается через выпрямитель на конденсатор сетевого фильтра, где таким образом получается постоянное напряжение, максимум которого составляет от 305 до 340 вольт, в зависимости от текущего среднего значения напряжения в сети (от 215 до 240 вольт).
Выпрямленное напряжение подается на первичную обмотку трансформатора (дросселя) в форме импульсов, частота следования которых определяется обычно схемой управления ключом, а длительность — средним током питаемой нагрузки.
Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.
Различие между трансформатором и дросселем: в дросселе фазы накопления энергии от источника сердечником и отдачи энергии из сердечника через обмотку — в нагрузку, разделены во времени, а в трансформаторе это происходит одновременно.
Дроссель применяется в преобразователях без гальванической развязки топологий: повышающий — boost, понижающий — buck, а также в преобразователях с гальванической развязкой топологии обратноходовый — flyback. Трансформатор применяется в преобразователях с гальванической развязкой следующих топологий: мост — full-bridge, полумост — half-bridge, двухтактный — push-pull, прямоходовой — forward.
Ключ может быть одиночным (обратноходовый преобразователь, прямоходовый преобразователь, повышающий или понижающий преобразователь без гальванической развязки) или же силовая часть может включать в себя несколько ключей (полумост, мост, двухтактный).
Схема управления ключом (ключами) получает с выхода источника сигнал обратной связи по напряжению или по напряжению и току нагрузки, в соответствии с величиной этого сигнала автоматически осуществляется регулировка ширины (скважности) импульса, управляющего длительностью проводящего состояния ключа.
Выход источника устроен следующим образом. Со вторичной обмотки трансформатора или дросселя, либо с единственной обмотки дросселя (если речь идет о преобразователе без гальванической развязки), импульсное напряжение подается через диоды Шоттки двухполупериодного выпрямителя — на конденсатор фильтра.
Здесь же находится делитель напряжения с которого берется сигнал обратной связи по напряжению, а также может присутствовать датчик тока. К конденсатору фильтра, через дополнительный выходной НЧ-фильтр или напрямую, присоединяется нагрузка.
ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ
Блок питания — это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.
Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.
Типовая схема традиционного источника электропитания состоит из следующих элементов:
- силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
- конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
- стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.
Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.
Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.
Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.
Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.
КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ
Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:
- выпрямление входного напряжения;
- инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
- трансформация высокочастотных импульсов до требуемого уровня;
- выпрямление и фильтрация полученного напряжения.
Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).
Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.
Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.
Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии. Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.
Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET. Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.
Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами. Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.
Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.
Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:
- малые габариты и вес по сравнению с трансформаторными источниками питания;
- схемотехническая простота, обусловленная применением интегральных электронных компонентов;
- возможность работы в широком диапазоне изменения значений входного напряжения.
ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ
Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:
- все виды компьютерной техники;
- телевизионная и звуковоспроизводящая аппаратура;
- пылесосы, стиральные машины, кухонная техника;
- источники бесперебойного электроснабжения различного назначения;
- системы видеонаблюдения, комплексы охранной сигнализации.
Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.
Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.
Принцип работы импульсных блоков питания. Схема импульсного блока питания
Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.
Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.
Устройство блока питания
Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.
Работа современных блоков
Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.
При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.
Особенности лабораторных блоков
Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.
Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.
Как осуществлять ремонт устройств?
Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.
Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.
Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.
Сетевые блоки питания
Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.
Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.
Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.
Применение микросхем
Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.
Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.
Преимущества регулируемых блоков питания
Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.
Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.
Работа блоков на 12 вольт
Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.
Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.
Как работает блок для телевизора?
Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.
Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.
Модели устройств на 24 вольта
В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.
Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.
Боки питания на схеме DA1
Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.
Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.
Модели устройств с микросхемами DA2
Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.
Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.
Блоки с установленными микросхемами DA3
Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.
Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.
Как работает блок на диодах VD1?
Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.
Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.
Как работает импульсный блок питания
Многих радиолюбителей интересует, как работает и на каких механизмах базируется импульсный блок питания. Подробно рассмотрим на примере блока от двд плейера BBK DV811X. Данный блок был выбран потому, что все компоненты схемы здесь стоят свободно, понятно и не залиты клеем. Это очень поможет новичкам разобраться с принципом их работы. Для сравнения типичный блок питания от ноутбука. Сложно сразу понять, что здесь и где.
Для четкого разъяснения всех моментов построим принципиальную схему. Максимально просто расскажем о каждом элементе, зачем он тут стоит и какую функцию выполняет.
Купить импульсные источники питания в этом китайском магазине.
Рассмотрим общие принципы работы блоков питания.
Для начала линейный.
В нем сетевое напряжение подается на трансформатор, понижающий его после чего стоит выпрямитель, фильтр и стабилизатор. Трансформаторы в таких блоках обладают большими габаритами и чаще всего находят свое применение в лабораторных источниках питания и аудио усилителях.
Теперь импульсные блоки питания. 220 вольт выпрямляется, после чего постоянное напряжение преобразуется в импульсы с большей частотой, которые подаются на высокочастотный трансформатор. С выходных обмоток снимается напряжение и выпрямляется. Далее по
Как работает импульсный блок питания для чайников
Среди всех блоков питания можно выделить два основных типа:
- линейные;
- импульсные (инверторные) источники.
В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.
Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.
Основные отличия импульсных стабилизаторов.
Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.
При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов. Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.
Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
Импульсный блок питания состоит из следующих элементов:
- входной выпрямитель;
- блок конденсаторов;
- схема управления;
- выходные ключи;
- импульсный трансформатор;
- вторичные (выходные) стабилизаторы и фильтры.
За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.
Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.
На ШИМ – контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.
Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.
Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.
Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.
Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.
ОБЛАСТИ ПРИМЕНЕНИЯ
Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.
Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.
Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.
Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.
ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ
Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.
Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.
Наиболее часто неисправности импульсных блоков питания вызываются:
- выходом из строя диодов выпрямительного моста;
- электролитических конденсаторов сглаживающего фильтра;
- ключевых транзисторов.
Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.
Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.
Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.
Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов. Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.
Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.
Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.
Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.
При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.
Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.
© 2012-2019 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Давно прошли времена, когда блоки питания на различное оборудование были трансформаторными. Многие молодые люди даже и не знают, как они выглядели. На сегодняшний день очень широкое распространение получил импульсный источник питания (или ИБП), и это не удивительно. Меньшая стоимость, отсутствие посторонних шумов при работе, более компактный размер и в то же время меньшее потребление электроэнергии вследствие более высокого коэффициента полезного действия — все эти преимущества в сумме и решили судьбу трансформаторных блоков, конечно, не в их пользу.
А все-таки, что такое импульсный блок питания? И каким же образом разработчикам удалось добиться подобного результата? Сейчас попробуем найти ответ на этот вопрос, разобраться в достоинствах (а может быть и недостатках) импульсного источника питания, а также понять схему и принцип работы подобного устройства.
Как работает импульсный блок питания
Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.
Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.
Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:
- контроллер широтно-импульсного модулятора;
- транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
- импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.
При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.
Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.
Контроллер широтно-импульсной модуляции
Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.
Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.
Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.
Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц.
Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.
Транзисторный блок, или каскад силовых ключей
Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.
Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.
Импульсник, или блок без гальваники
Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.
Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.
Преимущества и недостатки ИБП
Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.
Основными и несомненными достоинствами импульсного блока питания являются:
- более легкий вес;
- высокий коэффициент полезного действия;
- низкая цена;
- широкий диапазон токов;
- присутствие защиты от различных факторов.
Ну а теперь остановимся на каждом из пунктов подробнее.
Преимущества
- Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
- Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
- Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
- Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
- На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).
Недостатки
Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.
А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.
Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.
Подведем итог
Очень хотелось объяснить, что означает импульсный блок питания для чайников, но вопрос этот сложен, а потому получилось ближе к научному пояснению. Если обобщить изложенную информацию, то импульсные блоки питания действительно стали прорывом в своей области электроники. По сравнению с трансформаторными блоками, такие ИБП намного экономичнее, производительнее, меньше и легче. И что самое интересное — при всех своих преимуществах они еще и дешевле аналоговых.
Конечно, технологии не стоят на месте, прогрессируя с каждым годом. Возможно, что скоро появятся еще более высокотехнологичные зарядные устройства или блоки питания. Но на сегодняшний день ИБП являются верхом инженерной мысли, а потому они стоят нашего внимания.
Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.
Что это такое?
Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.
Принцип работы импульсного блока питания
В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.
Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.
Разновидности блоков питания
Применение нашли несколько типов инверторов, которые отличаются схемой построения:
Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.
Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.
Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.
Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.
Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.
На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.
Схема БП
В схему самой распространенной конфигурации импульсного преобразователя входят:
- сетевой помехоподавляющий фильтр;
- выпрямитель;
- сглаживающий фильтр;
- широтно-импульсный преобразователь;
- ключевые транзисторы;
- выходной высокочастотный трансформатор;
- выходные выпрямители;
- выходные индивидуальные и групповые фильтры.
Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.
Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.
В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.
ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:
- генерация высокочастотных импульсов;
- контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
- контроль и защита от перегрузок.
Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.
Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.
Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:
- высокая рабочая частота;
- сниженная емкость p-n перехода;
- малое падение напряжения.
Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.
Сфера применения импульсного блока питания
Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.
В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.
Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.
Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.
Как сделать импульсный блок питания своими руками
Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.
При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.
Устройство импульсных блоков питания, APFC
Некоторое время назад мне задавали вопрос по поводу корректора коэффициента мощности импульсных блоков питания, попробую кратко рассказать что это такое и зачем надо.
Так уж сложилось, что в обычной жизненной ситуации вы скорее всего встретите корректор коэффициента мощности (ККМ) в блоке питания компьютера.
Нет, конечно они встречаются и в других блоках питания, даже чаще, чем в компьютерных. Но обычно это промышленные блоки питания и в быту попадаются крайне редко.
Думаю что большинство читателей моего блога и зрителей моего канала, как минимум немного ориентируются в радиоэлектронике, потому скорее всего видели компьютерный блок питания «изнутри».
Блок питания с активным корректором выглядит на первый взгляд почти также как и обычный.
Но если посмотреть внимательнее, то на «горячей» стороне можно заметить большой дроссель. Его магнитопровод может иметь разную форму, но чаще всего попадаются с кольцевыми, как и вариант на фото.
Кроме того подобные блоки питания отличаются еще и тем, что обычно в них установлен один фильтрующий конденсатор на 450-500 Вольт, а не два по 200-250. Обусловлено это тем, что часто такие блоки питания имеют широкий диапазон входного напряжения от 100-115 Вольт и переключение входного напряжения им не нужно.
Не стоит путать дроссель АККМ (активный корректор коэффициента мощности) с выходным дросселем групповой стабилизации, хотя внешне они весьма похожи. Отличие в том, что обычно дроссель корректора имеет только одну обмотку, а ДГС (дроссель групповой стабилизации), несколько.
Вообще корректор может быть не только активным, а и пассивным. В этом случае вы увидите на верхней крышке блока питания «железный» дроссель с парой проводов, внешне похожий на 50Гц трансформатор мощностью 10-20 Ватт.
Такой вариант также жизнеспособен, но заменить полноценный активный корректор он не может.
Теперь не много о том, зачем это вообще все надо. Думаю вы знаете, что ток в сети имеет форму синусоиды, действующее напряжение 220-230 Вольт (у нас), амплитудное — 310-320 Вольт. Не буду сейчас рассказывать чем отличается действующее от амплитудного, сделаю это в другой раз, но кто еще не видел, синусоида выглядит так, как показано на этом рисунке.
Дальше переменный ток выпрямляется и фильтруется конденсаторами. Чаще всего применяется такая схема, представляющая из себя диодный мост и пару (иногда один) конденсаторов.
Конечно там есть еще входной фильтр, предохранитель, но в данном случае они нас не касаются.
При нормальной напряжение на конденсаторах будет примерно 280-320 Вольт в зависимости от их емкости и мощности нагрузки, я об этом уже рассказывал в своем видео посвященному устройству блоков питания.
Но так как напряжение в сети по сути 100 раз в секунду меняется от нуля до 320 Вольт и опять до нуля, а в цепи есть диодный мост, то ток заряда конденсаторов фильтра течет не всегда, а только когда амплитудное напряжение превысит напряжение на конденсаторах.
При этом ток в цепи 220-230 Вольт будет выглядеть как показано вверху этой картинки. Получается, что блок питания потребляет энергию не постоянно, а только на пиках синусоиды. Если предположить, что БП потребляет в итоге энергию всего 20% времени, то ток в момент когда идет заряд конденсаторов, будет в 5 раз больше среднего тока потребления. Например ток 1 Ампер, мощность 220 Ватт, значит пики тока будут доходить до 5 Ампер.
Проблема эта вылезла «в полный рост» тогда, когда количество импульсных блоков питания превысило некую «критическую массу». В итоге было придумано довольно простое и эффективное решение. Кстати, в развитых странах все мощные блоки питания должны иметь корректор коэффициента мощности, но так как это недешево, то производители недорогих блоков питания на этом экономят в первую очередь.
Как я сказал, решение проблемы простое и по сути лежит на поверхности. А базой для этого решения является обычный степ-ап преобразователь напряжения. На схеме виден дроссель, транзистор, диод, ШИМ контроллер и конденсатор.
При открывании транзистора в дросселе накапливается энергия, которая при закрытии транзистора суммируется с входным напряжением и поступает в нагрузку, подзаряжая выходной конденсатор. Такая схема часто используется в повербанках для получения 5 Вольт из 3.7.
Но если скрестить обычный блок питания и эту схему, то мы получим активный корректор коэффициента мощности.
При этом важно то, что фильтрующий конденсатор после диодного моста не ставится, его роль выполняет конденсатор небольшой емкости, обычно 0.47-1.0мкФ, он нужен только для компенсации импульсного характера потребления корректора.
В итоге преобразователь пытается «высосать» из сети все что можно в диапазоне уже не 220-230 Вольт, а 40-80. Кстати, мощные блоки питания далеко не всегда могут работать в широком диапазоне, хотя и могут при этом содержать в своем составе АККМ. Просто в таких режимах корректору приходится тяжело и работу в широком диапазоне они не обеспечивают, хотя и продолжают корректно работать.
Здесь я попробовал наглядно показать разницу в работе обычного БП и БП с корректором.
Красным выделен вариант работы обычного блока питания, заштрихованная часть отображает зону, где есть потребление тока. Видно что зона довольно узкая, соответственно ток будет большим. Причем чем больше емкость конденсаторов фильтра, тем уже будет эта зона и тем ниже будет коэффициент мощности.
Синим и зеленым я показал пару вариантов работы активного корректора, один начинает работу примерно от 100 Вольт амплитудной составляющей, второй примерно от 50 Вольт. Видно что зона стала шире, соответственно ток пропорционально падает и растет коэффициент мощности.
В общем-то данная зона может начинаться почти от нуля, тогда коэффициент будет равен единице, но обычно он составляет 0.98-1, этого более чем достаточно.
Чем же чреват этот пресловутый коэффициент мощности.
Из-за пиков тока происходит кратковременная перегрузка сети, в следствие чего могут начаться проблемы в старых и изношенных сетях. Возможно отгорание нулевого провода в трехфазных сетях с совсем печальными последствиями.
А вот схема входной части компьютерного блока питания имеющего в своем составе активный корректор мощности, он выделен синим цветом.
Не удивляйтесь что на схеме нет ШИМ контроллера, который им управляет, часто он расположен на отдельной плате, а иногда интегрирован в общий ШИМ контроллер. Т.е. помимо одного-двух штатных каналов имеется еще и выход для управления транзистором корректора. Такой вариант удобен для производителя, но далеко не всегда удобен для ремонтника. В самом начале я показал фото блока питания, там как раз вышел из строя узел корректора, а так как микросхема управляет всем, то выгорела и она. Найти замену я не смог, потому Бп лежит мертвым грузом и возможно будет разобран на запчасти, тем более что они весьма неплохого качества.
Что же дает нам корректор, сначала преимущества:
1. Характер потребления почти такой же как у активной нагрузки, соответственно нет пиковых перегрузок.
2. Часто такие БП имеют расширенный диапазон входного напряжения и лучше работают в плохих электросетях.
3. Емкость фильтрующего конденсатора нужна меньше, так как паузы без тока меньше.
4. Инвертору блока питания легче работать, ведь по сути он питается стабилизированным напряжением.
Теперь недостатки.
1. Выше цена.
2. Меньше надежность
3. Могут быть сложности при работе с некоторыми моделями UPS.
Иногда идут споры, по поводу КПД таких блоков питания. Я придерживаюсь мнения, что КПД одинаков, так как хоть корректор и имеет собственное потребление, но основному инвертору работать легче, потому то на ото и выходит.
Ну и конечно же видео, в качестве дополнения. А я как всегда жду ваших вопросов как в комментариях здесь, так и под видео.
импульсные блоки питания схемы
От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует. Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности 3Ч.
Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания. Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.
Рис. 1
Рис. 2
Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.
Рис. 1
Емкость конденсатора С2 выбирается из расчета 1… 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150…220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4…6 А, например RS407 или RS607. При емкости конденсаторов 470… 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично — гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами. В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В — сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения. Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скинэффект — потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках. Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток — неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя. Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500…600 Вт при частоте преобразования 50…70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20…50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120… 150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.
Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт. На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения. В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2…0,3 мм. При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя. Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.
Об остальных деталях: конденсатор С5 — пленочный на 0,33… 1 мкФ 400В; конденсаторы С9, С10 — пленочные на 0,47…2,2 мкФ минимум на 250В; индуктивности L1…L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8… 1,0 мм до заполнения виток к витку в один слой; С14, С15 — пленочные на 0,33…2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.
Что такое импульсный источник питания SMPS »Примечания по электронике
Импульсные источники питания, SMPS обеспечивают повышенную эффективность и экономию места по сравнению с традиционными линейными источниками питания, но необходимо следить за тем, чтобы шум на выходе был низким.
Схемы источников питания SMPS Праймер и руководство Включает:
Импульсный источник питания
Как работает SMPS
Понижающий понижающий преобразователь
Повышающий повышающий преобразователь
Конвертер Buck Boost
См. Также:
Обзор электроники блока питания
Линейный источник питания
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания
Импульсные источники питания широко используются из-за преимуществ, которые они предлагают с точки зрения размера, веса, стоимости, эффективности и общей производительности.
Благодаря своим характеристикам импульсные источники питания используются практически во всех областях, кроме самых требовательных, чтобы обеспечить эффективный и действенный источник питания для большинства электронных систем.
Импульсные источники питания
стали общепринятой частью электронной сцены и часто называются импульсными преобразователями мощности или просто переключателями.
Терминология импульсного источника питания
Импульсный источник питания, SMPS, технология может быть обозначена рядом схожих терминов.Хотя все они рассматривают одну и ту же базовую технологию, они относятся к разным элементам общей технологии:
- Импульсный источник питания, SMPS: Термин импульсный источник питания обычно используется для обозначения элемента, который может быть подключен к сети или другому внешнему источнику и используется для выработки источника питания. Другими словами, это полноценный блок питания.
- Регулятор режима переключения: Обычно это относится только к электронной схеме, которая обеспечивает регулирование.Регулятор режима переключения будет частью общего источника питания режима переключения.
- Контроллер импульсного регулятора: Многие интегральные схемы импульсного регулятора не содержат последовательного переключающего элемента. Это будет верно, если уровни тока или напряжения высоки, потому что внешний последовательный переключающий элемент сможет лучше справляться с более высокими уровнями тока и напряжения, а также с результирующей рассеиваемой мощностью.
Основы импульсного источника питания
Основная концепция импульсного источника питания или SMPS заключается в том, что регулирование осуществляется с помощью импульсного регулятора.Здесь используется последовательный переключающий элемент, который выключает подачу тока на сглаживающий конденсатор.
Основная концепция импульсного источника питания
Время включения последовательного элемента контролируется напряжением на конденсаторе. Если оно выше требуемого, то переключающий элемент серии отключается, если ниже требуемого — включается. Таким образом, напряжение на сглаживающем или накопительном конденсаторе поддерживается на необходимом уровне.
Преимущества / недостатки импульсного источника питания
Использование любой технологии часто представляет собой тщательный баланс нескольких преимуществ и недостатков.Это справедливо для импульсных источников питания, которые имеют ряд явных преимуществ, но также имеют свои недостатки.
Преимущества SMPS
- Высокая эффективность: Переключающее действие означает, что элемент последовательного регулятора либо включен, либо выключен, и, следовательно, в виде тепла рассеивается мало энергии, что позволяет достичь очень высокого уровня эффективности.
- Компактный: Благодаря высокой эффективности и низкому уровню теплоотвода импульсные источники питания можно сделать более компактными.
- Стоимость: Одним из факторов, делающих импульсные блоки питания очень привлекательными, является их стоимость. Более высокий КПД и переключаемый характер конструкции означают, что количество тепла, которое необходимо уменьшить, ниже, чем у линейных источников, и это снижает затраты. При этом переключаемый характер питания означает, что многие компоненты имеют более низкую стоимость.
- Гибкая технология: Технология импульсного источника питания может использоваться для обеспечения высокоэффективного преобразования напряжения в приложениях с повышением или «повышением» напряжения или понижающих приложениях.
SMPS Недостатки
- Шум: Переходные всплески, возникающие при переключении в импульсных источниках питания, являются одной из самых больших проблем. Если выбросы не отфильтрованы должным образом, выбросы могут мигрировать во все области цепей, питаемых импульсными модулями питания. Кроме того, всплески или переходные процессы могут вызывать электромагнитные или радиочастотные помехи, которые могут влиять на другие расположенные поблизости элементы электронного оборудования, особенно если они принимают радиосигналы.
- Внешние компоненты: Хотя можно спроектировать импульсный регулятор с использованием одной интегральной схемы, обычно требуются внешние компоненты. Наиболее очевидным является резервуарный конденсатор, но необходимы и фильтрующие элементы. В некоторых конструкциях последовательный переключающий элемент может быть встроен в интегральную схему, но там, где потребляется любой ток, последовательный переключатель будет внешним компонентом. Все эти компоненты требуют места и увеличивают стоимость.
- Требуется экспертный дизайн: Часто можно собрать работающий импульсный источник питания. Обеспечить его соответствие требуемой спецификации может быть сложнее. Особенно сложно обеспечить поддержание уровней пульсации и помех.
- Фильтрация: Тщательное рассмотрение фильтрации для SMPS, потому что плохая конструкция может привести к высоким уровням шума и скачкам на выходе.
В целом, импульсные блоки питания идеально подходят для множества приложений, от компьютеров до зарядных устройств, от лабораторного оборудования до многих бытовых электронных устройств. Стоимость, размер и эффективность являются ключевыми факторами в обеспечении того, чтобы они стали основной технологией для очень многих приложений.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .
Импульсные источники питания с работающими типами
Схема источника питания играет важную роль в каждой электрической и электронной схеме, обеспечивая электроэнергией схему совы или нагрузки, такие как машины, компьютеры и т. Д. Эти различные нагрузки требуют разных форм энергии в различных диапазонах и характеристиках. Таким образом, мощность преобразуется в желаемую форму с помощью различных преобразователей мощности. В основном, разные нагрузки работают с различными типами источников питания, такими как SMPS (импульсный источник питания), источник питания переменного тока, источник питания переменного тока в постоянный, программируемый источник питания, источник питания высокого напряжения и источник бесперебойного питания.
Импульсный источник питания
Что такое импульсный источник питания?
SMPS определяется как импульсный источник питания, когда источник питания включен в импульсный регулятор, преобразовывающий электрическую мощность из одной формы в другую с необходимыми характеристиками. Этот источник питания используется для получения стабилизированного постоянного напряжения o / p от постоянного напряжения i / p или нерегулируемого переменного тока.
SMPS
SMPS представляет собой сложную схему, как и другие источники питания, она обеспечивает питание от источника к нагрузке.MPS имеет решающее значение для различных электрических и электронных устройств, потребляющих электроэнергию, а также для разработки электронных проектов.
Топологии SMPS
Топологии SMPS подразделяются на различные типы, такие как преобразователь переменного тока в постоянный, преобразователь постоянного тока в постоянный, прямой преобразователь и обратный преобразователь.
Принцип работы импульсного источника питания
Принцип работы импульсного источника питания описывается ниже.
DC-DC Converter SMPS Working
В этом источнике питания постоянное напряжение высокого напряжения поступает напрямую от источника постоянного тока.Затем эта высоковольтная мощность постоянного тока обычно переключается в диапазоне от 15 до 5 кГц. Затем он подается на понижающий трансформатор на 50 Гц. O / p этого трансформатора подается на выпрямитель, где эта выпрямленная мощность o / p используется в качестве источника для нагрузок, время включения генератора контролируется и формируется регулятор с обратной связью.
Преобразователь постоянного тока в постоянный SMPS
Импульсный источник питания o / p регулируется с помощью широтно-импульсной модуляции, показанной в приведенной выше схеме, переключатель приводится в действие генератором ШИМ, затем косвенно понижающий трансформатор управляется при подаче питания к трансформатору.Следовательно, o / p управляется широтно-импульсной модуляцией, поскольку это напряжение o / p и сигнал PWM обратно пропорциональны друг другу. Если рабочий цикл составляет 50%, то максимальная мощность передается через трансформатор, а если рабочий цикл падает, то мощность в трансформаторе также падает за счет уменьшения рассеиваемой мощности.
Преобразователь переменного тока в постоянный, работа ИИП
Этот тип ИИП имеет переменный ток i / p и преобразуется в постоянный ток с помощью выпрямителя и фильтра. Это нерегулируемое постоянное напряжение подается в цепи коррекции коэффициента мощности по мере воздействия.Это связано с тем, что около пиков напряжения выпрямитель потребляет короткие импульсы тока, обладающие значительной высокочастотной энергией, которая влияет на коэффициент мощности для снижения.
Преобразователь переменного тока в постоянный SMPS
Он почти связан с вышеупомянутым преобразователем, но вместо источника питания постоянного тока здесь мы использовали переменный ток i / p. Итак, смесь выпрямителя и фильтра, эта блок-схема используется для преобразования переменного тока в постоянный, а операция переключения выполняется с помощью усилителя на полевых МОП-транзисторах. MOSFET-транзистор потребляет низкое сопротивление в открытом состоянии и может выдерживать высокие токи.Частота переключения выбирается так, чтобы она была низкой для нормального человека (выше 20 кГц), а действие переключения контролируется обратной связью с использованием генератора ШИМ.
Опять же, это переменное напряжение подается на вывод трансформатора, показанного на приведенном выше рисунке, для повышения или понижения уровней напряжения. Затем выходное напряжение трансформатора выпрямляется и сглаживается с помощью фильтра прямого тока и выпрямителя. Напряжение o / p контролируется цепью обратной связи, сравнивая его с опорным напряжением.
Обратный преобразователь SMPS работает
Цепь SMPS с очень низкой выходной мощностью (менее 100 Вт) называется обратным преобразователем SMPS. Этот тип SMPS представляет собой очень низкую и простую схему по сравнению с другими схемами SMPS. Этот тип SMPS используется для приложений с низким энергопотреблением.
Обратный преобразователь типа SMPS
Нерегулируемое i / p-напряжение с постоянной величиной изменяется на предпочтительное o / p-напряжение за счет быстрого переключения с использованием полевого МОП-транзистора; частота переключения около 100 кГц.Изоляция напряжения может быть достигнута с помощью трансформатора. Работой переключателя можно управлять с помощью ШИМ при использовании практического обратного преобразователя.
Обратный трансформатор показывает отличные характеристики по сравнению с обычным трансформатором. Обратный трансформатор включает две обмотки, которые действуют как индуктор с магнитной связью. O / p этого трансформатора подается через конденсатор и диод для фильтрации и выпрямления. Как показано на рисунке выше, выходное напряжение SMPS можно принять как напряжение на конденсаторе фильтра.
Прямой преобразователь типа SMPS Рабочий
Этот тип SMPS почти такой же, как и обратный преобразователь типа SMPS. Но в этом типе ИИП к выходу вторичной обмотки трансформатора подключено управление для управления переключателем. По сравнению с обратным преобразователем схема фильтрации и выпрямления сложна.
Прямой преобразователь типа SMPS
Он также называется понижающим преобразователем постоянного тока в постоянный вместе с трансформатором, который используется для масштабирования и развязки.В дополнение к диоду «D1» и конденсатору «C», индуктивность L и диод D подключены на конце токоотвода. Если переключатель «S» включен, то I / P поступает на первичную обмотку трансформатора. Таким образом, на вторичной обмотке трансформатора создается масштабированное напряжение.
Следовательно, диод D1 смещается в прямом направлении, и масштабированное напряжение проходит через LPF, продолжая нагрузку. Когда переключатель S включен, токи через обмотку достигают нуля, однако ток через индуктивный фильтр и нагрузку не может быть изменен в ближайшее время, и диод выбегания D2 предлагает канал для этого тока.За счет использования катушки индуктивности фильтра устанавливается необходимое напряжение на диоде D2 и сохраняется электромагнитная сила, необходимая для поддержания стабильности тока на индуктивном фильтре. Несмотря на то, что ток падает относительно напряжения o / p, почти постоянное напряжение o / p поддерживается благодаря наличию большого емкостного фильтра. Он регулярно используется для различных коммутационных приложений с диапазоном мощности от 100 Вт до 200 Вт.
Это все о импульсном блоке питания и его типах, включая понижающий преобразователь, понижающий-повышающий преобразователь, самоколебательный обратный преобразователь, повышающий преобразователь, Cuk, Sepic, повышающий-понижающий преобразователь.Но в этой статье обсуждаются несколько типов SMPS, это преобразователь переменного тока в постоянный, преобразователь постоянного тока в постоянный, прямой и обратный преобразователи. Кроме того, любая информация о типах SMPS вы можете оставить свои отзывы, чтобы дать свои предложения, комментарии в разделе комментариев ниже.
ОСНОВЫ ИСТОЧНИКА ПИТАНИЯ — Wavelength Electronics
Теория нерегулируемых источников питания
Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки.Обычно это блочные зарядные устройства, которые преобразуют переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Это самые распространенные адаптеры питания, которых называют «настенными бородавками».
Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение будет уменьшаться по мере увеличения тока, подаваемого на нагрузку.
В случае нерегулируемого источника питания постоянного тока выходное напряжение зависит от размера нагрузки.Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.
Рисунок 4: Блок-схема — нерегулируемая линейная подача
Преимущества нерегулируемых источников питания в том, что они долговечны и могут стоить недорого. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.
ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.
Теория регулируемых источников питания
Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.
Рисунок 5: Блок-схема — Регулируемая поставка
В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне.Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.
Линейный, переключаемый или аккумуляторный?
Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная — наименее сложная система, но переключаемое и батарейное питание имеет свои преимущества.
Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума.Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.
Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что для них требуются более крупные компоненты, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания.По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.
Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он отличается большей универсальностью по полярности и при правильной конструкции может иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.
Рисунок 6: Блок-схема — регулируемое импульсное питание
Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.
Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения и намного более эффективны, чем линейные источники питания. Однако ИИП имеет сложную схему, может загрязнять сеть переменного тока, более шумный и работает на высоких частотах, требующих уменьшения помех.
Аккумуляторный
Аккумуляторный источник питания — это третий тип источника питания, по сути,
Что такое источник питания? (с иллюстрациями)
Источник питания — это устройство, которое принимает входящий электрический ток и усиливает его до уровней, необходимых для различных устройств. Во многих случаях этот тип устройства также применяется для приема входящей электроэнергии и передачи ее на многие другие электронные устройства, часто на разных предварительно заданных уровнях. Это устройство позволяет производителям создавать электронику и оборудование, которые могут выполнять множество различных задач из одного источника питания без необходимости использования различных адаптеров и дополнительного оборудования.В других устройствах источник питания используется для преобразования различных типов энергии в совместимый формат для хранения, например солнечной энергии в электрическую.
Солнечные батареи — это разновидность источника питания.
Возможно, наиболее часто устройства этого типа используются в компьютерных системах.Когда электричество поступает в источник питания, оно на мгновение сохраняется, а затем распределяется по многочисленным функциям по всей системе, позволяя материнской плате, жесткому диску и другим различным устройствам получать электричество для работы. Для каждого из этих элементов требуется отдельное напряжение, которое подается через специальные разъемы, которые подключаются определенным образом. Например, материнские платы требуют 20-контактного или 24-контактного блока питания, и они не взаимозаменяемы без покупки дополнительного адаптера.
Современные автомобили и механические двигатели нуждаются в генераторах переменного тока.
Современные автомобили также требуют определенного типа источника питания для работы, и его называют генератором переменного тока.Хотя проводка и конструкция могут отличаться, по сути, они работают одинаково, принимая входящую мощность и доставляя ее по всему транспортному средству на необходимых уровнях. Генераторы можно найти везде, от газонокосилок до морских судов и промышленного оборудования, и без них устройства были бы бесполезны.
Чаще всего источники питания применяются в компьютерах.
Другой распространенный тип источника питания можно найти на ветряных мельницах и солнечных панелях, и его основная функция — преобразование различных типов энергии в электричество, чтобы ее можно было хранить и распределять по сети. Это называется генератором, и часто это отдельно стоящий объект, который устанавливается между источником энергии и накопителем. Домашние и коммерческие генераторы, используемые во время перебоев в подаче электроэнергии, также работают на этом же принципе, преобразуя нефтепродукты в электрическую энергию с помощью двигателя.Многие типы промышленных инструментов также используют генератор. Другие распространенные типы источников питания используются в автоматических выключателях, устройствах с батарейным питанием и трансформаторах.
Генераторы заряжают аккумулятор автомобиля и снабжают его электрическую систему энергией.Генератор автомобильного двигателя по сути служит электрическим генератором.
Что такое Интернет вещей и как он работает?
В настоящее время много шума об Интернете вещей (или IoT) и его влиянии на все, от того, как мы путешествуем и делаем покупки, до того, как производители отслеживают товарные запасы.Но что такое Интернет вещей? Как это работает? И действительно ли это так важно?
Что такое Интернет вещей?
Вкратце, Интернет вещей — это концепция подключения любого устройства (при условии, что оно имеет переключатель включения / выключения) к Интернету и другим подключенным устройствам. Интернет вещей — это гигантская сеть связанных вещей и людей, которые собирают и обмениваются данными о том, как они используются, и об окружающей среде.
Сюда входит огромное количество объектов всех форм и размеров — от интеллектуальных микроволн, которые автоматически готовят пищу в течение нужного периода времени, до беспилотных автомобилей, чьи сложные датчики обнаруживают объекты на их пути, до носимых устройств для фитнеса, которые Измерьте частоту сердечных сокращений и количество шагов, которые вы сделали за день, а затем используйте эту информацию, чтобы предложить планы упражнений, адаптированные для вас. Есть даже подключенные к сети футбольные мячи, которые могут отслеживать, как далеко и быстро они брошены, и записывать эту статистику через приложение для будущих тренировок.
Как это работает?
Устройства и объекты со встроенными датчиками подключены к платформе Интернета вещей, которая объединяет данные с разных устройств и применяет аналитику для обмена наиболее ценной информацией с приложениями, созданными для удовлетворения конкретных потребностей.
Эти мощные платформы Интернета вещей могут точно определить, какая информация полезна, а что можно игнорировать. Эта информация может использоваться для выявления закономерностей, рекомендаций и обнаружения возможных проблем до их возникновения.
Например, если у меня есть бизнес по производству автомобилей, мне может быть интересно узнать, какие дополнительные компоненты (например, кожаные сиденья или легкосплавные диски) являются наиболее популярными. Используя технологию Интернета вещей, я могу:
- Используйте датчики, чтобы определить, какие зоны в выставочном зале наиболее популярны и где клиенты задерживаются дольше всего;
- Изучите имеющиеся данные о продажах, чтобы определить, какие компоненты продаются быстрее всего;
- Автоматически согласовывайте данные о продажах с предложениями, чтобы популярные товары не заканчивались.
Информация, собираемая подключенными устройствами, позволяет мне принимать разумные решения о том, какие компоненты запасать, на основе информации в реальном времени, что помогает мне экономить время и деньги.
Понимание, обеспечиваемое расширенной аналитикой, позволяет сделать процессы более эффективными. Смарт-объекты и системы означают, что вы можете автоматизировать определенные задачи, особенно если они повторяются, рутинны, требуют много времени или даже опасны. Давайте рассмотрим несколько примеров, чтобы увидеть, как это выглядит в реальной жизни.
Сценарий № 1: Интернет вещей в вашем доме
Представьте, что вы каждый день просыпаетесь в 7 утра, чтобы пойти на работу. Ваш будильник отлично вас разбудит. То есть, пока что-то не пойдет не так. Ваш поезд отменили, и вам нужно ехать на работу. Единственная проблема в том, что ехать дольше, и вам нужно было вставать в 6.45, чтобы не опоздать. Ах да, идет дождь, так что тебе нужно ехать медленнее, чем обычно. Будильник, подключенный к Интернету или с поддержкой IoT, автоматически сбрасывается с учетом всех этих факторов, чтобы вы могли работать вовремя.Он может распознать, что ваш обычный поезд отменен, рассчитать расстояние и время в пути для вашего альтернативного маршрута на работу, проверить погоду и учесть более низкую скорость движения из-за сильного дождя, а также рассчитать, когда вам нужно разбудить вас, чтобы вы ‘ повторно не поздно. Если он супер-умный, то может даже синхронизироваться с кофеваркой с поддержкой Интернета вещей, чтобы ваш утренний кофеин был готов к употреблению, когда вы встанете.
Сценарий № 2: Интернет вещей на транспорте
Будучи разбуженным умным будильником, вы едете на работу.Загорается свет двигателя. Лучше не идти прямо в гараж, но что, если что-то срочно? В подключенном автомобиле датчик, который включил индикатор проверки двигателя, будет взаимодействовать с другими людьми в автомобиле. Компонент, называемый диагностической шиной, собирает данные с этих датчиков и передает их на шлюз в автомобиле, который отправляет наиболее важную информацию на платформу производителя. Производитель может использовать данные автомобиля, чтобы назначить встречу для ремонта детали, направить вам инструкции к ближайшему дилеру и убедиться, что заказана нужная запасная часть, чтобы она была готова для вас, когда вы появитесь.
Узнать больше
У нас есть множество примеров, демонстрирующих Интернет вещей в действии. Обратите внимание на Olli, беспилотный автомобиль, или Candy, когнитивный дозатор сладостей, который будет подавать сахар только тогда, когда вы вежливо попросите. Есть вопросы? Нам бы очень хотелось их услышать! Дайте нам знать в комментариях ниже.
В чем разница между линейными и импульсными источниками питания?
Номинальная температура окружающей среды относится к соотношению между номинальной мощностью, указанной на этикетке, рабочей температурой окружающей среды в приложении и фактической мощностью после требуемого снижения мощности, если это необходимо.Многие производители указывают номинальные характеристики блоков питания для температуры окружающей среды 40 ° C. Это означает, что номинальная мощность, указанная на паспортной табличке (т. Е. 60 Вт), применима только в том случае, если устройство эксплуатируется в среде с окружающей температурой не выше 40 ° C. Если агрегат эксплуатируется при температуре выше 40 ° C, мощность агрегата должна быть значительно снижена, при этом полное снижение номинальных характеристик обычно происходит при 50 ° C. В этом примере конструкция 60 Вт при 40 ° C будет переоценена на 30 Вт при температуре окружающей среды 45 ° C и неработоспособна при 50 ° C. Однако блоки питания Micron рассчитаны на работу при температуре до 60 ° C и имеют паспортную табличку.Конструкция Micron все еще может работать при температуре выше 60 ° C, но ее необходимо постепенно снижать по мере приближения к 70 ° C. Это важно в двух отношениях. Во-первых, технический специалист должен согласовать рабочую температуру окружающей среды с соответствующей конструкцией источника питания, чтобы избежать его перегрузки. Во-вторых, покупатель источника питания должен обращать внимание на различия в номинальных рабочих температурах, чтобы принять разумное решение о покупке, поскольку различия в производительности между конструкциями 40⁰ и 60⁰ значительны, следовательно, более низкая стоимость единицы для меньшей конструкции.
Также важно знать разницу между «рабочим диапазоном» и «рабочим диапазоном мощности». Многие производители указывают «рабочий диапазон» для своих источников питания от -20 до 70 ° C, хотя конструкция с 40 ° C не обеспечивает мощность выше 49 ° C. Если возникают какие-либо вопросы относительно пригодности конкретной конструкции источника питания в отношении ожидаемых рабочих температур окружающей среды, пользователь должен запросить график кривой зависимости температуры / мощности, который должен отображать точку и диапазон необходимого снижения мощности для устройства.
.