Как обозначаются конденсаторы на схемах: основные параметры и емкость
В электротехнике используются конденсирующие элементы разных типов и размеров. При чтении чертежей электрику необходимо знать обозначение конденсаторов на схеме и различать изображения устройств разных видов.
Типы конденсаторных элементов
О конденсаторе
Это устройство обладает способностью хранения электрического заряда. Между его пластинами располагается слой диэлектрика, создающий изоляцию для пары проводящих поверхностей. Основной характеристикой устройства является емкость – способность к накоплению заряда. С точки зрения технологии, наиболее распространенные типы конденсаторов – электролитические и электростатические. Выбор используемого элемента зависит от особенностей электросхемы и того, какую функцию он должен выполнять.
Обозначение конденсаторов на схемах
В отношении того, как именно обозначается конденсатор на схеме, существует строгая стандартизация: устройство узнается по паре параллельных друг другу близко расположенных вертикальных черт. Эти линии символизируют обкладки. Устройство полагается подписывать литерой С, возле нее обозначить порядковый номер устройства в электросхеме. Рядом с этими обозначениями или под ними указывают значение емкости.
Условные обозначения конденсаторов
В России существует система условных графических обозначений, включающая УГО конденсатора. Визуальной репрезентации этих устройств, а также резисторов посвящен отдельный ГОСТ, входящий в Единую систему конструкторской документации. Используются также международные стандарты – IEEE.
Конденсатор с постоянной емкостью
Такие элементы выпускаются с поляризацией и без нее. Неполяризованные изделия мелкого размера имеют широкую сферу применения, их можно подсоединять в разных направлениях. На схеме их обозначают двумя параллельными короткими черточками, находящимися под прямым углом к линиям соединения. На корпусе устройства указывают его емкость, нередко без единиц измерения (0,1 – это 1 микрофарад).
Важно! За рубежом иногда используют аббревиатуру MFD для указания емкости. Она означает микрофарады.
Графическая репрезентация элемента с постоянной емкостью
Код номера конденсатора
Первая пара знаков показывает емкость, цифра следом за ними – количество нулей. Единица измерения – пикофарад. Иногда на такой маркировке присутствуют буквы, они обозначают допуск в процентах и номинальное напряжение.
Поляризованные конденсаторы
Самым распространенным типом полярного конденсаторного элемента является электролитический. Такие изделия выпускаются в форме цилиндров или в осевом исполнении. Первый вариант несколько компактнее и дешевле. Выводы у него находятся с одной из сторон, тогда как у осевых вариантов – на разных. Поскольку устройства относительно крупные, на их корпусах указываются номинальное напряжение (оно у них относительно низкое) и емкость.
Важно! При подключении этих изделий необходимо строго соблюдать полярность, иначе они могут выйти из строя или даже взорваться.
Так в схемах показывают поляризованные элементы
Танталовые конденсаторы
Эти изделия крайне компактны, ставят их в тех случаях, когда важно минимизировать габариты. В прошлом их маркировали двумя цветными полосами (каждый цвет соответствовал цифре) и пятнышком белого или серого цвета (в первом случае значение полос в микрофарадах делили на 10, во втором – на 100). Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс». Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров.
Переменные конденсаторы
Из-за очень малой емкости эти детали имеют узкую сферу применения – в основном они используются в радиосхемах. Графически переменные элементы изображаются традиционным символом из пары коротких параллелей, зачеркнутых наклонной стрелой. Емкость указывают не четкой цифрой, а диапазоном.
Обозначение переменных изделий
Конденсаторы-триммеры
Это суперминиатюрные изделия, монтируемые прямо на печатную плату. Поскольку показатель емкости меняется только при настроечных работах, такие элементы получили название подстроечных. Графическое представление отличается от стандартного для переменных конденсаторов только тем, что вместо острия стрела снабжена перпендикулярной черточкой.
Ионистор
Это изделие с двухслойным строением и довольно большой емкостью (до 10 Ф). На границе электродной поверхности и электролита у таких устройств возникает пространство статичных носителей заряда. В отличие от электролитических вариаций, способ хранения энергии здесь – электростатическое поле. Сочетание большой площади поверхности и малой толщины пространства обеспечивает столь высокий показатель емкости. Обозначается как символ конденсаторного элемента с перпендикулярной ему вертикальной линией, помещенный в круг. При этом в верхней правой и нижней левой четвертях, на которые символ и вертикаль делят круг, находятся линии, сходные с графиком полусинусоиды.
Температурный коэффициент конденсатора
Этот показатель отражает склонность емкостного значения меняться под действием температурных колебаний. Рабочий показатель температуры сильно влияет на долговечность элемента. Коэффициент зависит от вида элемента, например, у изделий из керамики он небольшой, у электролитических – значительный.
Маркировка отечественных конденсаторов
Постсоветские производители маркируют свои изделия довольно подробно и унифицировано. В редких случаях возможны некоторые отличия в обозначениях.
Ёмкость
Это параметр всегда указывается первым, для дробных чисел его кодировка состоит из трех знаков. Первая цифра – это целая часть числа, отражающего значение емкости, третья – дробная часть, на второй позиции находится буква, обозначающая единицу измерения: m – миллифарад, n – нанофарад, p – пикофарад. Например, 3n6 – 3,6 нанофарад. Целые значения указываются так: число и рядом единица измерения с добавленной буквой F (3 pF – 3 пикофарада).
Важно! Если номинал не указан, целая цифра говорит о том, что значение указывалось в пикофарадах, десятичная дробь – в микрофарадах.
Номинальное напряжение
Если размер изделия достаточный, показатель указывают по стандартной схеме: 180 В (или V) – 180 вольт. На миниатюрных конденсаторах значение кодируют латинской буквой, например, 160 В – литерой Q.
Дата выпуска
Ее принято указывать четырьмя цифрами: первые две – это последние цифры года выпуска, вторые две – месяц (9608 – август 1996 года).
Расположение маркировки на корпусе
Поскольку указание параметров очень важно для монтажа схемы, данные показатели помещают на корпусе устройства самой первой строкой. В начале всегда указывают емкость.
Цветовая маркировка отечественных радиоэлементов
Это кодировка с использованием 4 цветных полос, где каждый цвет соотносится с определенной цифрой. Первые две полосы показывают емкость в пикофарадах, следующая – допустимое отклонение, последняя – номинальное напряжение.
Маркировка конденсаторов импортного производства
У американских и других импортных изделий кодировка емкости выглядит так: начальные две цифры – значение в пикофарадах, третья – число нулей.
Цветовая маркировка импортных конденсаторов
Она состоит из пятерки полос. Начальная пара – емкостной показатель в пФ, следующая полоса – число нулей, четвертая – показатель возможного отклонения, пятая – номинал напряжения.
Данные о конденсаторах на схемах призваны информировать работающих с ними специалистов о видах используемых устройств и их основных характеристиках. При выборе используемого элемента нужно обращать внимание на маркировку.
Видео
Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы. Разные конденсаторы рисунок Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними. Устройство простейшего конденсатора Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже: Формулы соединение конденсаторов Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора: Полярный конденсатор изображение на схеме К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор: Фото электролитический конденсатор У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса: Фото конденсатора с насечками Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом: Неполярный конденсатор изображение на схеме На фото ниже изображены пленочный и керамический конденсаторы: Пленочный Керамический Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение: Расшифровка цифровой маркировки конденсаторов На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой: Таблица номиналов конденсаторов Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже: Фото SMD конденсатора Далее показано фото электролитических SMD конденсаторов: Фото электролитических SMD конденсаторов Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер. Переменные конденсаторыКак и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости: Рисунок как устроен переменный конденсатор Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей. Фото переменный конденсатор На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости: Переменный конденсатор изображение на схеме На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом: Подстроечный конденсатор изображение на схеме Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры. Фото подстроечный конденсатор На следующем рисунке изображено строение подстроечного конденсатора: Рисунок строение подстроечного конденсатора Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV. Форум по различным радиоэлементам Обсудить статью КОНДЕНСАТОР |
Обозначение конденсаторов на схеме: как это происходит
Если требуется устройство для накопления заряда в схеме, используются конденсаторы. При рассмотрении элементов учитывается их удельная емкость, а также плотность энергии. Предусмотрено множество типов устройств, отличающихся по сборке и предназначению.
Описание
Конденсатор является двухполюсным элементом, которой служит уплотнителем. Основная задача — удержание переменной емкости в цепи. В момент подачи напряжения происходит перезарядка элемента. Далее осуществляется процесс накопления заряда и энергии электрического поля.
Конденсатор на схеме
Обозначение на схемах
Конденсатор на схеме может по-разному обозначаться в зависимости от цепи. Для понимания маркировки стоит рассмотреть распространённые типы элементов:
- с постоянной емкостью;
- поляризованные;
- танталовые;
- переменные;
- триммеры;
- ионисторы.
Обозначение конденсаторов на схеме связано с ГОСТом 2.728-74. Речь идет о межгосударственном стандарте, в котором прописана маркировка.
Поляризованные
Обозначение электролитических конденсаторов на схемах можно описать, как две горизонтальные полоски со знаком плюс. При рассмотрении товаров есть разделение на полярные и неполярные типы. Те и другие включаются в схему и отличаются по параметрам. Весь секрет заключается в процессе изготовления.
Поляризованный тип
Интересно! На примере алюминиевых моделей видно, что они производятся с обкладкой в фольге. Она выступает в качестве катода и является отличным проводником.
На схеме конденсатор может подсоединяться параллельно либо последовательно. Если взглянуть на цепь, на ней отображается постоянная, а также переменная емкость. Надписи пишутся сокращённо, однако по маркировке можно узнать точное значение. Представленные варианты отличаются высокой степенью стабильности, поэтому применяются в бытовой технике.
Отечественные аналоги продаются в замкнутых корпусах и являются компактными. Поляризованные конденсаторы могут быть пленочными либо керамическими. Учитывается электрика, а также показатель напряжения. Накопитель может находиться в твердом, жидком или газообразном состоянии.
Полупроводниковые конденсаторы считаются наиболее распространёнными, и в цепи обозначаются с показателем предельной ёмкости. В промышленности востребованными остаются твердотельные компоненты, которые применяются в платах управления.
Танталовые
Элементы данного типа обозначаются двумя горизонтальными полосками. они производятся с покрытием диоксида марганца. Компоненты являются востребованными, поскольку обладают высокой мощностью, и по всем параметрам обходят алюминиевые элементы. Весь секрет кроется в использовании сухого электролита.
Танталовые модели
К основным особенностям стоит прописать такое:
- термостабильность,
- отсутствие утечек,
- высокое напряжение,
- значительный срок годности.
Вместе с тем в цепи конденсаторы страдают при повышенной температуре. У них низкий ток заряда, есть проблема с частотой. Электронная промышленность движется вперёд, поэтому танталовые типы всё чаще используются в платах управления.
Важно! Элементы востребованы по причинам компактных размеров и высокого напряжения.
Если рассматривать твердотельные модификации, они состоят из диэлектрика, защитного покрытия, а также катода с анодом. В цепи компоненты не бояться пониженных частот, поскольку учитывается высокое значение импеданса. Графический показатель рассчитывается, как отношение индуктивности к определенной емкости.
Дополнительно при рассмотрении схем конденсатора берется в расчет показатель фильтрации сигналов. Как правило, он не превышает 100 км. Чтобы элемент работал должным образом, определяется безопасный уровень тока и частоты.
Рассчитывается максимальная мощность компонента и уровень сопротивления, относительно рабочей частоты. В документации графической формы указывается параметр ESR, он демонстрирует мощность рассеивания. В цепи существует ряд факторов, влияющих на показатели:
- сигнал;
- максимальная температура;
- корректирующий множитель.
Чтобы просчитать среднюю частоту по схеме, рассчитывается среднеквадратичный ток. Для этого берется в расчет минимальное значение емкости и номинальная мощность. Если рассматривать печатные платы, конденсаторы могут обозначать значениями FR4, FR5, G10. Рядом с элементами подписывается параметр емкости.
Важно! При осмотре схемы учитываются размеры контактных зон.
Правила установки танталовых изделий:
- требуется паяльная паста;
- выбор места;
- доступные способы пайки.
Чтобы танталовый конденсатор эффективно работал на плате, подбирается паяльная паста и наносится толщиной в 0.02 мм. Некоторые используют материалы с флюсом, такое также допускается. Основная проблема — это подбор оптимального режима пайки. При установке танталового конденсатора обращается внимание на маркировку, стоит обращать внимание на обозначение ёмкости.
Также показана полярность, номинальное напряжение. Проще всего восстанавливать конденсаторы стандартных типоразмеров. Процесс производится вручную либо на фабрике. Там с этой целью используются конвекционные либо инфракрасные печи. Помимо ручной пайки известным считается волновой метод.
Ручная пайка
Основное требование — поддержание оптимальной температуры для подогрева контакта. После пайки следует заняться чисткой. С этой целью подойдут растворы Prelete, Chlorethane, Terpene. Важное требование — это отсутствие такого элемента, как дихлорметан.
Переменные
Конденсаторы переменного типа изображены с перечеркнутыми двумя горизонтальными полосками. Особенность данного типа заключается в изменении емкости посредством воздействия механической силы. Напряжение на обкладке может изменяться, учитываются показатели в колебательных контурах.
Устройства применимы в схеме приемника либо передатчика. Элементы используются на пару со стабилизаторами, тримерами. Переменные конденсаторы, наравне с подстрочными элементами применяются в колебательных контурах. Их основная задача — измерение резонансной частоты. Как вариант, компоненты встречаются в цепях радиоприемника, используются на пару с усилителями.
Переменный тип
Если говорить об антенных устройствах, конденсаторы незаменимые для генераторов частоты. В качестве основы применяются твердые резисторы и органическая плёнка. На рынке представлены керамические варианты компактных размеров. Есть товары с одной или двумя секциями, у которых отличаются показатели емкости.
Если рассматривать многосекционные модели, они обозначаются, как 6 горизонтальных полосок в цепи. Также существует построечный тип для радиоаппаратуры. За основу элемента взят воздушный диэлектрик, который используется в цепи переменного тока. Конденсаторы применимы в блоках питания и фильтрах.
Важно! Радиолюбители знают о проблеме с низкой частотой и необходимостью подгонки ёмкости.
Конденсаторы-триммеры
Данный тип конденсаторов на схеме обозначен в виде двух горизонтальных полосок со стрелкой. Речь идёт о компактных элементах, использующихся в печатных платах. У них крайне низкие показатели емкости, учитывается незначительная частота. По структуре модель отличается от переменных конденсаторов.
Триммеры
Ионистор
Ионистор на схеме показан, как стандартный электролитический конденсатор — две горизонтальные полоски со знаком плюс. Элемент производится без диэлектрика и не обладает потенциальным зарядом. Знак «+» показывает полярность конденсатора на схеме.
По структуре ионистор содержит сепаратор, уплотнительный изолятор, а также электроды. Если смотреть параметры, учитывается такое:
- внутреннее сопротивление,
- предельный ток,
- номинальное напряжение,
- уровень саморазряда,
- предельная емкость,
- срок годности.
В принципиальной сети элемент используется в блоках питания. Также он подходит для таймера, других цифровых устройств. Даже если заглянуть в смартфон либо планшет, на плате найдётся данный элемент.
Ионистор
Температурный коэффициент
Когда изменяется температура окружающей среды, емкость конденсатора также меняется. Чтобы отслеживать данный коэффициент, берется в расчет показатель ТКЕ. По формуле он представляет собой соотношение начальной емкости и изменения температуры. Первоначально отслеживаются нормальные условия работы компонента.
При значительном повышении температуры используются линейные уравнения, в которых задаются показатели рабочих условий функционирования конденсатора. Также указывается стартовая ёмкость в качестве ориентира. Показатель ТКЕ необходим для подготовки описания к элементам.
Показатель ТКЕ
Если взглянуть на спецификацию, прописываются все параметры. При подборе компонентов пользователи желают знать, как устройство реагирует на изменение температуры. Чаще всего речь идет о постоянном показателе, поэтому стоит рассматривать график с диапазоном рабочих температур.
Маркировка
Если взглянуть на схему, отечественные компоненты отмечаются с набором характеристик:
- ёмкость,
- номинальное напряжение,
- дата выпуска,
- расположение маркировки на корпусе,
- цветовая маркировка отечественных радиоэлементов.
Важно разбираться в показателях, уметь расшифровывать аббревиатуры. Таким образом, получится точно определить тип конденсатора.
Маркировка отечественных радиоэлементов
Ёмкость
Емкость конденсатора измеряется в фарадах (Ф), микрофарадах (мкФ) или пикофарадах (пФ) и прописываться рядом со значком элемента. На схемах учитывается постоянный, переменный, саморегулирующийся параметр. Номинальная емкость дублируется на корпусе конденсатора. Так, на элементе могут указываться обозначения:
- 5П1 — 5,1 пФ.
- h2 — 100 пФ.
- 1Н — 1000 пФ.
Номинальная емкость
Номинальное напряжение
Показатель номинального напряжения измеряется в вольтах, регулируется ГОСТом 9665 — 77. Если взглянуть на схему, встречается надпись С1 100В. В данном случае говорится о номинальном напряжении в 100 вольт. Таким образом, определяется электролитическая прочность компонента. Специалист способен рассчитать толщину диэлектрика, учитывая прочие факторы.
Номинальное напряжение
Зная показатель напряжения сети, открывается представление о сфере использования элемента. Если не учитывать данный параметр, конденсатор может не справится с возложенной на него нагрузкой. Весь секрет заключается в типе используемой обкладки. Также в расчет берутся рабочие температуры.
Дата выпуска
Если присмотреться к элементам, в конце маркировки оказывается 4 цифры. Они показывают год, а также месяц изготовления элемента. К примеру, на конденсаторе может быть указано «9608». Из этого следует, что элемент изготовлен в 1996 году, в августе месяце. Правила нанесения маркировки прописаны в ГОСТе 30668-2000.
Маркировки по ГОСТу 30668-2000
Расположение маркировки на корпусе
Чтобы быстро отыскать необходимую информацию на корпусе конденсатора, маркировка находится на передней стороне. Если рассмотреть плёночный компонент, либо другой тип, регламент четко прописан в ГОСТе и дублируется в технических инструкциях. Производитель обязательно использует цветовые индикаторы полосками. и цифровые обозначения.
Цветовая маркировка отечественных радиоэлементов
По цветовой маркировке можно узнать информацию о множителе, номинальной емкости и даже рабочей температуре.
- Золотистый цвет (указывает на низкий параметр множителя — 0.01 допуск составляет не более 5%).
- Серебристый (множитель 0.1, показатель допуска не больше 10%).
- Чёрный (множитель 1, допуск 20%).
- Коричневый (указывает на емкость 1 мкФ, множитель равняется 10, а допуск не более 1%).
- Красный (говорит о номинальной емкости 2 пф, множитель составлять 10 в квадрате, допуск около 2%).
- Оранжевый (это элемент с ёмкостью 3 пф, множитель 10 в третьей степени).
- Жёлтый цвет (элементы с емкостью 4 пф, множитель у них 10 в четвёртой степени).
- Зелёный цвет (элементы с множителем 10 в пятой степени, показатель 4 пф)
- Голубой цвет (на 6 пф, множитель 10 в 6 степени, отклонения 0.25 процентов).
- Фиолетовый (допуск от 0.1 процентов, параметр множителя 10 в седьмой степени, а емкость 7 пФ).
- Серый (допуск 0.05 процентов, ёмкость 8 пф, множитель — 10 в восьмой степени).
- Белый (элемент на 9 пф, множитель 10 в девятой степени).
Цвета конденсаторов
Маркировка конденсаторов импортного производства
Рассматривая маркировку импортных конденсаторов, необходимо понимать, что первые цифры показывают емкости. Далее следует количество нолей и потом показателя ЕТК. Ниже указывается допустимое рабочее напряжение, к примеру, взять электролитический конденсатор с ёмкостью 100 пф, на нём будет обозначение «100n». Также прописывается допустимое напряжение, например, 120 вольт.
Выше подробно расписаны типы конденсаторов. Каждый из элементов имеет определённое обозначение на схеме. Чтобы разбираться в них, стоит изучить таблицу со значениями и цветами.
Что такое конденсатор, как обозначается на схемах, единицы емкости
Знакомство с конденсатором для тех кто только начинает знакомиться с радиоэлектроникой и радиолюбительством. Что такое конденсатор. какие бывают конденсаторы, как они обозначаются на принципиальных схемах, единицы измерения емкости конденсаторов, включение конденсаторов.
Что такое конденсатор
Конденсатор, это радиодеталь, обладающая электрической емкостью. Конденсатор можно зарядить и он будет хранить заряд, апотом готов отдать его «по первому требованию». На первый взгляд это похоже на работу аккумулятора, но только на первый взгляд.
Конденсатор не является химическим источником тока, да и вообще источником тока. Конденсатор можно назвать временным хранилищем заряда. Заряд в нем можно пополнять и забирать. Во время зарядки и разрядки конденсатора через него протекает ток.
Напряжение на разряженном конденсаторе равно нулю. Но в процессе зарядки напряжение увеличивается, и как только достигает величины напряжения источника тока, заряд прекращается. С нарастанием напряжения на конденсаторе 8 процессе его зарядки ток зарядки уменьшается.
Физически конденсатор это две металлические пластины, разделенные тонким слоем изолятора. Так и есть. Выходит, что конденсатор пропускать электрический ток не может. Но в процессе зарядки и разрядки ток есть.
То есть, можно сказать, что конденсатор может пропускать изменяющийся ток. то есть, переменный. А постоянный он не пропускает. Это свойство широко используется в электронике и радиотехники для разделения переменного и постоянного токов, которые есть в одной и той же цепи.
Если сопротивление конденсатора постоянному току бесконечно (активное сопротивление), то на переменном токе он обладает весьма определенным реактивным сопротивлением, зависящим от емкости конденсатора и частоты переменного тока.
Еще конденсаторы применяют для задержки подачи напряжения, в таймерах. Там используется то свойство конденсатора, что скорость его заряда или разряда зависит от силы тока заряда или разряда. А если этот ток ограничить резистором, то чем больше будет сопротивление этого резистора, тем дольше будет процесс заряда или разряда.
Если у резистора основным параметром является сопротивление, то у конденсатора -емкость, которая выражается 8 фарадах. Величина 1F (одна фарада) довольно велика, поэтому чаще всего речь идет о микрофарадах, нанофарадах, пикофарадах. Конденсаторы так же как и резисторы бывают постоянные (емкость которых не измена), переменные и подстроечные (с ручкой для регулировки емкости).
Обозначение конденсатора на схемах
В отличие от постоянных резисторов, которые в большинстве своем похожи на бочонок с двумя выводами, постоянные конденсаторы бывают самых разных форм и размеров. Но разделить их можно на две группы, — полярные и неполярные. Разница в том, что у полярного конденсатора есть плюс и минус и подключать в схему его нужно с учетом полярности.
А у неполярного конденсатора выводы равнозначны. На рисунке 1 показаны обозначения конденсаторов, А — неполярный, Б — полярный. В -переменный, Г — подстроечный.
Рис. 1. Обозначение конденсаторов на принципиальных схемах.
Кроме емкости, выраженной, чаще всего в пикофарадах или микрофарадах (иногда и в нанофарадах), другим важным параметром является максимально допустимое напряжение. Если к обкладкам (выводам) конденсатора приложить напряжение выше этой величины может произойти пробой изолятора и конденсатор выйдет из строя.
Если говорят что «конденсатор на 250V», это значит, что на конденсатор нельзя подавать напряжение больше 250V. Меньше -пожалуйста, начиная от нуля. Но больше этой величины, — ни в коем случае!
Таким образом, у конденсатора есть два основных параметра, — емкость, выраженная 8 десятичных долях Фарады (микрофарады, нанофарады, пикофарады), и максимальное напряжение, выраженное в Вольтах.
На схемах значение емкости обычно пишут 8 пикофарадах (р, pF, пФ) и микрофарадах (pF, м, мкФ). 1 мкФ = 1000000 пФ. Но встречаются обозначения и в нанофарадах (nF, п) обычно на зарубежных схемах. 1nF = 1000pF. Бывает что на схемах буква, обозначающая кратную приставку используется как децимальная запятая, например, 1500 р = 1,5n = 1N5 или 1n5.
На многих схемах зарубежной аппаратуры встречается замена греческой буквы «р» на латинскую «и». То есть, 10 микрофарад у них будет так: «10uF». Возможно, это связано с отсутствием греческого шрифта в программе с помощью которой нарисована схема.
Включение конденсаторов
Для получения нужной емкости иногда приходится соединять два конденсатора параллельно или последовательно (рис.2.). При параллельном соединении общая емкость рассчитывается как сумма емкостей:
Собщ = С1 + С2.
При последовательном соединении приходится пользоваться более сложной формулой: Собщ = (С1«С2) / (С1+С2) .
Рис. 2. Параллельное и последовательное включение конденсаторов, формулы для расчета емкости.
Маркировка конденсаторов
Теперь о маркировке конденсаторов. Здесь как и у резисторов есть несколько стандартов. Если конденсатор достаточно больших размеров, то на нем емкость может быть так и указана, например, на стакане оксидного конденсатора емкостью 10 мкФ так и будет написано: 10 pF или 10 мкФ, далее будет указано напряжение, например, 25V, и отмечена полярность выводов, у отечественных конденсаторов возле положительного вывода будет «+», а у иностранных возле отрицательного вывода будет «-» или полоска.
На крупных неполярных конденсаторах тоже все будет написано просто и ясно, например, на конденсаторе типа К73-14 емкостью 0,22 мкФ на максимальное напряжение 250V будет так и написано: 0,22pF 250V.
Сложнее с маленькими керамическими или слюдяными неполярными конденсаторами. Места здесь для маркировки мало, поэтому придумывают сокращения. Например, на конденсаторах типа К10-7 в виде пластинок емкость указывается с использованием кратной приставки как децимальной запятой, вот несколько примеров такой маркировки:
- 150 пФ — «150р» или «150п»
- 1500 пФ — «1N5» или «1Н5»
- 15000пФ (0,015 мкФ) — «15N» или «15Н» .
У зарубежных керамических конденсаторов используется такая же маркировка как у резисторов, только за основу идет не единицы Ом, а единицы Пикофарад. Обозначение состоит из трех цифр. Первые две —
значение в пФ, а третья — множитель, практически численно показывающая сколько нулей нужно приписать, чтобы получилось значение выраженное в пФ. Вот несколько примеров такого обозначения:
- 15 пФ — «150» (к 15 приписать 0 нолей)
- 150 пФ — «151»(к 15 приписать 1 ноль)
- 1500 пф — «152» (к 15 приписать 2 ноля)
- 0,015 мкФ (15000 пФ) — «153» (к 15 приписать 3 нуля).
- 0,15 мкФ (150000 пФ) — «154» (к 15 приписать 4 нуля).
Эксперимент с конденсатором
Чтобы практически познакомиться со способностью конденсатора накапливать заряд можно провести один эксперимент. Возьмем оксидный конденсатор типа К50-35 емкостью 2200 мкФ и соберем схему, показанную на рисунке 3. Здесь мы будем заряжать конденсатор от батарейки, и разряжать через лампочку от карманного фонаря.
Когда переключатель S1 находится в показанном на схеме положении, через него и резистор R1 конденсатор С1 заряжается. Переключаем S1 в нижнее по схеме положение, и конденсатор С1 разряжается через лампочку Н1.
Рис. 3. Схема простого эксперимента с конденсатором.
Теперь приступаем к делу. Переключаем S1 вниз по схеме и лампочка вспыхивает. Горит она недолго. Затем, возвращаем S1 в исходное положение. Конденсатор заряжается от батарейки. И снова переключаем S1 вниз по схеме.
Лампочка опять вспыхивает, так как на неё поступает заряд, накопленный конденсатором. Если слишком быстро переключать S1 лампа будет вспыхивать слабее, или вообще не будет вспыхивать, так как С1 не успевает зарядиться через R1.
РК-2010-04.
Конденсатор какой буквой обозначается — Морской флот
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Знакомство с конденсатором для тех кто только начинает знакомиться с радиоэлектроникой и радиолюбительством. Что такое конденсатор. какие бывают конденсаторы, как они обозначаются на принципиальных схемах, единицы измерения емкости конденсаторов, включение конденсаторов.
Что такое конденсатор
Конденсатор, это радиодеталь, обладающая электрической емкостью. Конденсатор можно зарядить и он будет хранить заряд, апотом готов отдать его «по первому требованию». На первый взгляд это похоже на работу аккумулятора, но только на первый взгляд.
Конденсатор не является химическим источником тока, да и вообще источником тока. Конденсатор можно назвать временным хранилищем заряда. Заряд в нем можно пополнять и забирать. Во время зарядки и разрядки конденсатора через него протекает ток.
Напряжение на разряженном конденсаторе равно нулю. Но в процессе зарядки напряжение увеличивается, и как только достигает величины напряжения источника тока, заряд прекращается. С нарастанием напряжения на конденсаторе 8 процессе его зарядки ток зарядки уменьшается.
Физически конденсатор это две металлические пластины, разделенные тонким слоем изолятора. Так и есть. Выходит, что конденсатор пропускать электрический ток не может. Но в процессе зарядки и разрядки ток есть.
То есть, можно сказать, что конденсатор может пропускать изменяющийся ток. то есть, переменный. А постоянный он не пропускает. Это свойство широко используется в электронике и радиотехники для разделения переменного и постоянного токов, которые есть в одной и той же цепи.
Если сопротивление конденсатора постоянному току бесконечно (активное сопротивление), то на переменном токе он обладает весьма определенным реактивным сопротивлением, зависящим от емкости конденсатора и частоты переменного тока.
Еще конденсаторы применяют для задержки подачи напряжения, в таймерах. Там используется то свойство конденсатора, что скорость его заряда или разряда зависит от силы тока заряда или разряда. А если этот ток ограничить резистором, то чем больше будет сопротивление этого резистора, тем дольше будет процесс заряда или разряда.
Как определить полярность конденсатора и не перепутать?
Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.
Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.
В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.
Полярность конденсаторов.
Параметры, которыми характеризуется конденсаторы
Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.
Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.
Маркировка конденсаторов.
Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.
Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.
Параллельное соединение
Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.
Материал в тему: все о переменном конденсаторе.
На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.
Соединения конденсаторов.
Что будет если перепутать полярность
Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.
При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.
Как определить полярность электролитического конденсатора
Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.
Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.
В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.
Как определить полярность электролитического конденсатора.
Полярные и неполярные конденсаторы – в чем отличие
Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?
В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.
Интересный материал для ознакомления: что такое вариасторы.
Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.
Полярные и неполярные конденсаторы.
Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.
Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.
Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.
Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.
Полярность конденсатора.
А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.
На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.
Полярный и неполярный конденсатор
Полярные (электролитические) конденсаторы
Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.
Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
полярный и неполярный конденсатор
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.
В данной статье были рассмотрены основные особенности трансформаторов. Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.nauchebe.net
www.masterkit.ru
www.radiostorage.net
www.texnic.ru
www.radioelementy.ru
Предыдущая
КонденсаторыЧто такое плоские конденсаторы
Следующая
КонденсаторыСколько стоят керамические конденсаторы?
Различные типы конденсаторов, их изображения и символы
«Конденсатор — это устройство, которое может накапливать заряд». Помимо резисторов и катушек индуктивности, это еще один базовый компонент, обычно используемый в электронных схемах. Это устройство, обладающее способностью накапливать заряд, чего не могут сделать ни резистор , ни катушка индуктивности, оно препятствует любому изменению напряжения в цепи, к которой оно подключено, оно блокирует прохождение через него постоянного тока.
Они производятся различных размеров, форм, типов и стоимости.По сути, конденсатор состоит из двух проводящих пластин, разделенных изолирующей средой, называемой диэлектриком.
диэлектрик может быть воздухом, слюдой, керамикой, бумагой, полиэфиром, полистиролом или поликарбонатом и т. Д.
Как заряжаются аккумуляторы конденсатора?
В нейтральном состоянии обе обкладки конденсатора имеют равное количество свободных электронов.
Когда конденсатор подключен к источнику напряжения через резистор, как показано на рисунке ниже:
электронов перемещаются с пластины A, и такое же количество электронов откладывается на пластине B.Поскольку пластина A теряет электроны, а пластина B набирает электроны, пластина A становится положительной по отношению к пластине B. Во время этого процесса зарядки электроны проходят только через соединительные провода и источник. Электроны не проходят через диэлектрик конденсаторов, потому что он представляет собой i nsulator . Движение электронов прекращается, когда напряжение на конденсаторе равно напряжению источника, как показано на рисунке ниже:
Если конденсатор отключен от источника, он сохраняет накопленный заряд в течение длительного периода времени (промежуток времени зависит от типа конденсатора) и на нем все еще есть напряжение, как показано на рисунке:
Заряженный конденсатор может действовать как временная батарея, и следует отметить следующие моменты:
- Ток не может течь через конденсатор, потому что наличия в цепи диэлектрика, обеспечивающего бесконечное сопротивление.Электрический заряд мгновенно перемещается с одной пластины на другую только через внешнюю цепь.
- По мере увеличения разности потенциалов между пластинами диэлектрическая среда испытывает растущее напряжение. Если эта разность потенциалов увеличивается, прочность диэлектрика увеличивается до тех пор, пока она больше не может ее выдерживать.
На этом этапе происходит электрический пробой, сопровождающийся искрой между двумя пластинами конденсатора. Максимальное напряжение на метр толщины, которое среда может выдержать без разрыва или пробоя, называется ее диэлектрической прочностью.
Как разряжается конденсатор?
Если два вывода заряженных конденсаторов соединены вместе, разность потенциалов между двумя пластинами выравнивается, и он разряжается.
, поскольку между двумя пластинами существует разность потенциалов, между ними создается электрическое поле, сила которого определяется выражением:
E = V / d
, где V — вольт, а d — метр.
Как конденсаторы накапливают энергию?
Он накапливает энергию в виде электрического поля, которое создается противоположными зарядами на двух пластинах.Электрическое поле представлено силовыми линиями между положительными и отрицательными зарядами и сосредоточено внутри диэлектрика. Как показано на рис.…
Закон Кулона гласит
Между зарядами двухточечного источника существует сила, которая прямо пропорциональна произведению двух зарядов и обратно пропорционально квадрату расстояния между зарядами. это соотношение выражается как:
где F — сила в ньютонах, q 1 и q 2 — заряды в кулонах, d — расстояние между зарядами в метрах, а k — пропорциональная константа. равно 9 × 10 -9 Нм² / C².
На рисунке выше показана силовая линия между положительным и отрицательным зарядом.
На рисунке выше показано, что множество противоположных зарядов на пластинах конденсатора создают множество силовых линий, которые образуют электрическое поле, которое накапливает энергию внутри диэлектрика.
Чем больше силы между зарядами на пластинах конденсатора, тем больше энергии сохраняется. Следовательно, количество энергии прямо пропорционально емкости, потому что чем больше накопленный заряд, тем больше сила.
Также из уравнения Q = CV, величина накопленного заряда напрямую связана с напряжением, а также с емкостью . Следовательно, количество запасенной энергии также зависит от квадрата напряжения на пластинах конденсатора. Формула для энергии , запасаемой конденсатором, равна
Когда емкость (C) выражается в фарадах, а напряжение (V) в вольтах, энергия (w) в джоулях.
Номинальное напряжение:
Каждый конденсатор имеет ограничение на величину напряжения, которое он может выдерживать на своих пластинах.Номинальное напряжение указывает максимальное напряжение постоянного тока, которое может применяться без риска повреждения устройства. Если это максимальное напряжение, обычно называемое напряжением пробоя или рабочим напряжением , превышено, это может привести к необратимому повреждению конденсатора.
Перед использованием конденсатора в схеме необходимо принять во внимание емкость и номинальное напряжение. Выбор значения емкости зависит от конкретных требований схемы.Номинальное напряжение всегда должно быть выше максимального напряжения, ожидаемого в конкретном приложении.
Диэлектрическая прочность:
Напряжение пробоя конденсатора определяется диэлектрической прочностью используемого электрического материала. Диэлектрическая прочность выражается в В / мил (1 мил = 0,01 дюйма). Ниже приведены некоторые типичные значения для нескольких материалов. Точные значения меняются в зависимости от конкретного состава материала.
Материал Диэлектрическая прочность (об. / Мил)
- Воздух 80
- Масло 375
- Керамика 1000
- Бумага 1200
- Тефлон 1500
- Слюда 1500
- Стекло 2000
Диэлектрическую прочность лучше всего объяснить следующим образом: пример.Предположим, что у определенного конденсатора расстояние между пластинами составляет 1 мил, а диэлектрический материал — керамический. Этот конкретный конденсатор может выдерживать максимальное напряжение 1000 В, поскольку его электрическая прочность составляет 1000 В / мил. Если максимальное напряжение будет превышено, диэлектрик может выйти из строя и провести ток, что приведет к необратимому повреждению конденсатора.
Температурный коэффициент:
Температурный коэффициент показывает величину и направление изменения емкости значения в зависимости от температуры.Положительный температурный коэффициент означает, что емкость увеличивается с повышением температуры или уменьшается с понижением температуры. Отрицательный коэффициент означает, что емкость уменьшается при повышении температуры или увеличивается при понижении температуры . Температурные коэффициенты обычно указываются в частях на миллион на градус Цельсия (ppm / ° C).
Утечка:
Нет идеального изоляционного материала. Диэлектрик любого конденсатора будет проводить очень небольшое количество тока.Таким образом, заряд конденсатора в конечном итоге исчезнет. Некоторые типы конденсаторов, например, с большим электролитом, имеют более высокие утечки, чем другие.
Типы конденсаторов
Конденсаторы постоянной емкости
- Слюдяные конденсаторы
- керамические конденсаторы
- пленочные конденсаторы с пластиковой пленкой
- электролитические конденсаторы
- бумажные конденсаторы
Слюдяные конденсаторы
Слюдяные конденсаторы могут быть уложены друг на друга из фольги и серебряной слюды.Основная конструкция многослойной фольги показана как:
Она состоит из чередующихся слоев металлической фольги и тонких листов слюды. Металлическая фольга образует пластину с чередующимися листами фольги, соединенными вместе, чтобы увеличить площадь пластины. Используется больше слоев для увеличения площади пластины, что увеличивает емкость. Пакет слюды / фольги заключен в изолирующий материал, такой как бакелит, как показано на рисунке.
Конденсатор из серебряной слюды формируется аналогичным образом путем наложения листов слюды с экранированным на них материалом серебряного электрода.Доступны слюдяные конденсаторы со значениями емкости от 1 пФ до 0,1 мкФ и номинальным напряжением от 100 до 2500 В постоянного тока. Общие температурные коэффициенты находятся в диапазоне от -20 ppm / C ° до +100 ppm / C °. Типичная диэлектрическая проницаемость слюды составляет 5.
Керамические конденсаторы
Керамические диэлектрики обеспечивают очень высокие диэлектрические проницаемости (обычно 1200). В результате сравнительно высокие значения емкости могут быть достигнуты при небольшом физическом размере. Керамические конденсаторы обычно доступны в форме керамического диска.
Керамические конденсаторы обычно доступны со значениями емкости от 1 пФ до 2,2 мкФ с номинальным напряжением до 6 кВ. Типичный температурный коэффициент для керамических конденсаторов составляет 200 000 ppm / C °.
Пластиковые пленочные конденсаторы
Есть несколько типов пластиковых пленочных конденсаторов. Поликарбонат, пропилен, полиэстер, полистирол и майлар являются одними из наиболее часто используемых диэлектрических материалов. Некоторые из этих типов имеют значения емкости до 100 мкФ.
На рисунке показана общая базовая конструкция, используемая во многих пластиковых пленочных конденсаторах. Тонкая полоска диэлектрика из пластиковой пленки зажата между двумя тонкими металлическими полосками, которые действуют как пластины. Один вывод подключается к внутренней пластине, а другой — к другой пластине, как показано. Затем полосы скручивают по спирали и помещают в формованный корпус. Таким образом, большая площадь пластины может быть упакована при относительно небольшом физическом размере, что позволяет достичь больших значений емкости.В другом методе для формирования пластин используется металл, нанесенный непосредственно на пленочный диэлектрик.
Электролитические конденсаторы
Электролитические конденсаторы поляризованы так, что одна пластина является положительной, а другая — отрицательной. Эти конденсаторы используются для значений емкости от 1 мкФ до более 200 000 мкФ, но они имеют относительно низкое напряжение пробоя (350 В — типичный максимум) и высокую степень утечки. В этом тексте конденсаторы емкостью 1 мкФ или более считаются поляризованными.
Электролитические конденсаторы имеют гораздо более высокие характеристики, чем слюдяные или керамические конденсаторы, но их номинальное напряжение обычно ниже. Алюминиевые электролиты, вероятно, являются наиболее часто используемым типом.
Переменные конденсаторы
Переменные конденсаторы используются в цепи, когда необходимо вручную или автоматически отрегулировать значение емкости, например, в радио или ТВ-тюнерах. Схематическое обозначение переменного конденсатора показано на рисунке:
Регулируемые конденсаторы, которые обычно имеют регулировку под винт с прорезью и используются для очень точной регулировки в цепи, называются подстроечниками.Керамика или слюда являются обычным диэлектриком в конденсаторах этих типов, и емкость обычно изменяется путем регулировки расстояния между пластинами. На рисунке ниже показаны некоторые типичные устройства с переменными конденсаторами.
Варактор — это полупроводниковое устройство, которое демонстрирует характеристику емкости, которая изменяется путем изменения напряжения на его выводах.
Применение конденсаторов в реальной жизни
- Они используются в таймере
- Схема временной развертки в CRO для генерации пилообразной волны
- Схемы фильтров
- Осцилляторы
- Схема тюнера в радиоприемнике
- В качестве таймера при установке частоты с осциллятором
- Интегрирующая и дифференцирующая цепи
- Умножитель напряжения
- Детектор пиков
- Демодулятор
- Фиксирующие цепи
- В двигателях переменного тока для увеличения крутящего момента
- Преобразование активной мощности в пассивную
типов конденсаторов и их применения (видео)
См. Также:
Емкость
.
Как работает конденсатор — Физика конденсатора и его применение
В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.
Обзор
Практически нет схемы, в которой нет конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.
Конденсатор — это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.
Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-нибудь, что препятствует прохождению тока.
Емкость конденсатора, измеряемая в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости ε диэлектрика, в то время как чем меньше расстояние между пластинами, тем больше емкость. При этом давайте посмотрим, как работает конденсатор.
Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.
Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны с пластины, подключенной к положительному выводу батареи, начнут двигаться к подключенной пластине к отрицательному выводу аккумулятора. Однако из-за наличия диэлектрика между пластинами электроны не могут проходить через конденсатор, поэтому они начнут накапливаться на пластине.
После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания той электроники, которая уже там.
На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный результирующий положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.
Принцип работы диэлектрика конденсатора
Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут менять свою ориентацию в зависимости от зарядов на двух пластинах.Таким образом, молекулы выравниваются с электрическим полем таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая большее количество электронов из положительной пластины.
Итак, если конденсатор полностью заряжен, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.
Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут перемещаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.
Итак, это основной принцип работы конденсатора, а теперь давайте взглянем на некоторые примеры применения.
Конденсаторы развязки (байпаса)
Конденсаторы развязки или конденсаторы байпаса являются типичным примером. Разделительные конденсаторы часто используются вместе с интегральными схемами, и они размещаются между источником питания и землей ИС.
Их работа заключается в фильтрации любого шума в источнике питания, например пульсаций напряжения, которые возникают, когда источник питания в течение очень короткого периода времени понижает свое напряжение или когда часть цепи переключается, вызывая колебания мощности. поставка.В момент падения напряжения конденсатор временно действует как источник питания, минуя основной источник питания.
Преобразователь переменного тока в постоянный
Другой типичный пример применения — конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без помощи конденсаторов он не сможет справиться с этой задачей.
Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, в то время как на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя падает, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.
Связано: что такое триггер Шмитта и как он работает
Фильтрация сигналов
Фильтрация сигналов — еще один пример применения конденсаторов. Благодаря особому времени отклика они могут блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.
Используется в радиоприемниках для настройки нежелательных частот и в схемах кроссовера внутри громкоговорителей, для разделения низких частот для вуфера и высоких частот для твитера.
Конденсаторы как накопители энергии
Еще одно довольно очевидное применение конденсаторов — для накопления и подачи энергии. Хотя они могут накапливать значительно меньше энергии по сравнению с батареями того же размера, их срок службы намного выше, и они способны передавать энергию намного быстрее, что делает их более подходящими для приложений, где требуется большой всплеск мощности.
Вот и все для этого урока, не стесняйтесь задавать любой вопрос в разделе комментариев ниже.
.
Теория конденсаторов
Конденсаторы
широко используются в электротехнике для таких функций, как накопление энергии, коррекция коэффициента мощности, компенсация напряжения и многие другие. Емкость также присуща любой системе распределения электроэнергии и может играть ключевую роль в ее работе.
Для полного понимания конденсаторов и их использования важно, чтобы практикующие электрики хорошо разбирались в теории конденсаторов.
Емкость
Используемые символы
C — конденсатор, с единицей измерения Фарад (Ф)
R — резистор, с единицей измерения Ом (Ом)
V — d.c. напряжение источника в вольтах (В)
v c — напряжение конденсатора в вольтах (В)
I — пиковый ток заряда или разряда в амперах (A)
i — мгновенный ток в амперах (A)
Q — электрический заряд (Кл)
E — напряженность электрического поля (В / м)
D — плотность электрического потока (Кл / м2)
ε o — диэлектрическая проницаемость свободного пространства (ф / м) — постоянная: 8.854 187 817 … x 10−12
ε r — относительная диэлектрическая проницаемость диэлектрика
Конденсаторы состоят из проводящих поверхностей, разделенных диэлектриком (изолятором). Эффект этого заключается в том, что при приложении напряжения заряд течет в конденсатор и сохраняется. Когда к конденсатору подключена внешняя цепь, этот накопленный заряд будет течь из конденсатора в цепь.
Емкость — это величина заряда, который может храниться в конденсаторе.Единица измерения емкости в системе СИ — фарад ( F ). Фарада — это отношение накопленного конденсатором электрического заряда к приложенному напряжению:
Величина емкости зависит от используемых материалов и геометрии конденсатора.
Формально емкость находится путем решения уравнения Лапласа ∇2φ = 0, где φ — постоянный потенциал на поверхности проводника. Более простые геометрические формы также могут быть решены с помощью других методов (в этом примере показан пример конденсатора с параллельными пластинами).
Пример — емкость параллельных пластин
Конденсатор параллельных пластин
(щелкните, чтобы увеличить изображение)
Показан конденсатор; предполагается, что диэлектрик представляет собой вакуум. Электростатическая теория предполагает, что отношение плотности электрического потока к напряженности электрического поля является диэлектрической проницаемостью свободного пространства:
Плотность электрического потока и напряженность электрического поля определяются по формуле:
D = QA и E = Vd
С емкостью, определенной как:
Приведенные выше уравнения можно объединить и решить, чтобы получить емкость конденсатора с параллельными пластинами (с диэлектриком на свободном воздухе) как:
фарад
Для Для более реальных диэлектриков емкость будет увеличиваться прямо пропорционально относительной диэлектрической проницаемости и определяется по формуле:
фарад
Зарядка и разрядка конденсаторов
Зарядка (и разрядка) конденсаторов происходит по экспоненциальному закону.Рассмотрим схему, которая показывает конденсатор, подключенный к постоянному току. источник через переключатель. Резистор представляет собой сопротивление утечки конденсатора, сопротивление внешних проводов и соединений, а также любое намеренно введенное сопротивление.
Напряжение зарядки конденсатора
Напряжение зарядки конденсатора
Когда переключатель замкнут, начальное напряжение на конденсаторе (C) равно нулю, а ток (i) определяется по формуле:
— от основного конденсатора теория
Напряжение на резисторе — это ток, умноженный на его значение, что дает:
Согласно закону Кирхгофа о напряжении d.c. напряжение источника (В) равно сумме напряжения конденсатора (v c ) и напряжения на резисторе:
Что при перестановке дает:
и
Путем интегрирования обеих сторон, мы получаем:
при , дает
Путем перестановки
, который идет на
и
Напряжение на конденсаторе увеличится от нуля до значения d.c. источник как экспоненциальная функция.
Зарядный ток конденсатора
Зарядка конденсатора и разрядка
Из приведенного выше:
Выдача:
Деление начального тока (I) на напряжение источника постоянного тока сопротивлением:
дает
Постоянная времени
Произведение сопротивления и емкости (RC) в секундах и обозначается как постоянная времени цепи (обозначается греческой буквой Тау, τ ).
Используя это, уравнения напряжения и зарядного тока на конденсаторе записываются как:
Примечание: , увеличивая значение сопротивления R, увеличивает постоянную времени, в результате более медленный заряд (или разряд) конденсатора.
Разряд конденсатора
При разрядке ток ведет себя так же, как и при зарядке, но в противоположном направлении.Напряжение на конденсаторе экспоненциально спадет до нуля. Уравнения для разряда как по току, так и по напряжению могут быть определены аналогично тому, как показано выше, и суммируются как:
Накопитель энергии
Чем больше емкость, тем больше энергии он может магазин.
Ток в конденсаторе определяется по формуле:
Мгновенная мощность внутри конденсатора является произведением тока и напряжения:
Вт
В течение интервала dt подаваемая энергия составляет:
джоулей
Интегрируя мгновенную энергию при повышении напряжения конденсатора, мы можем найти общую запасенную энергию:
джоулей
Стоит отметить, что при последовательном соединении конденсаторов общая емкость уменьшается, но номинальное напряжение увеличивается.При параллельном подключении номинальное напряжение остается неизменным, но увеличивается общая емкость. В любом случае общий запас энергии любой комбинации — это просто сумма накопительной емкости каждого отдельного конденсатора.
Потери в резисторе
При зарядке идеального конденсатора потерь нет. Однако, если конденсатор заряжается через резистор, следует понимать, что половина энергии заряда будет потеряна и рассеиваться в виде тепла через конденсатор.
Рассмотрим приведенную выше схему с зарядным током:
Мгновенная потеря мощности на резисторе составляет:
Следовательно, общая потеря мощности составляет:
Обработка решения дает:
∫0∞V2Re − 2tRCdt = [V2R (−RC2) e − 2tRC] 0∞ = [0] — [- CV22]
= 12CV2 джоулей
Видно, что потеря энергии такая же, как и в конденсаторе.При разряде в резисторе также будет потеряна половина запасенной энергии.
См. Также
.
Обобщение импеданса для распространения закона Ома на конденсаторы и индукторы
- Образование
- Наука
- Электроника
- Обобщение импеданса для распространения закона Ома на конденсаторы и индукторы
Автор: Джон Сантьяго
Использование концепции Джона Сантьяго
Закон Ома в векторной форме, поэтому вы можете применить его и расширить на конденсаторы и катушки индуктивности. После описания импеданса вы используете векторные диаграммы, чтобы показать разность фаз между напряжением и током.Эти диаграммы показывают, как соотношение фаз между напряжением и током различается для резисторов, конденсаторов и катушек индуктивности.
Закон Ома и импеданс
Для схемы, состоящей только из резисторов, закон Ома гласит, что напряжение равно току, умноженному на сопротивление, или В = IR . Но когда вы добавляете устройства хранения в схему, связь i-v становится немного сложнее. Резисторы избавляются от энергии в виде тепла, а конденсаторы и катушки индуктивности накапливают энергию.
Конденсаторы сопротивляются изменениям напряжения, а катушки индуктивности — изменениям тока. Импеданс обеспечивает прямую зависимость между напряжением и током для резисторов, конденсаторов и катушек индуктивности, когда вы анализируете цепи с векторными напряжениями или токами.
Как и сопротивление, вы можете думать об импедансе как о константе пропорциональности, которая связывает векторное напряжение В, и векторный ток I в электрическом устройстве. В терминах закона Ома можно соотнести В , I и импеданс Z следующим образом:
В = I Z
Импеданс Z — это комплексное число:
Z = R + jX
Вот что означают действительная и мнимая части Z :
Реальная часть R — это сопротивление от резисторов .Вы никогда не вернете энергию, потерянную при протекании тока через резистор. Когда у вас есть резистор, подключенный последовательно с конденсатором, начальное напряжение конденсатора постепенно снижается до 0, если к цепи не подключена батарея.
Почему? Потому что резистор использует начальную накопленную энергию конденсатора в виде тепла, когда через цепь протекает ток. Точно так же резисторы заставляют начальный ток катушки индуктивности постепенно снижаться до 0.
Мнимая часть X — это реактивное сопротивление , которое возникает в результате воздействия конденсаторов или катушек индуктивности .Всякий раз, когда вы видите воображаемое число для импеданса, речь идет о запоминающих устройствах. Если мнимая часть импеданса отрицательна, тогда в мнимой части импеданса преобладают конденсаторы. Если он положительный, в импедансе преобладают индукторы.
Когда у вас есть конденсаторы и катушки индуктивности, импеданс изменяется с частотой. Это большое дело! Почему? Вы можете разрабатывать схемы, чтобы принимать или отклонять определенные диапазоны частот для различных приложений. Когда в этом контексте используются конденсаторы или катушки индуктивности, цепи называются фильтрами.Вы можете использовать эти фильтры для таких вещей, как создание необычных рождественских дисплеев с мигающими разноцветными огнями и танцами под музыку.
Величина, обратная импедансу Z , называется проводимостью Y :
Действительная часть G называется проводимостью , а мнимая часть B называется проводимостью .
Диаграммы и резисторы, конденсаторы и катушки индуктивности
Фазорные диаграммы объясняют различия между резисторами, конденсаторами и катушками индуктивности, где напряжение и ток либо совпадают по фазе, либо не совпадают по фазе на 90 o .Напряжение и ток резистора совпадают по фазе, потому что мгновенное изменение тока соответствует мгновенному изменению напряжения.
Но для конденсаторов напряжение не изменяется мгновенно, поэтому даже если ток изменяется мгновенно, напряжение будет отставать от тока. Для катушек индуктивности ток не изменяется мгновенно, поэтому при мгновенном изменении напряжения ток отстает от напряжения.
Вот векторные диаграммы этих трех устройств.Для резистора ток и напряжение совпадают по фазе, потому что векторное описание резистора составляет В R = I R R . Напряжение конденсатора отстает от тока на 90 o из-за — j / (ω C) , а напряжение индуктора опережает ток на 90 o из-за j ω L .
Положите закон Ома для конденсаторов в векторной форме
Для конденсатора емкостью C у вас будет следующий ток:
Поскольку производная фазора просто умножает вектор на j ω , описание вектора для конденсатора составляет
Описание вектора для конденсатора имеет форму, аналогичную закону Ома, показывая, что импеданс конденсатора равен
Ранее вы видели векторную диаграмму конденсатора.Напряжение конденсатора отстает от тока на 90 90 10 3 o 90 10 4, как вы можете видеть из формулы Эйлера:
Представьте себе мнимое число j как оператор, который поворачивает вектор на 90, o против часовой стрелки. –j вращает вектор по часовой стрелке. Также следует отметить, что j 2 поворачивает вектор на 180 o и равен –1.
Мнимая составляющая конденсатора отрицательна.По мере увеличения радианной частоты ω сопротивление конденсатора уменьшается. Поскольку частота батареи равна 0, а напряжение батареи постоянное, сопротивление конденсатора бесконечно. Конденсатор действует как разомкнутая цепь для источника постоянного напряжения.
Положите закон Ома для индукторов в векторной форме
Для индуктора с индуктивностью л напряжение
Соответствующее описание вектора для индуктора:
Импеданс индуктора
Z L = jωL
Ранее вы видели векторную диаграмму индуктора.Напряжение индуктора опережает ток на 90 o по формуле Эйлера:
Мнимая составляющая для индукторов положительна. По мере увеличения радианной частоты ω сопротивление катушки индуктивности увеличивается. Поскольку радианная частота для батареи равна 0, а батарея имеет постоянное напряжение, импеданс равен 0. Катушка индуктивности действует как короткое замыкание для источника постоянного напряжения.
Об авторе книги
Джон М.Сантьяго-младший, доктор философии, , прослужил в ВВС США (USAF) 26 лет. В течение этого времени он занимал различные руководящие должности в области технического управления программами, развития приобретения и поддержки операционных исследований. Находясь в Европе, он возглавлял более 40 международных научных и технических конференций / семинаров.
.