Закон Ома для участка цепи. Какова природа электрического сопротивления металлов


Природа сопротивления металлов

Количество просмотров публикации Природа сопротивления металлов - 524

Было выяснено, что электрический ток в проводнике начинается под действием внутреннего электрического поля, разгоняющего заряды. Сила, действующая на заряд со стороны поля равна . При этом, в случае если на тело действует сила, то его скорость должна меняться, в данном случае – увеличиваться. Из эксперимента видно, что, прикладывая к проводнику постоянное напряжение, мы получаем постоянную силу тока, то есть, через каждое сечение проводника в единицу времени проходит постоянное количество носителœей, и это количество не меняется со временем. Значит, носители в проводнике движутся равномерно. Скорость направленного движения составляет несколько мм/с. В случае если использовать механическую модель (модель Друде), то можно предположить, что на электроны в кристалле действует сила сопротивления со стороны решетки. Она компенсирует электрическую силу, подобно тому, как сила трения компенсирует силу тяги, приложенную к равномерно движущимся санкам. В случае если убрать силу тяги, то санки остановятся.

Будем считать, что электрическая сила разгоняет заряд до столкновения с атомом, которому он отдает всю приобретенную кинœетическую энергию. То есть, всœе движение состоит из таких разгонов и остановок. Кстати, передача энергии кристаллической решетке приводит к усилению хаотического движения ее атомов, то есть, кристалл нагревается. Это и наблюдается, допустим, при протекании тока через спираль лампы накаливания. Это грубая модель, но ничего точнее у нас нет.

Пусть электрон проходит между столкновениями путь L и приобретает на этом пути скорость V.. Значит, он движется со средней скоростью . Работа электрической силы равна приобретенной перед столкновением кинœетической энергии . Время между столкновениями . Что такое сила тока? Это заряд, протекающий через сечение проводника в единицу времени. В случае если прошло время Dt, то через нарисованное сечение пройдут заряды, находившиеся в объёме цилиндра с основанием S и высотой VC Dt. В случае если число зарядов в единице объёма n (концентрация зарядов), а величина одного заряда е, то протекший через это сечение за время Dt заряд равен

Сила тока

Подставим в эту формулу полученное нами значение . Тогда в связи с этим . Видно, что наша формула соответствует формуле закона Ома, причем . То есть, используя модель вещества, пусть самую простейшую, мы получили выражение удельного сопротивления через величины, характеризующие движение электронов. Ясно, что с увеличением концентрации носителœей n сопротивление будет падать. В металлах концентрацию электронов изменить почти невозможно. В случае если же скорость их хаотического теплового движения возрастет, то время t уменьшится, в связи с этим удельное сопротивление возрастет. Что и происходит с ростом температуры проводника. К сожалению, столь простая модель не приводит к верной численной зависимости удельного сопротивления проводника от температуры. При температурах, сравнимых с комнатными, эта зависимость линœейная и выражается соотношением , где r0– удельное сопротивление материала при 00С, a –температурный коэффициент сопротивления. При 200С он равен

Материал a, K-1
никель 6.5*10-3
медь 3.8*10-3
нихром 0.25*10-3
константан 0.03*10-3

Сам вид зависимости выглядит довольно просто.

При уменьшении температуры удельное сопротивление монотонно уменьшается, и при температурах очень близких к абсолютному нулю (эта температура соответствует -273,150С) в некоторых чистых металлах может происходить очень необычное явление. Когда до абсолютного нуля остается 1-3 0С удельное сопротивление становится равно точному значению 0. То есть электроны полностью перестают испытывать сопротивление решетки. Это замечательное явление, объясненное лишь в рамках современной теории вещества (квантовой теории) принято называть сверхпроводимостью. Сегодня оно используется для получения больших токов, долгое время протекающих по обмоткам мощных электромагнитов.

referatwork.ru

Природа сопротивления металлов

Количество просмотров публикации Природа сопротивления металлов - 280

Было выяснено, что электрический ток в проводнике начинается под действием внутреннего электрического поля, разгоняющего заряды. Сила, действующая на заряд со стороны поля равна . При этом, в случае если на тело действует сила, то его скорость должна меняться, в данном случае – увеличиваться. Из эксперимента видно, что, прикладывая к проводнику постоянное напряжение, мы получаем постоянную силу тока, то есть, через каждое сечение проводника в единицу времени проходит постоянное количество носителœей, и это количество не меняется со временем. Значит, носители в проводнике движутся равномерно. Скорость направленного движения составляет несколько мм/с. В случае если использовать механическую модель (модель Друде), то можно предположить, что на электроны в кристалле действует сила сопротивления со стороны решетки. Она компенсирует электрическую силу, подобно тому, как сила трения компенсирует силу тяги, приложенную к равномерно движущимся санкам. В случае если убрать силу тяги, то санки остановятся.

Будем считать, что электрическая сила разгоняет заряд до столкновения с атомом, которому он отдает всю приобретенную кинœетическую энергию. То есть, всœе движение состоит из таких разгонов и остановок. Кстати, передача энергии кристаллической решетке приводит к усилению хаотического движения ее атомов, то есть, кристалл нагревается. Это и наблюдается, допустим, при протекании тока через спираль лампы накаливания. Это грубая модель, но ничего точнее у нас нет.

Пусть электрон проходит между столкновениями путь L и приобретает на этом пути скорость V.. Значит, он движется со средней скоростью . Работа электрической силы равна приобретенной перед столкновением кинœетической энергии . Время между столкновениями . Что такое сила тока? Это заряд, протекающий через сечение проводника в единицу времени. В случае если прошло время Dt, то через нарисованное сечение пройдут заряды, находившиеся в объёме цилиндра с основанием S и высотой VC Dt. В случае если число зарядов в единице объёма n (концентрация зарядов), а величина одного заряда е, то протекший через это сечение за время Dt заряд равен

Сила тока

Подставим в эту формулу полученное нами значение . Тогда в связи с этим . Видно, что наша формула соответствует формуле закона Ома, причем . То есть, используя модель вещества, пусть самую простейшую, мы получили выражение удельного сопротивления через величины, характеризующие движение электронов. Ясно, что с увеличением концентрации носителœей n сопротивление будет падать. В металлах концентрацию электронов изменить почти невозможно. В случае если же скорость их хаотического теплового движения возрастет, то время t уменьшится, в связи с этим удельное сопротивление возрастет. Что и происходит с ростом температуры проводника. К сожалению, столь простая модель не приводит к верной численной зависимости удельного сопротивления проводника от температуры. При температурах, сравнимых с комнатными, эта зависимость линœейная и выражается соотношением , где r0– удельное сопротивление материала при 00С, a –температурный коэффициент сопротивления. При 200С он равен

Материал a, K-1
никель 6.5*10-3
медь 3.8*10-3
нихром 0.25*10-3
константан 0.03*10-3

Сам вид зависимости выглядит довольно просто.

При уменьшении температуры удельное сопротивление монотонно уменьшается, и при температурах очень близких к абсолютному нулю (эта температура соответствует -273,150С) в некоторых чистых металлах может происходить очень необычное явление. Когда до абсолютного нуля остается 1-3 0С удельное сопротивление становится равно точному значению 0. То есть электроны полностью перестают испытывать сопротивление решетки. Это замечательное явление, объясненное лишь в рамках современной теории вещества (квантовой теории) принято называть сверхпроводимостью. Сегодня оно используется для получения больших токов, долгое время протекающих по обмоткам мощных электромагнитов.

referatwork.ru

Вопрос. Электрический ток в металлах. Природа электрического сопротивления и его зависимость от температуры.

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта):

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

Сила тока в проводнике пропорциональная скорости упорядоченного движения частиц. В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания движения.

 

Зависимость сопротивления проводника от температуры.

Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт:

Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.

 

Билет 6.

Вопрос. Закон сохранения импульса. Реактивное движение. К.Э. Циолковский - основоположник теории космических полетов. История развития космонавтики.

Закон сохранения импульса.

Силы, возникающие в результате взаимодействия тела, принадлежащего системе с телом, не принадлежащим ей, называются внешними силами.

Силы, возникающие в результате взаимодействия тел, принадлежащих системе, называются внутренними силами.

Импульс системы тел могут изменить только внешние силы.

Закон сохранения импульса формулируется так: если сумма внешних сил равна нулю, то импульс системы сохраняется.

Импульс также сохраняется в изолированной системе, потому что в этой системе на тела вообще не действуют внешние силы.

Реактивное движение.

Под реактивным движением понимают движение тела, возникающее при отделении некоторой части с определенной скоростью относительно него. При этом возникает реактивная сила.

Например, можно надуть детский резиновый шарик и отпустить его. Шарик стремительно полетит. Реактивная сила будет действовать до тех пор, пока продолжается истечение воздуха.

В настоящее время получили широкое распространение реактивные двигатели. Ими оснащены не только ракеты, но и большая часть современных самолетов.

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

· Камера сгорания — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.

· Реактивное сопло — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Основным техническим параметром, характеризующим реактивный двигатель, является тяга — усилие, которое развивает двигатель в направлении движения аппарата.

К. Э. Циолковский — основоположник теории космических полетов. Научное доказательство возможности использования ракеты для полетов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским ученым и изобретателем Константином Эдуардовичем Циолковским (1857—1935). В его труде «Исследование мировых пространств реактивными приборами», опубликованном в 1903 г., была выведена формула, устанавливающая связь между скоростью ракеты, скоростью истечения газов, массой ракеты и массой горючего. Циолковский теоретически обосновал возможность создания ракеты, способной разогнаться до скорости 8 км/с и улететь в космическое пространство. В качестве горючего для такой ракеты он предлагал использовать жидкий водород, а в качестве окислителя — жидкий кислород. Конструкция жидкостной ракеты, по К. Э. Циолковскому, представлена на рисунке 62. В 1929 г. К. Э. Циолковский разработал идею создания «космических ракетных поездов». Теоретические работы К. Э. Циолковского более чем на полвека опередили уровень развития техники. Эти работы послужили основой для создания современной теоретической и практической космонавтики.

Успехи СССР в освоении космического пространства. Идеи К. Э. Циолковского о создании «космических ракетных поездов» — многоступенчатых ракет — были осуществлены советскими учеными и техниками под руководством выдающегося советского ученого, академика Сергея Павловича Королева (1907—1966).

Первый в мире искусственный спутник Земли был с помощью ракеты запущен в Советском Союзе 4 октября 1957 г.

12 апреля 1961 г. гражданин Советского Союза Юрий Алексеевич Гагарин(1934—1968) на космическом корабле «Восток» совершил первый в мире полет в космическом пространстве.

Советские космические ракеты доставили на Землю образцы грунта с поверхности Луны, осуществили мягкую посадку автоматических межпланетных станций на поверхность Венеры и Марса, вывели на околоземную орбиту долговременные орбитальные станции.

Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства.

С помощью спутников и автоматических межпланетных станций изучены состав и строение атмосферы Земли на больших высотах, химический состав и физические свойства атмосферы Венеры и Марса, получены изображения поверхности Луны, Венеры и Марса.

Спутники связи «Молния» через наземные станции «Орбита» осуществляют трансляцию телевизионных программ и телефонную связь на любых расстояниях в пределах нашей страны.

Метеорологические спутники «Метеор» используются для исследования процессов, происходящих в земной атмосфере, и составления прогнозов погоды.

Специальные спутники помогают морским судам и самолетам определять свои координаты. Исследования поверхности материков и океанов, выполняемые космонавтами при полетах на орбитальных станциях, позволяют оценить и уточнить природные ресурсы в различных районах земного шара.

 

2 вопрос. Электрический ток в вакууме. Термоэлектронная эмиссия. Применение вакуумных приборов.

Вакуум - среда, которая содержит газ при давлении значительно ниже атмосферного.

Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии.

Термоэлектронная эмиссия - явление вырывания электронов из металла при высокой температуре.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

При подключении электродов к источнику тока между ними возникает электрическое поле.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами – вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Билет 7.



infopedia.su

Закон Ома для участка цепи

В курсе физики основной школы вы уже познакомились с определением электрического тока и основными действиями тока. Напомним, что электрическим тоном называют направленное движение электрически» зарядов.

За направление электрического тока условно принимают направление движения положительно заряженных частиц. В металлах носителями заряда являются отрицательно заряженные электроны, и направление движения электронов противоположно направлению тока. На рисунке 57.1 электроны схематически изображены зелеными отрицательно заряженными шариками, которые движутся вправо, а направление тока отмечено синей стрелкой.Отношение заряда q, который переносится через поперечное сечение проводника за промежуток времени t, к этому промежутку времени называют силой тока:

I = q/t.     (1)

(Это не совсем удачное название, поскольку сила тока – вовсе не «сила» в ее механическом понимании; однако это название настолько прижилось в науке и технике, что его пока не решаются изменить.)

Единицей силы тока является 1 ампер (обозначают А). Эта единица названа в честь французского ученого А. М. Ампера. (Определение ампера будет приведено в курсе физики 11-го класса. ) Если сила тока в проводнике равна 1 А, то через поперечное сечение проводника ежесекундно проходит заряд, равный 1 Кл. Сила тока в 1 А – обычна в электротехнике: например, сила тока в электрическом чайнике равна примерно 10 А.

Какова скорость направленного движения электронов? Когда замыкают электрическую цепь, электрический ток возникает практически сразу во всей цепи: свободные заряды в проводах приводятся в движение электрическим полем, распространяющимся вдоль проводов со скоростью света.

Скорость же направленного движения электронов очень мала. Расчеты показывают, что при силе тока 1 А в медном проводе сечением 1 мм2 средняя скорость направленного движения электронов составляет около 0,1 мм/с. Это меньше скорости улитки!

Подчеркнем, однако, что так мала скорость именно направленного движения электронов. Скорость же хаотического движения электронов в металле составляет десятки тысяч километров в секунду.

Действие электрического тока

Тепловое действие тока проявляется в том, что проводник, о которому идет ток, нагревается.

Химическое действие тока проявляется в том, что вследствие прохождения тока могут происходить химические реакции.

Магнитное действие тока проявляется в том, что проводники с токами взаимодействуют друг с другом. Особенностью магнитного действия тока является то, что оно присутствует всегда (химическое действие тока отсутствует при прохождении тока через металлы, а тепловое – при прохождении ока через сверхпроводники). Поэтому именно магнитное действие тока обычно используют для измерения силы тока.

2. Закон Ома для участка цепи

В начале 19-го века немецкий физик Георг Ом установил на опыте, что при постоянной температуре отношение напряжения на концах металлического проводника к силе тока в нем постоянно. Это отношение называют сопротивлением проводника и обозначают R:

R = U/I.

Это соотношение, записанное в виде

I = U/R,     (2)

называют законом Ома для участка цепи.

В дальнейшем было установлено, что закон Ома с хорошей точностью выполняется не только для металлических проводников, но и для электролитов.Единицей сопротивления является 1 ом (обозначается Ом). 1 Ом – это сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на его концах 1 В.

Чем больше сопротивление проводника, тем меньше сила ока в нем при том же напряжении на концах проводника.

? 1. На рисунке 57.2 изображены графики зависимости силы тока от напряжения для двух проводников.а) У какого проводника сопротивление больше?б) Чему равно сопротивление каждого проводника?

Зависимость силы тока в проводнике от напряжения на его концах называют вольтамперной характеристикой проводника.

Удельное сопротивление

Опыты показывают, что сопротивление R провода прямо пропорционально его длине l и обратно пропорционально площади поперечного сечения S:

R = ρ(l/S).     (3)

Коэффициент пропорциональности ρ в этой формуле зависит от вещества, из которого изготовлен провод. Его называют удельным сопротивлением вещества.

Наименьшее удельное сопротивление у серебра: оно составляет 1,6 * 10-8 Ом * м. Чуть больше удельное сопротивление меди (1,7 * 10-8 Ом * м), но зато медь намного дешевле серебра и поэтому ее широко используют для изготовления соединительных проводов. С этой же целью часто используют и алюминий: хотя его удельное сопротивление (2,8 * 10-8 Ом * м) примерно в полтора раза больше, чем у меди, зато он намного дешевле.

? 2. Длина медного провода 10 м, а его масса равна 89 г. Плотность меди 8,9 * 103 кг/м3.а) Чему равна площадь поперечного сечения провода?б) Чему равно сопротивление провода?

Из сплавов с большим удельным сопротивлением изготовляют термоэлектрические нагреватели (ТЭНы).

3. Природа электрического сопротивления. Зависимость сопротивления от температуры

Электролиты. Свободными зарядами в электролитах являются положительные и отрицательные ионы. При повышении температуры увеличивается доля молекул, распавшихся а ионы, и поэтому увеличивается число ионов – носителей заряда. Поэтому сопротивление электролитов при повышении температуры уменьшается.

Металлы. Поначалу ученые считали, что электрическое сопротивление металлов обусловлено столкновениями свободных электронов с ионами кристаллической решетки. Однако расчет удельного сопротивления металлов, выполненный в этом предположении, очень сильно противоречил опыту: измеренное на опыте сопротивление было в тысячи раз меньше расчетного.

Природу электрического сопротивления металлов ученые могли понять в 20-м веке на основе квантовой теории. Исследования показали, что свободные электроны движутся сквозь кристаллическую решетку почти без столкновений, как бы плавно обтекая ионы в ее узлах. Такое поведение электронов больше напоминает движение волн, чем движение частиц. Волновыми свойствами электронов объясняется и строение атома. Подробнее мы расскажем об атом в курсе физики 11-го класса.

Если бы кристаллическая решетка была идеально периодической, то электронная волна проходила бы сквозь кристалл, не отклоняясь от своего направления. А в таком случае электрическое сопротивление металла должно было бы равняться нулю. (И действительно, на опыте обнаружено, что сопротивление некоторых металлов и сплавов при достаточно низкой температуре становится равным нулю. Это явление назвали сверхпроводимостью.)

Однако на самом деле кристаллическая решетка не является идеально периодической. Периодичность нарушают примеси и дефекты решетки, а также отклонения ионов от своих равновесных положений вследствие тепловых колебаний. Именно из-за нарушений регулярности решетки электронная волна рассеивается. Это и является причиной электрического сопротивления металлов.

При нагревании усиливаются тепловые колебания ионов, то увеличивает отклонение кристаллической решетки от идеальной периодичности. Это объясняет, почему удельное сопротивление металлов при нагревании быстро увеличивается. Например, сопротивление нити накала электрической лампы накаливания в рабочем состоянии примерно в 10 раз больше, ем при комнатной температуре.

Удельное сопротивление чистых металлов прямо пропорционально абсолютной температуре.

? 3. На рисунке 57.3 изображены вольтамперные характеристики металлического провода и электролита. При увеличении напряжения температура проводников увеличивается. Каким цветом обозначена вольтамперная характеристика металлического провода, а каким – электролита?

4. Последовательное и параллельное соединение проводников

С этими типами соединения пров из курса физики основной школы.

Последовательное соединение

На схеме (рис. 57.4) показано последовательное соединение двух проводников.

Найдем общее сопротивление двух последовательно соединенных проводников сопротивлением R1 и R2. По определению общее сопротивление проводников R = U/I, где U – напряжение между точками a и b, а I — сила тока, одинаковая для обоих проводников:

I = I1 = I2.     (4)

Напряжение между точками a и b равно сумме напряжений на каждом из проводников:

U = U1 + U2.     (5)

(Это следует из тою, что работа электростатического поля по перемещению заряда по двум последовательно соединенным проводникам на сумме работ по перемещению заряда по каждому проводнику.)

? 4. Объясните, почему из формул (4) и (5) следует, что сопротивление двух последовательно соединенных проводников выражается формулой

R = R1 + R2.     (6)

? 5. На рисунке 57.5 изображена схема последовательного соединения и проводников.

Докажите, что общее сопротивление n последовательно соединенных проводников выражается формулой

R = R1 + R2 + … + Rn.

? 6. Объясните, почему при последовательном соединении проводников общее сопротивление цепи больше сопротивления любого из проводников.

? 7. Чему равно сопротивление и одинаковых последовательно соединенных проводников сопротивлением r каждый?

? 8. Объясните, почему отношение направлений на двух последовательно соединенных проводниках равно отношению сопротивлений этих проводников:

U1/U2 = R1/R2.     (7)Подсказка. Воспользуйтесь законом Ома для участка цепи н тем, что при последовательном соединении проводников сила тока в них одинакова.

? 9. Сопротивление двух последовательно соединенных проводников в 5 раз больше сопротивления одного из них. Чему равно отношение сопротивлений проводников?

? 10. Напряжение на концах участка цепи, состоящего из двух последовательно соединенных проводников, равно 12 В. При этом напряжение на первом проводнике равно 4 В, а сила тока во втором проводнике равна 2 А.а) Чему равно напряжение на втором проводнике?б) Чему равны сопротивления проводников?

Параллельное соединение

На схеме (рис. 57.6) показано параллельное соединение двух проводников.Найдем общее сопротивление двух параллельно соединенных проводников сопротивлениями R1 и R2.

По определению общее сопротивление проводников R = U/I, где U – напряжение между точками a и b, а I – суммарная сила тока во всем участке цепи, состоящем из этих проводников. В данном случае она равна сумме сил токов в проводниках:

I = I1 + I2.     (8)

Напряжение на концах параллельно соединенных проводников одинаково, потому что их концы совпадают:

U = U1 = U2.     (9)

? 11. Объясните, почему из формул (8) и (9) следует, что сопротивление двух последовательно соединенных проводников связано с их сопротивлениями соотношениями

1/R = 1/R1 + 1/R2,     (10)R = (R1R2)/(R1 + R2).     (11)

Подсказка. Для доказательства формулы (10) воспользуйтесь формулой R = U/I, а также формулами (8) и (9). Формула (11) следует из формулы (10).

? 12. Сопротивление двух параллельно соединенных проводников в 6 раз меньше сопротивления одного из них. Чему равно отношение сопротивлений проводников?

? 13. На рисунке 57.7 изображена схема параллельного соединения n проводников. Докажите, что общее сопротивление этих проводников связано с их сопротивлениями соотношением

1/R = 1/R1 + 1/R2 + … + 1/Rn.

? 14. Объясните, почему при параллельном соединении проводников общее сопротивление цепи меньше сопротивления любого из проводников.

? 15. Чему равно сопротивление и одинаковых параллельно соединенных проводников сопротивлением r каждый?

? 16. Объясните, почему отношение сил тока в двух параллельно соединенных проводниках обратно отношению сопротивлений этих проводников:

I1/I2 = R2/R1.     (12)

Подсказка. Воспользуйтесь законом Ома для участка цепи тем, что при параллельном соединении проводников напряжение на них одинаково.

? 17. Сила тока в участке цепи, состоящем из двух параллельно соединенных проводников, равна 3 А. При этом сила тока в первом проводнике равна 1 А, а напряжение на втором проводнике равно 6 В.а) Чему равна сила тока во втором проводнике?б) Чему равны сопротивления проводников?

? 18. Если два проводника соединить последовательно, то напряжения на их концах оказываются одинаковыми. Будут ли одинаковыми значения силы тока в этих проводниках, если их соединить параллельно? Поясните ваш ответ.

? 19. При параллельном соединении двух проводников сила тока в первом проводнике равна 2 А, а во втором проводнике – 6 А. Чему равно напряжение на первом проводнике при их последовательном соединении, если напряжение на втором проводнике равно 12 В?

5. Измерение силы тока и напряжения

Из курса физики основной школы вы уже знаете, что силу тока измеряют амперметром, а напряжение — вольтметром.

? 20. Объясните, почему для измерения силы тока в проводнике амперметр надо подключать к этому проводнику последовательно (рис. 57.8).

? 21. Объясните, почему для измерения напряжения на концах проводника вольтметр надо подключать к этому проводнику параллельно (рис. 57.9).

Для повышения точности измерительный прибор не должен заметно изменять значение измеряемой физической величины.

? 22. Исходя из этого, объясните, почему сопротивление амперметра должно быть малым по сравнению с сопротивлением проводника, в котором измеряют силу тока, а сопротивление вольтметра – большим по сравнению с сопротивлением проводника, на котором измеряют напряжение.

Амперметр называют идеальным, если его сопротивлении можно пренебречь, а вольтметр называют идеальным, если его сопротивление можно считать бесконечно большим.

Дополнительные вопросы и задания

23. В вашем распоряжении четыре резистора сопротивлением 1 Ом каждый. Какие значения сопротивления можно получить, используя эти резисторы? Не обязательно использовать все резисторы. Сделайте пояснительные чертежи.

24. Провод сопротивлением R разрезали на пять равных частей и сделали из них один многожильный провод. Чему равно его сопротивление?

25. Из проволоки сопротивлением R сделано кольцо. Чему будет равно сопротивление, если подключать к кольцу провода, как указано на рисунках 57.10, а, б, в?

26. Два медных провода одинаковой длины l соединены последовательно и подключены к источнику постоянного напряжения. Диаметр первого провода в 3 раза больше диаметра второго провода.а) Сопротивление какого провода больше? Во сколько раз больше?б) На концах какого провода напряжение больше? Во сколько раз больше?в) В каком проводе напряженность электрического поля больше? Во сколько раз больше?г) Какими были бы ответы на вопросы а – в, если бы длина первого провода была в 3 раза больше длины второго?

27. Металлическая проволока массой m имеет сопротивление R. Плотность металла d, удельное сопротивление ρ.а) Напишите формулу, выражающую массу провода через d, площадь поперечного сечения S и длину l.б) Напишите формулу, выражающую R через ρ, l, S.в) Выразите l и S через m, R, ρ.

phscs.ru

в чем заключается причина электрического сопротивления металлов?

Вы спрашиваете, почему металлы оказывают сопротивление электрическому току, т. е. почему для поддержания длительного тока нужно все время поддерживать разность потенциалов на концах металлического проводника? Если бы электроны не испытывали никаких помех в своем движении, то, будучи приведены в упорядоченное движение, они двигались бы по инерции, без действия электрического поля, неограниченно долго. Однако в действительности электроны испытывают соударения с ионами. При этом электроны, обладавшие перед соударением некоторой скоростью упорядоченного движения, после соударения будут отскакивать в произвольных, случайных направлениях, и упорядоченное движение электронов (электрический ток) будет превращаться в беспорядочное (тепловое) движение: после устранения электрического поля ток очень скоро исчезнет. Для того чтобы получить длительный ток, нужно после каждого соударения вновь и вновь гнать электроны в определенном направлении, а для этого нужно, чтобы на электроны все время действовала сила, т. е. чтобы внутри металла было электрическое поле. Чем большая разность потенциалов поддерживается на концах металлического проводника, тем сильнее внутри него электрическое поле, тем больше ток в проводнике. Расчеты показывают, что разность потенциалов и сила тока должны быть строго пропорциональны друг другу (закон Ома) . Двигаясь под действием электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях эта энергия частично передается ионам решетки, отчего они приходят в более интенсивное тепловое движение. Таким образом, при наличии тока все время происходит переход энергии упорядоченного движения электронов (тока) в энергию хаотического движения ионов и электронов, которая представляет собой внутреннюю энергию тела; а это значит, что внутренняя энергия металла увеличивается. Этим объясняется выделение джоулева тепла. Резюмируя, можно сказать, что ПРИЧИНА ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛОВ заключается в том, что электроны при своем движении испытывают соударения с ионами металла. Эти соударения производят такой же результат, как и действие некоторой постоянной силы трения, стремящейся тормозить движение электронов.

Тепловое движение узлов кристаллической решётки, -рабочая гипотеза.

touch.otvet.mail.ru

Каковы причины возникновения электрического сопротивления?

Низкая плотность носителей заряда в объеме вещества

Кристаллическая решетка проводника - главная причина.

Электрический ток образуется потоком заряженных частиц (электроны, йоны) . Потоку частиц как и потоку воды может что то мешать ( а возможно пропускная способность канала низка :) ) Вот эта характеристика материала и показывается СОПРОТИВЛЕНИЕМ. Конкретная природа сопротивления в разных средах немного различается. Например в металлах внешн6ие электроны практически не держатся за атом и образуется "облако свободных электронов", которое и движется под действием разницы потенциалов. А раз движется то следовательно тратится энергия на "переваливание" от атом к атому. Эт и создает сопротивление. При температуре абсолютно нуля тепловая энергия уровней атомов металла становится одинакова и сопротивление в металле практически пропадает. При пробое диэлектрических материалов ток обычно создается в из йонов и электронов. Тутати все другое. Току йонов может сильно мешать плотность вещества и чем оно сильнее жижеет :)))) тем меньше сопротивление - Больше становится частиц -носителей тока.

тепловое (броуновское) движение и количество свободных электронов

Рассеяние электронов на кристаллической решетке металла приводит к переходу направленной вдоль поля компоненты скорости в хаотическое, тепловое движение - выделяется джоулево тепло и возникает сопротивление.

причина электрического сопротивления заключается в том, что электроны при своем движении испытывают соударения с ионами металла. Эти соударения производят такой же результат, как и действие некоторой постоянной силы трения, стремящейся тормозить движение электронов.

touch.otvet.mail.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.