19.01.2025

Напряжение источника тока: Источники тока и напряжения — Студопедия

Содержание

Источники тока и напряжения — Студопедия

Под источником понимают элемент, питающий цепь электромагнитной энергией. Эта энергия потребляется пассивными элементами цепи — запасается в индуктивностях и емкостях и расходуется в активном сопротивлении. Примерами реальных источников электромагнитной энергии могут служить генераторы постоянных, синусоидальных и импульсных сигналов разнообразной формы, сигналы, получаемые от различных датчиков, антенн радиоприемных устройств, источники питания, сигналы, поступающие с выходов электронных устройств и т.д.

Для анализа цепей удобно вводить идеализированные источники двух видов: источник напряжения и источник тока, которые учитывают главные свойства реальных источников. При соответствующем дополнении идеализированных источников пассивными элементами можно передать все свойства реальных источников по отношению к их внешним выводам.

Источник напряжения. Подисточником напряжения понимают такой элемент с двумя выводами (полюсами), напряжение между которыми задано в виде некоторой функции времени независимо от тока, отдаваемого во внешнюю цепь. Зависимость напряжения от тока идеального источника напряжения показана на рис. 1.3. Такой идеализированный источник способен отдавать неограниченную мощность. Наиболее часто применяемые условные графические изображения источника напряжения показаны на том же рисунке, где принятая положительная полярность напряжения источника указывается либо стрелкой внутри кружочка, либо знаками “+”, “-”.



Реальные источники сигнала имеют внутренние сопротивления. К источнику напряжения внутреннее сопротивление подключается последовательно. На рис. 1.4 показаны вольтамперная характеристика и схема реального источника напряжения. Для реального источника выходное напряжение будет равно

Uн = U0 – URвн = U0 – Iн Rвн.

Из формулы видно, что выходное напряжение реального источника тока зависит от тока нагрузки Iн. Чем больше ток нагрузки, тем больше падает напряжение на внутреннем сопротивлении источника, и меньшая часть напряжения U0 поступает на нагрузку (на выход). С другой стороны, чем больше внутреннее сопротивление Rвн при неизменном токе нагрузки, тем больше падает на нем напряжения, что ведет к уменьшению напряжения на выходе источника. Применительно к электронным схемам внутреннее сопротивление источника часто называют выходным сопротивлением.


В случае идеального источника напряжения, его внутреннее сопротивление равно 0 и напряжение на нагрузке не зависит от тока нагрузки. При этом ток нагрузки может возрастать до бесконечности, если сопротивление нагрузки будет стремиться к 0. В действительности невозможно построить идеальный источник напряжения во всем диапазоне изменения выходного тока. Однако, во многих случаях, для ограниченного диапазона изменения выходного тока некоторые источники можно рассматривать как идеальные.

Например, источник питания в диапазоне рабочих токов имеет очень малое внутреннее сопротивление, которым можно пренебречь, по сравнению с сопротивлением нагрузки. Или другой пример, выходное сопротивление операционного усилителя, охваченного отрицательной обратной связью, может достигать нескольких сотых долей Ома. Таким внутренним сопротивлением можно пренебречь и рассматривать выход операционного усилителя как идеальный источник напряжения в диапазоне допустимых выходных токов.

Источник тока. Под идеальным источником тока понимают такой элемент цепи, через выводы которого протекает ток с заданным законом изменения во времени независимо от напряжения между выводами. Вольтамперная характеристика и условные графические изображения идеального источника тока показана на рис. 1.5. Независимость тока от напряжения означает, что внутренняя проводимость источника, куда может ответвляться ток, равна 0, а внутреннее сопротивление равно бесконечности. Вольтамперная характеристика и

схема реального источника тока показана на рис. 6. При увеличении напряжения на нагрузке за счет увеличения сопротивления нагрузки увеличивается внутренний ток источника тока. При этом меньшая часть тока I0 поступает в нагрузку. Выходной ток Iн будет равен

Iн = I0 – Iвн = I0 – Uн / Rвн.

Из формулы видно, что чем больше внутреннее сопротивление источника тока, тем меньше внутренний ток Iвн и большая часть тока I0 отдается в нагрузку. В пределе при Rвн = ∞ весь ток I0 отдается в нагрузку, и ток нагрузки не будет зависеть от напряжения на нагрузке. В этом случае имеем дело с идеальным источником тока. Итак, в идеальном источнике тока внутреннее сопротивление равно бесконечности. В идеальном источнике тока при бесконечной величине сопротивления нагрузки (обрыв цепи нагрузки) на его зажимах будет напряжение бесконечной величины.

Это конечно идеализация – нельзя построить источник тока, у которого величина внутреннего сопротивления рана бесконечности. Однако на практике используются источники тока, построенные на транзисторах, с внутренним сопротивлением, достигающим величин многих мегом и более, работающие в ограниченном диапазоне выходных напряжений. Такие источники тока широко используются в схемах дифференциальных и операционных усилителей, при построении цифро-аналоговых преобразователей, при передаче сигналов по токовой петле и др.

Реальные источники напряжения и тока эквивалентны. Это означает, что относительно своих зажимов схемы ведут себя одинаковым образом, т.е. при анализе схемы один и тот же источник можно рассматривать как реальный источник напряжения или реальный источник тока. Условия эквивалентности можно получить из выражения для напряжения реального источника напряжения

Uн = U0 – Iн Rвн.

Разделим правую и левую части уравнения на Rвн, получим

Uн /Rвн = U0 /Rвн – Iн .

Введем обозначения U0 /Rвн = I0 = const; U0 /Rвн = Iвн и запишем уравнение в следующем виде

Iвн = I0 — Iн или I0 = Iвн + Iн.

Причем на сопротивлениях Rвн и Rн падает одно и то же напряжение Uн, т.е. они соединены параллельно

I0 = Uн /Rвн + Uн /Rн .

Отсюда приходим к схеме реального источника тока, показанного на рис.1.6.

Раз схемы реальных источников напряжения и тока эквивалентны, то возникает вопрос, когда использовать при анализе схемы тот или иной источник? Ответ простой. Используйте тот тип источника, при котором проще анализировать работу схемы. На практике часто поступают следующим образом. Если внутреннее сопротивление источника намного меньше сопротивления нагрузки, то такой источник целесообразно рассматривать как источник напряжения. И в первом приближении величиной внутреннего сопротивления можно пренебречь. Если внутреннее сопротивление намного больше сопротивления нагрузки, то такой источник рассматривают как источник тока. И при первоначальном анализе считают его идеальным. При более детальном анализе схемы учитывают не идеальность источника тока.

Определение напряжений на источниках тока.





⇐ ПредыдущаяСтр 5 из 17Следующая ⇒

Общая стандартная форма записи системы уравнений по МКТ для резистивных цепей с источниками постоянного действия


Записывают уравнения и в матричном виде. Например,

.

Здесь: Inn (InK ) – соответствующие контурные токи,

R11 –собственное контурное сопротивление первого контура, равное сумме сопротивлений элементов входящих в 1 контур, R22 –контурное сопротивление второго и т.д.;

R12 – взаимное сопротивление между первым и вторым контурами (учитывается с +, если контурные токи совпадают и с “- ”, если не совпадают) и аналогично;

E11 – контурная ЭДС 1 контура, которая содержит алгебраическую сумму ЭДС входящих в 1-ый контур (c + если совпадает с контурным током) и включает влияние источников тока на контур (после переноса из левой части). Далее аналогично.

Причем обычно R12 = R21 а если есть управляемые источники, то R12 и R21 могут быть не равны.

6. Применение МКТ

Целесообразно применять для сложных схем с несколькими однотипными источниками, у которых частота одна и та же. Если есть L— и C-элементы и частоты источников одинаковые, то применяется в комплексной форме. Если частоты действия разные, то можно применять совместно с методом наложения для расчета частичных токов.

1.8. Метод узловых напряжений (МУН)

В качестве основных неизвестных используются так называемые узловые напряжения – это напряжения между узлом схемы или цепи и некоторым опорным или базисным узлом, который выбирается один для всей цепи или схемы. В качестве дополнительных неизвестных используются токи в некоторых «вырожденных» ветвях, которые содержат только идеальные источники напряжения (или ЭДС) без других элементов. Система уравнений по МУН составляется на основе первого закона Кирхгофа. Второй закон и закон Ома используются как вспомогательные.

2. Определение количества уравнений и выбор базисного узла

Количество уравнений определяется по формуле:

, где NE – число «вырожденных» ветвей которые содержат только идеальные источники напряжения (или ЭДС) без других элементов.



Базисный узел выбирается из узлов, прилегающих к ветви «вырожденной» (где есть одиночный идеальный источник напряжения) и отмечается знаком заземления или корпуса.

I1 E1

Из этих двух узлов обычно берут тот узел, где больше подходит ветвей.


Берут там, где удобнее при взгляде на схему.

Начинается метод с определения числа «вырожденных» ветвей и базисного узла, потом составляется и решается система уравнений.

Пример расчета цепи с помощью метода узловых напряжений по схеме

1. При расчёте цепи по методу узловых напряжений определяем число узлов схемы. Один из этих узлов принимаем за базисный. Остальные узлы называются независимыми. Базисный узел – это узел от которого ведется отсчет. Его выбирают в первую очередь там, где есть ветвь, содержащая только одиночный идеальный источник ЭДС, и сходится много ветвей или это тот узел, который удобнее для наглядности (в нашей схеме это узел 3 ). Базисный узел часто заземляют, при этом его потенциал (напряжение) равен нулю V3=0. Из свойств идеального источника напряжения, следует отметить, что если в схеме имеются ветви, состоящие из одиночных идеальных источников напряжения, то их сопротивление равно нулю, а проводимость – бесконечности. В нашем случае таких ветвей нет NE=0. Для ветвей с источниками тока все наоборот.

2. Определяем число независимых уравнений, составляемых методом узловых напряжений NМУН=NУЗ-1-NЕ=2.

Составляем систему алгебраических уравнений методом узловых напряжений, согласно первому закону Кирхгофа.

I1+J4-I2=0

I2-I3-I4=0

4. V1,V2 – узловые напряжения узлов 1 и 2 соответственно. Выражаем токи ветвей через узловые напряжения на основе 2 закона Кирхгофа для вспомогательных контуров, которые обязательно проходят через базисный узел, и закона Ома:

I1∙R1+V1 =E1, I2∙R2+V2-V1= -E2, I3∙(R3+R)-V2 =E3 (V=U).

После подстановки формул токов данная система уравнений переводится в систему узловых уравнений, записанную в канонической форме. Число уравнений должно быть равно числу неизвестных узловых напряжений.

Для 1 уравнения получим

. Затем можно поменять знаки и получить уравнение . Аналогично для 2 уравнения получим

. Эти уравнения приводят к стандартному каноническому виду:




где – это собственные проводимости соответственно узлов 1 и 2.

.

.

– взаимные проводимости между узлами 1 и 2.

IУ1, IУ2 – собственные или задающие узловые токи, соответственно, независимых узлов 1 и 2. В общем виде их можно представить в следующем виде:

,

,

где – алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу 1, на их проводимости, – алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу 2, на их проводимости; при этом со знаком «+» берутся те ЭДС, которые действуют в направлении узла, и со знаком «–» – в направлении от узла; – алгебраическая сумма токов источников тока, присоединенных к узлу 1, – алгебраическая сумма токов источников тока, присоединенных к узлу 2; при этом со знаком «+» берутся те токи, которые направлены к узлу, а со знаком «–» в направлении от узла. Для нашего случая токи IУ1, IУ2 имеют следующий вид:

.

.

Узловое напряжение – это напряжение между независимым и базисным узлами и направлено оно к базисному узлу. V1,V2 – узловые напряжения узлов 1 и 2 соответственно. Знак «+» перед узловым напряжением берётся, если это собственное узловое напряжение, в противном случае берётся знак «–».

Данную систему решаем методом Крамера. Составляем определитель второго порядка, в первую и вторую строки которого ставим значения проводимостей стоящих при напряжениях, соответственно в первом и во втором уравнениях нашей системы.

Затем составляем определитель , для этого в определителе в первом столбе значения проводимостей заменяем значениями токов, стоящих в правой части нашей системе.

После чего вычисляем напряжение по следующей формуле:

Аналогично находим напряжение

6. Находим токи ветвей через узловые напряжения:

 

Общая форма записи системы уравнений по МУН с узловыми напряжениями (потенциалами) VK, собственными проводимостями узлов GKK, взаимными проводимостями между узлами GKM и узловыми токами.











Электродвижущая сила и напряжение источника тока

Под действием сил внешнего электрического поля и при наличии на концах проводника разности потенциалов — в проводнике возникает электрический ток. Источники электрического тока как раз и являются источниками разности потенциалов. В каждом источнике электрической энергии (тока) существующая разность потенциалов создаётся и поддерживается сторонними неэлектрическими силами. В источнике электрического тока происходит преобразование неэлектрической формы энергии в электрическую энергию.

Эта сила в источнике тока называется — электродвижущая сила. Сокращенное обозначение — ЭДС (э.д.с.), обозначается латинской буквой E.

Определение электродвижущей силы следующее:

Величина, численно равная работе, совершаемой источником электрической энергии при переносе частицы с зарядом, равной единице, по всей замкнутой цепи, называется электродвижущей силой. Она равна разности потенциалов на зажимах незамкнутого источника.

ЭДС можно выразить следующей формулой:

Именно электродвижущая сила является той причиной, по которой в электрической цепи существует электрический ток. В зависимости от типа источника ЭДС, природа сторонних сил, которые рождают электрическую разность потенциалом может быть: электрохимической (аккумуляторы, гальванические элементы и т.п.), электромагнитной (динамомашина, электрогенераторы), электротермической (элементы Пельтье), полупроводниковой (солнечные элементы).

Если в раствор серной кислоты опустить две металлические пластинки, например цинковую и медную, то между пластинами возникнет электродвижущая сила. Какова сущность этого явления?

В растворе молекулы серный кислоты под влиянием электролитической диссоциации распадаются на положительные и отрицательные ионы. Цинковая пластина, частично растворяясь под действием химических сил, выделяет в раствор положительные ионы. Эти ионы соединяются с отрицательными ионами серной кислоты. В результате и те и другие нейтрализуются и образуются нейтральные молекулы. Этот процесс приводит к тому, что цинковая пластина имея избыток отрицательных зарядов, соответственно заряжается отрицательно, а раствор, имея избыток положительных зарядов — заряжается положительно.

Медная пластина, практически не растворяется, она заряжается положительным зарядом как и раствор и имеет потенциал раствора.

В результате между двумя пластинами благодаря химическому взаимодействию устанавливается разность потенциалов. Химическая энергия преобразуется в электрическую.

Электродвижущую силу можно представить на примере двух сосудов с водой, которые с друг другом связаны. Пусть имеются два сообщающихся сосуда A и B, которые сообщаются через насос H. Кран K, через который также могут сообщатся два сосуда — это в открытом состоянии замкнутая электрическая цепь (клеммы замкнуты, например через лампу накаливания), а закрытом состоянии — это разомкнутая электрическая цепь, когда на клеммы ничего не подсоединяется (медная и цинковая пластины свободны от нагрузки). Соответственно трубка T подобна проводнику цепи.

Если в ручную с помощью насоса H перекачать воду из сосуда B в сосуд A, так, чтобы уровень в сосуде A был выше чем в сосуде B, то разница уровней воды в обоих сосудах как раз и будет подобием разности электрических потенциалов. Когда мы откроем кран K — вода потечёт из сосуда A в сосуд B и будет течь до тех пор, пока уровни не сравняются, а значит до тех пор пока не исчезнет разность потенциалов. Чтобы разность потенциалов или уровней воды была постоянной или одинаковой, допустим 5 см, или 10 Вольт, то для этого нужно совершать работу, то есть откачивать постоянно воду обратно из сосуда B в сосуд A. Причем откачивать надо так, чтобы держался постоянный уровень в 5 см.

Если здесь на примере нам требуется откачивать ручным насосом воду, а значит совершать механическую работу, то в химическом источнике тока эту работу совершают химические силы благодаря окислительно-восстановительным процессам. Выбор цинка и меди неслучаен, а соответствует электрохимическому ряду металлов, где один из металлов находится левее или правее другого и между ними образуется электрохимическая разность потенциалов.

Единицей измерения ЭДС является Вольт.

ЭДС источника тока равна одному Вольту, если при переносе одного Кулона электричества по замкнутой цепи источник совершает работу, равную одному Джоулю.

При замкнутой электрической цепи ЭДС источника распределяется, или затрачивается на внутреннюю (внутри источника тока) и внешнюю часть цепи. Эти две части называются падением напряжения. То падение напряжения, что происходит внутри источника называют — внутреннее падение напряжения, а то падение напряжения, что происходит во внешней части цепи (подсоединено на клеммы источника тока) — называется внешним напряжением, или напряжением источника тока и обозначается буквой U. Внутреннее падение напряжения обозначается как U0.

В итоге можно записать такую формулу:

ЭДС источника тока E и напряжение источника тока U — это не одно и то же, они не могут быть равны, потому как всегда имеется U0, которое больше нуля. Обычно хорошие источники тока имеют очень незначительную величину U0, во много раз меньшую чем значение ЭДС источника тока, тогда значением внутреннего падения напряжения можно пренебречь и условно принять его за равным нулю в проводимых расчётах.

Дата: 08.04.2019

© Валентин Григорьев

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

7 498

      Бурыкин Валерий Иванович

      Генератор тока и генератор напряжения. В чём разница? Что такое Генератор тока и каковы области его применения.

      ***

      По работе нужно было найти какое либо внятное описание того, что собой представляет генератор тока (стабилизатор тока, источник тока), его области применения и примеры расчёта. Ничего приемлемого найти не удалось.

      Пришлось самому приступить к написанию статьи отвечающей на эти вопросы.

      И ещё, пришлось заменить общепринятые обозначения «дельта» и «бесконечность» на слова. К сожалению, вместо них при попытке считать текст отображаются вопросительные знаки.

      28.02.2012г.

      

      ***

      

      Первое, что нам необходимо понять — это то в чём различия генератора тока и стабилизатора напряжения.

Стабилизатор напряжения.

       Другие названия:

       — источник напряжения;

       — генератор напряжения;

       — источник опорного напряжения (в схемах его обычно обозначают как ИОН).

      Основное требование:

      Uвых. = const.

      Ток в нагрузке подключенной к выходу стабилизатора напряжения изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора напряжения соответствует Rнагр. = бесконечности.

      Идеальный генератор напряжения создаёт на сопротивлении нагрузки напряжение стабильной величины. При этом его внутреннее сопротивление равно нулю (Ru = 0). Ток в нагрузке определяется по формуле:

      Iнагр. = U / Rнагр.

      Из этого можно сделать вывод:

      — так как напряжение стабильно, то при изменении Rнагр. будет изменяться ток, протекающий через нагрузку, Рис. 1.


Рис. 1 Схема идеального источника напряжения.

      Идеальный источник напряжения при уменьшении Rнагр. до нуля способен создавать ток бесконечно большой величины.

      Но в жизни ничего идеального не существует, все источники напряжения имеют некоторое внутреннее сопротивление — Ru.

      Это приводит к тому, что напряжение источника делится между внутренним сопротивлением Ru и сопротивлением нагрузки Rнагр, Рис. 2


Рис. 2 Функциональная схема реального источника напряжения.

      Поэтому ток в нагрузке вычисляется по формуле:

      Iнагр. = U / (Ru + Rнагр.)

      Максимальный ток возникает при Rнагр. = 0.

      Из формулы видно — ток в нагрузке зависит от напряжения развиваемого источником, а также от величины суммы сопротивлений Rнагр. и Ru.

      Как правило, внутреннее сопротивление источника напряжения (Ru) выбирается как минимум в 100 раз меньше минимально возможного значения сопротивления нагрузки (Rнагр. min). В этом случае напряжение на выходе источника при изменении сопротивления нагрузки от бесконечности до Rнагр. min будет изменяться не более чем на 1%.

      Т.е. желательно, чтобы соблюдалось условие:

      Rнагр. min => 100*Ru

      В данном случае мы не рассматриваем вопрос о мощности источника напряжения. Мощность зависит от принципа построения источника, реализуемой схемы и применяемых компонентов.

      Теперь посмотрим, что собой представляет генератор тока

Генератор тока.

      Другие названия:

       — источник тока;

       — стабилизатор тока.

      Основное требование:

      Iвых. = const.

      При этом напряжение на нагрузке изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора тока возникает при Rнагр. = 0

      Идеальный источник тока создаёт в нагрузке стабильный ток, то есть — ток, величина которого не зависит от сопротивления нагрузки, Рис. 3.


Рис. 3 Функциональная схема идеального источника тока.

      Так как ток источника не зависит от величины сопротивления нагрузки то при изменении Rнагр. пропорционально будет изменяться и Uнагр.

      Uнагр. = Rнагр. * Iист.

      Идеальным генератором тока считается такой источник, через который протекает ток неизменной величины и не зависящий от Rнагр.

      В таком случае если Rнагр стремится к бесконечности, то Uнагр. так же стремится к бесконечности. Такая ситуация на практике неосуществима. Реальные генераторы тока поддерживают стабильный ток в нагрузке только в пределах от Rнагр. = 0 до некоторой величины Rнагр. max.

      Эквивалентные схемы генераторов тока, приводимые в академической литературе малопонятны, а формулы, описывающие их работу, вряд ли когда-либо понадобятся в практических расчетах.

      Поэтому я начну сразу с практических схем.

      Наиболее доступная и простая как в понимании, так и в расчётах схема выглядит так:


Рис. 4 Практические схемы простых генераторов тока на биполярных транзисторах.

      На рисунке изображены две одинаковые схемы простых генераторов тока. Разница состоит только в том, что применены транзисторы разной проводимости. Другое отличие это то, к какому полюсу источника питания подключена нагрузка.

      В обоих случаях применена схема включения транзистора с общим коллектором (эмиттерный повторитель). Эмиттерным повторителем она названа за то, что изменение напряжения на эмиттере (Uэ) повторяет изменение напряжения на базе, в нашем случае это Uстаб.

      Повторяет именно изменение напряжения, а не само напряжение так как существует падение напряжения на эмиттерном переходе транзистора. Поэтому в случае усилителя постоянного тока напряжение Uэ будет определяться по формуле:

      Uэ = Uстаб. — Uбэ

      где Uбэ — падение напряжения на переходе база — эмиттер транзистора.

      Поскольку Uэ зависит только от напряжения стабилизации стабилитрона и от напряжения Uбэ, а значения этих напряжений можно считать константами, то в идеальном случае Uэ не будет зависеть от изменения Uпит. и Rн.

      Ток протекающий через Rэ является одновременно и током протекающим через нагрузку, то есть IRэ = Iист.

      Соответственно Iист. вычисляется по формуле:

      Iист. = Uэ / Rэ

      где: Uэ и Rэ константы, следовательно и Iист. — так же константа.

      На самом деле стабильность напряжения Uэ зависит от того насколько стабилитрон VD чувствителен к изменению протекающего через него тока и к воздействию окружающей температуры.

      То же самое относится и к переходу база — эмиттер транзистора.

      Пока будем считать, что эти факторы нас не касаются.

      В этом случае мы будем находиться в счастливом заблуждении, что наши расчёты абсолютно точны.

       Основные параметры источника (генератора) тока:

      1. Величина требуемого СТАБИЛЬНОГО тока — (Iист.).

       Т. е. тока, который питает нагрузку и не изменяется под воздействием внешних факторов.

      2. Максимальное сопротивление нагрузки — (Rнагр. max).

      3. Минимально возможное напряжение источника питания для нашей схемы — (Uпит. min).

Что нужно для расчёта источника тока.

      Самый тяжёлый вариант входных условий.

      Здесь вас пытаются уложить в Прокрустово ложе тем, что лишают манёвра.

      Требования заказчика:

      а. Ток источника тока (генератора тока) = Iист.

      б. Сопротивление нагрузки, которое меняется от Rнагр. min до Rнагр. max.

      Замечу — нижний предел сопротивления нагрузки (Rнагр. min) для генератора тока всегда можете смело принимать за ноль.

      Rнагр. max. — определяется из характеристик питаемого оборудования и важен для расчёта.

      в. Напряжение питания = Uпит.

      Методика расчёта генератора тока.

      Первое, что нужно определить это то какое максимальное напряжение необходимо развить на Rнагр.

      Uнагр. max = Iист. * Rнагр. max

      Далее определить то, каким запасом по напряжению мы располагаем.

      Uзап. = Uпит. — Uнагр. max

      Нужно понимать, что напряжение запаса должно поделиться между Uкэ. и Uэ.

      Значение напряжения Uкэ. которое снижается до минимального значения при максимальном значении Rнагр. желательно принять не менее 3 Вольт. Конечно чем больше, тем лучше

      Далее можем вычислить с каким максимальным напряжением стабилизации при заданных условиях можно выбрать стабилитрон.

      Uстаб. max = Uзап. — Uкэ + Uбэ

      Сопротивление Rэ рассчитываем по формуле:

      Rэ = (Uстаб. — Uбэ) / Iист.

      

      Из этой формулы видно, что током генератора тока мы можем управлять двумя способами:

      — изменяя Uстаб.;

      — изменяя Rэ.

      Uбэ — константа и изменению не подлежит.

      Есть ещё один подводный камень, это соотношение напряжений Uбэ и Uстаб.

      Из последней формулы видно, что если Uстаб. окажется меньше или равно Uбэ, то в этом случае Rэ должно быть либо равным нулю, либо отрицательным. И то, и другое невозможно.

      Таким образом, если Uстаб. получится меньше или равно Uбэ то схема окажется неработоспособной, так как в этом случае мы не сможем открыть транзистор и создать хоть какое либо падение напряжения на Rэ.

      Желательно получить Uстаб. в шесть — семь раз превышающее Uбэ.

      Если Uстаб. получается близким по значению к Uбэ то необходимо изменять входные условия. Если вы не можете повлиять на параметры нагрузки: (уменьшить Rнагр. max) или согласовать уменьшение тока от генератора тока, остается только один вариант — увеличить напряжение питания. Если и это невозможно согласовать…. Тогда пошлите заказчика к чёрту, а расчёты выкиньте в корзину.

      

Пример расчета простого генератора тока на биполярном транзисторе

      Тяжёлый вариант.

      Требования заказчика:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Это и есть то самое Прокрустово ложе.

      Простейшая для понимания схема будет такова:


Рис. 5

Пример расчета:

      Первое что нужно сделать, это проверить возможность создания такого генератора тока.

      Попробуем произвести расчёт.

      Uнагр. max = Iист. * Rнагр. max. = 0.02 * 3 000 = 60В

      Видим неприятную картину.

      Заданное Uпит. меньше требуемого Uнагр. max. Следовательно мы не сможем обеспечить требуемый ток в нагрузке при максимальном сопротивлении Rнагр.

      Что делать?

      Самое удобное для нас это уменьшить ток генератора тока. Как было сказано ранее этого можно добиться либо уменьшая Uстаб., либо увеличивая Rэ.

      Ток при этом определяется по формуле:

      Iист. = (Uстаб. — Uбэ) / Rэ

      Допустим, нам удалось согласовать изменение величины тока.

      Посмотрим, какая величина Iист. нас устроит.

      Как уже говорилось Uстаб. желательно выбрать не менее 6* Uбэ. Среднее значение Uбэ для кремниевых транзисторов составляет 0,65 В. Оно может изменяться в зависимости от выбранного транзистора, но ненамного (если конечно вы не выберете составной транзистор). Рассчитаем величину Uстаб.

      Uстаб. = Uбэ * 6 = 0,65 * 6 = 3,9В

      Обращаемся к справочнику по диодам, находим там раздел «Стабилитроны». И о чудо! Есть такой стабилитрон! И зовут его 2С139А.

      Он обладает следующими параметрами:

      Uст — напряжение стабилизации стабилитрона

      Uст ном — номинальное напряжение стабилизации стабилитрона

      Iст — ток стабилизации стабилитрона

      Iст ном — номинальный ток стабилизации стабилитрона

      Рmax — максимально-допустимая рассеиваемая мощность на стабилитроне

      rст — дифференциальное сопротивление стабилитрона

      aст — температурный коэффициент стабилизации стабилитрона

      Тк max — максимально-допустимая температура корпуса стабилитрона

      Далее определим необходимый запас по напряжению.

      Uзап. = Uстаб. — Uбэ + Uкэ = 3,9 — 0,65 + 3 = 6,25 В

      Вычитаем из величины питающего напряжения напряжение запаса и получаем максимально возможное напряжение на нагрузке.

      Uнагр. = Uпит. — Uзап. = 50 — 6,25 = 43,75 В

      Полученную величину Uнагр. делим на Rнагр. max. и получаем то значение тока, которое нас устроит.

      Iист. = Uнагр / Rнагр. max = 43.25 / 3000 = 0.0144 А

      Итак, нам удалось изменить требования заказчика, теперь они выглядят так:

      а. Iист. = 14,4мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Значит, мы можем приступить к окончательному расчёту элементов схемы.

      Rбал. = (Uпит. — Uстаб.) / Iст ном = (50 — 3,9) / 0,01 = 4610 Ом

          Где: Iст ном — взято из справочника.

      Выбираем ближайшее значение Rбал. (желательно в меньшую сторону):

      Rбал. = 4,3кОм.

      

      Определим величину сопротивления Rэ.

      Rэ = (Uстаб. — Uбэ) / Iист. = (3,9 — 0,65) / 0.0144 = 225,694444444444…….Ом.

      Опять же принимаем ближайшее значение и снова в меньшую сторону.

      Rэ = 220 Ом.

      В итоге получаем окончательную схему.


Рис. 6 Результат расчёта.

      Какой выбрать транзистор VT1?

      Да любой биполярный npn транзистор.

      Нужно помнить только, что у нас задано Uпит = 50 В. А это говорит о том, что допустимое напряжение Uкэ должно быть не менее этого значения (лучше раза в полтора больше). Максимальную мощность, рассеиваемую на корпусе транзистора можно рассчитать исходя из предельного режима, когда Rнагр. = 0.

      В этом случае Uкэ будет равно Uпит.-Uэ.

      Значит, мощность рассеяния можно определить из формулы:

      Pк max = (Uпит. — (Uстаб. — Uбэ)) * Iист. = (50 — (3,9 — 0,65)) * 0,0144 = 0,673 W

      где Pк — мощность рассеиваемая на коллекторе транзистора и выбирается она из справочника. (Надеюсь нет смысла объяснять почему нужно выбрать транзистор с несколько большим Pк?).

      В этом расчёте мы исходим из условия короткого замыкания в нагрузке.

      Можно конечно произвести расчёт из условия Rнагр = Rнагр. min, т.е. то минимальное сопротивление которое задано заказчиком. В этом случае Pк max. получится меньше, но в тоже время источник может оказаться слишком чувствительным к короткому замыканию в нагрузке.

      Может случиться так, что заказчик не пойдет на то чтобы изменить входные параметры.

      В этом случае нужно понять: какую сумму он готов заплатить за готовое изделие.

      Физика есть физика и против её законов не попрёшь.

      Если заказчик готов раскошелиться, то в схему можно ввести дополнительный источник питания, позволяющий входное напряжение 50В преобразовать в то напряжение, которое позволит нам вписаться в исходные условия.

      Рассчитаем какое минимальное Uпит. нам необходимо для удовлетворения первоначальных условий. Вот эти условия:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Uэ и Uкэ можно оставить прежними, к ним у нас претензий быть не должно.

      То, какое максимальное напряжение на нагрузке при данных условиях мы должны развить уже было рассчитано (Uнагр. max = 60 В).

      В этом случае (если мы снова возьмём стабилитрон 2С139А) минимальное значение напряжения питания можно определить из формулы:

      Uпит. min = Uнагр. max + Uэ + Uкэ = 60 + 3,25 + 3 = 66,25 В

      где Uэ = Uстаб. — Uбэ.

      Для ровного счёта примем Uпит. min = 67 В.

      В этом случае схема примет следующий вид:


Рис. 7 Генератор тока с внутренним источником напряжения.

      Есть одно НО! Добавление этого квадратика может увеличить стоимость схемы в сотню раз. Хотя желание заказчика мы при этом удовлетворим.

      Иногда в схему генератора тока вводят операционный усилитель (другое название — дифференциальный усилитель). Это позволяет создать большой коэффициент усиления в цепи отрицательной обратной связи и исключить влияние Uбэ транзистора на стабильность выходного тока.

      Пример такой схемы приведён на Рис. 8.

      Расчёт такой схемы отличается только тем, что нужно забыть об Uбэ.


Рис. 8 Генератор тока с дифференциальным усилителем.

      Можно пойти дальше и создать стабилизатор тока с регулируемым значением Iист.

      В этом случае желательно заменить стабилитрон на маломощный линейный стабилизатор напряжения. Обычно такие стабилизаторы напряжения в схемах обозначаются как ИОН (источник опорного напряжения).

      Вот пример такой схемы:


Рис. 9 Регулируемый генератор тока.

      Ну вот, кажется всё основное, то что касается построения и расчёта генераторов тока я изложил.

      Теперь встаёт вопрос…. А на кой чёрт нам всё это нужно?

      Ну, стабилизаторы напряжения… — тут всё понятно!

      Широко применяются в бытовой и промышленной электронике. Ни одно современное электронное устройство не обходится без них.

      А зачем нужно устройство, которое не может поддерживать стабильное напряжение на нагрузке, и это напряжение постоянно «гуляет», а величина этого напряжения будто привязана к величине Rнагр.?

      Рассмотрим некоторые области применения генераторов тока (стабилизаторов тока, источников тока).

      Первая и наверное самая распространённая область — это источники стабильного напряжения, как раз то без чего не обходится практически ни одно современное электронное устройство.

      В простейшем случае общая схема стабилизатора напряжения выглядит так:


Рис. 10 Функциональная схема стабилизатора напряжения.

      Обозначения в схеме:

      

      ИОН — источник опорного напряжения;

      Уош. — усилитель ошибки;

      Uоп. — опорное напряжение;

      Uдел. — напряжение снимаемое с делителя подключенного к выходному напряжению стабилизатора напряжения.

      Uош. — напряжение ошибки, оно вычисляется как Uоп. — Uдел.

      

      Напряжение на выходе стабилизатора зависит от величины Uоп. и коэффициента деления делителя.

      Uстаб. = Uоп * (Rдв + Rдн) / Rдн

      Усилитель ошибки сравнивает два напряжения Uоп. и Uдел., его главная задача поддерживать Uош. близким к нулю, а следовательно следить за тем, чтобы Uстаб. оставалось неизменным.

      Допустим мы имеем почти идеальный Уош., способный удерживать Uош. в десятки тысяч раз меньшим чем Uоп. (такие дифференциальные каскады сейчас существуют)

      В этом случае мы можем пренебречь влиянием элементов схемы Уош. на величину Uстаб. и главным виновником в нестабильности выходного напряжения при изменении Uпит. будет ИОН.

      

      Простейший источник опорного напряжения выглядит так:


Рис. 11 Простой источник опорного напряжения.

      Допустим, в процессе эксплуатации, Uпит. может изменяться от 18 до 36 Вольт.

      Мы располагаем всё тем же стабилитроном 2С139А (учтите, буквы русские).

      Первое что нужно сделать это рассчитать Rбал. Оно рассчитывается исходя из минимальной величины Uпит, при этом следует задаться минимальным током стабилитрона Iстаб. min.

      Из справочных данных следует что рабочий диапазон токов стабилитрона лежит в пределах 3 — 70 mA. Номинальный ток — 10 mA. Подбираться слишком близко к нижнему пределу не стоит, так как при этом слишком сильно возрастает Rст. Определимся с минимальным током стабилитрона равным 7mA.

      Тогда:

      Rбал. = (Uпит. min — Uстаб.) / Iстаб. min = (18 — 3.9) / 7 = 2.014 кОм.

      Ближайшее значение 2 кОм.

      При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,54 В.

     Динамическое сопротивление стабилитрона:

     rст = 60 Ом (См. табдицу выше).

     dI = dU/2кОм = 9мА

     dUоп. = dI*rст. = 0.009*60 = 0.54 В

      Разделив дельту на номинальное напряжение стабилитрона, определим величину нестабильности напряжения такого ИОН:

      0,54 / 3,9 = 0,135

      Т.е. нестабильность ИОН будет равна 13,5%.Понятно, что напряжение на выходе стабилизатора напряжения будет изменяться по такому же закону. И его нестабильность так же составит 13,5%.

      Посмотрим на сколько при таком изменении напряжения питания изменится ток протекающий через стабилитрон.

      Изменение тока протекающего через стабилитрон можно вычислить по следующей формуле:

      дельта Iстаб. = (Uпит. max — Uпит. min) / Rбал. = (36 — 18) / 2000 = 9 mA.

      Изменение тока составило 129% так как:

      дельта Iстаб. / Iстаб. min = 9 / 7 = 1,29

      Но нестабильность по напряжению в 13,5% нас не устраивает. Что делать?

      Вот здесь нам и придёт на помощь его величество Генератор Тока.

      Давайте запитаем стабилитрон, с которого будем снимать опорное напряжение, через это самое величество:


Рис. 12 Схема ИОН с повышенной стабильностью Uоп.

      Допустим VD1 иVD2 будут всё те же 2С139А. В этом случае Rбал. так же будет равно 2 кОм.

      Зададимся током через VD2. По справочнику номинальный ток этого стабилитрона 10 mA. Не мудрствуя лукаво примем это за истину.

      Вычислим величину Rэ.

      Rэ = (UVD1 — Uбэ.) / IVD2 = (3.9 — 0.65) / 10 = 0.325 кОм.

      Принимаем ближайшее значение 330 Ом.

      Изменение тока протекающего через Rэ, а значит и через VD2 при изменении Uпит. на 18 Вольт будет таким же как и изменение напряжения на VD1 рассчитанное ранее, т.е. 13,5%.

      Абсолютная величина изменения тока VD2 составит: 10mA * 13.5% = 1,35mA, в отличии от 9 mA в VD1. Это приведёт к изменению напряжения на стабилитроне VD2 на 0,081V. Нестабильность опорного напряжения снизится до 2,1%.

      Вместо 13,5% на VD1!

      И это притом, что я выбрал довольно паршивый стабилитрон. Хотите получить меньшую нестабильность выбирайте стабилитрон с меньшим Rст.

      

      Ну вот, с одной областью применения генераторов тока кажется разобрались.

      Что же ещё? Где ещё нам может понадобиться источник стабильного тока?

      Да там где используются резистивные датчики.

      Фоторезисторы, термосопротивления, резистивные тензодатчики и т.д. и т.п.


Рис. 13 Один из вариантов подключения датчиков к генератору тока.

      Сопротивление таких датчиков является функцией какого либо внешнего параметра — температуры, освещённости, давления. Обозначим зависимость Rдат. от величины параметра (P) как f(P).

      Как правило, сопротивление связано с измеряемым параметром определённой математической формулой. Ток протекающий через датчик в случае использования идеального источника тока не зависит от Uпит.

      Падение напряжения на Rдат будет определяться по формуле:

       Uдат. = Iист. * f(P).

      Так как Iист. = const, то Uдат. будет изменяться по тому же закону что и Rдат. Вот здесь нам и пригодилось то, что напряжение на выходе генератора тока «привязано» к Rнагр.

      А дальше всё просто: берём контроллер на основе микропроцессора, закладываем в него софт состоящий из многих программ предназначенных для расчёта различных f(P), программу опроса множества датчиков, величины критических значений измеряемых параметров и подключаем всё это к центральному компьютеру межзвёздного корабля.

      Теперь дежурная вахта в любой момент может получить информацию о величине температуры, освещения и давления в сотнях, а может и тысячах отсеках корабля, и даже о том, с каким ускорением летит корабль.

      Лифт сможет сообщить о том, каков вес груза находящегося в кабине.

      Вот кажется и всё то основное, что я хотел рассказать о генераторе тока.

      Теперь вернёмся к началу статьи. В чём всё-таки сходства и различия генераторов (стабилизаторов, источников) тока от устройств поддерживающих на своём выходе стабильное напряжение (стабилизаторов напряжения)?

      Составим таблицу сравнительных характеристик.

      Отсюда видно, что генератор тока и стабилизатор напряжения представляют собой зеркальное отражение друг друга.

      Я описал лишь некоторые области применения источников тока. На самом деле их намного больше.

      Дерзайте.

      Если вы заметили в статье я постоянно «путал» названия: генератор, источник, стабилизатор.

      Это сделано специально. Т.к. в различной литературе по электронике и электротехнике вы можете столкнуться с любым из них.

      

       И ещё.

      Часто производители в описании своей продукции делают большую ошибку.

      Вот пример:

      

       С сайта «FG Wilson (Engineering) Ltd» :

      

       Схема стабилизатора напряжения R438 обеспечивает управление по замкнутому циклу для выходного напряжения генератора переменного тока регулированием тока поля возбудителя. R438 может получать питание от поля системы с бесщеточным самовозбуждением или ПМГ и, как вариант, устанавливается на следующих генераторах переменного тока:

      Генераторы переменного тока серии 1000*

      Генераторы переменного тока серии 2000

      Генераторы переменного тока серии 3000

      

      В стабилизаторе напряжения R438 предусмотрена возможность проведения следующих регулировок (перед проведением регулировок необходимо внимательно ознакомиться с руководством по установке и техническому обслуживанию генератора переменного тока)

      

      Я не буду воспроизводить всю статью, но и из этой выдержки видно, что для того, кто писал описание этого устройства нет разницы между генератором напряжения и генератором тока.

       На самом деле это совершенно разные устройства.

      Если мы говорим о генераторе тока, то это означает, что нормирован ток.

      Если мы говорим о генераторе напряжения, то это означает, что нормировано напряжение.

      Дополнительно о стабилизаторах тока и напряжения читайте в статье «Стабилизатор тока и стабилизатор напряжения» этого раздела.

Идеальные источники тока и напряжения — Студопедия

Как и в случае идеальных пассивных элементов, при идеализации активных элементов (источник напряжения, источник тока) на них накладывают энергетические ограничения. Первое ограничение заключается в том, что в идеальных активных элементах не происходит ни рассеяния, ни накопления электрической энергии. Второе ограничение состоит в том, что идеальные активные элементы обладают неограниченной мощностью, которую они могут отдавать в электрическую цепь.

Идеальным источником напряжения называют активный элемент, напряжение на зажимах которого не зависит от параметров цепи, подключенной к нему, т.е. не зависит от величины тока, протекающего через источник.

Условное графическое обозначение идеального источника напряжения показано на рис.1.15. Его выполняют в виде окружности (обычно диаметром 8 мм), внутри которой располагается стрелка, указывающая положительное направление ЭДС . На зажимах источника возникает напряжение .

Рис. 1.15. Условное графическое изображение идеального источника напряжения

В соответствии с определением идеального источника напряжения, он имеет внутреннее сопротивление и обладает бесконечной мощностью. Так, если сопротивление нагрузки на зажимах источника ,то его ток ( ), а напряжение источника остается равным , что и приводит к бесконечно большой величине мощности , которой не может обладать реальный источник напряжения.

Идеальным источником тока называется идеализированный активный элемент, ток которого не зависит от напряжения на его зажимах. Условное обозначение идеального источника тока показано на рис.1.16. Двойная стрелка (рис. 1.16,а) показывает направление тока внутри источника.



В соответствии с определением идеального источника тока, он обладает бесконечной мощностью и имеет внутреннее сопротивление . Так, если сопротивление нагрузки

(рис. 1.16,б) неограниченно увеличивать ( ), то по определению, через нее должен проходить ток i, создавая на зажимах напряжение и мощность будет неограниченно увеличиваться ( ).

Рис. 1.16. Идеальный источник тока:

а – условное графическое изображение;

б – подключение нагрузки к источнику тока

обозначение, характеристики, виды источников таблицей

Существует несколько видов источников тока, различающиеся по природе происхождения энергии. Каждый из этих видов имеет свои индивидуальные особенности, в частности, принципы выработки электрической энергии, а также ее преобразование. Определить, какой тип элемента применяется, можно с помощью графического обозначения.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Прибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный.

Виды источников

Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:

Вид источникаХарактеристики источника тока
МеханическийСпециальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников.
ТепловойВ основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия  в которых вырабатывается благодаря распаду радиоактивных элементов.
ХимическийХимические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые.

·         Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит.

·         Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав.

·         Химически-тепловые используются только для кратковременной работы. Применяются, в основном, в сфере ракетостроения.

СветовойВ конце XX века достаточно популярными стали солнечные батареи, которые «собирают» световые частицы, преобразуемые впоследствии в электрическую энергию. Это происходит за счет выдачи напряжения и благодаря воздействию на световые частицы.

Важно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии.

Механические источники

Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.

Механический

Тепловые источники

Тепловые варианты источников обеспечивают уникальный принцип работы. Энергия вырабатывается благодаря образованию термопары, которая. Это означает, что на концах проводников обеспечивается расчётная разность температур, элементы взаимодействуют между собой, создавая электрическое поле.

Тепловой

Обратите внимание! Радиоактивные термопары используют в космической промышленности. Эффективность такого использования возможна благодаря долгому сроку службы и эффективным показателям вырабатываемой мощности.

В результате подобного движения заряженных частиц от горячей части проводника к холодной возникает электроток. При этом, чем больше разница температур, тем выше показатель результативной энергии. На практике термопары нередко входят в состав измерительных приборов.

Световые источники

Световые устройства ля выработки электроэнергии считаются самыми экологичными, эффективными и относительно дешевыми. Специальная панель из полупроводников поглощает световые частицы, которые при таком взаимодействии выдают определенное напряжение.

Световой

При этом, световые панели имеют небольшой показатель КПД – 15 %. Панели такого типа нашли широкое применение – от бытовых приборов до инновационных разработок в космической отрасли.

Важно! Световые источники начали использоваться вместо литиевых батарей из-за высокой стоимости последних. Несмотря на то, что многие объекты промышленности требуют значительного переоснащения для перехода на световые источники, конечная экономия возникает уже на первичных этапах эксплуатации.

Химические источники

В данную группу входит 3 основных устройства, отличающиеся строением и принципом работы:

  • Гальванический элемент – это вариант для выработки электроэнергии, который может быть использован один раз. То есть, после полной разрядки, повторное накопление заряда на внутреннем веществе невозможно. В состав таких приборов входят солевые, литиевые или щелочные батарейки.
  • Аккумуляторы – подразделяются на несколько типов: свинцово-кислотные, литий-ионные, никель-кадмиевые.
  • Тепловые элементы – используются в космической и инновационной промышленности для производства кратковременного тока с высокими показателями. Практическое применение агрегатов основано на потребностях в резервных источниках питания.

Важно! Химико-тепловые устройства требуют первоначального нагрева до 500–600 °С, чтобы активизировать твердый электролит.

Химический

В каждой сфере промышленности используется собственный вариант с конкретными параметрами. В бытовых условиях применяются, в основном, батарейки; в производственной – аккумуляторы.

Обозначение источников тока

Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:

Обозначения

На каждой схеме условных обозначений можно увидеть следующие параметры:

  • Общее обозначение источника тока и движущей силы ЭДС;
  • Графическое изображение без ЭДС;
  • Химический тип;
  • Батарея;
  • Постоянное напряжение;
  • Переменное напряжение;
  • Генератор.

Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

  • Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Аккумулятор

  • Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Батарейка

  • Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Механический принцип устройства

  • Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройство

Важно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала.

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Идеальный источник тока

  1. Источники
    напряжения и тока, их свойства,
    характеристики и схемы замещения.
    Законы Ома и Кирхгофа.

Источник ЭДС (идеальный
источник напряжения
) — двухполюсникнапряжение на
зажимах которого постоянно (не зависит
от тока в цепи). Напряжение может быть
задано как константа, как функция
времени, либо как внешнее управляющее
воздействие.

В
простейшем случае напряжение определено
как константа, то есть напряжение
источника ЭДС постоянно.

Реальные
источники напряжения

Рисунок
2

Идеальный
источник напряжения (источник ЭДС)
является физической абстракцией, то
есть подобное устройство не может
существовать. Если допустить существование
такого устройства, то электрический
ток
 I,
протекающий через него, стремился бы к
бесконечности при подключении нагрузки,
сопротивление RH которой
стремится к нулю. Но при этом получается,
что мощность источника
ЭДС также стремится к бесконечности,
так как .
Но это невозможно, по той причине, что
мощность любого источника энергии
конечна.

В
реальности, любой источник напряжения
обладает внутренним сопротивлением r,
которое имеет обратную зависимость от
мощности источника. То есть, чем больше
мощность, тем меньше сопротивление (при
заданном неизменном напряжении источника)
и наоборот. Наличие внутреннего
сопротивления отличает реальный источник
напряжения от идеального. Следует
отметить, что внутреннее сопротивление —
это исключительно конструктивное
свойство источника энергии. Эквивалентная
схема реального источника напряжения
представляет собой последовательное
включение источника ЭДС — Е
(идеального
источника напряжения) и внутреннего
сопротивления — r.

где

 —
падение напряжения
на внутреннем сопротивлении;

 —
падение напряжения
на нагрузке.

При
коротком замыкании (),
то есть вся мощность источника энергии
рассеивается на его внутреннем
сопротивлении. В этом случае токбудет
максимальным для данного источника
ЭДС. Зная напряжение холостого хода и
ток короткого замыкания, можно вычислить
внутреннее сопротивление источника
напряжения:

Исто́чник
то́ка
 (также генератор
тока
) — двухполюсник,
который создаёт ток ,
не зависящий от сопротивления нагрузки,
к которой он присоединён. В быту
«источником тока» часто неточно называют
любой источник электрического напряжения
(батарею, генератор, розетку), но в строго
физическом смысле это не так, более
того, обычно используемые в быту источники
напряжения по своим характеристикам
гораздо ближе к источнику
ЭДС,
чем к источнику тока.

Свойства:

Напряжение на
клеммах идеального источника тока
зависит только от сопротивления внешней
цепи:

Мощность,
отдаваемая источником тока в сеть,
равна:

Так
как для источника тока ,
напряжение и мощность, выделяемая им,
неограниченно растут при росте
сопротивления..

Реальный источник тока

Реальный
источник тока, так же как и источник
ЭДС,
в линейном приближении может быть описан
таким параметром, как внутреннее
сопротивление .
Отличие состоит в том, что чем больше
внутреннее сопротивление, тем ближе
источник тока к идеальному (источник
ЭДС, наоборот, чем ближе к идеальному,
тем меньше его внутреннее сопротивление).
Реальный источник тока с внутренним
сопротивлением эквивалентен
реальному источнику ЭДС, имеющему
внутреннее сопротивление и
ЭДС .

Напряжение
на клеммах реального источника тока
равно:

Сила
тока в цепи равна:

Мощность,
отдаваемая реальным источником тока в
сеть, равна:

Схемы
замещения источников энергии

Простейшая
электрическая цепь и ее схема замещения,
как указывалось, состоят из одного
источника энергии с ЭДС Е и внутренним
сопротивлением rвт и
одного приемника с сопротивлением r.
Ток
во внешней по отношению к источнику
энергии части цепи, т. е. в приемнике с
сопротивлением r,
принимается направленным от точки а с
большим потенциалом к
точке b с
меньшим потенциалом .
Направление
тока будем обозначать на схеме стрелкой
с просветом или указывать двумя индексами
у буквы I, такими
же, как и у соответствующих точек схемы.
Так, для схемы рис. 1.3 ток в приемнике I = Iаb,
где индексы а и b обозначают направление
тока от точки а к точке b.
Покажем,
что источник энергии с известными
ЭДС E и
внутренним сопротивлением rвт,
может быть представлен двумя
основными схемами замещения
 (эквивалентными
схемами).
Как
уже указывалось, с одной стороны,
напряжение на выводах источника энергии
меньше ЭДС на падение напряжения внутри
источника:

 

с
другой стороны, напряжение на
сопротивлении r 

 

Ввиду
равенства из
(1.5а) и (1.56) получается или 

 

В
частности, при холостом ходе (разомкнутых
выводах а и b)
получается E=Uх,
т. е. ЭДС равна напряжению холостого
хода. При коротком замыкании (выводов
а и b)
ток 

 

Из
(1.7 6)
следует, что rвт источника
энергии, так же как и сопротивление
приемника, ограничивает ток.
На
схеме замещения можно показать элемент
схемы с rвт,
соединенным последовательно с элементом,
обозначающим ЭДС E (рис.
1.7, а). Напряжение U зависит от тока
приемника и равно разности между
ЭДС E источника
энергии и падением напряжения rвтI (1.6а).
Схема источника энергии, показанная на
рис. 1.7, а, называется первой
схемой замещения
 или
схемой с источником ЭДС.
Если rвт<<r и
напряжение Uвт<<U,
т. е. источник электрической энергии
находится в режиме, близком к холостому
ходу, то можно практически пренебречь
внутренним падением напряжения и
принять Uвт = rвт =
0
.
В этом случае для источника энергии
получается более простая эквивалентная
схема только с источником ЭДС, у которого
в отличие от реального источника
исключается режим короткого замыкания
(U =0). Такой источник энергии без внутреннего
сопротивления (rвт =
0
),
обозначенный кружком со стрелкой внутри
и буквой E (рис.
1.7,6), называют идеальным
источником ЭДС
 или источником
напряжения
 (источником
с заданным напряжением). Напряжение на
выводах такого источника не зависит от
сопротивления приемника и всегда равно
ЭДС E.
Его внешняя характеристика — прямая,
параллельная оси абсцисс (штриховая
прямая ab на
рис. 1.4).

Что такое источник напряжения и источник тока — идеально и практично

A Источник — это устройство, преобразующее механическую, химическую, тепловую или другую форму энергии в электрическую. Другими словами, источник — это активный сетевой элемент, предназначенный для выработки электроэнергии.

В электрической сети доступны различные типы источников: источники напряжения и источники тока. Источник напряжения имеет форсирующую функцию ЭДС, тогда как источник тока имеет форсирующую функцию тока.

В комплекте:

voltage-and-current-source-figure

Источники тока и напряжения далее классифицируются как идеальный источник или практический источник.

Источник напряжения

Источник напряжения — это устройство с двумя выводами, напряжение которого в любой момент времени является постоянным и не зависит от тока, потребляемого от него. Такой источник напряжения называется Идеальным источником напряжения и имеет нулевое внутреннее сопротивление.

Практически невозможно получить идеальный источник напряжения.

Источники, имеющие некоторое количество внутренних сопротивлений, известны как Практический источник напряжения . Из-за этого внутреннего сопротивления; Происходит падение напряжения, что приводит к снижению напряжения на клеммах. Чем меньше внутреннее сопротивление (r) источника напряжения, тем он ближе к идеальному источнику.

Символическое изображение идеального и практичного источника напряжения показано ниже.

voltage-current-source-fig-1 На рисунке А, показанном ниже, показаны принципиальная схема и характеристики идеального источника напряжения:

voltage-and-current-source-fig-2 На рисунке B ниже показаны принципиальная схема и характеристики практического источника напряжения:

voltage-and-current-source-fig-3 Примером источников напряжения являются аккумуляторные батареи и генераторы.

Источник тока

Источники тока далее подразделяются на идеальные и практические источники тока.

Идеальный источник тока — это двухконтактный схемный элемент, который подает одинаковый ток на любое сопротивление нагрузки, подключенное к его клеммам. Важно помнить, что ток, подаваемый источником тока, не зависит от напряжения на клеммах источника. У него бесконечное сопротивление.

Практический источник тока представляет собой идеальный источник тока, подключенный к сопротивлению параллельно.Символическое представление показано ниже:

voltage--current-source-fig-4 Рисунок C, показанный ниже, показывает его характеристики. voltage-current-source-fig-5 На рисунке D, показанном ниже, показаны характеристики практического источника тока.

voltage-current-source-fig-6 Примером источников тока являются фотоэлементы, коллекторные токи транзисторов.

.

Что такое независимый источник напряжения и тока?

Источник, который подает активную мощность в сеть, известен как электрический источник. Электрический источник бывает двух типов: независимый источник и зависимый источник. Независимый и зависимый источник означает, зависят ли источники напряжения или тока от какого-либо другого источника, или они действуют независимо.

independent-and-dependent-sources- Источники энергии

Существует два типа источников энергии: прямые и переменные.

Прямой источник

Источник напряжения и тока являются прямыми источниками. Прямой источник дополнительно классифицируется как независимый источник напряжения и тока и зависимый источник напряжения и тока.

Независимый источник напряжения и тока

Независимые источники — это источники, которые не зависят от других величин в цепи. Это двухконтактные устройства, которые имеют постоянное значение, то есть напряжение на двух клеммах остается постоянным независимо от всех условий цепи.

Сила напряжения или тока не изменяется никакими изменениями в подключенной сети, источник считается либо независимым источником напряжения, либо независимым источником тока. В этом случае значение напряжения или тока фиксировано и не регулируется

Зависимый источник напряжения и тока

Источники, выходное напряжение или ток которых не фиксированы, но зависят от напряжения или тока в другой части схемы, называются зависимыми или управляемыми источниками. Это четырехконтактные устройства.

Когда сила напряжения или тока изменяется в источнике при любом изменении в подключенной сети, они называются зависимыми источниками. Зависимые источники представлены ромбовидной формой.

Зависимые источники далее подразделяются на:

Источник напряжения с регулируемым напряжением (VCVS)

В источнике напряжения, управляемом напряжением, источник напряжения зависит от любого элемента схемы.

dependent-and-independent-fig-1 На приведенном выше рисунке напряжение на выводе источника V ab зависит от напряжения на выводе V cd ,

DEND-AND-DEPENDENT-EQ1

Источник тока, управляемый напряжением (VCCS)

В источнике тока , управляемом напряжением , ток источника i ab зависит от напряжения на клемме cd (V cd ), как показано на рисунке ниже:

dependent-and-independent-fig-2
Таким образом, INDEPENDEND-AND-DEPENDENT-EQ2

Где ƞ — постоянная, известная как крутизна , а ее единица измерения — mho.

Источник контролируемого напряжения (CCVS)

В источнике напряжения с регулируемым током Источник напряжения сети зависит от тока сети, как показано на рисунке ниже

dependent-and-independent-fig-3 Здесь напряжение источника V ab зависит от тока ветви cd

INDEPENDEND-AND-DEPENDENT-EQ3

Где r — постоянная.

Источник тока с регулируемым током (CCCS)

В источнике тока с контролируемым током источник тока зависит от тока ветви другой ветви, как показано на рисунке ниже

dependent-and-independent-fig-4
Итак, INDEPENDEND-AND-DEPENDENT-EQ4

Где β — постоянная

Альтернативные источники

В сетевых приложениях существуют и другие типы источников, в которых напряжение или ток изменяются во времени синусоидально или экспоненциально и т. Д.называются чередующимися источниками.

.

Что такое преобразование источника — преобразование напряжения в ток и тока в источник напряжения

Преобразование источника просто означает замену одного источника эквивалентным источником. Практический источник напряжения может быть преобразован в эквивалентный практический источник тока и аналогично практический источник тока в источник напряжения.

Любой практический источник напряжения или просто источник напряжения состоит из идеального источника напряжения, включенного последовательно с внутренним сопротивлением или импедансом (для идеального источника это сопротивление будет нулевым), выходное напряжение становится независимым от тока нагрузки.Элементы, батареи и генераторы являются примером источника напряжения.

Для любого практического источника тока или просто источника тока существует идеальный источник тока, параллельный внутреннему сопротивлению или импедансу, для идеального источника тока этот параллельный импеданс равен бесконечности.

Полупроводниковые устройства, такие как транзисторы и т. Д., Рассматриваются как источник тока, или выход, создаваемый источником постоянного или переменного напряжения, называется источником постоянного и переменного тока соответственно.

Источник напряжения и тока являются взаимно передаваемыми, или, другими словами, может выполняться преобразование источника, то есть напряжение в источнике тока и ток в источник напряжения. Давайте поймем это, рассмотрев схему, приведенную ниже:

SOURCE-TRANSFORMATION-FIGURE-1 На рисунке A показан практический источник напряжения, включенный последовательно с внутренним сопротивлением r v , а на рисунке B показан практический источник тока с параллельным внутренним сопротивлением r i

Для практического источника напряжения ток нагрузки будет задан уравнением:
SOURCE-TRANSFORMATION-EQ1 Где,

iL v — ток нагрузки для практического источника напряжения
V — напряжение
r v — внутреннее сопротивление источника напряжения
r L — сопротивление нагрузки

Предполагается, что сопротивление нагрузки r L подключено к клемме x-y.Аналогично для практического источника тока ток нагрузки задается как:
SOURCE-TRANSFORMATION-EQ2 Где,

iL i — ток нагрузки для практического источника тока

I — текущий

r i — внутреннее сопротивление источника тока

r L — сопротивление нагрузки, подключенной к клемме x-y на рисунке B

Два источника становятся идентичными, если приравнять уравнение (1) и уравнение (2)

SOURCE-TRANSFORMATION-EQ3

Однако для источника тока напряжение на клеммах x-y будет Iri, клеммы x-y разомкнуты.т.е.

В = I x r i

Следовательно, получим,
SOURCE-TRANSFORMATION-EQ4

Следовательно, для любого практического источника напряжения, если идеальное напряжение равно V, а внутреннее сопротивление составляет r v , источник напряжения может быть заменен источником тока I с внутренним сопротивлением, параллельным источнику тока.

Преобразование источника: преобразование источника напряжения в источник тока

SOURCE-TRANSFORMATION-FIGURE Когда источник напряжения подключен к сопротивлению последовательно и его необходимо преобразовать в источник тока, тогда сопротивление подключается параллельно источнику тока, как показано на рисунке выше.

Где I с = V с / R

Преобразование источника тока в источник напряжения

SOURCE-TRANSFORMATION-FIGURE-3 На приведенной выше принципиальной схеме источник тока, подключенный параллельно с сопротивлением, преобразуется в источник напряжения путем размещения сопротивления последовательно с источником напряжения.

Где, V с = I с / R

.

Контролируемые источники

Контролируемые источники

Подразделы


Модели контролируемых источников содержат коэффициент передачи.
Это сложно из-за времени задержки и частоты.

(9.162)

Во время анализа постоянного тока (нулевая частота) это становится реальным, потому что
показатель степени равен единице.

Источник тока, управляемый напряжением

Источник тока, зависящий от напряжения (VCCS), как показано на рис.9.8, определяется по следующему уравнению, которое
вводит еще одно неизвестное в матрицу MNA.

Рисунок 9.8:
источник тока, управляемый напряжением
(9.163)

Новая неизвестная переменная должна быть учтена четырьмя
оставшиеся простые уравнения.

(9.164)

А в матричном представлении это:

(9.165)

Как видите, последняя строка была добавлена ​​VCCS
представляет определяющее уравнение (9.166). Дополнительные
правый столбец матрицы поддерживает согласованность системы.

При повороте вышеуказанного штампа MNA (9.168)
дополнительная строка и столбец могут быть сохранены, обеспечивая конечное значение (
элемент pivot должен быть ненулевым). Оба представления эквивалентны.
Если равно нулю, необходимо использовать приведенное ниже представление.

(9.166)

Матрица рассеяния источника тока, управляемого напряжением
пишет следующим образом (это выдержка времени).

(9.167)


(9.168)


(9.169)


(9.170)


Источник тока с регулируемым током

Токозависимый источник тока (CCCS), как показано на рис.9.9, определяется следующим уравнением, которое
вводит еще одно неизвестное в матрицу MNA.

Рисунок 9.9:
источник тока с регулируемым током
(9.171)

Новая неизвестная переменная должна быть учтена четырьмя
оставшиеся простые уравнения.

(9.172)

А в матричном представлении это:

(9.173)

Матрица рассеяния текущего управляемого источника тока
пишет следующим образом (это выдержка времени).

(9.174)


(9.175)


(9.176)


(9.177)


Источник напряжения, управляемый напряжением

Источник напряжения, зависящий от напряжения (VCVS), как показано на рис.9.10, определяется следующим уравнением, которое
вводит еще одно неизвестное в матрицу MNA.

Рисунок 9.10:
источник напряжения, управляемый напряжением
(9.178)

Новая неизвестная переменная должна быть учтена четырьмя
оставшиеся простые уравнения.

(9.179)

А в матричном представлении это:

(9.180)

Матрица рассеяния источника напряжения, управляемого напряжением
пишет следующим образом (это выдержка времени).

(9.181)


(9.182)


(9.183)


(9.184)


Источник напряжения с регулируемым током

Токозависимый источник напряжения (CCVS), как показано на рис.9.11, определяется следующими уравнениями, которые
ввести еще два неизвестных в матрицу MNA.

Рисунок 9.11:
источник напряжения с регулируемым током
(9.185)


(9.186)

Новые неизвестные переменные и должны учитываться
четыре оставшихся простых уравнения.

(9.187)

Матричное представление необходимо дополнить еще двумя новыми строками
(для новых неизвестных переменных) и соответствующие им столбцы.

(9.188)

Матрица рассеяния источника тока управляемого напряжения
пишет следующим образом (это выдержка времени).

(9.189)


(9.190)


(9.191)


(9.192)



Этот документ был создан Stefan Jahn на 2007-12-30 с использованием latex2html.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *