как найти число витков в катушке, формула
Катушка индуктивности является спиральным или винтовым проводником, который преобразовывает энергию электрополя в магнитное поле. Каково более полное определение этого элемента электроцепи, как сделать расчёт катушки индуктивности и что влияет на ее индуктивность? Об этом далее.
Описание устройства
Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.
Главный компонент электроцепи
Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.
Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.
Полное определение из физики
Факторы, влияющие на индукцию
Влияет на индукцию число проводниковых витков, площадь поперечного сечения, длина и материалы. Благодаря увеличению витков повышается индукция и наоборот. Что касается сечения, чем больше источник, тем больше показатель. Также чем больше магнитный вид проницаемости, тем больше индуктивный показатель.
Факторы, влияющие на преобразование энергии в магнитное поле
Расчет
Вычислить число витков, зная конструкцию, можно по формуле нахождения энергии и ее магнитного поля W = LI2/2, где L является индукцией, I — силой тока. Витки находятся из формулы L/d, где d является проводным диаметром. Стоит указать, что есть специальный калькулятор, в который нужно только подставить необходимые параметры. При этом можно определить, однослойный или многослойный проводник.
Схематическое расположение витков в катушке
С сердечником
Стоит отметить, что со стержнем, намоткой, обмоткой индукция вычисляется через замкнутый магнитный поток индуктивных элементов, в то время как без него учитывается поток, который пронизывает только проводник с токовой энергией. Расчитывая индуктивность подобных элементов, необходимо учесть размеры и материал центральной части. Обобщенно можно представить формулу схематично. При этом требуется взять в расчет источник с сопротивлением магнитной цепи, абсолютной магнитной проницаемостью вещества, площадью поперечного сердечникового сечения и длиной средней силовой линии. Зная это, можно посчитать индукцию. Стоит учитывать погрешность. Она будет равна 25%.
Расчет индуктивности катушки с сердечником
Без сердечника
Стоит указать, что без ферритового, геометрического и цилиндрического сердечника с мощным каркасом источник имеет небольшую индукцию, а с ним она повышается. Это связано с тем, что имеется материальная магнитная проницаемость. Форма бывает разная. Есть броневой, стержневой и тороидальный материал.
Обратите внимание! Рассчитать можно, используя метод эллиптических максвелловских интегралов и специальную онлайн программу.
Расчет индуктивности без сердечника
Катушка — незаменимый компонент любой электросети, который имеет вид скрученного или обвивающего элемента с проводником. Влияет на ее индукцию число проводных витков, площадь сечения, длина и материал сердечника. Отыскать количество витков и посчитать индуктивность с сердечником и без него несложно, главное — руководствоваться приведенными выше рекомендациями.
Калькулятор индуктивности однослойной катушки • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Однослойная катушка индуктивности: D — диаметр оправки или каркаса катушки, Dc — диаметр катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией.
Калькулятор определяет индуктивность однослойной катушки.
Пример: рассчитать индуктивность однослойной катушки без сердечника, состоящей из 10 витков на цилиндрическом каркасе диаметром 2 см; длина катушки 1 см.
Входные данные
Диаметр каркаса или оправки катушки
Dмиллиметр (мм)сантиметр (см)дюйм
Количество витков
N
Длина катушки
lмиллиметр (мм)сантиметр (см)дюйм
Выходные данные
Индуктивность катушки
L мГн
Введите диаметр каркаса катушки, число витков и длину катушки, выберите единицы и нажмите кнопку Рассчитать.
Пример: рассчитать число витков и длину намотки катушки 10 мкГн, намотанной эмалированным проводом 0,65 мм (диаметр с изоляцией 0,7 мм) на оправке 2 см.
Входные данные
Требуемая индуктивность
Lгенри (Гн)миллигенри (мГн)микрогенри (мкГн)наногенри (нГн)пикогенри (пГн)
Диаметр каркаса или оправки катушки
Dмиллиметр (мм)сантиметр (см)метр (м)дюйм
Диаметр провода без изоляции
dмиллиметр (мм)сантиметр (см)метр (м)дюймАмериканский калибр проводов
Диаметр изолированного провода
diмиллиметр (мм)сантиметр (см)метр (м)дюйм
Выходные данные
Длина намотки
l мм
Количество витков
L
На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией
Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р. Уивера (R. Weaver) Численные методы расчета индуктивности:
Здесь
D — диаметр оправки или каркаса катушки в см,
l — длина катушки в см,
N — число витков и
L — индуктивность в мкГн.
Эта формула справедлива только для соленоида, намотанного плоским проводом. Это означает, что катушка намотана очень тонкой лентой без зазора между соседними витками. Она является хорошим приближением для катушек с большим количеством витков, намотанных проводом круглого сечения с минимальным зазором между витками. Американский физик Эдвард Беннетт Роса (Edward Bennett Rosa, 1873–1921) работавший в Национального бюро стандартов США (NBS, сейчас называется Национальное бюро стандартов и технологий (NIST) разработал так называемые корректирующие коэффициенты для приведенной выше формулы в форме (см. формула 10.1 в статье Дэвида Найта, David W. Knight):
Здесь LS — индуктивность плоской спирали, описанная выше, и
где ks — безразмерный корректирующий коэффициент, учитывающий разницу между самоиндукцией витка из круглого провода и витка из плоской ленты; km — безразмерный корректирующий коэффициент, учитывающий разницу в полной взаимоиндукции витков из круглого провода по сравнению с витками из плоской ленты; Dc — диаметр катушки в см, измеренный между центрами проводов и N — число витков.
Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:
Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:
Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.
Факторы, влияющие на индуктивность катушки
На индуктивность катушки влияют несколько факторов.
- Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.
- Длина намотки. Две катушки с одинаковым количеством витков, но разной длиной намотки имеют разную индуктивность. Более длинная катушка имеет меньшую индуктивность. Это связано с тем, что магнитное поле менее компактной катушки более слабое и оно не может хорошо концентрироваться в растянутой катушке.
- Диаметр катушки. Две плотно намотанные катушки с одинаковым количеством витков и разными диаметрами имеют разную индуктивность. Катушка с бóльшим диаметром имеет бóльшую индуктивность.
- Сердечник. Для увеличения индуктивности в катушку часто вставляется сердечник из материала с высокой магнитной проницаемостью. Сердечники с более высокой магнитной проницаемостью позволяют получить более высокую индуктивность. Сердечники, изготовленные из магнитной керамики — феррита, часто используются в катушках и трансформаторах различных электронных устройств, так как у них очень низкие потери на вихревые токи.
Упрощенная эквивалентная схема реальной катушки индуктивности: Rw — сопротивление обмотки и ее выводов; L — индуктивность идеальной катушки; Rl — сопротивление вследствие потерь в сердечнике; и Cw — паразитная емкость катушки и ее выводов.
Эквивалентная схема реальной катушки индуктивности
В этом калькуляторе мы рассматривали идеальную катушку индуктивности. В то же время, в реальной жизни таких катушке не бывает. Катушки обычно конструируются с минимальными размерами таким образом, чтобы они помещались в миниатюрное устройство. Любую реальную катушку индуктивности можно представить в виде идеальной индуктивности, к которой параллельно подключены емкость и сопротивление, а еще одно сопротивление подключено последовательно. Параллельное сопротивление учитывает потери на гистерезис и вихревые токи в магнитном сердечнике. Это параллельное сопротивление зависит от материала сердечника, рабочей частоты и магнитного потока в сердечнике.
Паразитная емкость появляется в связи с тем, что витки катушки находятся близко друг к другу. Любые два витка провода можно рассмотреть как две обкладки маленького конденсатора. Витки разделяются изолятором, таким как воздух, изоляционный лак, лента или иной изоляционный материал. Относительная диэлектрическая проницаемость материалов, используемых для изоляции, увеличивает емкость обмотки. Чем выше эта проницаемость, тем выше емкость. В некоторых случаях дополнительная емкость может появиться также между катушкой и противовесом, если катушка расположена над ним. На высоких частотах реактивное сопротивление паразитной емкости может быть весьма высоким и игнорировать его нельзя. Для уменьшения паразитной емкости используются различные методы намотки катушек.
Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками
Если индуктивность большая, то сопротивление обмотки (Rw на схеме) игнорировать уже нельзя. Тем не менее, оно мало по сравнению с реактивным сопротивлением больших катушке на высоких частотах. Однако, на низких частотах и на постоянном токе это сопротивление необходимо учитывать, так как в этих условиях через катушку могут протекать значительные токи.
Катушки индуктивности и обмотки в различных устройствах
Автор статьи: Анатолий Золотков
3. Факторы, влияющие на индуктивность катушки | 14. Катушки индуктивности | Часть1
3. Факторы, влияющие на индуктивность катушки
Факторы, влияющие на индуктивность катушки
На индуктивность катушки оказывают влияние следующие основные факторы:
Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности; уменьшение числа витков приводит к уменьшению индуктивности.
Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.
Площадь поперечного сечения катушки: При прочих равных условиях, катушка с большей площадью поперечного сечения будет иметь большую индуктивность; а катушка с меньшей площадью поперечного сечения — меньшую индуктивность.
Пояснение: Катушка с большей площадью поперечного сечения оказывает меньшее сопротивление формированию магнитного потока для заданной величины магнитодвижущей силы.
Длина катушки: При прочих равных условиях, чем больше длина катушки, тем меньше ее индуктивность; чем меньше длина катушки, тем больше ее индуктивность.
Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.
Материал сердечника: При прочих равных условиях, чем больше магнитная проницаемость сердечника, вокруг которого намотана катушка, тем больше индуктивность; чем меньше магнитная проницаемость сердечника — тем меньше индуктивность.
Пояснение: Материал сердечника с большей магнитной проницаемостью способствует формированию большего магнитного потока для заданной величины магнитодвижущей силы.
Приблизительное значение индуктивности любой катушки можно найти по следующей формуле:
Следует понимать, что данная формула дает только приблизительные цифры. Одной из причин такого положения дел является изменение величины магнитной проницаемости при изменении напряженности магнитного поля (вспомните нелинейность кривой В/Н для разных материалов). Очевидно, если проницаемость (µ) в уравнении будет непостоянна, то и индуктивность (L) также будет в некоторой степени непостоянна. Если гистерезис материала сердечника будет существенным, то это непременно отразится на индуктивности катушки. Разработчики катушек индуктивности пытаются минимизировать эти эффекты, проектируя сердечник таким образом, чтобы его намагниченность никогда не приближалась к уровням насыщения, и катушка работала в более линейной части кривой B/H.
Если катушку сделать таким образом, что любой из вышеперечисленных факторов у нее можно механически изменить, то получится катушка с регулируемой величиной индуктивности или вариометр. Наиболее часто встречаются вариометры, индуктивность которых регулируется количеством витков или положением сердечника (который перемещается внутри катушки). Пример вариометра с изменяемым количеством витков можно увидеть на следующей фотографии:
Это устройство использует подвижные медные контакты, которые подключаются к катушке в различных точках ее длины. Подобные катушки, имеющие воздушный сердечник, применялись в разработке самых первых радиоприемных устройств.
Катушка с фиксированными значениями индуктивности, показанная на следующей фотографии, представляет собой еще одно раритетное устройство, использовавшееся в первых радиостанциях. Здесь вы можете увидеть несколько витков относительно толстого провода, а так же соединительные выводы:
А это еще одна катушка индуктивности, так же предназначенная для радиостанций. Для большей жесткости ее провод намотан на керамический каркас:
Многие катушки индуктивности обладают небольшими размерами, что позволяет монтировать их непосредственно на печатные платы. Посмотрев внимательно на следующую фотографию, можно увидеть две расположенные рядом катушки:
Две катушки индуктивности расположены справа в центре этой платы и имеют обозначения L1 и L2. В непосредственной близости от них находятся резистор R3 и конденсатор С16. Показанные на плате катушки называются «торроидальными», так как их провод намотан вокруг сердечника, имеющего форму тора.
Как резисторы и конденсаторы, катушки индуктивности могут выполняться в корпусе для поверхностного монтажа (SMD). На следующей фотографии представлено несколько таких катушек:
Две индуктивности здесь расположены справа в центре платы. Они представляют собой маленькие черные чипы с номером «100», а над одной из них можно увидеть обозначение L5.
определить индуктивность катушки
определить индуктивность катушки
Задача 70140
При протекании по обмотке катушки тока силой 3 А возникает магнитное поле, энергия которого равна 5 Дж. Определить индуктивность катушки.
Задача 70273
Определить индуктивность катушки, если при изменении силы тока от 5 до 10 А за 0,1с в ней возникает э.д.с. самоиндукции 10 В. Как при этом изменилась энергия магнитного поля?
Задача 60562
Контур радиоприемника с конденсатором емкостью 20 пФ настроен на волну 5 м. Определите индуктивность катушки контура.
Задача 18292
Катушку сопротивлением 20 Ом отключают от источника постоянного напряжения, не разрывая при этом цепи. Ток в катушке уменьшается на 20 % от своего первоначального значения за 0,15 мс. Определить индуктивность катушки.
Задача 20242
Определить индуктивность катушки колебательного контура, в котором возникают электромагнитные колебания с длиной волны 800 м, если емкость контура 4 нФ.
Задача 20276
Определить индуктивность катушки колебательного контура, в котором возникают электромагнитные колебания с длиной волны 800 м, если емкость контура 4 нФ.
Задача 20611
На цилиндрический каркас диаметра d = 120 мм намотано в один слой N = 100 витков проволоки. Вся намотка разместилась на длине l = 60 мм. Определить индуктивность L этой катушки. Магнитную проницаемость сердечника принять равной единице. Указание. Индуктивность однослойных катушек вычисляется по формуле L = αL∞, где L∞ — индуктивность идеального соленоида, во всём объёме которого поле такое же, как у бесконечного соленоида с тем же значением N/l, α — коэффициент, приближенно определяемый выражением α = (1+0,45(d/l)]–1.
Задача 21485
В катушке, при линейном изменении тока в ней, скорость изменения тока 200 А/с. При этом на зажимах катушки возникла ЭДС 2 Вольта. Определить индуктивность катушки.
Задача В48. Катушка с площадью витка имеет индуктивность
Задача В48. Катушка с площадью витка имеет индуктивность 20 мГн. Число витков в ней 1000, индукция магнитного поля внутри катушки 1 мТл. Найти силу тока в катушке.
Обозначим S площадь витка, L — индуктивность катушки, N — число витков, В — индукцию магнитного поля, I — силу тока в катушке, Ф — магнитный поток, пересекающий катушку.
Решение:
Катушку пересекает магнитный поток, определяемый формулой
Этот магнитный поток связан с силой тока в катушке выражением
Приравняем правые части этих формул и найдем силу тока:
Произведем вычисления:
Ответ: I = 0,1 А.
Эта задача взята со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:
Задачи по физике с решением
Возможно вам будут полезны эти задачи:
Задача В46. Сопротивление проводящего контура Ом. За 2 с пересекающий контур магнитный поток равномерно изменяется на Вб. Определить силу индукционного тока в проводнике. |
Задача В47. Индуктивность катушки с малым сопротивлением равна 0,15 Гн, сила тока в ней 4А. Сколько теплоты выделится в катушке, если параллельно к ней подключить резистор с сопротивлением, во много раз большим, чем сопротивление катушки. |
Задача В49. За 5 мс в соленоиде с 500 витками магнитный поток равномерно уменьшился с 7 Вб до 9 мВб. Сопротивление проводника соленоида 100 Ом. Найти силу индукционного тока, возникшего при этом. |
Задача В50. Проволочный виток, состоящий из 100 колец, пересекает однородное магнитное поле, уменьшающееся за 2 мс с 0,5 Тл до 0,1 Тл. При этом в витке возникает ЭДС индукции 8 В. Поле перпендикулярно плоскости витка. Найти радиус витка. Ответ округлить с точностью до одной сотой метра. |
Индуктивность и емкость в цепи переменного тока
Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:
i = Iм sin ωt, (26.8)
u = Uм sin (ϕ + ωt), (26.9)
e = Ɛm sin (ψ + ωt). (26.10)
Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле (16.18):
R=(p0l/S)(1 + at).
В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.
Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:
ХL = ωL. (26.11)
Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.
Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.
Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока.
Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;
Хс = 1/ωС. (26.12)
Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока.
Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:
X = XL—XC (26.13)
и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.
В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:
P = IU cos ϕ. (26.14)
Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:
Р = I2R. (26.15)
Из (26. 14) видно, что для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)
Реактивное сопротивление катушки индуктивности (XL) и конденсатора (XC)
Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.
Элементы, обладающие реактивным сопротивлением, называют реактивными.
Реактивное сопротивление катушки индуктивности
При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.
В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.
При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.
Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.
Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .
Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1/ω.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .
В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:
Реактивное сопротивлениие индуктивностей называют индуктивным.
Реактивное сопротивление конденсатора
Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.
В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.
Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:
i = UampωCsin(ωt+π/2).
Отсюда выразим соотношение среднеквадратичных значений .
Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:
Реактивное сопротивление конденсатора называют ёмкостным.
Предлагаем Вам рассмотреть непосредственно связанные с данным материалом статьи:
Что такое коэффициент мощности — Cos(φ)?
14.2 Самоиндукция и катушки индуктивности – University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Соотнести скорость изменения тока с ЭДС индукции, создаваемой этим током в той же цепи
- Расчет собственной индуктивности цилиндрического соленоида
- Расчет собственной индуктивности прямоугольного тороида
Взаимная индуктивность возникает, когда ток в одной цепи создает изменяющееся магнитное поле, которое индуцирует ЭДС в другой цепи. Но может ли магнитное поле повлиять на ток в исходной цепи, создавшей поле? Ответ положительный, и это явление называется самоиндукцией .
Катушки индуктивности
На рис. 14.5 показаны некоторые силовые линии магнитного поля, вызванные током в круглой проволочной петле. Если ток постоянен, магнитный поток через контур также постоянен. Однако, если бы ток I менялся со временем, скажем, сразу после замыкания ключа S, то магнитный поток [латекс] {\ текст {Φ}} _ {\ текст {м}} [/латекс] соответственно изменить.Тогда закон Фарадея говорит нам, что ЭДС [латекс]\эпсилон[/латекс] будет индуцироваться в цепи, где
[латекс]\эпсилон =-\frac{d{\text{Φ}}_{\text{m}}}{dt}.[/latex]
Поскольку магнитное поле, создаваемое проводом с током, прямо пропорционально току, поток, создаваемый этим полем, также пропорционален току; то есть
[латекс] {\ текст {Φ}} _ {\ текст {м}} \ propto I. [/латекс]
Рисунок 14.5 Магнитное поле создается током I в контуре. Если бы я менялся со временем, магнитный поток через петлю также менялся бы, и в петле индуцировалась бы ЭДС.
Это также может быть записано как
.
[латекс] {\ текст {Φ}} _ {\ текст {м}} = LI [/латекс]
, где константа пропорциональности L известна как самоиндукция проволочной петли. Если в петле N витков, это уравнение принимает вид
.
[латекс] N {\ text {Φ}} _ {\ text {м}} = LI. [/ латекс]
По соглашению положительный смысл нормали к контуру связан с током по правилу правой руки, как на рисунке 14.5 нормаль направлена вниз. Согласно этому соглашению, [latex]{\text{Φ}}_{\text{m}}[/latex] положительно в уравнении 14.9, поэтому L всегда имеет положительное значение .
Для петли с N витков [латекс]\epsilon =\text{−}Nd{\text{Φ}}_{\text{m}}\text{/}dt,[/latex], поэтому ЭДС индукции можно записать через самоиндукцию как
[латекс]\epsilon =\text{−}L\frac{dI}{dt}.[/latex]
При использовании этого уравнения для определения L проще всего игнорировать знаки [латекс]\эпсилон\фантом{\правило{0. 2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}dI\text{/}dt,[/latex] и вычислить L как
[латекс]L=\frac{|\epsilon |}{|dI\text{/}dt|}.[/latex]
Поскольку самоиндукция связана с магнитным полем, создаваемым током, любая конфигурация проводников обладает самоиндукцией. Например, помимо проволочной петли длинный прямой провод обладает собственной индуктивностью, как и коаксиальный кабель. Коаксиальный кабель чаще всего используется в индустрии кабельного телевидения, и его также можно обнаружить при подключении к кабельному модему.Коаксиальные кабели используются из-за их способности передавать электрические сигналы с минимальными искажениями. Коаксиальные кабели имеют два длинных цилиндрических проводника, которые обладают током и собственной индуктивностью, что может иметь нежелательные последствия.
Элемент схемы, используемый для обеспечения собственной индуктивности, известен как катушка индуктивности . Он представлен символом, показанным на рис. 14.6, который напоминает катушку проволоки, основную форму катушки индуктивности. На рис. 14.7 показано несколько типов катушек индуктивности, обычно используемых в цепях.
Рисунок 14.6 Символ, используемый для обозначения катушки индуктивности в цепи.
Рисунок 14.7 Различные катушки индуктивности. Независимо от того, заключены ли они в капсулу, как показаны три верхние, или намотаны на катушку, как самая нижняя, каждая из них представляет собой просто относительно длинную катушку провода. (кредит: Уинделл Оскей)
В соответствии с законом Ленца отрицательный знак в уравнении 14.10 указывает на то, что ЭДС индукции на катушке индуктивности всегда имеет полярность, которая противодействует изменению тока.Например, если бы ток, протекающий от А к В на рис. 14.8(а), увеличивался, ЭДС индукции (представленная воображаемой батареей) имела бы указанную полярность, чтобы противодействовать увеличению. Если бы ток от А до В уменьшался, то ЭДС индукции имела бы противоположную полярность, опять же, чтобы противодействовать изменению тока (рис. 14.8 (б)). Наконец, если бы ток через индуктор был постоянным, в катушке не индуцировалась бы ЭДС.
Рисунок 14.8 ЭДС индукции на катушке индуктивности всегда препятствует изменению тока. Это можно представить как воображаемую батарею, заставляющую течь ток, противодействующий изменению в (а) и усиливающий изменение в (б).
Одним из распространенных применений индуктивности является определение сигналов светофора, когда транспортные средства ожидают на перекрестке. Электрическая цепь с индуктором размещается на дороге под местом, где остановится ожидающий автомобиль. Кузов автомобиля увеличивает индуктивность, и цепь меняется, посылая сигнал светофору изменить цвет.Точно так же металлоискатели, используемые для обеспечения безопасности в аэропортах, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и приемник. Импульсный сигнал от катушки передатчика индуцирует сигнал в приемнике. На самоиндукцию цепи влияет любой металлический предмет на пути (рис. 14.9). Металлодетекторы можно настроить на чувствительность, а также они могут обнаруживать наличие металла на человеке.
Рисунок 14.9 Знакомые ворота безопасности в аэропорту не только обнаруживают металлы, но и могут указывать их приблизительную высоту над полом.(кредит: Alexbuirds/Wikimedia Commons)
Во вспышках фотокамер обнаружены большие наведенные напряжения. Вспышки камеры используют батарею, две катушки индуктивности, которые функционируют как трансформатор, и систему переключения или генератор для создания больших напряжений. Напомним из книги «Колебания о колебаниях», что «колебание» определяется как колебание величины или повторяющиеся регулярные колебания величины между двумя крайними значениями вокруг среднего значения. Также вспомните (из электромагнитной индукции об электромагнитной индукции), что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы индуцировать напряжение в другой катушке.Система генератора делает это много раз, когда напряжение батареи повышается до более чем 1000 вольт. (Вы можете услышать пронзительный вой трансформатора во время зарядки конденсатора.) Конденсатор сохраняет высокое напряжение для последующего использования при питании вспышки.
Пример
Самоиндукция катушки
Измеряют ЭДС индукции 2,0 В на катушке из 50 тесно намотанных витков, при этом ток через нее равномерно увеличивается от 0,0 до 5,0 А за 0,10 с. а) Чему равна собственная индуктивность катушки? (b) При токе в 5.0 А, каков поток через каждый виток катушки?
Стратегия
Обе части этой задачи дают всю информацию, необходимую для расчета собственной индуктивности в части (a) или потока через каждый виток катушки в части (b). Необходимые уравнения: уравнение 14.10 для части (a) и уравнение 14.9 для части (b).
Решение
Показать ответ
- Игнорируя отрицательный знак и используя величины, мы имеем из уравнения 14.10
[латекс]L=\frac{\epsilon}{dI\text{/}dt}=\frac{2.{-3}\phantom{\rule{0. 2em}{0ex}}\text{Wb}.[/latex]
Значение
Значения собственной индуктивности и потока, рассчитанные в частях (a) и (b), являются типичными значениями для катушек, используемых в современных устройствах. Если ток не меняется во времени, поток не меняется во времени, поэтому ЭДС не индуцируется.
Проверьте свое понимание
Ток протекает через катушку индуктивности на рис. 14.8 от B к A вместо A к B , как показано.Ток увеличивается или уменьшается, чтобы создать ЭДС, указанную на диаграмме (а)? На схеме (б)?
Показать решение
а. уменьшение; б. увеличение; Так как ток течет в противоположном направлении диаграммы, то для получения положительной ЭДС в левой части диаграммы (а) нужно уменьшить ток влево, что создает усиленную ЭДС там, где положительный конец находится с левой стороны. Чтобы получить положительную ЭДС в правой части диаграммы (b), нам нужно увеличить ток влево, что создает усиленную ЭДС, где положительный конец находится на правой стороне.
Проверьте свое понимание
Изменяющийся ток индуцирует ЭДС 10 В на катушке индуктивности 0,25 Гн. С какой скоростью меняется ток?
Показать решение
Хороший подход к расчету собственной индуктивности катушки индуктивности состоит из следующих шагов:
Стратегия решения проблем: самоиндукция
- Предположим, что ток I протекает через индуктор.
- Определите магнитное поле [латекс]\stackrel{\to }{\textbf{B}}[/латекс], создаваемое током.Если есть соответствующая симметрия, вы можете сделать это с помощью закона Ампера.
- Получить магнитный поток, [латекс] {\ текст {Φ}} _ {\ текст {м}}. [/латекс]
- При известном потоке собственная индуктивность может быть найдена из уравнения 14.9, [латекс]L=N{\text{Φ}}_{\text{m}}\text{/}I[/latex].
Чтобы продемонстрировать эту процедуру, мы теперь рассчитаем собственные индуктивности двух катушек индуктивности.
Цилиндрический соленоид
Рассмотрим длинный цилиндрический соленоид длиной l , площадью поперечного сечения A и N витков провода.Мы предполагаем, что длина соленоида настолько больше его диаметра, что мы можем принять магнитное поле равным [латекс] B = {\ mu }_{0} nI [/латекс] во всей внутренней части соленоида, что то есть мы игнорируем концевые эффекты в соленоиде. При токе I , протекающем через катушки, магнитное поле, создаваемое внутри соленоида, равно
[латекс] B = {\ mu } _ {0} \ left (\ frac {N} {l} \ right) I, [/ латекс]
, поэтому магнитный поток через один виток равен
.
[латекс] {\ text {Φ}} _ {\ text {m}} = BA = \ frac {{\ mu } _ {0} NA} {l} I.{2}\влево(V\вправо),[/латекс]
, где [латекс]V=Al[/латекс] — объем соленоида. Обратите внимание, что собственная индуктивность длинного соленоида зависит только от его физических свойств (таких как число витков провода на единицу длины и объем), а не от магнитного поля или тока. Это справедливо для катушек индуктивности в целом.
Прямоугольный тороид
Тороид с прямоугольным поперечным сечением показан на рис. 14.10. Внутренний и внешний радиусы тороида равны [латекс]{R}_{1}\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}{R}_{2},\phantom{\rule{0.2em}{0ex}}\text{and} \phantom{\rule{0.2em}{0ex}}h[/latex] — высота тороида. Применяя закон Ампера так же, как в примере 13.8, для тороида с круглым поперечным сечением, мы находим, что магнитное поле внутри прямоугольного тороида также равно
[латекс] B=\frac{{\mu}_{0}NI}{2\pi r},[/latex]
, где r — расстояние от центральной оси тороида. Поскольку поле изменяется внутри тороида, мы должны вычислить поток путем интегрирования по поперечному сечению тороида.{2}[/латекс]
Резюме
- Изменения тока в устройстве индуцируют ЭДС в самом устройстве, называемую собственной индуктивностью,
[латекс]\epsilon =\text{−}L\frac{dI}{dt},[/latex]
, где L – собственная индуктивность катушки индуктивности, а [latex]dI\text{/}dt[/latex] – скорость изменения тока через нее. Знак минус указывает на то, что ЭДС противодействует изменению тока, как того требует закон Ленца. Единицей самоиндукции и индуктивности является генри (Гн), где [латекс] 1 \ фантом {\ правило {0.{-7}\phantom{\rule{0.2em}{0ex}}\text{T}·\text{m/A}[/latex] — проницаемость свободного пространства.
Концептуальные вопросы
Зависит ли собственная индуктивность от величины магнитного потока? Зависит ли это от силы тока в проводе? Соотнесите свои ответы с уравнением [латекс]N{\text{Φ}}_{\text{m}}=LI.[/latex]
Показать решение
Самоиндукция пропорциональна магнитному потоку и обратно пропорциональна току. Однако, поскольку магнитный поток зависит от тока I , эти эффекты компенсируются.Это означает, что собственная индуктивность не зависит от тока. Если ЭДС индуцируется в элементе, она зависит от того, как ток изменяется со временем.
Будет ли собственная индуктивность туго намотанного соленоида длиной 1,0 м отличаться от собственной индуктивности на метр бесконечного, но в остальном идентичного соленоида?
Обсудите, как можно определить собственную индуктивность на единицу длины длинного прямого провода.
Показать решение
Считайте концы провода частью цепи RL и определите самоиндукцию по этой цепи.
Собственная индуктивность катушки равна нулю, если по обмоткам не течет ток. Правда или ложь?
Как собственная индуктивность на единицу длины вблизи центра соленоида (вдали от концов) соотносится с ее значением вблизи конца соленоида?
Показать решение
Магнитное поле будет расширяться в конце соленоида, поэтому поток через последний виток меньше, чем через середину соленоида.
Проблемы
ЭДС 0.В катушке индуцируется напряжение 40 В, когда ток через нее изменяется равномерно от 0,10 до 0,60 А за 0,30 с. Чему равна собственная индуктивность катушки?
Показать решение
Ток, показанный в части (a) ниже, увеличивается, а ток, показанный в части (b), уменьшается. В каждом случае определите, какой конец индуктора находится под более высоким потенциалом.
С какой скоростью изменяется ток через катушку 0,30 Гн, если на катушке индуцируется ЭДС 0,12 В?
Показать решение
Когда в камере используется вспышка, полностью заряженный конденсатор разряжается через катушку индуктивности. За какое время необходимо включить или выключить ток 0,100 А через дроссель 2,00 мГн, чтобы навести ЭДС 500 В?
Катушка с собственной индуктивностью 2,0 Гн несет ток, который изменяется со временем согласно [латекс]I\left(t\right)=\left(2.0\phantom{\rule{0.2em}{0ex}}\ text{A}\right)\text{sin}\phantom{\rule{0.2em}{0ex}}120\pi t.[/latex] Найдите выражение для ЭДС, индуцируемой в катушке.
Показать решение
[латекс]\эпсилон =480\пи \фантом{\правило{0.2em}{0ex}}\текст{грех}\влево(120\пи т-\пи \текст{/}2\право)\фантом{ \правило{0.{2}[/latex] Какова собственная индуктивность соленоида?
По катушке с собственной индуктивностью 3,0 Гн протекает ток, уменьшающийся с постоянной скоростью [latex]dI\text{/}dt=-0,050\phantom{\rule{0,2em}{0ex}}\text{A /s}[/латекс]. Чему равна ЭДС индукции в катушке? Опишите полярность ЭДС индукции.
Показать решение
0,15 В. Это та же полярность, что и ЭДС, управляющая током.
Ток I(t) через катушку индуктивности 5,0 мГн изменяется со временем, как показано ниже. Сопротивление индуктора равно [латекс]5,0\фантом{\правило{0,2em}{0ex}}\текст{Ом}.[/латекс] Рассчитайте напряжение на индукторе при [латекс]t=2,0\фантом{\ правило {0.2em} {0ex}} \ text {мс}, t = 4.0 \ фантом {\ правило {0.2em} {0ex}} \ текст {мс}, \ фантом {\ правило {0.2em} {0ex}} \text{and}\phantom{\rule{0.2em}{0ex}}t=8.0\phantom{\rule{0.2em}{0ex}}\text{ms}[/latex].
Длинный цилиндрический соленоид с числом оборотов 100 на сантиметр имеет радиус 1,5 см. (a) Пренебрегая концевыми эффектами, какова собственная индуктивность на единицу длины соленоида? б) Если ток через соленоид изменяется со скоростью 5.0 А/с, чему равна ЭДС индукции на единицу длины?
Показать решение
а. 0,089 Гн/м; б. 0,44 В/м
Предположим, что прямоугольный тор имеет 2000 витков и собственную индуктивность 0,040 Гн. отношение его внешнего радиуса к внутреннему радиусу?
Чему равна собственная индуктивность на метр коаксиального кабеля с внутренним радиусом 0,50 мм и внешним радиусом 4,00 мм?
Показать решение
[латекс]\frac{L}{l}=4. {-7}\phantom{\rule{0.2em}{0ex}}\text{H/m}[/latex]
Глоссарий
- индуктор
- часть электрической цепи для обеспечения собственной индуктивности, которая обозначена катушкой провода
- самоиндукция
- действие устройства, индуцирующего ЭДС само по себе
Лицензии и атрибуты
Самоиндукция и катушки индуктивности. Автор: : Колледж OpenStax. Расположен по адресу : https://openstax.org/books/university-physics-volume-2/pages/14-2-self-inductance-and-inductors. Лицензия : CC BY: Attribution . Условия лицензии : Скачать бесплатно по адресу https://openstax.org/books/university-physics-volume-2/pages/1-introduction
23,9 Индуктивность – College Physics: OpenStax
Индукция – это процесс, при котором ЭДС индуцируется изменением магнитного потока. До сих пор обсуждалось множество примеров, некоторые из которых более эффективны, чем другие. Трансформаторы, например, спроектированы таким образом, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшой потерей энергии в другие формы.Существует ли полезная физическая величина, связанная с тем, насколько «эффективно» данное устройство? Ответ положительный, и эта физическая величина называется индуктивностью .
Взаимная индуктивность — это действие закона индукции Фарадея для одного устройства на другое, например, первичная катушка при передаче энергии вторичной обмотке в трансформаторе. См. рис. 1, где простые катушки наводят друг в друге ЭДС.
Рисунок 1. Эти катушки могут индуцировать ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность М указывает на эффективность связи между ними. Здесь изменение тока в катушке 1 вызывает ЭДС в катушке 2. устройства фиксированы, поток изменяется при изменении тока. Поэтому мы сосредоточимся на скорости изменения тока, [латекс]\жирныйсимвол{\Delta I / \Delta t}[/латекс], как на причине индукции. Изменение тока [latex]\boldsymbol{I_1}[/latex] в одном устройстве, катушка 1 на рисунке, индуцирует [latex]\boldsymbol{\textbf{emf}_2}[/latex] в другом.Мы выражаем это в форме уравнения как
[латекс]\boldsymbol{\textbf{emf}_2 = -M}[/латекс] [латекс]\boldsymbol{\frac{\Delta I_1}{\Delta t}}[/латекс],
, где [латекс]\boldsymbol{M}[/латекс] определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность [латекс]\boldsymbol{M}[/латекс], тем эффективнее связь. Например, катушки на рисунке 1 имеют маленький [латекс]\жирный символ{М}[/латекс] по сравнению с катушками трансформатора в главе 23.7 Рисунок 3. Единицами для [латекс]\boldsymbol{M}[/latex] являются [латекс]\boldsymbol{(\textbf{V} \cdot \;\textbf{s})/ \textbf{A} = \Omega \cdot \;\textbf{s}}[/latex], который назван henry (H) в честь Джозефа Генри. То есть [латекс]\boldsymbol{1 \;\textbf{H} = 1 \Omega \cdot \;\textbf{s}}[/latex].
Природа здесь симметрична. Если мы изменим ток [latex]\boldsymbol{I_2}[/latex] в катушке 2, мы индуцируем [latex]\boldsymbol{\textbf{emf}_1}[/latex] в катушке 1, который определяется как
[латекс]\boldsymbol{\textbf{emf}_1 = -M}[/латекс] [латекс]\boldsymbol{\frac{\Delta I_2}{\Delta t}}[/латекс],
, где [latex]\boldsymbol{M}[/latex] — то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с той же эффективностью или взаимной индуктивностью [латекс]\boldsymbol{M}[/латекс] .
Большая взаимная индуктивность [латекс]\boldsymbol{M}[/латекс] может быть как желательной, так и нежелательной. Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для белья, может индуцировать на своем корпусе опасную ЭДС, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность [латекс]\boldsymbol{M}[/латекс] – это встречная обмотка катушек, чтобы нейтрализовать создаваемое магнитное поле. (См. рис. 2.)
Рисунок 2. Нагревательные спирали электрической сушилки для белья могут быть намотаны встречно, так что их магнитные поля компенсируют друг друга, что значительно снижает взаимную индуктивность с корпусом сушилки.
Самоиндукция , действие закона Фарадея индукции устройства на себя, также существует. Когда, например, ток через катушку увеличивается, магнитное поле и поток также увеличиваются, индуцируя противо-ЭДС, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, препятствующая уменьшению.Большинство устройств имеют фиксированную геометрию, поэтому изменение потока полностью связано с изменением тока [латекс]\boldsymbol{\Delta I}[/латекс] через устройство. ЭДС индукции связана с физической геометрией устройства и скоростью изменения тока. Это дается
[латекс]\boldsymbol{\textbf{emf}= -L}[/латекс] [латекс]\boldsymbol{\frac{\Delta I}{\Delta t}}[/латекс],
, где [latex]\boldsymbol{L}[/latex] – собственная индуктивность устройства. Устройство, обладающее значительной собственной индуктивностью, называется катушкой индуктивности и обозначено символом на рисунке 3.
Рис. 3.
Знак минус является выражением закона Ленца, указывающим, что ЭДС противодействует изменению тока. Единицами самоиндукции являются генри (Гн), как и для взаимной индуктивности. Чем больше собственная индуктивность [латекс]\boldsymbol{L}[/латекс] устройства, тем больше его сопротивление любому изменению тока через него. Например, большая катушка с большим количеством витков и железным сердечником имеет большой [латекс]\жирныйсимвол{L}[/латекс] и не позволит току быстро измениться. Чтобы избежать этого эффекта, необходимо добиться небольшого [латекса]\жирного символа{L}[/латекса], например, путем встречной намотки катушек, как показано на рисунке 2.
Катушка индуктивности 1 Гн представляет собой большую катушку индуктивности. Чтобы проиллюстрировать это, рассмотрим устройство с [латекс]\boldsymbol{L = 1,0 \;\textbf{H}}[/латекс], через которое протекает ток 10 А. Что произойдет, если мы попытаемся отключить ток быстро, возможно, всего за 1,0 мс? ЭДС, заданная формулой [латекс]\жирныйсимвол{\текстбф{ЭДС} = -L(\Delta I/\Delta t)}[/латекс], будет препятствовать изменению. Таким образом, ЭДС будет индуцироваться следующим образом: А})/(1.0 \;\textbf{ms})]=10 000 \;\textbf{V}}[/latex]. Положительный знак означает, что это большое напряжение направлено в том же направлении, что и ток, противодействуя его уменьшению. Такие большие ЭДС могут вызывать искрение, повреждая коммутационное оборудование, поэтому может потребоваться более медленное изменение тока.
Для такого большого наведенного напряжения есть применение. Вспышки камеры используют батарею, две катушки индуктивности, которые функционируют как трансформатор, и систему переключения или осциллятор для создания больших напряжений. (Помните, что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы индуцировать напряжение в другой катушке.) Система генератора будет делать это много раз, когда напряжение батареи будет увеличено до более чем одной тысячи вольт. (Вы можете услышать пронзительный вой трансформатора во время зарядки конденсатора.) Конденсатор сохраняет высокое напряжение для последующего использования при питании вспышки. (См. рис. 4.)
Рис. 4. Благодаря быстрому переключению катушки индуктивности батареи напряжением 1,5 В можно использовать для наведения ЭДС в несколько тысяч вольт. Это напряжение можно использовать для хранения заряда в конденсаторе для последующего использования, например, во вспышке фотоаппарата.
Можно рассчитать [латекс]\boldsymbol{L}[/латекс] для индуктора, зная его геометрию (размер и форму) и зная создаваемое им магнитное поле. В большинстве случаев это сложно из-за сложности создаваемого поля. Итак, в этом тексте индуктивность [латекс]\жирный символ{L}[/латекс] обычно является заданной величиной. Единственным исключением является соленоид, потому что он имеет очень однородное поле внутри, почти нулевое поле снаружи и простую форму. Поучительно вывести уравнение для его индуктивности. Начнем с того, что заметим, что ЭДС индукции задается законом индукции Фарадея как собственной индуктивности, как [латекс]\boldsymbol{\textbf{ЭДС}=-L(\Delta I/ \Delta t)}[/latex]. Приравнивание этих результатов дает
[латекс]\boldsymbol{\textbf{emf} = -N}[/латекс] [латекс]\boldsymbol{\frac{\Delta \phi}{\Delta t}}[/латекс] [латекс]\boldsymbol{ = -L}[/latex] [латекс]\boldsymbol{\frac{\Delta I}{\Delta t}}[/latex].
Решение для [латекс]\boldsymbol{L}[/латекс] дает
[латекс]\boldsymbol{L = N}[/латекс] [латекс]\boldsymbol{\frac{\Delta \phi}{\Delta I}}[/latex].
Это уравнение для собственной индуктивности [латекс]\boldsymbol{L}[/латекс] устройства всегда справедливо. Это означает, что самоиндукция [латекс]\boldsymbol{L}[/латекс] зависит от того, насколько эффективен ток в создании потока; чем эффективнее, тем больше [латекс]\boldsymbol{\Delta \phi \Delta I}[/latex].
Давайте воспользуемся этим последним уравнением, чтобы найти выражение для индуктивности соленоида. Поскольку площадь [латекс]\жирныйсимвол{А}[/латекс] соленоида фиксирована, изменение потока составляет [латекс]\жирныйсимвол{\Дельта \фи = \Дельта (ВА) = А \Дельта В}[/ латекс].Чтобы найти [латекс]\boldsymbol{\Delta B}[/латекс], заметим, что магнитное поле соленоида определяется выражением [латекс]\жирный символ{В = \mu _0 nI = \mu 0 \frac{NI} {\ell}}[/латекс]. (Здесь [латекс]\boldsymbol{n = N/ \ell}[/latex], где [латекс]\boldsymbol{N}[/латекс] — количество витков, а [латекс]\boldsymbol{\ell}[/ латекс] — длина соленоида.) Изменяется только ток, так что [латекс]\жирныйсимвол{\Delta \phi = A \Delta B = \mu_0 NA \frac{\Delta I}{\ell}}[/latex] . Замена [латекс]\boldsymbol{\Delta \phi}[/latex] на [латекс]\boldsymbol{L = N \frac{\Delta \phi}{\Delta I}}[/latex] дает
[латекс]\boldsymbol{L = N}[/латекс] [латекс]\boldsymbol{\frac{\Delta \phi}{\Delta I}}[/latex][латекс]\boldsymbol{= N}[/ латекс][латекс]\boldsymbol{\frac{\mu_0 NA \frac{\Delta I}{\ell}}{\Delta I}}[/latex].2A}{\ell}}[/latex][latex]\boldsymbol{(\textbf{соленоид})}. [/latex]
Это собственная индуктивность соленоида с площадью поперечного сечения [латекс]\boldsymbol{A}[/латекс] и длиной [латекс]\boldsymbol{\ell}[/латекс]. Обратите внимание, что индуктивность зависит только от физических характеристик соленоида, соответствующих его определению.
Пример 1. Расчет собственной индуктивности соленоида среднего размера
Рассчитайте самоиндукцию соленоида длиной 10,0 см и диаметром 4,00 см с 200 витками.2) {0,100 \;\textbf{м}} \\[1em] & \boldsymbol{0,632 \;\textbf{мГн}} \end{массив}[/latex].
Обсуждение
Этот соленоид среднего размера. Его индуктивность около миллигенри также считается умеренной.
Одно из распространенных приложений индуктивности используется в светофорах, которые могут определить, когда транспортные средства ожидают на перекрестке. Электрическая цепь с индуктором размещена на дороге под местом остановки ожидающего автомобиля. Кузов автомобиля увеличивает индуктивность, и схема меняется, посылая сигнал светофору изменить цвет. Точно так же металлоискатели, используемые для обеспечения безопасности в аэропортах, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и приемник. Импульсный сигнал в катушке передатчика индуцирует сигнал в приемнике. На самоиндукцию цепи влияет любой металлический предмет на пути. Такие детекторы могут быть настроены на чувствительность, а также могут указывать примерное местонахождение обнаруженного на человеке металла. (Но они не смогут обнаружить пластиковую взрывчатку, подобную той, что была найдена на «подрывнике в нижнем белье».») См. рис. 5.
Рисунок 5 Знакомые ворота безопасности в аэропорту могут не только обнаруживать металлы, но и указывать их приблизительную высоту над полом. (кредит: Alexbuirds, Wikimedia Commons)
единиц энергии, хранящихся в индукторе
энергии, хранящихся в индукторе
Следующая: Цепь
Вверху: Индуктивность
Предыдущий: Самоиндуктивность
Энергия, запасенная в индукторе
Предположим, что катушка индуктивности подключена к
регулируемое напряжение постоянного тока. Питание регулируется таким образом, чтобы увеличить ток, протекающий через
индуктор от нуля до некоторого конечного значения. Так как ток через
индуктор нарастает, ЭДС
генерируется, что препятствует увеличению тока. Понятно, что работать надо
быть сделано против этой ЭДС источником напряжения, чтобы установить
ток в индукторе. Работа, совершенная источником напряжения за время
временной интервал
(247) |
Здесь,
— мгновенная скорость, с которой источник напряжения выполняет работу.Найти полную работу, затраченную на установление конечного тока в
индуктор, мы должны проинтегрировать приведенное выше выражение. Таким образом,
(248) |
давать
(249) |
Эта энергия фактически хранится в магнитном поле, создаваемом током.
течет через индуктор. В чистом индукторе энергия запасается без
потери, и возвращается в остальную часть цепи, когда ток через
индуктор снижается, и связанное с ним магнитное поле разрушается.
Рассмотрим простой соленоид.
Уравнения (244), (246) и (249) можно объединить, чтобы получить
(250) |
что сводится к
(251) |
Это представляет собой энергию, запасенную в магнитном поле соленоида.
Однако объем заполненного полем сердечника соленоида равен , поэтому магнитное
плотность энергии ( i.е. , энергия на единицу объема) внутри
соленоид есть , или
(252) |
Оказывается, этот результат достаточно общий. Таким образом, мы можем рассчитать
энергоемкость любого магнитного поля путем деления пространства на маленькие кубики
(в каждом из которых магнитное поле приблизительно однородно), применяя
приведенная выше формула, чтобы найти энергоемкость каждого куба, и суммируя
энергии, полученные таким образом, чтобы найти полную энергию.
Когда электрические и магнитные поля существуют вместе в пространстве, уравнения. (122) и
(252) можно объединить, чтобы получить выражение для
полная энергия, накопленная в объединенном
полей на единицу объема:
(253) |
Следующая: Цепь
Вверху: Индуктивность
Предыдущий: Самоиндуктивность
2007-07-14
Преобразователь случайных чисел | Онлайн-конвертеры единиц измеренияКонвертер длины и расстоянияПреобразователь массыСухой объем и общие измерения для приготовления пищиКонвертер площадиКонвертер объема и общего измерения для приготовления пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаПреобразователь эффективности использования топлива, расхода топлива и экономии топливаПреобразователь чиселКонвертер единиц информации и Хранение данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер момента импульсаИмпульсПреобразователь крутящего моментаКонвертер удельной энергии, теплоты сгорания (на массу)Конвертер удельной энергии, теплоты сгорания (на объем)Температура Конвертер интервала Конвертер коэффициента теплового расширенияКонвертер теплового сопротивленияТеплопровод Конвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяженияМодерация проницаемости, проницаемости, паропроницаемости Преобразователь скорости пропускания паровПреобразователь уровня звукаПреобразователь чувствительности микрофонаПреобразователь уровня звукового давления (SPL)Преобразователь уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиПреобразователь силы светаПреобразователь освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныПреобразователь оптической силы (диоптрий) в фокусное расстояниеПреобразователь оптической силы (диоптрий) в увеличение (X)Электрический заряд КонвертерКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаОбъемный заряд De Конвертер nsityПреобразователь электрического токаПреобразователь линейной плотности токаПреобразователь поверхностной плотности токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электропроводностиПреобразователь емкостиПреобразователь индуктивностиПреобразователь реактивной мощности переменного токаПреобразователь калибра проводов в СШАПреобразование уровней в дБм, дБВ, Ватт и других единицахКонвертер магнитодвижущей силы КонвертерПлотность магнитного потокаМощность поглощенной дозы излучения, Мощность общей дозы ионизирующего излучения КонвертерРадиоактивность. Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических приставокКонвертер передачи данныхКонвертер типографских и цифровых изображенийКонвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица Этот онлайн-конвертер единиц измерения позволяет быстро и точно преобразовать множество единиц измерения из одной системы в другую. Страница Unit Conversion предлагает решение для инженеров, переводчиков и всех, чья деятельность требует работы с величинами, измеряемыми в разных единицах. Вы можете использовать этот онлайн-конвертер для преобразования нескольких сотен единиц (включая метрические, британские и американские) в 76 категориях или нескольких тысяч пар, включая ускорение, площадь, электрическую энергию, силу, длину, свет, массу, массовый расход, плотность, удельный объем, мощность, давление, напряжение, температура, время, крутящий момент, скорость, вязкость, объем и производительность, объемный расход и многое другое. Общие конвертеры единицКонвертер длины и расстояния : метр, километр, сантиметр, миллиметр, нанометр, ярд, фут, дюйм, парсек, световой год, астрономическая единица, лунное расстояние (от Земли до Луны), лига , миля, морская миля (международная), сажень, кабельтовая (международная), точка, пиксель, калибр, планковская длина… Конвертер массы : грамм, килограмм, миллиграмм, тонна (метрическая), фунт, унция, стоун (США), стоун (Великобритания), карат, гран, талант (библейский греческий язык), драхма (библейский греческий язык), денарий (библейский римлянин), шекель (библейский иврит), масса Планка, масса протона, единица атомной массы, масса электрона (покой), масса Земли, масса Солнца. .. Сухой объем и общие измерения для приготовления пищи сухой (США), пинта сухой (США), кварт сухой (США), пек (США), пек (Великобритания), бушель (США), бушель (Великобритания), кор (библейский), гомер (библейский), ефа (библейский ), сеах (библейский), омер (библейский), каб (библейский), бревно (библейский), метр кубический. Преобразователь площади : миллиметр², сантиметр², метр², километр², гектар, акр, дюйм², фут², ярд², миля², сарай, круговой дюйм, поселок, руд, стержень², окунь², усадьба, полюс², сабин, арпен, куэрда, верста квадратная, аршин квадратный, фут квадратный, сажень квадратная, площадь планка… Конвертер единиц объема и кулинарных единиц измерения : метр³, километр³, миллиметр³, литр, гектолитр, миллилитр, капля, баррель (масло), баррель (США) ), баррель (Великобритания), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), баррель (нефть), баррель (США), баррель (Великобритания ), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), ярд³, фут³, дюйм³, регистровая тонна, 100 кубических футов. .. Преобразователь температуры : кельвин, градус Цельсия, градус Фаренгейта, градус Ранкина, градус Реомюра, планковская температура. Давление, напряжение, модуль Юнга Конвертер единиц : паскаль, килопаскаль, мегапаскаль, миллипаскаль, микропаскаль, нанопаскаль, техническая атмосфера, стандартная атмосфера, тысяч фунтов/кв. дюйм, ньютон/метр², бар, миллибар, килограмм-сила/метр², грамм- сила/сантиметр², тонна-сила (короткая)/фут², фунт-сила/фут², миллиметр ртутного столба (0°C), дюйм ртутного столба (32°F), сантиметр водяного столба (4°C), фут водяного столба (4°C) м морской воды… Преобразователь энергии и работы : джоуль, килоджоуль, мегаджоуль, миллиджоуль, мегаэлектрон-вольт, электрон-вольт, эрг, киловатт-час, мегаватт-час, ньютон-метр, килокалория (ИТ), калория (пищевая), БТЕ (ИТ), мега БТЕ (ИТ), тонна-час (охлаждение), тонна нефтяного эквивалента, баррель нефтяного эквивалента (США), мегатонна, тонна (ВВ), килограмм тротила, дина-сантиметр, грамм-сила-сантиметр, килограмм-сила-метр, килопонд-метр, фут-фунт, дюйм-фунт, планковская энергия. .. Преобразователь мощности : ватт, киловатт, мегаватт, милливатт, лошадиная сила, вольт-ампер, ньютон-метр/секунда, джоуль/секунда, мегаджоуль/секунду, килоджоуль/секунду, миллиджоуль/секунду, джоуль/час, килоджоуль/час, эрг/секунду, Btu (IT)/час, килокалорию (IT)/час… Конвертер силы : ньютон, килоньютон, миллиньютон, дина, джоуль/метр, джоуль/сантиметр, грамм-сила, килограмм-сила, тонна-сила (короткая), кип-сила, килофунт-сила, фунт-сила сила, унция-сила, фунтал, фунт-фут/секунда², пруд, стен, грав-сила, миллиграмм-сила… Преобразователь времени : секунда, миллисекунда, наносекунда, пикосекунда, минута, час, день, неделя, месяц, год, десятилетие, столетие, тысячелетие, планковское время, год (юлианский), год (високосный), год (тропический), год (сидерический), год (григорианский), две недели, встряска… Преобразователь линейной скорости и скорости : метр/секунда, километр/час, километр/секунда, миля/час, фут/секунда, миля/секунда, узел, узел (Великобритания), скорость света в вакууме, космическая скорость — первая, Космическая скорость — вторая, Космическая скорость — третья, Скорость Земли, Скорость звука в чистой воде, Мах (стандарт СИ), Мах (20°C и 1 атм), ярд/сек. .. Угол Конвертер : градус, радиан, град, гон, минута, секунда, знак, мил, оборот, окружность, оборот, квадрант, прямой угол, секстант. Конвертер топливной экономичности, расхода топлива и экономии топлива : метр/литр, километр/литр, миля (США)/литр, морская миля/литр, морская миля/галлон (США), километр/галлон (США), литр/100 км, галлон (США)/миля, галлон (США)/100 миль, галлон (Великобритания)/миля, галлон (Великобритания)/100 миль… Преобразователь чисел : двоичный, восьмеричный, десятичный, шестнадцатеричный, по основанию 3, по основанию 4, по основанию 5, по основанию 6, по основанию 7, по основанию 9, по основанию 10, по основанию 11, по основанию 12, по основанию 13, по основанию 14, по основанию 15, по основанию 20, по основанию 21, по основанию 22, по основанию 23, по основанию 24, по основанию 28, по основанию 30, по основанию 32, по основанию 34, по основанию 36… Преобразователь единиц хранения информации и данных : бит, байт, слово, четверное слово, MAPM-слово, блок, килобит (10³ бит), кибибит, кибибайт, килобайт (10³ байт), мегабайт (10⁶ байт), гигабайт (10⁹ байт), терабайт (10¹² байт), петабайт (10¹⁵ байт), эксабайт (10¹⁸ байт), дискета (3,5 ED), дискета (5,25 HD), Zip 250, Jaz 2GB, CD (74 минут), DVD (2 слоя 1 сторона), диск Blu-ray (однослойный), диск Blu-ray (двухслойный). .. Курсы обмена валют : евро, доллар США, канадский доллар, британский фунт, японская иена, швейцарский франк, аргентинское песо, австралийский доллар, бразильский реал, болгарский лев, чилийское песо, китайский юань, чешская крона, датская крона, египетский фунт, венгерский форинт, исландская крона, индийская рупия, индонезийская рупия, новый израильский шекель , Иорданский динар, Малайзийский ринггит, Мексиканское песо, Новозеландский доллар, Норвежская крона, Пакистанская рупия, Филиппинское песо, Румынский лей, Российский рубль, Саудовский риал, Сингапурский доллар, Южноафриканский рэнд, южнокорейская вона, шведская крона, новый тайваньский доллар, тайский бат, турецкая лира, украинская гривна… Размеры женской одежды и обуви : Женские платья, костюмы и свитера, женская обувь, женские купальники, размер Letter, бюст, дюймы, естественная талия, дюймы, заниженная талия, дюймы, бедра, дюймы, бюст, сантиметры, Естественная талия, сантиметры, Заниженная талия, сантиметры, Бедра, сантиметры, Длина стопы, мм, Торс, дюймы, США, Канада, Великобритания, Европа, Континенталь, Россия, Япония, Франция, Австралия, Мексика, Китай, Корея. . Размеры мужской одежды и обуви : Мужские рубашки, мужские брюки, размер мужской обуви, буквенный размер, шея, дюймы, грудь, дюймы, рукав, дюймы, талия, дюймы, шея, сантиметры, грудь, сантиметры, Рукав, сантиметры, Талия, сантиметры, Длина стопы, мм, Длина стопы, дюймы, США, Канада, Великобритания, Австралия, Европа, Континентальная, Япония, Россия, Франция, Италия, Испания, Китай, Корея, Мексика… МеханикаПреобразователь угловой скорости и частоты вращения : радиан/секунда, радиан/день, радиан/час, радиан/минута, градус/день, градус/час, градус/минута, градус/секунда, оборот/ день, оборот/час, оборот/минута, оборот/секунда, оборот/год, оборот/месяц, оборот/неделя, градус/год, градус/месяц, градус/неделя, радиан/год, радиан/месяц, радиан/неделя. Преобразователь ускорения : дециметр/секунда², метр/секунда², километр/секунда², гектометр/секунда², декаметр/секунда², сантиметр/секунда², миллиметр/секунда², микрометр/секунда², нанометр/секунда², пикометр/секунда², фемтометр/секунда² , аттометр/секунда², гал, галилео, миля/секунда², ярд/секунда², фут/секунда², дюйм/секунда², ускорение свободного падения, ускорение свободного падения на Солнце, ускорение свободного падения на Меркурии, ускорение свободного падения на Венере , ускорение свободного падения на Луне, ускорение свободного падения на Марсе, ускорение свободного падения на Юпитере, ускорение свободного падения на Сатурне. .. Конвертер плотности : килограмм/метр³, килограмм/сантиметр³, грамм/метр³, грамм/сантиметр³, грамм/миллиметр³, миллиграмм/метр³, миллиграмм/сантиметр³, миллиграмм/миллиметр³, экзаграмм/литр, петаграмм/литр, тераграмм /литр, гигаграмм/литр, мегаграмм/литр, килограмм/литр, гектограмм/литр, декаграмм/литр, грамм/литр, дециграмм/литр, сантиграмм/литр, миллиграмм/литр, микрограмм/литр, нанограмм/литр, пикограмм/литр , фемтограмм/литр, аттограмм/литр, фунт/дюйм³… Конвертер удельного объема : метр³/килограмм, сантиметр³/грамм, литр/килограмм, литр/грамм, фут³/килограмм, фут³/фунт, галлон (США) )/фунт, галлон (Великобритания)/фунт. Преобразователь момента инерции : килограмм-метр², килограмм-сантиметр², килограмм-миллиметров², грамм-сантиметр², грамм-миллиметр², килограмм-сила-метр-секунда², унция-дюйм², унция-сила-дюйм-секунда², фунт-фут², фунт-сила-фут-секунда², фунт-дюйм² , фунт-сила, дюйм, секунда², слизняк, фут². Преобразователь момента силы : ньютон-метр, килоньютон-метр, миллиньютон-метр, микроньютон-метр, тонно-сила (короткий) метр, тонно-сила (длинный) метр, тонно-сила (метрический) метр, килограмм-силомер, грамм-сила-сантиметр, фунт-сила-фут, фунт-фут, фунт-дюйм. Импульс : килограмм-метр в секунду, ньютон-секунда, килоньютон-секунда, килограмм-метр в минуту, килограмм-метр в час, грамм-сантиметр в секунду, ньютон-минута, ньютон-час, дина-минута, грамм-сила-секунда, килограмм-сила-секунда, тонна-сила-минута, фунт-фут в секунду, слаг-фут в минуту, фунт-сила-час, кип-минута, планковский импульс, мегаэлектронвольт импульса… Импульс : ньютон-секунда, меганьютон-секунда, миллиньютон-секунда, килограмм-метр в секунду, килограмм-метр в минуту, килограмм-метр в час, грамм-сантиметр в секунду, ньютон-минута, ньютон-час, дина -минута, грамм-сила-секунда, килограмм-сила-секунда, тонна-сила-минута, фунт-фут в секунду, слаг-фут в минуту, фунт-сила-час, кип-секунда, кип-минута, кип-час ., грамм-сила-сантиметр, грамм-сила-миллиметр, унция-сила-фут, унция-сила-дюйм, фунт-сила-фут, фунт-сила-дюйм. Термодинамика. ТеплотаУдельная энергия, теплота сгорания (на массу) Преобразователь : джоуль/килограмм, килоджоуль/килограмм, калория (ИТ)/грамм, калория (й)/грамм, Btu (th)/фунт, килограмм/джоуль, килограмм/килоджоуль, грамм/калория (IT), грамм/калория (th), фунт/Btu (IT), фунт/Btu (th), фунт/лошадиная сила-час, грамм /лошадиная сила (метрическая)-час, грамм/киловатт-час. Удельная энергия, теплота сгорания (на объем) Перевод единиц : джоуль/метр³, джоуль/литр, мегаджоуль/метр³, килоджоуль/метр³, килокалория (ИТ)/метр³, калория (ИТ)/сантиметр³, терм/фут³, терм/галлон (Великобритания), БТЕ (IT)/фут³, БТЕ (терм.)/фут³, CHU/фут³, метр³/джоуль, литр/джоуль, галлон (США)/лошадиная сила-час, галлон (США)/лошадиная сила (метрическая )-час. Преобразователь теплопроводности : ватт/метр/K, ватт/сантиметр/°C, киловатт/метр/K, калория (ИТ)/секунда/сантиметр/°C, калория (терм)/секунда/сантиметр/°C , килокалория (ИТ)/час/метр/°C, килокалория (терм.)/час/метр/°C, БТЕ (IT) дюйм/секунда/фут²/°F, БТЕ (терм.) дюйм/секунда/фут²/°F , Btu (IT) фут/час/фут²/°F, Btu (TH) фут/час/фут²/°F, BTU (IT) дюйм/час/фут²/°F, BTU (TH) дюйм/час/фут²/ °F. Конвертер удельной теплоемкости : джоуль/килограмм/K, джоуль/килограмм/°C, джоуль/грамм/°C, килоджоуль/килограмм/K, килоджоуль/килограмм/°C, калория (ИТ)/грамм/° C, калория (IT)/грамм/°F, калория (TH)/грамм/°C, килокалория (IT)/килограмм/°C, килокалория (TH)/килограмм/°C, килокалория (IT)/килограмм/K , килокалория (терм. )/килограмм/K, килограмм-сила-метр/килограмм/K, фунт-сила-фут/фунт/°R, Btu (IT)/фунт/°F, Btu (th)/фунт/°F, Btu (IT)/фунт/°R, Btu (th)/фунт/°R, Btu (IT)/фунт/°C, CHU/фунт/°C. Преобразователь плотности теплового потока : ватт/метр², киловатт/метр², ватт/сантиметр², ватт/дюйм², джоуль/секунда/метр², килокалория (IT)/час/метр², килокалория (IT)/час/фут², калория (IT)/минута/сантиметр², калория (IT)/час/сантиметр², калория (й)/минута/сантиметр², калория (теплая)/час/сантиметр², дина/час/сантиметр, эрг/час/миллиметр², фут-фунт/ минута/фут², лошадиная сила/фут², лошадиная сила (метрическая)/фут², БТЕ (ИТ)/секунда/фут², БТЕ (ИТ)/минута/фут², БТЕ (ИТ)/час/фут², БТЕ (й)/секунда/дюйм² , БТЕ (й)/секунда/фут², БТЕ (й)/минута/фут², БТЕ (й)/час/фут², CHU/час/фут². Преобразователь коэффициента теплопередачи : ватт/метр²/K, ватт/метр²/°C, джоуль/секунда/метр²/K, килокалория (IT)/час/метр²/°C, килокалория (IT)/час/фут² /°C, БТЕ (ИТ)/секунда/фут²/°F, БТЕ (терм.)/секунда/фут²/°F, БТЕ (ИТ)/час/фут²/°F, БТЕ (терм. )/час/фут²/° F, CHU/час/фут²/°C. Гидравлика — жидкостиПреобразователь объемного расхода : метр³/сек, метр³/день, метр³/час, метр³/минута, сантиметр³/день, сантиметр³/час, сантиметр³/минута, сантиметр³/секунда, литр/день, литр/час, литр/минута, литр/секунда, миллилитр/день, миллилитр/час, миллилитр/минута, миллилитр/секунда, галлон (США)/день, галлон (США)/час, галлон (США)/минута, галлон (США)/секунда, галлон (Великобритания)/день, галлон (Великобритания)/час, галлон (Великобритания)/минута, галлон (Великобритания)/секунда, килобаррель (США)/день, баррель (США)/день… Преобразователь массового расхода : килограмм/секунда, грамм/секунда, грамм/минута, грамм/час, грамм/день, миллиграмм/минута, миллиграмм/час, миллиграмм/день, килограмм/минута, килограмм/час , килограмм/день, эксаграмм/секунда, петаграмм/секунда, тераграмм/секунда, гигаграмм/секунда, мегаграмм/секунда, гектограмм/секунда, декаграмм/секунда, дециграмм/секунда, сантиграмм/секунда, миллиграмм/секунда, микрограмм/секунда, тонна (метрическая)/секунда, тонна (метрическая)/минута, тонна (метрическая)/час, тонна (метрическая)/день. .. Конвертер молярного расхода : моль/секунду, экзамол/секунду, петамоль/секунду, терамол/секунду, гигамоль/секунду, мегамоль/секунду, киломоль/секунду, гектомоль/секунду, декамоль/секунду, децимоль/секунду, сантимоль/секунду, миллимоль/секунду, микромоль/секунду, наномоль/секунду, пикомоль/секунду, фемтомоль/ секунда, аттомоль/секунда, моль/минута, моль/час, моль/день, миллимоль/минута, миллимоль/час, миллимоль/день, киломоль/минута, киломоль/час, киломоль/день. Преобразователь массового потока : грамм в секунду/метр², килограмм/час/метр², килограмм/час/фут², килограмм/секунда/метр², грамм/секунда/сантиметр², фунт/час/фут², фунт/секунда/фут². Конвертер молярной концентрации : моль/метр³, моль/литр, моль/сантиметр³, моль/миллиметр³, киломоль/метр³, киломоль/литр, киломоль/сантиметр³, килломоль/миллиметр³, миллимоль/метр³, миллимоль/литр, миллимоль/ сантиметр³, миллимоль/миллиметр³, моль/дециметр³, молярный, миллимолярный, микромолярный, наномолярный, пикомолярный, фемтомолярный, аттомолярный, зептомолярный, йоктомолярный. Конвертер массовой концентрации в растворе : килограмм/литр, грамм/литр, миллиграмм/литр, часть/миллион, гран/галлон (США), гран/галлон (Великобритания), фунт/галлон (США), фунт/галлон галлон (Великобритания), фунт/миллион галлонов (США), фунт/миллион галлонов (Великобритания), фунт/фут³, килограмм/метр³, грамм/100 мл. Конвертер динамической (абсолютной) вязкости : паскаль-секунда, килограмм-сила-секунда/метр², ньютон-секунда/метр², миллиньютон-секунда/метр², дина-секунда/сантиметр², пуаз, экзапуаз, петапуаз, терапуаз, гигапуаз, мегапуаз, килопуаз, гектоуравновешенность, декауаз, деципуаз, сантипуаз, миллипуаз, микроуравновешенность, наноуравновешенность, пикоуравновешенность, фемтоуравновешенность, атоуравновешенность, фунт-сила-секунда/дюйм², фунт-сила-секунда/фут², фунт-секунда/фут², грамм/сантиметр/секунда., килостокс, гектостокс, декастокс, декастокс, сантистокс, миллистокс, микростокс, наностокс, пикостокс, фемтостокс, аттостокс. Преобразователь поверхностного натяжения : ньютон/метр, миллиньютон/метр, грамм-сила/сантиметр, дина/сантиметр, эрг/сантиметр², эрг/миллиметр², фунт/дюйм, фунт-сила/дюйм. Акустика — звукПреобразователь чувствительности микрофона : децибел относительно 1 вольта на 1 паскаль, децибел относительно 1 вольта на 1 микропаскаль, децибел относительно 1 вольта на 1 дин на квадратный сантиметр, децибел относительно 1 вольта на 1 микробар, вольт на паскаль, милливольт на паскаль, микровольт на паскаль. Преобразователь уровня звукового давления (SPL) : ньютон на квадратный метр, паскаль, миллипаскаль, микропаскаль, дина/квадратный сантиметр, бар, миллибар, микробар, уровень звукового давления в децибелах. Фотометрия — светКонвертер яркости : кандела/метр², кандела/сантиметр², кандела/фут², кандела/дюйм², килокандела/метр², стильб, люмен/метр²/стерадиан, люмен/сантиметр²/стерадиан, люмен/фут²/ стерадиан, нит, миллинит, ламберт, миллиламберт, фут-ламберт, апостильб, блондель, брил, скот. Конвертер силы света : кандела, свеча (немецкий), свеча (Великобритания), десятичная свеча, свеча (пентан), пентановая свеча (мощность 10 свечей), свеча Хефнера, единица Карселя, десятичное число бужей, люмен/стерадиан, свеча (Международный). Преобразователь освещенности : люкс, метр-свеча, сантиметр-свеча, фут-свеча, фот, нокс, кандела стерадиан/метр², люмен/метр², люмен/сантиметр², люмен/фут², ватт/сантиметр² (при 555 нм) . Преобразователь частоты и длины волны : герц, экзагерц, петагерц, терагерц, гигагерц, мегагерц, килогерц, гектогерц, декагерц, децигерц, сантигерц, миллигерц, микрогерц, наногерц, пикогерц, фемтогерц, аттогерц, цикл/секунду, длина волны в экзаменах , длина волны в петаметрах, длина волны в тераметрах, длина волны в гигаметрах, длина волны в мегаметрах, длина волны в километрах, длина волны в гектометрах, длина волны в декаметрах… Конвертер оптической силы (диоптрии) в фокусное расстояние : Оптическая сила (диоптрийная сила или преломляющая сила) линзы или другой оптической системы — это степень, в которой система сводит или расходит свет. Он рассчитывается как величина, обратная фокусному расстоянию оптической системы, и измеряется в обратных метрах в СИ или чаще в диоптриях (1 диоптрия = м⁻¹) ЭлектротехникаПреобразователь электрического заряда : кулон, мегакулон , килокулон, милликулон, микрокулон, нанокулон, пикокулон, абкулон, EMU заряда, статкулон, ESU заряда, Франклин, ампер-час, миллиампер-час, ампер-минута, ампер-секунда, фарадей (на основе углерода 12), элементарный обвинение. Преобразователь электрического тока : ампер, килоампер, миллиампер, биот, абампер, ЭВС тока, стаампер, ЭСУ тока, СГС э.м. ед., СГС у.с. ед., микроампер, наноампер, планковский ток. Конвертер линейной плотности тока : ампер/метр, ампер/сантиметр, ампер/дюйм, абампер/метр, абампер/сантиметр, абампер/дюйм, эрстед, гильберт/сантиметр, ампер/миллиметр, миллиампер/метр, миллиампер/дециметр , миллиампер/сантиметр, миллиампер/миллиметр, микроампер/метр, микроампер/дециметр, микроампер/сантиметр, микроампер/миллиметр. Преобразователь плотности поверхностного тока : ампер/метр², ампер/сантиметр², ампер/дюйм², ампер/мил², ампер/круговой мил, абампер/сантиметр², ампер/миллиметр², миллиампер/миллиметр², микроампер/миллиметр², килоампер/миллиметр², миллиампер/сантиметр², микроампер/сантиметр², килоампер/сантиметр², ампер/дециметр², миллиампер/дециметр², микроампер/дециметр², килоампер/дециметр². Преобразователь напряженности электрического поля : вольт/метр, киловольт/метр, киловольт/сантиметр, вольт/сантиметр, милливольт/метр, микровольт/метр, киловольт/дюйм, вольт/дюйм, вольт/мил, абвольт/сантиметр, статвольт /сантиметр, статвольт/дюйм, ньютон/кулон, вольт/микрон. Преобразователь электрического потенциала и напряжения : вольт, милливольт, микровольт, нановольт, пиковольт, киловольт, мегавольт, гигавольт, теравольт, ватт/ампер, абвольт, EMU электрического потенциала, статвольт, ESU электрического потенциала, планковское напряжение. Преобразователь электрического сопротивления : ом, мегом, микроом, вольт/ампер, обратный сименс, абом, EMU сопротивления, статом, ESU сопротивления, квантованное сопротивление Холла, импеданс Планка, миллиом, килоом. Преобразователь удельного электрического сопротивления : ом-метр, ом-сантиметр, ом-дюйм, микроом-сантиметр, микроом-дюйм, абом-сантиметр, статом-сантиметр, круговой мил ом/фут, ом кв.миллиметр на метр. Преобразователь электрической проводимости : сименс, мегасименс, килосименс, миллисименс, микросименс, ампер/вольт, мхо, геммо, микромо, абмо, статмо, квантованная проводимость Холла. Преобразователь удельной электропроводности : сименс/метр, пикосименс/метр, мОм/метр, мОм/сантиметр, абмо/метр, абмо/сантиметр, статмо/метр, статмо/сантиметр, сименс/сантиметр, миллисименс/метр, миллисименс/ сантиметр, микросименс/метр, микросименс/сантиметр, единица электропроводности, коэффициент проводимости, частей на миллион, шкала 700, частей на миллион, шкала 500, частей на миллион, шкала 640, TDS, частей на миллион, шкала 640, TDS, частей на миллион, шкала 550, TDS, частей на миллион, шкала 500, TDS, частей на миллион, шкала 700. Преобразователь емкости : фарад, эксафарад, петафарад, терафарад, гигафарад, мегафарад, килофарад, гектофарад, декафарад, децифарад, сантифарад, миллифарад, микрофарад, нанофарад, пикофарад, фемтофарад, аттофарад, кулон/вольт, абфарад, EMU , статфарад, ЕСУ емкости. Преобразователь индуктивности : генри, экзагенри, петагенри, терагенри, гигагенри, мегагенри, килогенри, гектогенри, декагенри, децигенри, сантигенри, миллигенри, микрогенри, наногенри, пикогенри, фемтогенри, аттогенри, вебер/ампер EMU, индуктивности, , статенри, ЭСУ индуктивности. Преобразователь реактивной мощности переменного тока : вольт-ампер реактивный, милливольт-ампер реактивный, киловольт-ампер реактивный, мегавольт-ампер реактивный, гигавольт-ампер реактивный. Преобразователь американского калибра проводов : Американский калибр проводов (AWG) — это стандартизированная система калибров проводов, используемая в США и Канаде для определения диаметров цветных электропроводящих проводов, включая медь и алюминий. Чем больше площадь поперечного сечения провода, тем выше его пропускная способность по току.Чем больше номер AWG, также называемый калибром провода, тем меньше физический размер провода. Наибольший размер AWG — 0000 (4/0), а наименьший — 40. В этой таблице перечислены размеры и сопротивления AWG для медных проводников. Используйте закон Ома для расчета падения напряжения на проводнике. Магнитостатика, магнетизм и электромагнетизмПреобразователь магнитного потока : вебер, милливебер, микровебер, вольт-секунда, единица измерения полюса, мегалиния, килолиня, линия, максвелл, тесла-метр², тесла-сантиметр², гаусс-сантиметр², квант магнитного потока. Конвертер плотности магнитного потока : тесла, вебер/метр², вебер/сантиметр², вебер/дюйм², максвелл/метр², максвелл/сантиметр², максвелл/дюйм², гаусс, линия/сантиметр², линия/дюйм², гамма. Радиация и радиологияМощность поглощенной дозы излучения, общая мощность дозы ионизирующего излучения Преобразователь мощности дозы : грей/сек, экзагрей/сек, петагрей/сек, терагрэй/сек, гигагрей/сек, мегагрей/сек, килогрей/сек, гектогрей /секунда, декагрей/секунда, децигрей/секунда, сантигрей/секунда, миллигрей/секунда, микрогрей/секунда, наногрей/секунда, пикогрей/секунда, фемтогрей/секунда, аттогрей/секунда, рад/секунда, джоуль/килограмм/секунда, ватт /килограмм, зиверт/секунда, миллизиверт/год, миллизиверт/час, микрозиверт/час, бэр/секунда, рентген/час. .. Радиоактивность. Конвертер радиоактивного распада : беккерель, петабеккерель, терабеккерель, гигабеккерель, мегабеккерель, килобеккерель, миллибеккерель, кюри, килокюри, милликюри, микрокюри, нанокюри, пикокюри, резерфорд, раз в секунду, распадов в секунду, распадов в минуту. Преобразователь радиационной экспозиции : кулон/килограмм, милликулон/килограмм, микрокулон/килограмм, рентген, миллирентген, микрорентген, рентген ткани, Паркер, респ. Радиация. Конвертер поглощенной дозы : рад, миллирад, джоуль/килограмм, джоуль/грамм, джоуль/сантиграмм, джоуль/миллиграмм, грей, экзагрей, петагрей, терагрей, гигагрей, мегагрей, килогрей, гектогрей, декагрей, децигрей, сантигрей, миллигрей, микрогрей , наногрей, пикогрей, фемтогрей, аттогрей, зиверт, миллизиверт, микрозиверт… Разные конвертерыКонвертер метрических префиксов : нет, йотта, зетта, экза, пета, тера, гига, мега, кило, гекто, дека , деци, санти, милли, микро, нано, пико, фемто, атто, зепто, йокто. Преобразователь передачи данных : бит/секунду, байт/секунду, килобит/секунду (SI по умолчанию), килобайт/секунду (SI по умолчанию), кибибит/секунду, кибибайт/секунду, мегабит/секунду (SI по умолчанию) , мегабайт в секунду (по SI), мебибит в секунду, мебибайт в секунду, гигабит в секунду (по SI), гигабайт в секунду (по SI), гибибит в секунду, гибибайт в секунду, терабит в секунду (по SI по умолчанию) .), терабайт/секунду (SI по умолчанию), тебибит/секунду, тебибайт/секунду, ethernet, ethernet (быстрый), ethernet (гигабит), OC1, OC3, OC12, OC24, OC48… Типографика и цифровая Конвертер единиц измерения изображения : твип, метр, сантиметр, миллиметр, символ (X), символ (Y), пиксель (X), пиксель (Y), дюйм, пика (компьютер), пика (принтер), точка (DTP/PostScript) ), точка (компьютерная), точка (принтерная), en, cicero, em, Didot точка. Конвертер единиц измерения объема пиломатериалов : кубический метр, кубический фут, кубический дюйм, досковые футы, тысяча досковых футов, шнур, шнур (80 футов³), кордовые футы, кунит, поддон, поперечная стяжка, перекидная стяжка. Калькулятор молярной массы : Молярная масса — это физическое свойство, которое определяется как масса вещества, деленная на количество вещества в молях. Другими словами, это масса одного моля определенного вещества. Периодическая таблица : Периодическая таблица представляет собой список всех химических элементов, расположенных слева направо и сверху вниз по их атомному номеру, электронным конфигурациям и повторяющимся химическим свойствам, организованным в виде таблицы, так что элементы с аналогичные химические свойства отображаются в вертикальных столбцах, называемых группами.Некоторые группы имеют имена, а также номера. Например, все элементы 1-й группы, кроме водорода, являются щелочными металлами, а элементы 18-й группы — благородными газами, которые ранее назывались инертными газами. Различные строки таблицы называются периодами, потому что такое расположение отражает периодическое повторение сходных химических и физических свойств химических элементов по мере увеличения их атомного номера. Элементы одного периода имеют одинаковое количество электронных оболочек. Вам трудно перевести единицу измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты. |
Как рассчитать индуктивность катушки (однослойные цилиндрические катушки индуктивности с воздушным сердечником)
Индуктивность катушки зависит от ее геометрических характеристик, числа витков и способа намотки катушки. Чем больше диаметр, длина и число витков обмотки, тем больше ее индуктивность.
Если катушка намотана туго, виток к витку, то она будет иметь большую индуктивность, чем не намотанная катушка, с зазорами между витками.Иногда нужно намотать катушку с заданной геометрией, а провода нужного диаметра нет, тогда при использовании более толстого провода нужно немного увеличить количество витков, а при использовании более тонкого провода необходимо уменьшить количество витков катушки, чтобы получить требуемую индуктивность.
Все вышеперечисленные соображения относятся к обмоткам катушек без ферритовых сердечников.
Индуктивность однослойных катушек на цилиндрических формах обмотки можно рассчитать по формуле:
L =( D /10) 2 * n 2 /(4.5* D +10* l ) (1)
Где
L — индуктивность катушки, мкГн;
D — диаметр змеевика (диаметр гильзы), мм;
l — длина змеевика, мм;
n — число витков обмоток.
В расчете может быть две задачи:
А. Дана геометрия катушки, найти индуктивность;
Б. Дана индуктивность катушки, рассчитайте количество витков и диаметр провода.
В случае «А» все данные приведены, индуктивность найти несложно.
Пример 1. Рассчитаем индуктивность катушки, показанной на рисунке выше. Подставляем значения в формулу 1:
L =(18/10) 2 *20 2 /(4,5*18+10*20) = 4,6 мкГн
Во втором случае известны диаметр катушки и длина раны. Длина намотки зависит от количества витков и диаметра проволоки. Поэтому рекомендуется производить расчет в таком порядке.Исходя из геометрических соображений, определить размер витка, диаметр и длину намотки, а затем посчитав количество витков по формуле:
n =10*(5* L *(0,9* D +2* l )) 1/2 / D (2)
После того, как вы нашли количество витков, определите диаметр провода с изоляцией по формуле:
д=л/н (3)
Где
d — диаметр проволоки, мм;
l — длина намотки, мм;
n — количество витков.
Пример 2. Нам необходимо изготовить катушку диаметром 10 мм и длиной намотки 20 мм, катушка должна иметь индуктивность 0,8 мкГн. Обмотка имеет один слой, виток к витку.
Подставляем значения в формулу 2, получаем:
n = 10*(5*0,8*(0,9*10+2*20)) 1/2 /10 = 14
Диаметр проволоки: d = 20/14 = 1,43 мм
Для намотки катушки проводом меньшего диаметра необходимо разместить полученные расчетным путем 14 витков по всей длине катушки (20 мм) с равными интервалами между витками (шагом намотки). Индуктивность катушки будет на 1-2% меньше номинальной, это следует учитывать при изготовлении этих катушек. Для намотки катушки проводом толще 1,43 мм новый расчет следует производить с увеличенным диаметром или длиной намотки катушки. Также может понадобиться увеличить одновременно и диаметр, и длину, пока не получатся нужные размеры катушки для данной индуктивности.
Следует отметить, что приведенные выше формулы предназначены для расчета катушек с длиной намотки l равной или более половины диаметра.Если длина обмотки меньше половины диаметра обмотки D /2, более точные результаты можно получить, используя следующие формулы:
L = (D /10) 2 * n 2 /((4 D +11 l )) (4)
и
n = (10 L *(4 D +11 l )) 1/2 / D (5)
Справочник: «300 практических советов»
Метод расчета значения индуктивности подвесных индукторов МЭМС с кремниевой подложкой
Подвесной индуктор МЭМС состоял из медных проводов в воздушном слое, кремниевой подложке (диэлектрическом слое) и земле (слое идеального проводника). Для подвесного индуктора МЭМС ширина w и толщина t проводов были всего порядка 10 мкм, а длина проводов была порядка 100 мкм. При частоте 10 ГГц длина волны равнялась 3 см. Таким образом, длина, ширина и толщина проводов индуктора были намного меньше длины волны. Провода индуктора рассматривались как ряд электрических диполей.
2.1. Расчет значения индуктивности подвешенного индуктора, состоящего из одного провода
Схема подвешенного индуктора МЭМС, состоящего из одного провода, показана на , а рассматриваемая геометрия показана на .
Схема микроэлектромеханической системы (МЭМС) с подвешенным индуктором, состоящим из одного провода.
Геометрия провода на высоте d над подложкой.
Как видно, медный провод расположен на высоте d над кремниевой подложкой. Длина провода равна а, а толщина подложки равна l. В , область 0 (z>0) указывает на воздушный слой над подложкой, область 1 (-l≤z≤0) указывает на кремниевую подложку, а область 2 (z<-l) указывает на землю. Диэлектрическая проницаемость, магнитная проницаемость и проводимость области i выражаются как εi, µi, σi в .
В цилиндрических координатах интегральные выражения компонент электромагнитного поля в области 0 из-за горизонтального электрического диполя в точке (0, 0, d) могут быть выражены как:
E0ρ(ρ,φ,z)= −ωµ0Idl4πk02cosφ[Fρ0(ρ,z−d)−Fρ0(ρ,z+d)+Fρ1(ρ,z+d)+Fρ2(ρ,z+d)]
(1)
E0φ(ρ, φ,z)=ωµ0Idl4πk02sinφ[Fφ0(ρ,z−d)−Fφ0(ρ,z+d)+Fφ1(ρ,z+d)+Fφ2(ρ,z+d)]
(2)
E0z(ρ,φ,z)=iωµ0Idl4πk02cosφ[Fz0(ρ,z−d)−Fz0(ρ,z+d)+Fz1(ρ,z+d)]
(3)
B0ρ(ρ,φ ,z)=-µ0Idl4πsinφ[Gρ0(ρ,z−d)−Gρ0(ρ,z+d)+Gρ1(ρ,z+d)+Gρ2(ρ,z+d)]
(4)
B0φ(ρ,φ,z)=−µ0Idl4πcosφ[Gφ0(ρ,z−d)−Gφ0(ρ,z+d)+Gφ1(ρ,z+d)+Gφ2(ρ,z+d)]
(5)
B0z(ρ,φ,z)=iµ0Idl4πsinφ[Gz0(ρ,z−d)−Gz0(ρ,z+d)+Gz2(ρ,z+d)]
(6)
где ki — волновое число в области i , а ki можно рассчитать, используя: прямые волны электрического диполя, Fm0(ρ,z+d) и Gm0(ρ,z+d) ( м = ρ, φ, z) — идеальные отраженные волны. Fm1(ρ,z+d) и Gm1(ρ,z+d) ( м = ρ, φ, z) — волны электрического типа. Fm2(ρ,z+d) и Gm2(ρ,z+d) ( м = ρ, φ, z) — волны магнитного типа.
Индуктивность провода состоит из внутренней индуктивности и внешней индуктивности. Внешняя индуктивность рассчитывается с использованием внешнего магнитного потока. Вклад в магнитный поток вносит только плотность магнитного потока в направлении, перпендикулярном плоскости подложки (вдоль оси z в ), выраженная как B0z.В цилиндрических координатах B0z за счет горизонтального электрического диполя в точке (0, 0, d) может быть выражено как [18]: eik0r1+(ρr2)(k0r2+ir22)eik0r2+2π∑jλjB*2tanγ1B*lp′(λjB*)·eiγ0B*(z+d)·h2(1)(λjB*ρ)−2k021πk0ρ·eik0r2·[πk0ρ−π2eiπ4 ·T·exp(−ik0ρ2(z+dρ+iT)2)·erfc(−ik0ρ2(z+dρ+iT)2)]}
(8)
Четыре слагаемых в скобках уравнения (8) обозначают прямую волну, идеальную отраженную волну, захваченную поверхностную волну магнитного типа и боковую волну магнитного типа электрического диполя соответственно. Захваченная поверхностная волна магнитного типа не существует, когда k12−k02l<π2. В этом исследовании диэлектрическая и магнитная проницаемости воздуха составляют ε0=8,85×10-12 Ф/м и μ0=4π×10-7 Гн/м, диэлектрическая и магнитная проницаемости кремния составляют ε1=11,9×8,85×10- 12 Ф/м и µ1=µ0=4π×10−7 Гн/м. Поскольку толщина подложки составляет порядка 100 мкм, даже когда частота достигает 10 ГГц, можно рассчитать, что k12-k02l составляет всего порядка 0,1. Таким образом, в данном исследовании можно пренебречь захваченной поверхностной волной магнитного типа.
В уравнении (8) r1 — это расстояние между электрическим диполем источника в точке (0, 0, d) и точкой поля, а r2 — расстояние между точкой поля и диполем идеального изображения в точке (0, 0, −г). T можно выразить как:
T=k12−k02k0tank12−k02l
(9)
Функция ошибки «erfc» определяется как [20]:
erfc(x)=−∫x∞e−t2dt
(10)
и
erfc(x)≈1πxe−x(1−12x+34×2+…)
(11)
Уравнение (8) можно переписать в виде в прямоугольной системе координат:
B0z(x,y, z)=iµ0Idl4π·yρ·{−(ρr1)(k0r1+ir12)eik0r1+(ρr2)(k0r2+ir22)eik0r2−2k021πk0ρ·eik0r2·[πk0ρ−π2eiπ4·T·exp(−ik0ρ2(z+dρ+iT) 2)·erfc(−ik0ρ2(z+dρ+iT)2)]}
(12)
где
и
показывает вертикальный вид рассматриваемой геометрии.
Вертикальный вид рассматриваемой геометрии.
Согласно уравнению (12), на плоскости (x, y, d) плотность магнитного потока B0z, обусловленная проводом длиной a, может быть выражена как:
B0z(x, y,d)=∫0aiµ0I4π ·yρ·{−(ρr1)(k0r1+ir12)eik0r1+(ρr2)(k0r2+ir22)eik0r2−2k021πk0ρ·eik0r2·[πk0ρ−π2eiπ4·T·exp(−ik0ρ2(2dρ+iT)2)·erfc(− ik0ρ2(2dρ+iT)2)]}dx0
(16)
где
и
r2=(x−x0)2+y2+4d2
(19)
Внешний магнитный поток, создаваемый проводом, можно выразить как:
Ψ=∫w2∞∫0aB0zdxdy
(205)
Внешнюю индуктивность подвешенного индуктора, состоящего из одного провода, можно рассчитать, используя:
Внутреннюю индуктивность можно рассчитать, используя уравнение (22) [21]:
где a, w, t — длина, ширина и толщина проволоки.γ – проводимость материала провода. В этом исследовании материалом провода была медь. ϑ — это коэффициент, связанный с w/t, и ϑ можно получить с помощью справочной таблицы.
Тогда значение индуктивности подвешенного индуктора, состоящего из одного провода, можно рассчитать с помощью (23):
2.
2. Расчет значения индуктивности подвешенного индуктора, состоящего из одной прямоугольной катушки
Схема подвешенного индуктора МЭМС, состоящего из одной прямоугольной катушки, показана на рис.Высота подвеса катушки d. Длина и ширина прямоугольной катушки равны a1 и a2 соответственно. Прямоугольная катушка состоит из четырех отрезков проволоки, и плотность магнитного потока на плоскости (x, y, d), обусловленная каждым отрезком проволоки, также может быть рассчитана с помощью уравнения (16).
Схема подвесного индуктора МЭМС, состоящего из одной прямоугольной катушки.
Таким образом, магнитный поток в области, ограниченной прямоугольной катушкой, может быть выражен как:
где B0z1 и B0z2 — плотность магнитного потока на отрезке провода, длина которого равна a1 и a2 соответственно.
Тогда внешнюю индуктивность подвешенного индуктора, состоящего из одной прямоугольной катушки, можно рассчитать, используя:
Внутреннюю индуктивность каждого сегмента провода также можно рассчитать, используя (22). Внутренняя индуктивность прямоугольной катушки может быть выражена как:
Li=2×(a1wtμ02ωγϑ+a2wtμ02ωγϑ)
(26)
Сумма внешней индуктивности и внутренней индуктивности представляет собой значение индуктивности подвешенного индуктора, состоящего из одна прямоугольная катушка.
Значение индуктивности — обзор
Расчеты индуктивности
Отзывы читателей этой главы показывают, что существует путаница в отношении использования ΔI для расчета значений индуктивности. ΔI представляет собой изменение тока катушки индуктивности или первичного тока во время включения, и рекомендуемое значение составляет примерно 20 % от номинального пикового тока переключателя LT1070 (5 А) или, в некоторых случаях, 20 % от среднего значения катушки индуктивности. Текущий. Это эмпирическое правило 20% предназначено для получения почти максимальной выходной мощности для данного номинального тока переключателя.Если максимальная выходная мощность не требуется, можно использовать гораздо меньшие катушки индуктивности/трансформаторы, допуская увеличение ΔI. Подход к проектированию заключается в расчете пикового тока катушки индуктивности/переключателя (I P ) с использованием формул, приведенных в этой главе, при L = ∞.
Затем сравните этот ток с пиковым током переключателя. Разница заключается в «комнате», допустимой для ΔI:
ΔIMAX=2 (ISWITCH (PEAK)−IP)
Эта формула предполагает работу в непрерывном режиме. Если ΔI, рассчитанное по этой формуле, превышает I P , возможен переход в прерывистый режим работы с дальнейшим уменьшением индуктивности.Прерывистый режим требует более высоких токов переключения, и не во всех топологиях этих глав приведены расчетные уравнения для этого режима, но его определенно следует рассматривать для очень низких выходных мощностей или когда размер катушки индуктивности/трансформатора имеет решающее значение. Все топологии хорошо работают в прерывистом режиме, за исключением полностью изолированного обратного хода. Недостатки прерывистого режима включают более высокие пульсации на выходе и немного более низкий КПД.
Пример 1: Отрицательный понижающий преобразователь с V IN = -24 В, V OUT = -5 В и I OUT = 1.5A,
IP (уравнение 37)=IOUT+(VIN−VOUT)(VOUT)2•VIN•f•(L≈∞)=IOUT=1,5AΔIMAX=2 (ISW−IP)=2 (5−1,5)= 7A (LT1070) =2 (2,5−1,5)=2A 9 (LT1071) =2 (1,25−1,5)=NA (LT1072)
LT1072 слишком мал (I P > I SW ), поэтому выберите LT1071, который дает максимальное значение ΔI 2A. Консервативное значение фактического ΔI выбрано равным 1А. Это оставляет место для потерь эффективности и изменений в стоимости компонентов. Используя уравнение 37 :
L=(VIN−VOUT)(VOUT)VIN (ΔI)•f=(24−5)(5)24(1)•40k=99 мкГн
Пример 2: Обратноходовой преобразователь где V IN = 6 В, V OUT = ± 15 В при 35 мА и 5 В при 0.2A, N = 0,4 (первичное и вторичное напряжение 5 В). Для расчетов вся выходная мощность 2,05 Вт относится к вторичной обмотке 5 В, что дает одно значение для N (0,4), V OUT (5 В) и I OUT = 0,41 A.