Большая Энциклопедия Нефти и Газа. Индукционный ток это направленное движение заряженных
Возникновение в проводнике ЭДС индукции Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции. ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями. Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током. Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией. Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую. Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин. Величина и направление ЭДС индукции Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС. Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле. Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле. Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле. Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения. Зависимость эта выражается формулой Е = Blv, где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника. Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля. Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки. Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике ЭДС индукции в катушке Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку. При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита. Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита. И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит. Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем. Закон Ленца для электромагнитной индукции Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется. Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока. Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока. Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля. 1.20. Электромагнитная индукция. Правило ЛенцаЯвление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.Магнитным потоком Φ через площадь S контура называют величину
Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца. Рис. 1.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам. 1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы. Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 1.20.3).
Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный Iинд = инд/R. За время Δt на сопротивлении R выделится джоулево тепло 2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
|
koledj.ru
Какие условия возникновения индукционного тока?..
Индукционный ток, значит наведённый! Можно вспомнить все классические опыты Фарадея! Условия? Переменное магнитное поле! конечно, свободные заряженые частицы и замкнутый контур
При этом возбуждение тока в проводнике происходит вследствие электрического взаимодействия свободных зарядов проводника и источника кулоновского поля в динамике их относительного перемещения без участия магнитной составляющей. Здесь направление возникающего тока в системе отсчета, тесно связанной с проводником, совпадает с направлением движения источника кулоновского тока. Соотношение (6) по форме аналогично уравнению для э. д. с. электромагнитной индукции, возникающей при ненулевом значении, где Ф – магнитный поток, пронизывающий поверхность, опирающуюся на контур проводника Ф =dS, где В – индукция магнитного поля. Однако, рассматриваемое явление по своей природе (механизм и правило определения направления тока) отлично от электромагнитной индукции, а подобие о необходимости относительного перемещения поля и проводника подтверждает, что экспериментально обнаруженное новое явление не противоречит, а углубляет и расширяет познание фундаментальных законов электродинамики, раскрывает ранее неизвестные объективно существующие закономерности, вносит коренные изменения в уровень познания законов природы. С нашей точки зрения, этот новый вид индукции тока в проводнике, имеющей электродинамическую природу, в отличие от индукции электромагнитной, целесообразно классифицировать как индукцию электродинамическую. Открытие принципиальным образом изменяет ранее известные представления в теории электричества об индукции токов. Исходя из проведенных экспериментальных и теоретических исследований можно констатировать, что индукционный ток (в определенных случаях – это ток проводимости) может возникать и без наличия замкнутой цепи, и без наличия привычных источников тока (гальванических элементов, аккумуляторов и т. п.) . В представленных экспериментах, как было показано, для возникновения индукционного тока существенно лишь относительное перемещение источника электрического поля и проводника. На созданной научной основе целесообразно провести теоретическую проработку нового раздела теории электричества, рассматривающего закономерности электродинамической индукции. В ходе проведения исследований были обнаружены и другие, ранее не известные, закономерности. Экспериментальным моделированием было выявлено инверсионное взаимодействие заряженных тел. Тела, заряженные одноименным зарядом могут не только отталкиваться, но и притягиваться. Было также обнаружено, что при определенных условиях, в результате относительного перемещения двух несоприкасающихся проводников, имеющих нескомпенсированные заряды, также возникает индукционный ток.
Наличие замкнутого проводящего контура и изменение магнитного потока сквозь этот контур.
touch.otvet.mail.ru
Что такое индукционный ток
Образование 29 ноября 2012Говоря о том, что же такое индукционный ток, нельзя не вспомнить эксперимент великого физика своего времени – Майкла Фарадея. Ведь отчасти именно благодаря его работам мы все сейчас можем пользоваться таким благом цивилизации, как электроэнергия. Тогда, в 19 веке, единственным источником электрической энергии являлись химические элементы (батареи). После опытов Фарадея миру стали доступны генераторы, что изменило всю дальнейшую историю.
До 1831 года физикам было известно о существовании электрического и магнитного полей. Считалось, что взаимодействие двух и более неподвижных зарядов (электронов или ионов) создает определенный вид напряженности – электрическое поле. А вот подвижные заряды взаимосвязаны с магнитными полями. Очевидно, что в то время существовали все предпосылки для открытий, и они не заставили себя долго ждать.
Электромагнитная индукция и индукционный ток был открыт в 1831 году практически одновременно двумя учеными-практиками – Фарадеем и Генри. Удивительно, но подобное встречается во всех областях электротехники (например, об «отце» радиосвязи споры идут до сих пор). Учитывая, что Фарадей первым опубликовал результаты экспериментов и свое толкование их, принято считать, что именно он является первооткрывателем явления под названием «индукционный ток».
Один из опытов позволил предположить существование некой силы (волна электричества, по определению ученого), которая создавала в проводнике электрический ток. С двух противоположных концов металлического стержня наматывались несколько витков провода. Выводы с одной стороны подключались к гальванометру, а к проводу другой стороны подводилось напряжение от батареи. В момент включения батареи гальванометр фиксировал кратковременное появление электрического тока. То же самое происходило при отключении источника. Было сделано предположение о появлении некой силы, поля, создающего ток.
Следующий опыт более известен: к выводам небольшой катушки от батареи подводилось напряжение, и по ее виткам протекал ток. Она вносилась в центральный промежуток большей катушки, к концам которой был подключен гальванометр. При извлечении и введении меньшей катушки прибор регистрировал появление направленного движения заряженных частиц. Явление было названо электромагнитной индукцией, а движение частиц получило название «индукционный ток».
Как оказалось, причиной его появления является магнитное (электромагнитное поле), линии напряженности которого пересекают проводник. Сила индукционного тока зависит от частоты этого пересечения. Причем не столь принципиально, пересекает ли проводник линии напряженности, вращается ли само поле или магнитное поле является изменяющимся (так, в первом опыте изменялась его интенсивность).
Направление индукционного тока в проводнике также неслучайно. Как известно, вокруг любого проводника, через который проходит электрический ток, присутствует магнитное поле со своими собственными линиями напряженности. Их ориентация зависит от направления движения тока.
Вот проводник вносится в магнитное поле, в нем при наличии замкнутой цепи индуцируется движение заряженных частиц. Исходя из свойств тока, вокруг проводника появляется свое магнитное поле. Причем его линии напряженности направлены таким образом, чтобы компенсировать возможное изменение основного поля, вызвавшего первоначальную генерацию индукционного тока.
Фактически, вторичное поле не «позволяет» первичному меняться. Если вспомнить атомарную структуру материальных предметов, включая металл проводника, то становится понятным физика этого явления: ядра ионов притягивают утраченные электроны, стремясь восстановить свое первоначальное состояние покоя. При повышении интенсивности «выбивания» электронов сила притяжения стремится «погасить» внешнее воздействие. Соответственно, при снижении основного поля вторичное, обусловленное движение частиц в проводнике поддерживает его.
Источник: fb.ruПохожие материалы
Образование Что такое электрический ток: направленное движениеВсе знают на опыте, что такое электрический ток, но далеко не все понимают физическую природу данного явления, особенно если во время школьного курса физики этим не заинтересовались. А для многих школьников учебники ф...
Образование Что такое синусоидальный токО том, что в проводниках бытовой проводки протекает переменный синусоидальный ток, слышали все. Но для человека, малознакомого с электротехникой, термины «синусоидальный» и, тем более, «...
Образование Что такое резонанс токовПри изучении основ электротехники на одном из этапов непременно рассматривается резонанс токов и напряжений. Данные явления присущи цепям переменного тока и могут являться как нежелательными, требующими их учета пр...
Образование Что такое трехфазный токСовременный образ жизни невозможно представить без электроэнергии и благ, которые с ней связаны. Отсутствие природного газа легко компенсируется твердотопливными источниками тепла, вода также доступна, а вот без эл...
Образование Что такое вихревые токи?Электричество окружает нас не только на производстве, но и в быту. Человек может даже не знать, что такое вихревые токи, но с работой, ими совершаемой, ежедневно сталкиваться. Например, люди давно привыкли включать св...
Образование Что такое переменный ток?О разновидностях электрического тока всем рассказывают еще на уроках физики в школе. Для некоторых эти знания остаются лишь теоретическими, расширяющими понимание мироустройства, другие же выбирают специальность, непо...
Образование Что такое электрический ток?Если внимательно проанализировать жизнь современного общества в техническом плане, то становится понятным, что привычный порядок вещей определяет электрический ток. Устройство общества во многом определяется именно им...
Бизнес Что такое электрический ток? Условия существования электрического тока: характеристики и действияЭлектрический ток - это электрический заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, ба...
Домашний уют Что такое генератор постоянного тока?Сложно себе представить нашу жизнь без электричества. Ведь от него питаются практически все приборы, без которых современный человек просто прекратил бы свое существование. Ежедневно нам требуется электроэнергия ка...
Искусство и развлечения Что такое ток-шоу и в чем секрет их популярности?Такой жанр телепередачи, как ток-шоу, сегодня очень популярен в разных странах. Что такое ток-шоу, знает каждый телезритель. Темы, герои, сюжеты завоёвывают внимание телезрителей, и они не могут оторваться от экрана.
monateka.com
Электричество и магнетизм
Индукционные токи возникают не только в проволочных витках, но и в толще массивных проводников. В этом случае их называют вихревыми токами или токами Фуко. Из–за малого сопротивления проводников они могут достигать большой силы. По правилу Ленца вихревые токи также действуют против причины, их вызывающей. На этом основана идея электромагнитных демпферов, успокаивающих колеблющиеся части приборов (стрелки гальванометров и т. п.). На подвижной части прибора укрепляется металлическая полоска, находящаяся в поле сильного магнита. При движении системы токи Ж. Фуко (рис. 8.23) тормозят ее, но они отсутствуют при покоящейся стрелке и не препятствуют её остановке в нужном месте, согласно значению измеряемой величины (в отличие от сил трения).
Рис. 8.23. Леон Фуко (1819–1868) — французский физик и астроном
Итогом проведенных рассуждений может быть такая формулировка правила Ленца: индукционный ток всегда направлен так, чтобы препятствовать той причине, которая его породила. Вне зависимости от того, что это за причина.
Например, если проволочное кольцо падает в неоднородном магнитном поле под действием силы тяжести, то в нем течет индукционный ток. Соответственно на кольцо действует сила Ампера. Ничего не вычисляя, можно быть уверенным в том, что эта сила Ампера будет направлена вверх, чтобы — согласно правилу Ленца — мешать силе тяжести, которая является причиной падения кольца, что влечет за собой изменение магнитного потока, а это приводит к появлению индукционного тока, на который действует сила Ампера, тормозящая падение…
Ниже рассматриваются опыты, в которых изучаются свойства токов Фуко.
На рис. 8.24 показан опыт, демонстрирующий падение тел в неоднородном магнитном поле. Неоднородное магнитное поле тормозит движение проводящих предметов из-за токов Фуко, возникающих в проводниках при изменении магнитного потока через них. Демонстрируется беспрепятственное падение диэлектрического деревянного диска между полюсами сильного электромагнита и медленное падение медного и алюминиевого дисков в магнитном поле, напоминающее движение тел в среде с большой вязкостью.
Рис. 8.24. Падение тел в неоднородном магнитном поле
Видео 8.9. Электромагнитное торможение: падение медных и алюминиевых дисков («монет») в магнитном поле.
При падении сильного постоянного магнита внутри вертикальной проводящей трубки в ее стенках возникают токи Фуко, тормозящие это падение. В опыте (рис. 8.25) демонстрируется свободное падение немагнитного алюминиевого цилиндра в разных трубках, а также маленького магнита в стеклянной трубке. Затем показывают замедление падения этого магнита в алюминиевой трубке и его очень медленное падение в толстостенной медной трубке.
Рис. 8.25. Падение магнита в трубках
На рис. 8.26 показано демпфирование колебаний маятника. Толстая сплошная медная пластина, прикрепленная на конце физического маятника, движется при его колебаниях между полюсами сильного электромагнита. Слабо затухающие колебания маятника после включения магнитного поля начинают быстро затухать, превращаясь практически в апериодические колебания. Если на конце маятника закрепить медную пластинку, разрезанную в виде гребенки, то сильное затухание колебаний маятника исчезает, поскольку токи Фуко уже не могут замыкаться в объеме проводника.
Рис. 8.26. Демпфирование колебаний маятника
Видео 8.10. Электромагнитное торможение: маятник.
В опыте на рис. 8.27 показана левитация сплошного проводящего кольца. Токи Фуко могут возникать не только в проводниках при их перемещении в неоднородном магнитном поле, но и при быстром изменении этого поля. сплошное кольцо из алюминия, надетое на вертикальный сердечник электромагнита, питаемого переменным током частотой 50 Гц, висит в воздухе. в то время как такое же, но разрезанное кольцо свободно падает на обмотку.
Рис. 8.27. Левитация сплошного проводящего кольца
На рис. 8.28 показано взаимодействие проводника и электромагнита. Толстый медный диск укреплен в подшипниках на оси с ручкой. Вблизи него на такой же оси закреплен электромагнит. Если вращать за ручку включенный электромагнит, то диск начинает вращаться в ту же сторону. Если же, наоборот, вращать за ручку диск вблизи электромагнита, то последний также начинает вращаться. Силы взаимодействия диска и электромагнита, похожие по характеру на силы вязкого трения, обусловлены возникновением токов Фуко в диске.
online.mephi.ru
Возникновение - индукционный ток - Большая Энциклопедия Нефти и Газа, статья, страница 1
Возникновение - индукционный ток
Cтраница 1
Возникновение индукционного тока показывает, что при электромагнитной индукции в проводнике появляется определенная электродвижущая сила. В § 89 мы видели, что индукционный ток, а следовательно, и ЭДС индукции появляются только в том случае, если проводник пересекает линии магнитной индукции, т.е. если полное число линий индукции, проходящих через площадь, ограниченную проволочным контуром, изменяется. Но полное число линий магнитной индукции, проходящих через какую-либо поверхность, есть магнитный поток через эту поверхность. [1]
Рассмотрим возникновение индукционных токов в колебательных контурах, подключенных к лампе. На рис. 5.58 изображен контур, состоящий из емкости С ( ею может быть емкость между электродами лампы) и индуктивности L. [2]
Рассмэтрим возникновение индукционного тока в рамке, вращающейся в однородном магнитном поле. Предположим, что в начальный момент рамка перпендикулярна к линиям индукции. [3]
Поскольку для возникновения индукционных токов в роторе необходимо пересечение его вращающимся магнитным полем, постольку скорость вращения ротора меньше скорости вращения магнитного поля на величину скольжения. Величина скольжения возрастает с увеличением нагрузки на валу двигателя и с уменьшением напряжения на его обмотках. [5]
Поскольку для возникновения индукционных токов в роторе-необходимо пересечение его вращающимся магнитным полем, постольку скорость вращения ротора меньше скорости вращения магнитного поля на величину скольжения. Величина скольжения возрастает с увеличением нагрузки на валу двигателя и с уменьшением напряжения на его обмотках. [7]
Как объяснить возникновение индукционного тока в замкнутом контуре в тех случаях, когда сцепленный с контуром магнитный поток не меняется, например в униполярном индукторе. [8]
Во избежание возникновения индукционных токов соединительные провода должны быть по возможности прямыми. [9]
Таким образом, возникновение индукционного тока при перемещении проводника во внешнем магнитном поле объясняется действием силы Лоренца на электроны проводника. Однако, как мы видели, индукционный ток возникает и в том случае, если проводящий контур остается неподвижным, а меняется лишь вблизи него величина магнитной индукции. На этот случай приведенное объямение не распространяется. Для того чтобы и в этом случае объяснить возникновение индукционного тока, следует допустить, что в каждой точке пространства при изменении величины, магнитной индукции со временем возникает электрическая сила. [10]
Рассмотренное нами явление возникновения индукционных токов в параллельных проводниках называется взаимоиндукцией. [12]
Как отмечалось выше, причиной возникновения индукционного тока является ЭДС индукции, возбуждаемая в контуре переменным магнитным потоком. ЭДС индукции численно равна работе сторонних сил ( появляющихся в контуре при изменении охватываемого им магнитного потока), которая совершается при перемещении единичного положительного заряда по этому контуру. [13]
Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. [14]
Опыты Фарадея ясно показали, что причиной возникновения индукционного тока / 2 является изменение магнитного поля, пронизывающего катушку К2 - Чтобы окончательно убедиться в этом, Фарадей провел еще один опыт. При перемещении магнита вдоль оси катушки К 2 было обнаружено возникновение в ней индукционного тока, направление которого зависело от того, каким полюсом был обращен к катушке магнит и удалялся он от нее или приближался к ней. [15]
Страницы: 1 2 3
www.ngpedia.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.