29.01.2025

Обозначение радиодеталей на схеме: Страница не найдена

Содержание

Виды маркировок и обозначение радиоэлементов на схеме

Радиоэлементы (радиодетали) – это электронные компоненты, собранные в составные части цифрового и аналогового оборудования. Радиодетали нашли свое применения в видеотехнике, звуковых устройствах, смартфонах и телефонах, телевизорах и измерительных приборах, компьютерах и ноутбуках, оргтехнике и прочей технике.

Плата  с различными радиоэлектронными компонентами

Виды радиоэлементов

Радиоэлементы, соединенные посредством проводниковых элементов, в совокупности образуют электросхему, которая еще может носить название «функциональный узел». Совокупность электроцепей из радиоэлементов, которые расположены в отдельном общем корпусе, называется микросхемой – радиоэлектронной сборкой, она может выполнять множество разных функций.

Все электронные компоненты, использующиеся в бытовой и цифровой технике, относятся к радиодеталям. Перечислить все подвиды и виды радиодеталей довольно проблематично, так как получится огромный список, который постоянно расширяется.

Для обозначения радиодеталей на схемах применяют как графические условные обозначения (УГО), так и буквенно-цифровые символы.

По методу действия в электрической цепи их можно разделить на два типа:

  1. Активные;
  2. Пассивные.

Активный тип

Активные электронные компоненты полностью зависят от внешних факторов, при воздействии которых меняют свои параметры. Именно такая группа привносит в электроцепь энергию.

Внешний вид дискретных транзисторов, которые представлены в разном исполнении

Выделяют следующих основных представителей этого класса:

  1. Транзисторы – это триод-полупроводник, который посредством входного сигнала может контролировать и управлять электронапряжением в цепи. До появления транзисторов их функцию выполняли электронные лампы, которые потребляли больше электроэнергии и были некомпактными;
  2. Диодные элементы – полупроводники, проводящие электроток только в единственном направлении. Имеют в своем составе один электрический переход и два вывода, производятся из кремния. В свою очередь, диоды делятся по диапазону частот, конструкции, назначению, габаритам переходов;
  3. Микросхемы – составные компоненты, в которых произведена интеграция конденсаторов, резисторов, диодных элементов, транзисторов и прочего в полупроводниковую подложку. Они предназначаются для преобразования электрических импульсов и сигналов в цифровую, аналоговую и аналогово-цифровую информацию. Могут производиться без корпуса или в нем.

Диод UX-C2B, который используется в микроволновых печах

Существует еще множество представителей данного класса, однако используются они реже.

Пассивный тип

Пассивные электронные компоненты не зависят от протекающего электротока, напряжения и прочих внешних факторов. Они могут или потреблять, или аккумулировать энергию в электроцепи.

В этой группе можно выделить следующие радиоэлементы:

  1. Резисторы – устройства, которые занимаются перераспределением электротока между составными элементами микросхемы. Классифицируются по технологии изготовления, методу монтажа и защиты, назначению, вольт-амперной характеристике, характеру изменения сопротивления;
  2. Трансформаторы – электромагнитные приспособления, служат для преобразования с сохранением частоты одной системы электротока переменного типа в другую. Состоит такая радиодеталь из нескольких (или одной) проволочных катушек, охваченных магнитным потоком. Трансформаторы могут быть согласующие, силовые, импульсные, разделительные, а также устройства тока и напряжения;
  3. Конденсаторы – элемент, служащий для аккумулирования электротока и последующего его высвобождения. Состоят из нескольких разделенных диэлектрическими элементами электродов. Конденсаторы классифицируются по виду диэлектрических компонентов: жидкие, твердые органические и неорганические, газообразные;
  4. Индуктивные катушки – устройства из проводника, которые служат для ограничения электротока переменного типа, подавления помех и накопления электроэнергии. Проводник помещен под изоляционный слой.

Внешний вид разнообразных конденсаторов

Маркировка радиодеталей

Маркировка радиодеталей обычно совершается производителем и находится на корпусе изделия. Маркирование подобных элементов может быть:

  • символьным;
  • цветовым;
  • символьным и цветовым одновременно.

Важно! Маркирование импортных радиодеталей может существенно отличаться от маркировки однотипных элементов отечественного производства.

На заметку. Каждый радиолюбитель при попытках расшифровать тот или иной радиокомпонент прибегает к справочнику, так как сделать это по памяти не всегда получается из-за огромного модельного разнообразия.

Пример цветной маркировки на резисторах

Обозначение радиоэлементов (маркировка) европейских изготовителей часто происходит по определенной буквенно-цифровой системе, состоящей из пяти символов (три цифры и две буквы – для изделий широкого применения, две цифры и три буквы – для спецаппаратуры). Цифры в такой системе определяют технические параметры детали.

Европейская система маркировки полупроводников широкого распространения

1-ая буква – кодировка материала
AОсновной компонент – германий
BКремний
CСоединение галлия и мышьяка – арсенид галлия
RСульфид кадмия
2-ая литера – вид изделия или его описание
AДиодный элемент малой мощности
BВарикап
CТранзистор малой мощности, работающий на низких частотах
DМощный транзистор, функционирующий на низких частотах
EТуннельный диодный компонент
FВысокочастотный транзистор малой мощности
GБолее одного прибора в едином корпусе
HМагнитный диод
LМощный транзистор, работающий на высокой частоте
MДатчик Холла
PФототранзистор
QСветовой диод
RПереключающийся прибор малой мощности
SПереключательный транзистор маломощный
TМощное переключающееся устройство
UТранзистор переключательный мощный
XУмножительный диодный элемент
YВыпрямительный диодный элемент высокой мощности
ZСтабилитрон

Обозначение радиодеталей на электросхемах

Из-за того, что существует огромное множество различных радиоэлектронных компонентов, были приняты на законодательном уровне нормы и правила их графического обозначения на микросхеме. Эти нормативные акты называются ГОСТами, где прописана исчерпывающая информация по виду и размерным параметрам графического изображения и дополнительным символьным уточнениям.

Важно! Если радиолюбитель составляет схему для себя, то ГОСТами можно пренебречь. Однако если составляемая электросхема будет подаваться на экспертизу или проверку в различные комиссии и госорганы, то рекомендуется сверить все со свежими ГОСТами – они постоянно дополняются и изменяются.

Графическое изображение наиболее популярных радиодеталей и аппаратуры

Обозначение радиодеталей типа «резистор», находящееся на плате, на чертеже выглядит прямоугольником, рядом с ним с литерой «R» и цифрой – порядковым номером. Например, «R20» обозначает, что резистор на схеме 20-ый по счету. Внутри прямоугольника может прописываться его рабочая мощность, которую он может долгое время рассеивать, не разрушаясь. Ток, проходя через этот элемент, рассеивает конкретную мощность, тем самым нагревает его. Если мощность будет больше номинальной, то радиоизделие выйдет из строя.

Условно графическое обозначение резисторов на участке цепи

Каждый элемент, подобно резистору, имеет свои требования к начертанию на чертеже цепи, условным буквенным и цифровым обозначениям. Для поиска таких правил можно использовать разнообразную литературу, справочники и многочисленные ресурсы интернета.

Любой радиолюбитель должен понимать виды радиодеталей, их маркировку и условно графическое обозначение, так как именно такие знания помогут ему правильно составить или прочесть существующую схему.

Видео

Оцените статью:

Радиодетали резисторы виды и обозначения таблица. Обозначение на схемах радиодеталей

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид
и схематическое обозначение
радиодеталей

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее. А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора
ниже и обозначение
постоянного
и переменного
на схеме.

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

2.Транзистор
и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн
перехода npn

Э это эммитер
, К это коллектор
, а Б это база
. Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка

Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С — сток, И — исток, З — затвор

И напоследок о транзисторах как же они выглядат на самом деле

Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора

Микросхемы
, внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.

В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.

Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

АУстройство

АА
АК
AKS

Регулятор тока
Блок реле
Устройство

BПреобразователи


BF
BK
BL
BM
BS

Громкоговоритель
Телефон
Датчик тепловой
Фотоэлемент
Микрофон
Звукосниматель

СКонденсаторы

СВ
CG

Батарея конденсаторов силовая
Блок конденсаторов зарядный

DИнтегральные схемы, микросборки

DA
DD

ИС аналоговая
ИС цифровая, логический элемент

EЭлементы разные

EK
EL

Теплоэлектронагреватель
Лампа осветительная

FРазрядники, предохранители, устройства защиты

FA
FP
FU
FV

Дискретный элемент защиты по току мгновенного действия
Дискретный элемент защиты по току инерционного действия
Предохранитель плавкий
Разрядник искровой

GГенераторы, источники питания

GB
GC
GE

Батарея аккумуляторов
Синхронный компенсатор
Возбудитель генератора

HУстройства индикационные и сигнальные

HA
HG
HL
HLA
HLG
HLR
HLW
HV

Прибор звуковой сигнализации
Индикатор
Прибор световой сигнализации
Табло сигнальное
Лампа сигнальная с зелёной линзой
Лампа сигнальная с красной линзой
Лампа сигнальная с белой линзой
Индикаторы ионные и полупроводниковые

KРеле, контакторы, пускатели

KA
KH
KK
KM
KT
KV
KCC
KCT
KL

Реле токовое
Реле указательное
Реле электротепловое
Контактор, магнитный пускатель
Реле времени
Реле напряжения
Реле команды включения
Реле команды отключения
Реле промежуточное

LКатушки индуктивности, дроссели

LL
LR
LM

Дроссель люминисцентного освещения
Реактор
Обмотка возбуждения электродвигателя

МДвигатели

МА

Электродвигатели

РПриборы измерительные

PA
PC
PF
PI
PK
PR
PT
PV
PW

Амперметр
Счётчик импульсов
Частотомер
Счетчик активной энергии
Счетчик реактивной энергии
Омметр
Измеритель времени действия, часы
Вольтметр
Ваттметр

QВыключатели и разъединители силовые

QF

Выключатель автоматический

RРезисторы

RK
RP
RS
RU
RR

Терморезистор
Потенциометр
Шунт измерительный
Варистор
Реостат

SУстройства управления и коммутации

SA
SB
SF

Выключатель, или переключатель
Выключатель кнопочный
Выключатель автоматический

TТрансформаторы, автотрансформаторы

TA
TV

Трансформатор тока
Трансформатор напряжения

UПреобразователи

UB
UR
UG
UF

Модулятор
Демодулятор
Блок питания
Преобразователь частоты

VПриборы электровакуумные и полупроводниковые

VD
VL
VT
VS

Диод, стабилитрон
Прибор электровакуумный
Транзистор
Тиристор

XСоединители контактные

XA
XP
XS
XW

Токосъёмник
Штырь
Гнездо
Соединитель высокочастотный

YУстройства механические с электромагнитным приводом

YA
YAB

Электромагнит
Замок электромагнитный

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

  1. Диоды.
  2. Транзисторы.
  3. Микросхемы.

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п-перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

  • аналоговые;
  • цифровые;
  • аналого-цифровые.

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:

Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т. д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.


Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение на схемах радиодеталей

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60, отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

А

Устройство

АА

Регулятор тока
 

АК

Блок реле
 

AKS

Устройство

В

Преобразователи

ВА

Громкоговоритель
 

BF

Телефон
 

ВК

Датчик тепловой
 

BL

Фотоэлемент
 

ВМ

Микрофон
 

BS

Звукосниматель

С

Конденсаторы

СВ

Батарея конденсаторов силовая
 

CG

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

ИС аналоговая
 

DD

ИС цифровая, логический элемент

Е

Элементы разные

ЕК

Теплоэлектронагреватель
 

EL

Лампа осветительная

F

Разрядники, предохранители, устройства защитные

FA

Дискретный элемент защиты по току мгновенного действия
 

FP

То же, по току инерционного действия
 

FU

Предохранитель плавкий
 

FV

Разрядник

G

Генераторы, источники питания

GB

Батарея аккумуляторов
 

GC

Синхронный компенсатор
 

Возбудитель генератора

Н

Устройства индикационные и сигнальные

НА

Прибор звуковой сигнализации
 

HG

Индикатор
 

HL

Прибор световой сигнализации
 

HLА

Табло сигнальное
 

HLG

Лампа сигнальная с зеленой линзой
 

HLR

Лампа сигнальная с красной линзой
 

HLW

Лампа сигнальная с белой линзой
 

HV

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

Реле токовое
 

КН

Реле указательное
 

КК

Реле электротепловое
 

КМ

Контактор, магнитный пускатель
 

КТ

Реле времени
 

KV

Реле напряжения
 

КСС

Реле команды включения
 

КСТ

Реле команды отключения
 

KL

Реле промежуточное

L

Катушки индуктивности, дроссели

LL

Дроссель люминесцентного освещения
 

LR

Реактор
 

LM

Обмотка возбуждения электродвигателя

М

Двигатели

МА

Электродвигатели

Р

Приборы измерительные

РА

Амперметр
 

РС

Счетчик импульсов
 

PF

Частотомер
 

PI

Счетчик активной энергии
 

PK

Счетчик реактивной энергии
 

PR

Омметр
 

PT

Измеритель времени действия, часы
 

PV

Вольтметр
 

PW

Ваттметр

Q

Выключатели и разъединители силовые

QF

Выключатель автоматический

R

Резисторы

RK

Терморезистор
 

RP

Потенциометр
 

RS

Шунт измерительный
 

RU

Варистор
 

RR

Реостат

S

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

SA

Выключатель или переключатель
 

SB

Выключатель кнопочный
 

SF

Выключатель автоматический

Т

Трансформаторы, автотрансформаторы

TA

Трансформатор тока
 

TV

Трансформаторы напряжения

U

Преобразователи

UB

Модулятор
 

UR

Демодулятор
 

UG

Блок питания
 

UF

Преобразователь частоты

V

Приборы электровакуумные и полупроводниковые

VD

Диод, стабилитрон
 

VL

Прибор электровакуумный
 

VT

Транзистор
 

VS

Тиристор

Х

Соединители контактные

ХА

Токосъемник
 

ХР

Штырь
 

XS

Гнездо
 

XW

Соединитель высокочастотный

Y

Устройства механические с электромагнитным приводом

YA

Электромагнит
 

YAB

Замок электромагнитный

Зарубежные буквенные обозначения электронных комплектующих [Мозаика системного администрирования]

ASeparable assembly or sub-assembly (e.g. printed circuit assembly)Отдельный модуль или устройство
AEAerialАнтенна
ANTAntennaАнтенна
ARAmplifier (other than rotating), repeaterУсилитель, повторитель
ATAttenuator, inductive termination, resistive terminationАттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
BBead FerriteФерритовый фильтр
BBatteryБатарея
BMotorЭлектродвигатель
BRBridge rectifierДиодный мост
BTBatteryБатарея
BTPhotovoltaic transducer, solar cellФотогальванический преобразователь, солнечная батарея
CCapacitorКонденсатор
CBCircuit BoardМонтажная плата
CBCircuit breakerАвтоматический выключатель
CNCapacitor networkКонденсаторная сборка
CPConnector adapter, junction (coaxial or waveguide)Переходник, cоединение (коаксиала или волновода)
CRDiode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRTCathode ray tubeЭлектронно-лучевая трубка
DDiode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DCDirectional couplerНаправленный соединитель
DLDelay lineЛиния задержки
DSDisplay, alphanumeric display device, annunciator, signal lampДисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSPDigital signal processorЦифровой сигнальный процессор
EElectrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical partЭлектрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EPEarphoneГоловные телефоны
EQEqualizerЭквалайзер
FFuseПредохранитель
FBFerrite beadФерритовый фильтр
FDFiducialТочка выравнивания
FEBFerrite beadФерритовый фильтр
FETField-effect transistorПолевой транзистор
FLFilterФильтр
GGenerator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magnetoЭлектрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDTGas-discharge lampГазоразрядная лампа
GNGeneral networkОбщая сеть
HHardware, e.g., screws, nuts, washersКрепёжные элементы (винты, гайки, шайбы)
HPHydraulic partДеталь гидравлики
HRHeater, heating lamp, heating resistor, infrared lamp, thermomechanical transducerНагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HSHandset, operator’s setТелефонная трубка, телефонная гарнитура
HTEarphoneГоловной телефон, наушники
HYCirculator or directional couplerЦиркулятор или направленный ответвитель
ILampЛампа накаливания
ICIntegrated CircuitМикросхема, интегральная схема
JJack, Receptacle, Terminal Strip, connectorГнездо, розетка, патрон, клеммник, коннектор
JWire link, jumperДжампер
JJumper chipРезистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFETJunction gate field-effect transistorОднопереходный полевой транзистор
JPJumper (Link)Джампер
KRelay, contactorРеле, контактор, электромагнитный пускатель
LInductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactorКатушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LALightning arresterМолниезащита
LCDLiquid-crystal displayЖК-дисплей
LDRLight Dependent Resistor,Фоторезистор
LEDLight-emitting diodeСветодиод
LSLoudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounderГромкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
MMotorЭлектродвигатель
MMeter, electric timer, electrical counter, oscilloscope, position indicator, thermometerИзмеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCBMiniature circuit breakerМиниатюрный автоматический выключатель
MGDynamotor, motor-generatorДинамотор, моторгенератор
MICMicrophoneМикрофон
MKMicrophoneМикрофон
MOSFETMetal-oxide-semiconductor field-effect transistorМОП-транзистор
MOVMetal oxide varistorВаристор на базе оксида металла
MPMechanical part (including screws and fasteners)Механическая деталь (в том числе крепёж)
MTAccelerometerАкселерометр
NNeon LampНеоновая лампа
NENeon LampНеоновая лампа
OPOperational amplifierОперационный усилитель
PPlugШтекер, штепсельная вилка
PCPhotocellФотоэлемент
PCBPrinted circuit boardПечатная плата
PHEarphoneГоловные телефоны
PLCProgrammable logic controllerПрограммируемый логический контроллер
PSPower supply, кectifier (complete power-supply assembly)Вторичный источник электропитания, выпрямитель тока
PUPickup, headЗвукосниматель, передающая телевизионная трубка, магнитная головка
QTransistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device)Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
RResistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostatРезистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RERadio receiverРадиоприёмное устройство
RFCRadio frequency chokeВысокочастотный дроссель
RJResistor JointРезисторная сборка
RLARelayРеле
RNResistor NetworkРезисторная сборка
RTThermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistorТерморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RVVaristor, symmetrical varistor, voltage-sensitive resistorВаристор, варистор с симметричной вах, резистор управляемый напряжением
RYRelayРеле
SSwitch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostatПереключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
SCRSilicon controlled rectifierОднонаправленный управляемый тиристор
SPKSpeakerГромкоговоритель
SQElectric squibЭлектровоспламенитель
SRRotating contact, slip ringВращающийся контакт, контактное кольцо
SUSSilicon unilateral switchПороговый тринистор
SWSwitchПереключатель, выключатель, кнопка
TTransformerТрансформатор
TBConnecting strip, test blockКлеммная колодка, тест-блок
TCThermocoupleТермопара
TFTThin-film-transistor displayTFT-дисплей
THThermistorТерморезистор, термистор
TPTest pointКонтрольная (измерительная) точка
TRTransistorТранзистор
TRRadio transmitterРадиопередатчик
TUNTunerТюнер
UIntegrated CircuitМикросхема, интегральная схема
UPhoton-coupled isolatorОптопара
VVacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube)Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VCVariable capacitorПеременный конденсатор
VDRVoltage Dependent ResistorВаристор; резистор, управляемый напряжением
VFDVacuum fluorescent displayВакуумно-люминесцентный индикатор
VLSIVery-large-scale integrationСБИС — сверхбольшая интегральная схема
VRVariable resistor (potentiometer or rheostat)Переменный резистор (потенциометр или реостат)
VRVoltage regulatorРегулятор (стабилизатор) напряжения
VTVoltage transformerТрансформатор напряжения
WWire, bus bar, cable, waveguideПровод, шина, кабель, волновод
WTWiring tiepointТочка примыкания
XSolar cellСолнечный элемент
XOther convertersПреобразователи, не включаемые в другие категории
XCeramic resonatorКерамический резонатор, кварцевый генератор
X_Socket connector for another itemРазъём для элементов. Вторая буква соответствует подключаемому элементу
XASocket connector for printed circuit assembly connectorРазъём для печатных плат
XDSSocket connector for light socketРазъём для патрона
XFSocket connector for fuse holderРазъём для предохранителя
XLLampholderЛамповый патрон
XMERTransformerТрасформатор
XTALCrystalКварцевый генератор
XUSocket connector for integrated circuit connectorРазъём для микросхемы
XVSocket connector for vacuum tube socketРазъём для радиолампы
YCrystal or oscillatorКварцевый резонатор или осциллятор
ZZener diodeСтабилитрон
ZBalun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity)Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор
ZDZener DiodeСтабилитрон
ZSCTZero sequence current transformer, also called a window-type current transformerТрансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи
Vddплюс(D — drain, сток)
Vssминус(S — source, исток)

Обозначения в электронике схемах — Морской флот

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Чтение электрической схемы

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводниковые диоды

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

  • A — устройства;
  • B — преобразователи;
  • C — конденсаторы;
  • D — микросхемы;
  • E — элементы разные;
  • F — защитные устройства;
  • G — источники питания;
  • H — индикаторы;
  • K — реле;
  • L — катушки;
  • M — двигатели;
  • P — приборы;
  • Q — выключатели;
  • R — резисторы;
  • S — выключатели;
  • T — трансформаторы;
  • U — преобразователи;
  • V — полупроводники, электровакуумные лампы;
  • X — контакты;
  • Y — электромагнит.

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.

Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.

В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.

Какие виды электросхем могут пригодиться?

Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.

Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг это знакомство с видами электрических схем.

Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».

Это дубликат более раннего документа ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна электрическая.

Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.

Тип #1 – функциональная схема

Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.

А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.

Тип #2 – принципиальная схема

Принципиальная схема, в отличие от функциональной это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними.

Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.

Тип #3 – монтажная схема

Монтажная схема документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.

Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.

Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.

Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.

Графические изображения в электросхемах

Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.

Большая часть обозначений графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.

Основные базовые изображения

Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.

Самый простой пример обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие именно они и отображаются в схемах.

Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.

Символика однолинейных схем

Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.

Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.

Специальными символами обозначаются катушки реле во всех изображениях за основу взят прямоугольник.

Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».

При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.

Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток это количество проводов.

Как изображаются шины и провода?

Для обозначений шин, кабелей и проводов используется линейная графика практически все символы состоят из прямых линий.

Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.

Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.

Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.

Розетки и выключатели на схемах

Обозначение выключателей разбито на несколько групп по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.

Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.

Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.

Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.

При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.

Например, популярные виды розеток выглядят следующим образом:

На деле же электромонтажные устройства выглядят так:

Выключатели и розетки одни из самых «востребованных» элементов в схемах для домашнего применения, поэтому их следует запомнить в первую очередь. Подробнее об обозначении таких устройств на чертежах и схемах читайте в этой статье.

Обозначение источников света

Для различных видов ламп и светильников также предусмотрены отдельные символы. Удобно то, что для светодиодных и люминесцентных лампочек есть специальные значки.

Стандартные изображения разного рода светильников часто применяют для составления монтажных схем.

Если использовать одинаковые значки, придется включать дополнительные уточнения, а с типовыми символами можно нарисовать схему намного быстрее.

Элементы для составления принципиальных электросхем

Базовые символы для принципиальных схем отличаются мало, но кроме них есть еще специальные значки для обозначения всевозможных радиоэлементов: тиристоров, резисторов, диодов и пр.

Существуют отдельные обозначения для радиоустройств, но при проектировании домашней электросети они обычно не требуются.

Буквенные обозначения на электросхемах

Чтобы дать более полную информацию об устройстве, его подписывают сокращенным буквенным обозначением. Количество букв 2 или 3. Иногда буквенное обозначение превращается в буквенно-цифровое, если рядом поставить порядковый номер устройства.

Наряду с международными есть и российские стандарты. Они перечислены в ГОСТ 7624-55, но этот документ признан недействующим.

В статье приведена информация не обо всех условных обозначениях. Полные материалы о графических символах можно отыскать в ГОСТ 2.709-89, 2.721-74, 2.755-87.

Выводы и полезное видео по теме

От рисунка до принципиальной электрической схемы:

Пример чтения схем электроустройств (часть 1):

Продолжение, а точнее, часть 2 о тонкостях чтения схем электроустройств (часть 2):

Подробно о самостоятельном составлении схем:

Владение информацией по чтению и составлению электросхем может пригодиться и для монтажных работ по благоустройству жилья, и для ремонта электроприборов. Ни к чему придумывать собственную символику, когда есть профессиональная система условных обозначений, выучить которую не так уж и сложно.

Есть, что дополнить, или возникли вопросы по составлению и прочтению электрических схем? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом разработки чертежей. Форма для связи находится в нижнем блоке.

Было дело – занимался электромонтажом, в основном, по осветительным сетям. Монтажная схема дает представление о количестве розеток, выключателей, светильников и прочего и их примерном расположении. Но способ их соединения, то есть, варианты устройства разводки в распределительных коробках – это уже знания электромонтажника. А высота закладки провода и установки приборов зависит от применяемого ГОСТа.

Добрый день, Владимир.

Чтобы не дезориентировать читателей статьи, вынужден несколько подкорректировать вашу трактовку монтажной схемы.

Прежде всего, монтажная схема задает способ подключение потребителей электроэнергии к распределительному щитку.

Среди «популярных» для многоквартирных домов – схема, предусматривающая проброску питающей магистрали через все комнаты квартиры с последующим обустройством распределительных коробок, от которых запитываются светильники, розетки, прочие.

Кардинально отличается и практически не применяется схема электроснабжения «звездой» – от распредщита через автоматы подключаются отдельные токоприемники.

Следующий вариант – смешанная схема: все потребители делятся на категории и от щита их запитывают отдельными защищенными линиями, от которых через распредкоробки идут ответвления.

Могут быть и другие варианты, предлагаемые заказчику проекта подрядчиком-разработчиком схемы электроснабжения. То есть, творчество электромонтажника – это ваша фантазия.

Графические обозначения электронных компонентов в векторе.

Под каждой картинкой есть кнопка для скачивания графических обозначений в векторе.

С обозначениями электронных ламп я уж не стал заморачиваться.
К некоторым нашим обозначениям полупроводников я добавил буржуйские символы — они представлены во вторую очередь как вариант к ГОСТовскому обозначению.

На странице представлены растровые изображения графических обозначений (все картинки кликабельны). Под каждой картинкой есть ссылка, по которой можно скачать тот или иной упакованный в архив файл в векторном формате svg. Пользуйтесь на здоровье.

При масштабировании элементов не забывайте включать режим «При изменении размеров объекта менять в той же пропорции толщину обводки».

Обозначения радиодеталей. Маркировка радиодеталей и радиоэлементов Цоколевка радиоэлементов

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.

Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.

Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

кликните по картинке чтобы увеличить

При практической работе, связанной в первую очередь с ремонтом электронной техники, возникает задача определить тип электронного компонента, его параметры, расположение выводов, принять решение о прямой замене или использовании аналога. В большинстве существующих справочников приводится информация по отдельным типам радиокомпонентов (транзисторы, диоды и т. д.). Однако ее недостаточно, и необходимым дополнением к таким книгам служит данное справочное пособие. Представляемая читателю книга по маркировке электронных компонентов содержит в отличие от издававшихся ранее подобных изданий, больший объем информации. В ней приведены данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа (SMD), приведены данные по маркировке некоторых ранее не освещавшихся типов зарубежных компонентов, даны рекомендации по использованию и проверке исправности электронных компонентов.


Предисловие

1. Резисторы

1.1. Общие сведения
1.2. Обозначение и маркировка резисторов
Система обозначения
Маркировка резисторов отечественного производства
Маркировка резисторов зарубежного производства
Маркировка резисторных сборок
1.3. Технические данные и маркировка бескорпусных SMD резисторов
Общие сведения
Маркировка SMD резисторов
1.4. Особенности применения и маркировки переменных резисторов
Переменные и подстроечные резисторы фирмы BOURNS
1.5. Резисторы с особыми свойствами
Термисторы
Варисторы
2. Конденсаторы

2.1. Общие сведения
2.2. Обозначение и маркировка конденсаторов
Отечественная система обозначения
Маркировка конденсаторов
Кодовая цифровая маркировка
Цветовая маркировка
2.3. Особенности маркировки некоторых типов SMD конденсаторов
Керамические 5МЭ конденсаторы
Оксидные SMD -конденсаторы
Танталовые SMD -конденсаторы
Маркировка электролитических конденсаторов фирмы ТRЕС
Конденсаторы фирмы HITANO
Советы по практическому применению
2.4. Подстроечные конденсаторы зарубежных фирм
2.5. Другие типы конденсаторов
3. Катушки индуктивности

3.1. Общие сведения
3.2. Маркировка катушек индуктивности
Маркировка катушек индуктивности для поверхностного монтажа
3.3. Дроссели серий Д, ДМ, ДП, ДПМ
4. Маркировка кварцевых резонаторов и пьезофильтров

4.1. Маркировка резонаторов и фильтров отечественного производства
4.2. Особенности маркировки резонаторов и фильтров зарубежного производства…
4.3. Особенности маркировки фильтров производства фирмы Murata
5. Маркировка полупроводниковых приборов

5.1. Отечественная и зарубежные системы маркировки
полупроводниковых приборов
Маркировка R-МОП транзисторов Harris (Intersil)
Маркировка IGBT транзисторов Harris (Intersil)
Маркировка транзисторов фирмы International Rectifier
Маркировка полупроводниковых приборов фирмы Мо1ого1а
5.2. Диоды общего назначения
Типы корпусов и расположение выводов диодов
Цветовая маркировка отечественных диодов
Цветовая маркировка зарубежных диодов
Цветовая маркировка отечественных стабилитронов и стабисторов
Цветовая маркировка отечественных варикапов
Буквенно-цифровая кодовая маркировка SMD диодов зарубежного
производства
Цветовая маркировка SMD диодов в корпусах SOD-80,DO-213АА, DО-213АВ
Фотодиоды
Транзисторы
Особенности кодовой и цветовой маркировки отечественных транзисторов
6. Маркировка полупроводниковых SMD радиокомпонентов

6.1. Идентификация SMD компонентов по маркировке
6.2. Типы корпусов SMD транзисторов
6.3. Как пользоваться системой
Эквиваленты и дополнительная информация
7. Особенности тестирования электронных компонентов

7.1. Тестирование конденсаторов
7.2. Тестирование полупроводниковых диодов
7.3. Тестирование транзисторов
7.4. Тестирование одноперeходных и программируемых однопереходных
транзисторов
7.5. Тестирование динисторов, тиристоров, симисторов
7.6. Определение структуры и расположения выводов транзисторов,
тип которых неизвестен
7.7. Тестирование полевых МОП-транзисторов
7.8. Тестирование светодиодов
7.9. Тестирование оптопар
7.10. Тестирование термисторов
7.11. Тестирование стабилитронов
7.12. Расположение выводов транзисторов
Приложение 1. Краткие справочные данные по зарубежным диодам
Приложение 2. Краткие справочные данные по зарубежным транзисторам
Приложение 3. Типы корпусов СВЧ транзисторов

В сборнике собраны книги по цветовой и кодовой маркировке радиоэлементов импортного и отечественного производства по номиналам, рабочему напряжению, допускам и другим характеристикам. В них вы найдете данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа, логотипы и буквенные сокращения при маркировке микросхем ведущих зарубежных производителей, а также рекомендации по использованию и проверке исправности электронных компонентов.

Список книг:

Нестеренко И.В., Панасенко В.Н. Цветовые и кодовые обозначения радиоэлементов
В.В.Мукосеев, И.Н.Сидоров. Маркировка и обозначение радиоэлементов. Справочник
Садченков Д.А. Маркировка радиодеталей отечественных и зарубежных. Справочное пособие

Нестеренко И.И. Маркировка радиоэлектронных компонентов. Карманный справочник
Перебаскин А.В. Маркировка электронных компонентов. 9-е издание
Маркировка электронных компонентов
Нестеренко И.И. Цвет, код, символика радиоэлектронных компонентов
Нестеренко И.И. Цветовая и кодовая маркировка радиоэлектронных компонентов, отечественных и зарубежных

Авторы: разные
Издательство: Запорожье: ИНТ, ЛТД; М.: Горячая Линия — Телеком; М.: Солон-Пресс; М: Додэка- XXI;
Год издания: 2001-2008
Страниц: 2677
Формат: pdf
Размер: 259 мб
Язык: русский

Скачать Маркировка радиодеталей и радиоэлементов. Сборник книг



Здравствуйте посетители сайта 2 Схемы
. Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали — резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» — означает Омы
  • Буква «К» — означает Килоом
  • Буква «М» — означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 — это значит что сопротивление 1,5 Ома или 1М5 — это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем «0» и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется — так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его .

Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в пикофарадах
.

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» — нанофарады
  • Буква «p» — пикофарады

На первом (большом) написано «2n7» — в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала — Свят.

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных — резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей — транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы — это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости — это Фарад. Она очень большая. На практике, как правило, используются которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S — это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости — начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр — максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения — минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном — 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное
    — суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное
    — в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное
    — в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается — одна часть содержит только параллельно соединенные элементы, вторая — только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции — хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода — в частности, сажи). Впрочем, можно нанести даже графит — эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя

Основная характеристика резистора — это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие — сокращенно МЛТ.
  2. Влагостойкие сопротивления — ВС.
  3. Углеродистые лакированные малогабаритные — УЛМ.

У резисторов два основных параметра — мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор — это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем — порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные — три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго — в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение
    — сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение
    — произведение сопротивлений делится на сумму.
  3. Смешанное
    — разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы — полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы — это один кристалл, на котором может находиться великое множество радиоэлементов — и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник — это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам — в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода — катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах — в виде треугольника, а у его вершины — черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором — в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой — это корпус. Основная характеристика транзисторов — коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора — вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Как читать принципиальные схемы?

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля» — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее«…

Далее

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

радиотехника | История, принципы, типы и факты

Основные физические принципы

Электромагнитное излучение включает свет, а также радиоволны, и оба имеют много общих свойств. Оба распространяются в пространстве примерно по прямым линиям со скоростью около 300 000 000 метров (186 000 миль) в секунду и имеют амплитуды, циклически меняющиеся со временем; то есть они колеблются от нулевой амплитуды до максимальной и обратно. Количество повторений цикла за одну секунду называется частотой (обозначается как f ) в циклах в секунду, а время, необходимое для завершения одного цикла, составляет 1/ f секунд, иногда называемое периодом.В память о немецком пионере Генрихе Герце, который провел некоторые из первых радиоэкспериментов, цикл в секунду теперь называется герцем, так что частота одного цикла в секунду записывается как один герц (сокращенно Гц). Более высокие частоты сокращены, как показано в Таблице 3.

Частотные термины и их сокращения
срок циклов в секунду сокращение эквивалент
1 герц 1 1 Гц
1 килогерц 1,000 1 кГц 1000 Гц
1 мегагерц 1 000 000 (10 6 ) 1 МГц 1000 кГц
1 гигагерц 1 000 000 000 (10 9 ) 1 ГГц 1000 МГц

Радиоволна, распространяющаяся в пространстве, в любой момент времени будет иметь изменение амплитуды в направлении своего движения, аналогичное изменению во времени, во многом как волна, движущаяся по водной поверхности.Расстояние от одного гребня волны до другого называется длиной волны.

Длина волны и частота взаимосвязаны. Разделив скорость электромагнитной волны ( c ) на длину волны (обозначенную греческой буквой лямбда, λ), получим частоту: f = c / λ. Таким образом, длина волны 10 метров имеет частоту 300000000 деленных на 10, или 30000000 герц (30 мегагерц). Длина волны света намного короче, чем у радиоволны. В центре светового спектра длина волны около 0.5 микрон (0,0000005 метра) или частота 6 × 10 14 герц или 600 000 гигагерц (один гигагерц равен 1 000 000 000 герц). Максимальная частота в радиочастотном спектре обычно составляет около 45 гигагерц, что соответствует длине волны около 6,7 миллиметра. Радиоволны могут генерироваться и использоваться на частотах ниже 10 килогерц (λ = 30 000 метров).

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Механизм распространения волн

Радиоволна состоит из электрического и магнитного полей, взаимно колеблющихся под прямым углом друг к другу в пространстве.Когда эти два поля работают синхронно во времени, говорят, что они находятся во временной фазе; т.е. оба достигают своих максимумов и минимумов вместе и оба проходят через ноль одновременно. По мере увеличения расстояния от источника энергии площадь, по которой распространяется электрическая и магнитная энергия, увеличивается, так что доступная энергия на единицу площади уменьшается. Интенсивность радиосигнала, как и сила света, уменьшается с увеличением расстояния от источника.

Передающая антенна — это устройство, которое направляет радиочастотную энергию, генерируемую передатчиком, в космос.Антенна может быть сконструирована так, чтобы концентрировать радиоволны в луче, как у прожектора, и таким образом увеличивать ее эффективность в заданном направлении ( см. Электроника ).

Радиочастотный спектр произвольно разделен на ряд полос от очень низких частот до сверхвысоких частот ( см. , Таблица 4). Участки спектра были распределены между различными пользователями ( см. Таблицу 5), например, телеграфом, телефонной речевой связью, телеметрией, радио- и телевещанием.

Обозначения частотных диапазонов
обозначение частоты частотный диапазон диапазон длин волн
* Также называется короткими волнами.
очень низкие частоты (VLF) 3–30 килогерц 100 000–10 000 м
низкие частоты (НЧ) 30–300 килогерц 10 000–1 000 м
средние частоты (СЧ) 300–3000 килогерц 1000–100 м
высокие частоты (HF) * 3–30 мегагерц 100–10 м
очень высокие частоты (VHF) 30–300 мегагерц 10–1 м
сверхвысокие частоты (УВЧ) 300–3000 мегагерц 1 м – 10 см
сверхвысокие частоты (СВЧ) 3–30 гигагерц 10–1 см

Ширина полосы радиочастот — это диапазон частот, покрываемый модулированным радиочастотным сигналом.Информация, переносимая сигналом, имеет определенную полосу пропускания, связанную с ней, и несущая должна иметь ширину канала, по крайней мере, равную ширине полосы пропускания информации. Для обычного радиовещания с амплитудной модуляцией (AM) ширина полосы радиочастот должна в два раза превышать ширину полосы частот информации. Для работы телетайпа и телекса требуется лишь небольшая полоса пропускания, порядка 200 герц, в зависимости от максимальной скорости импульсов, формирующих информационный код. Телефонная речь должна иметь высокую разборчивость, но естественность (высокая точность воспроизведения) не имеет большого значения.Тесты показали, что основные компоненты речи лежат в диапазоне от 300 до 3500 герц, и поэтому телефонные каналы, передаваемые по радио, обычно ограничиваются полосой пропускания около четырех килогерц. Чем меньше ширина полосы пропускания информации, тем больше речевых каналов может быть передано в данной полосе пропускания несущей и тем более экономичной будет система.

Молодые люди могут слышать звуковые частоты в диапазоне примерно от 30 герц до 18 килогерц, но по мере взросления их слух составляет примерно от 100 герц до 10 килогерц.Для качественного (высокоточного) воспроизведения голоса или речи диапазон должен быть не менее примерно от 30 герц (самая низкая частота для большой органной трубы) до 15 килогерц (пикколо, тарелка, треугольник). Приемлемое качество звука при определенных обстоятельствах может быть достигнуто с полосой пропускания всего пять килогерц, как в радио AM; Для передачи движущегося изображения требуется гораздо большая полоса пропускания, поскольку необходимо передавать общее среднее содержание света в изображении, а также детали изображения.Среднее содержание света требует для передачи частот до 20 герц, а детализация изображения требует частот до пяти мегагерц для стандартного телевизионного изображения.

Радиочастотный спектр — обзор

11.1 Работа на радиочастотах

В этом и последующих разделах мы обсуждаем передачу электроэнергии на самых высоких частотах, для которых используются линии передачи, как мы их описываем. Хотя будут обсуждаться некоторые специальные применения линий на этих частотах, основной упор остается на функции линии как носителя электроэнергии.Например, выходная радиочастота передатчика может быть порядка 100 кВт, и эта мощность должна передаваться на антенну, чтобы излучалась некоторая часть. Поскольку передатчик и антенна обычно разделены, для их соединения должна использоваться линия передачи, и ее функция будет заключаться в эффективной передаче энергии. При радиоприеме линия передачи может связывать антенну и приемник, и здесь требуется, чтобы линия выдерживала мощность на уровне микроватт; но основное требование, чтобы он передавал эту мощность с минимальным затуханием и искажением, остается неизменным.

Радиочастотный спектр простирается от примерно 15 кгц / с до примерно 30 000 МГц / с, и современные технологии вынуждены использовать этот огромный диапазон для удовлетворения постоянно растущего спроса на каналы связи. В данном контексте нас интересует диапазон частот примерно от 100 кгц / с, в котором характерны особенности радиочастотного излучения. передачи становятся важными, примерно до 1000 Мгц / с, выше которых частоты используются полые волноводы, а не линии, которые мы описываем.

В нашем обзоре линий в этой книге мы постепенно увеличиваем рассматриваемые частоты, и по мере того как мы делаем это, длина волны, которую мы изучаем, становится меньше.Например, при частоте 10 Мгц / с длина волны, распространяющейся в свободном пространстве, составляет около 30 м — примерно 100 футов. Если антенна установлена ​​примерно в четверти мили от передатчика, генерирующего на этой частоте, линия необходимое для их соединения должно быть около 13 длин волн. (Напротив, читатель может рассчитывать длину в милях линии электропередачи с частотой 50 Гц и 13 длинами волн.) В Великобритании частоты около 100 Мгц / с используются для v.h.f. услуги B.B.C. Длина волны теперь составляет около 3 м или 10 футов, а коаксиальная линия между антенной на крыше и нижним приемником может составлять три длины волны.

Частотный диапазон, который нас сейчас интересует, соответственно, это диапазон, в котором линии передачи имеют длину в несколько длин волн, а функция наших линий заключается в передаче энергии на радиочастотах, либо в качестве воздушных фидеров, каналов телефонной связи, проводных распределителей или других средств связи. аксессуары.

Stereo Signal — обзор

Stereo Radio

Стереозвук с дисков и с магнитной ленты был хорошо известен к 1950-м годам, но вещание стереозвука заняло немного больше времени.Стереозвук в простейшем виде означает, что для записи используются два микрофона, каждый из которых улавливает немного отличающийся сигнал. Когда эти два сигнала используются для питания отдельных громкоговорителей, ваше ухо улавливает тонкую разницу в звуке; эффект на уши такой же, как у 3D-кино на глазах. Стереозапись на ленту использует отдельные дорожки для сигналов; а на диске используются две дорожки на одну дорожку. Мы рассмотрим эти системы в главе 7.

Стереовещание может быть достигнуто за счет использования двух отдельных передатчиков, по одному на каждый канал, но это было бы очень расточительно, и стереоэффект может быть нарушен, если две частоты будут подвержены помехам в в разное время или в разной степени.Хотя первые эксперименты по стереовещанию в Великобритании (в 1950-е годы) использовали отдельные частоты, было очевидно, что стереовещание не будет успешным, если не будут выполнены два условия. Один заключался в том, что должна использоваться одна частота, а другой заключался в том, что пользователи моно-приемников должны иметь возможность принимать моносигнал, когда они настроены на стереовещание. Так получилось, что они были очень похожи на условия, которые были наложены на системы цветного телевидения в США (см. Главу 8) в 1952 году, и можно было применить аналогичные методы.

Система, которая развивалась в США и была принята только с несколькими модификациями в Великобритании, использовала поднесущую . Как следует из названия, это несущая, которая может модулироваться звуковыми сигналами, а затем сама используется для модуляции основной несущей. Частота поднесущей должна быть где-то между частотой основной несущей и самой высокой частотой сигналов. Другим важным шагом было то, как использовать информацию левого (L) и правого (R) каналов.Решение состояло в том, чтобы модулировать основную несущую с помощью суммы сигналов каналов, L + R, что позволяло любому приемнику, настроенному на правильную частоту, принимать этот сигнал, который является моносигналом.

Стерео информация затем содержалась в другом сигнале, который представлял собой разницу между каналами, L — R. Этот разностный сигнал имеет гораздо меньшую амплитуду, чем сигнал L + R, и требуется только стереоприемникам, что делает его пригодным для модуляции. на субоператора.

Рисунок 6.12 показывает полосу частот стереопередачи до модуляции на основной несущей. Полоса пропускания, которая потребуется для моносигнала (L + R), составляет 15 кГц, и любые другие частоты, которые мы используем, не должны перекрывать этот набор. Также присутствует одиночный сигнал малой амплитуды 19 кГц; это пилот-тон , и он используется в приемнике (см. ниже). Сигналы L-R — это амплитудно-модулированные сигналы на поднесущей 38 кГц, и эта поднесущая затем удаляется (что делает ее подавленной несущей ), оставляя только боковые полосы модулированного сигнала вместе с пилотным тоном. .Эти боковые полосы также нуждаются в полосе пропускания около 15 кГц с каждой стороны от отметки 38 кГц. Этот набор различных сигналов в разных частотных диапазонах используется для частотной модуляции основной несущей около 100 МГц.

Рисунок 6.12. Спектр (график зависимости амплитуды от частоты) стереофонического FM-радиосигнала. Это показывает пилотный тон и боковые полосы поднесущей, которые добавляются к моносигналу. Эта смесь частот модулируется на основной несущей на частоте около 100 МГц.

Зачем удалять поднесущую и подавать синусоидальный сигнал 19 кГц? Поднесущая ничего не вносит в сигнал; он не несет информации.Однако для этого требуется мощность передатчика, и удаление поднесущей дает заметную экономию, позволяя передатчику переносить больше полезных сигналов боковой полосы. Однако сигналы L-R не могут быть легко демодулированы без подачи сигнала 38 кГц в правильной фазе, и он может подаваться локально в приемник при условии наличия небольшого синхронизирующего сигнала. Это назначение пилот-тона 19 кГц, частота которого может быть удвоена в приемнике до 38 кГц, а затем использоваться для корректировки фазы и частоты гетеродина в приемнике.Мощность передатчика, используемая для тона 19 кГц, может быть небольшой, потому что амплитуда этого сигнала мала. В качестве бонуса волна 19 кГц может использоваться на приемнике для включения индикатора, который показывает, что принимается стереосигнал.

На рисунке 6.13 показана блок-схема передачи. Отдельные сигналы канала L и R складываются и вычитаются в схеме, называемой матрицей, чтобы получить сигналы L + R и L — R, а сигнал L + R используется для частотной модуляции основной несущей.Главный генератор 38 кГц используется для обеспечения несущей для сигналов L — R, а сигнал 38 кГц также используется для обеспечения сигнала 19 кГц для пилот-тона, который также модулируется по частоте на основной несущей. Модулированный сигнал L-R проходит через фильтр, который удаляет поднесущую 38 кГц, так что боковые полосы также могут модулироваться по частоте вместе с пилот-тоном на основной несущей. Затем модулированная основная несущая усиливается и используется для питания передающей антенны.

Рисунок 6.13. Блок-схема стерео FM-передатчика. Сигналы L и R смешиваются для получения монофонического сигнала L + R и сигнала с меньшей разностью L — R, который модулируется на поднесущей

Рисунок 6.14 представляет собой блок-схему этапов, следующих за демодулятором для стереофонической ЧМ. приемник. Ранние стадии приемника точно такие же, как и для монофонического FM-приемника, вплоть до точки, где FM-сигнал демодулируется, обеспечивая три набора сигналов.Фильтр нижних частот отделяет основной сигнал L + R, а резонансный контур отделяет пилот-сигнал 19 кГц, который используется для управления фазой и частотой генератора 38 кГц. Наконец, фильтр верхних частот отделяет боковые полосы L — R сигналов.

Рисунок 6.14. Блок-схема декодирующей части стереофонического FM-приемника. Показаны только части FM-демодулятора, так как оставшаяся часть представляет собой стандартную блок-схему супергетера

Схема, называемая фазочувствительным демодулятором , имеет входы несущей частоты 38 кГц (полученной удвоением пилот-тона 19 кГц или используя его для синхронизации генератора) и боковых полос L — R, а его выход — это сам сигнал L — R.Сигналы L + R и L-R подаются в другую матричную схему, создавая на выходах сигналы L и R. Если вам интересно, как это делается, подумайте, что произойдет, когда вы сложите входные данные:

(L + R) + (L − R) = 2L

, а также вычтите их:

(L + R) — (L −R) = 2R

, таким образом обеспечивая отдельные сигналы L и R.

Коряги? Стереосигнал легче нарушается помехами, особенно зажиганием автомобиля и другими искровыми помехами. В монофоническом сигнале можно использовать фильтр нижних частот, чтобы удалить большую часть эффектов, но это приведет к удалению сигналов L — R из стереопередачи.Кроме того, уровень шума стереопередачи всегда выше, потому что полоса пропускания больше, а шум зависит от ширины полосы, единственными сигналами без шума являются сигналы с нулевой полосой пропускания, а сигналы без полосы пропускания не несут никакой информации. Многие FM-приемники автоматически переключаются на монофонический прием при высоком уровне шума.

Примечание

В первые годы двадцать первого века FM наверняка будет заменено цифровым радио, главным образом потому, что правительства по всей Европе продали права на старые несущие частоты FM компаниям мобильной связи, чтобы предоставить альтернативу. к кабелям между передвижными мачтами.Для Великобритании была предложена дата в 2015 году, но изменение будет медленным, потому что большинство цифровых ресиверов не будут звучать иначе. Распространение цифрового радио было неоднородным, и политики не хотят, чтобы их называли людьми, которые заставили нас перейти на систему, которая во многих областях воспринимается как неполноценная для приема.

Фактически, поскольку передатчики для цифрового радио в Великобритании используют старые передатчики ITV (еще до появления UHF-телевидения), покрытие оставляет желать лучшего. Для телевидения это не было такой проблемой, потому что дома имели антенны на крышах.Цифровые радиоприемники, в которых используется простая телескопическая штыревая антенна, принимают слабый сигнал, и это может вызывать очень неприятный звук, похожий на кипящую грязь. Кроме того, цифровые радиопередатчики часто сжимают звуковой сигнал (см. Ниже) настолько, что страдает качество по сравнению с хорошим FM-приемником. Некоторая вводящая в заблуждение реклама предполагает, что цифровая реклама обеспечивает лучшее качество, но это определенно не подтверждено опытом.

Цифровое радио должно было быть лучше всего в автомобилях, где его использование устраняет необходимость постоянно переключаться на местную FM-станцию, когда автомобиль покидает один регион передатчика и приближается к другому.Основное преимущество цифрового радио заключается в том, что большое количество цифровых радиопередатчиков можно использовать в небольшой полосе частот без проблем с помехами. Это больше преимущество для вещателей, чем для слушателей. Производители автомобилей очень неохотно вносили изменения, и их пришлось заставить их запугать. Единственное реальное применение цифрового автомобильного радио — это то, что вы можете путешествовать, чтобы найти, где можно принять сигнал, и производители автомобилей, вероятно, перестрахуются и установят радиоприемники, которые можно переключать на FM, когда цифровой сигнал недоступен или находится на низком уровне. качество.

Руководство по аэронавигационной информации — AIM

Обозначение SSV

Границы высоты и диапазона

Т (Терминал)

От 1000 футов ATH до 12 000 футов ATH включительно на радиальных расстояниях до 25 морских миль.

л (малая высота)

От 1000 футов ATH до 18 000 футов ATH включительно на радиальных расстояниях до 40 морских миль.

H (большая высота)

От 1000 футов ATH до 14 500 футов ATH включительно на радиальных расстояниях до 40 морских миль. От 14 500 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль. От 18 000 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

VL (VOR низкий)

От 1000 футов ATH до 5000 футов, но не включая ATH на радиальных расстояниях до 40 морских миль.От 5000 футов ATH до 18000 футов ATH, но не включая ATH на радиальных расстояниях до 70 морских миль.

VH (VOR High)

От 1000 футов ATH до 5000 футов, но не включая ATH на радиальных расстояниях до 40 морских миль. От 5000 футов ATH до 14 500 футов, но не включая ATH на радиальных расстояниях до 70 морских миль. От 14 500 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль. От 18 000 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

DL (низкий уровень DME)

Для высот до 12 900 футов ATH на радиальном расстоянии, соответствующем LOS до NAVAID. От 12 900 футов ATH до 18 000 футов ATH, но не включая их на радиальных расстояниях до 130 морских миль

DH (DME High)

Для высот до 12 900 футов ATH на радиальном расстоянии, соответствующем LOS до NAVAID.От 12 900 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль. От 12 900 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

Что такое радиоволны? | Живая наука

Радиоволны — это тип электромагнитного излучения, наиболее известный благодаря использованию в коммуникационных технологиях, таких как телевидение, мобильные телефоны и радио. Эти устройства принимают радиоволны и преобразуют их в механические колебания динамика для создания звуковых волн.

Радиочастотный спектр — это относительно небольшая часть электромагнитного (ЭМ) спектра. Согласно данным Университета Рочестера, электромагнитный спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Обычные обозначения — это радиоволны, микроволны, инфракрасный (ИК), видимый свет, ультрафиолет (УФ), рентгеновские лучи и гамма-лучи.

Радиоволны имеют самые длинные волны в электромагнитном спектре, по данным НАСА, в диапазоне примерно от 0.От 04 дюймов (1 миллиметр) до более чем 62 миль (100 километров). У них также самые низкие частоты, от примерно 3000 циклов в секунду, или 3 килогерца, до примерно 300 миллиардов герц, или 300 гигагерц.

Радиоспектр — ограниченный ресурс, и его часто сравнивают с сельскохозяйственными угодьями. По данным British Broadcasting Corp., так же, как фермеры должны организовать свою землю для получения наилучшего урожая с точки зрения количества и разнообразия, радиочастотный спектр должен быть распределен между пользователями наиболее эффективным образом.(BBC). В США Национальное управление по телекоммуникациям и информации Министерства торговли США управляет распределением частот в радиочастотном спектре.

Discovery

Шотландский физик Джеймс Клерк Максвелл, который разработал единую теорию электромагнетизма в 1870-х годах, предсказал существование радиоволн, согласно данным Национальной библиотеки Шотландии. В 1886 году немецкий физик Генрих Герц применил теории Максвелла к производству и приему радиоволн.Герц использовал простые самодельные инструменты, в том числе индукционную катушку и лейденскую банку (ранний тип конденсатора, состоящий из стеклянной банки со слоями фольги как внутри, так и снаружи) для создания электромагнитных волн. Герц стал первым человеком, который передавал и принимал контролируемые радиоволны. Единица частоты электромагнитной волны — один цикл в секунду — в его честь, согласно Американской ассоциации развития науки, называется герц.

Диапазоны радиоволн

Национальное управление по телекоммуникациям и информации обычно делит радиочастотный спектр на девять диапазонов:

.tg {border-collapse: collapse; border-spacing: 0; border-color: #ccc;} .tg td {font-family: Arial, sans-serif; font-size: 14px; padding: 10px 5px; border-style : solid; border-width: 0px; overflow: hidden; word-break: normal; border-color: #ccc; color: # 333; background-color: #fff;} .tg th {font-family: Arial, sans -serif; font-size: 14px; font-weight: normal; padding: 10px 5px; border-style: solid; border-width: 0px; overflow: hidden; word-break: normal; border-color: #ccc; цвет : # 333; background-color: # f0f0f0;} .tg .tg-mcqj {font-weight: bold; border-color: # 000000; text-align: left; vertical-align: top}.tg .tg-73oq {border-color: # 000000; text-align: left; vertical-align: top}

Диапазон Диапазон частот Диапазон длин волн
Чрезвычайно низкая частота (ELF) <3 кГц> 100 км
Очень низкая частота (VLF) от 3 до 30 кГц от 10 до 100 км
Низкая частота (LF) от 30 до 300 кГц от 1 м до 10 км
Средняя частота (MF) От 300 кГц до 3 МГц от 100 м до 1 км
Высокая частота (HF) 3–30 МГц 10–100 м
Очень высокая частота (VHF) 30–300 МГц 1–10 м
Ultra Высокая частота (УВЧ) От 300 МГц до 3 ГГц От 10 см до 1 м
Сверхвысокая частота (СВЧ) От 3 до 30 ГГц От 1 до 1 см
Сверхвысокая частота (КВЧ) ) 30 к 300 ГГц от 1 мм до 1 см

Низкие и средние частоты

Радиоволны КНЧ, самые низкие из всех радиочастот, имеют большой радиус действия и полезны при проникновении через воду и скалы для связи с подводными лодками, а также внутри шахт и пещер.По данным Stanford VLF Group, самый мощный естественный источник волн СНЧ / ОНЧ — это молния. Согласно Phys.org, волны, создаваемые ударами молний, ​​могут отражаться от Земли к ионосфере (слой атмосферы с высокой концентрацией ионов и свободных электронов) вперед и назад. Эти молнии могут искажать важные радиосигналы, идущие к спутникам.

LF и MF радиодиапазоны включают морское и авиационное радио, а также коммерческое радио AM (амплитудная модуляция), согласно RF Page.Согласно данным How Stuff Works, диапазоны радиочастот AM находятся в диапазоне от 535 килогерц до 1,7 мегагерц. AM-радио имеет большой радиус действия, особенно ночью, когда ионосфера лучше преломляет волны обратно на Землю, но она подвержена помехам, влияющим на качество звука. Когда сигнал частично блокируется, например, зданием с металлическими стенами, например небоскребом, громкость звука соответственно уменьшается.

Более высокие частоты

диапазоны HF, VHF и UHF включают FM-радио, звук вещательного телевидения, общественное радио, мобильные телефоны и GPS (глобальная система определения местоположения).Эти полосы обычно используют «частотную модуляцию» (FM) для кодирования или передачи аудиосигнала или сигнала данных на несущую волну. При частотной модуляции амплитуда (максимальная степень) сигнала остается постоянной, в то время как частота изменяется выше или ниже со скоростью и величиной, соответствующими звуковому сигналу или сигналу данных.

FM дает лучшее качество сигнала, чем AM, потому что факторы окружающей среды не влияют на частоту так, как они влияют на амплитуду, и приемник игнорирует изменения амплитуды, пока сигнал остается выше минимального порога.Согласно данным How Stuff Works, частоты FM-радио находятся в диапазоне от 88 до 108 мегагерц.

Коротковолновое радио

Коротковолновое радио использует частоты в диапазоне HF, примерно от 1,7 мегагерц до 30 мегагерц, по данным Национальной ассоциации коротковолновых вещателей (NASB). В этом диапазоне коротковолновый спектр разделен на несколько сегментов, некоторые из которых предназначены для обычных радиовещательных станций, таких как «Голос Америки», British Broadcasting Corp.и Голос России. По данным NASB, по всему миру существуют сотни коротковолновых станций. Коротковолновые станции можно услышать на расстоянии тысяч миль, потому что сигналы отражаются от ионосферы и отражаются на сотни или тысячи миль от точки своего происхождения.

Самые высокие частоты

SHF и EHF представляют самые высокие частоты в радиодиапазоне и иногда считаются частью микроволнового диапазона. Молекулы в воздухе имеют тенденцию поглощать эти частоты, что ограничивает их диапазон и область применения.Однако их короткие длины волн позволяют направлять сигналы узкими лучами параболическими тарелочными антеннами (спутниковыми тарелочными антеннами). Это позволяет осуществлять связь с высокой пропускной способностью на короткие расстояния между фиксированными точками.

SHF, на который воздух влияет меньше, чем на EHF, используется для приложений малого радиуса действия, таких как Wi-Fi, Bluetooth и беспроводной USB (универсальная последовательная шина). Согласно RF Page, СВЧ может работать только в зоне прямой видимости, поскольку волны имеют тенденцию отражаться от таких объектов, как автомобили, лодки и самолеты.А поскольку волны отражаются от объектов, СВЧ также можно использовать для радаров.

Астрономические источники

Космическое пространство изобилует источниками радиоволн: планетами, звездами, газовыми и пылевыми облаками, галактиками, пульсарами и даже черными дырами. Изучая их, астрономы могут узнать о движении и химическом составе этих космических источников, а также о процессах, вызывающих эти выбросы.

Радиотелескоп «видит» небо совсем иначе, чем оно выглядит в видимом свете.Вместо того, чтобы видеть точечные звезды, радиотелескоп улавливает далекие пульсары, области звездообразования и остатки сверхновых. Радиотелескопы также могут обнаруживать квазары, что является сокращением от квазизвездного радиоисточника. Квазар — это невероятно яркое галактическое ядро, питаемое сверхмассивной черной дырой. Квазары излучают энергию в широком спектре электромагнитных волн, но название происходит от того факта, что первые идентифицированные квазары излучают в основном радиоэнергию. Квазары очень энергичны; некоторые излучают в 1000 раз больше энергии, чем весь Млечный Путь.

По данным Венского университета, радиоастрономы часто объединяют несколько меньших телескопов или приемных тарелок в группу, чтобы получить более четкое радиоизображение или более высокое разрешение. Например, радиотелескоп с очень большой решеткой (VLA) в Нью-Мексико состоит из 27 антенн, расположенных в виде огромной Y-образной диаграммы, имеющей 22 мили (36 километров) в поперечнике.

Дополнительные ресурсы:

Эта статья была обновлена ​​27 февраля 2019 г. участником Live Science Трейси Педерсен.

Основы проектирования цифрового радиоприемника (Radio 101)

В этой статье представлены основы проектирования цифрового радиоприемника. Благодаря множеству новых достижений в области преобразователей данных и радиотехники сложная конструкция приемника была значительно упрощена. В этой статье делается попытка объяснить, как рассчитать чувствительность и избирательность такого приемника. Это ни в коем случае не исчерпывающее изложение, но вместо этого является руководством по многим методам и расчетам, используемым в таких конструкциях.

Многие достижения в дизайне и архитектуре радиостанций позволяют быстро вносить изменения в конструкцию радиоприемников. Эти изменения позволяют уменьшить размер, стоимость, сложность и улучшить производство за счет использования цифровых компонентов для замены ненадежных и неточных аналоговых компонентов. Для того, чтобы это произошло, потребовалось множество достижений в области проектирования и производства полупроводников, которые были реализованы за последние несколько лет. Некоторые из этих достижений включают улучшенные интегрированные смесители, малошумящий усилитель, улучшенные фильтры на ПАВ, более дешевые высокопроизводительные АЦП и программируемые цифровые тюнеры и фильтры.В этой статье кратко излагаются вопросы проектирования и взаимодействия этих устройств с полными радиосистемами.

Что такое радио?

Традиционно радио считалось «коробкой», которая подключается к антенне и всему, что находится за ней, однако многие конструкции систем разделены на две отдельные подсистемы. Радио и цифровой процессор. При такой сегментации цель радиостанции — преобразовать с понижением частоты и отфильтровать полезный сигнал, а затем оцифровать информацию.Точно так же цель цифрового процессора — принимать оцифрованные данные и извлекать желаемую информацию.

Важно понимать, что цифровой приемник — это не то же самое, что цифровое радио (модуляция). Фактически, цифровой приемник отлично справится с приемом любого аналогового сигнала, такого как AM или FM. Цифровые приемники могут использоваться для приема любого типа модуляции, включая любые стандарты аналоговой или цифровой модуляции. Более того, поскольку ядром цифрового процессора является процессор цифровых сигналов (DSP), это позволяет управлять многими аспектами всего радиоприемника с помощью программного обеспечения.Таким образом, эти DSP могут быть перепрограммированы с помощью обновлений или новых функций в зависимости от сегментации клиентов, и все это с использованием одного и того же оборудования. Однако это полное обсуждение само по себе, а не в центре внимания данной статьи.

Основное внимание в этой статье уделяется радио и тому, как прогнозировать / проектировать производительность. Будут обсуждены следующие темы:

  1. Доступная мощность шума
  2. Рисунок каскадного шума
  3. Коэффициент шума и АЦП
  4. Коэффициент преобразования и чувствительность
  5. Паразитные сигналы и дизеринг АЦП
  6. Точка пересечения третьего порядка
  7. Джиттер часов АЦП
  8. Фазовый шум
  9. IP3 по разделу РФ

Single-Carrier vs.Мульти-перевозчик

Обсуждаются два основных типа радиоприемников. Первый называется приемником с одной несущей, а второй — приемником с несколькими несущими. Их название подразумевает очевидное, однако их функция может быть не полностью ясна. Приемник с одной несущей — это традиционный радиоприемник, обеспечивающий избирательность в аналоговых фильтрах каскадов ПЧ. Приемник с несколькими несущими обрабатывает все сигналы в пределах полосы с помощью одной аналоговой полосы RF / if и получает избирательность в цифровых фильтрах, которые следуют за аналого-цифровым преобразователем.Преимущество такого приемника заключается в том, что в приложениях с несколькими приемниками, настроенными на разные частоты в одном и том же диапазоне, можно достичь меньшей конструкции системы и снижения стоимости за счет устранения избыточных схем. Типичным приложением является базовая станция сотовой / беспроводной локальной сети. Другим приложением могут быть приемники наблюдения, которые обычно используют сканеры для контроля нескольких частот. Это приложение позволяет одновременно контролировать множество частот без необходимости последовательного сканирования.

Типовой приемник с одной несущей

Типичный приемник с несколькими несущими

Преимущества внедрения цифрового радиоприемника

Перед тем, как подробно обсудить проектирование цифрового радиоприемника, необходимо обсудить некоторые технические преимущества. К ним относятся передискретизация, усиление обработки, недостаточная выборка, частотное планирование / размещение побочных эффектов. Многие из них обеспечивают технические преимущества, недостижимые иным способом при использовании традиционной конструкции радиоприемника.

Передискретизация и технологическое усиление

Критерий Найквиста компактно определяет частоту дискретизации, необходимую для любого данного сигнала. Часто частота Найквиста цитируется как частота дискретизации, которая в два раза больше, чем у самого высокочастотного компонента. Это означает, что для приложения выборки ПЧ на частоте 70 МГц потребуется частота дискретизации 140 MSPS. Если наш сигнал занимает всего 5 МГц около 70 МГц, то выборка со скоростью 140 MSPS практически бесполезна. Вместо этого Найквист требует, чтобы сигнал был дискретизирован в два раза больше полосы пропускания сигнала.Следовательно, если полоса пропускания нашего сигнала составляет 5 МГц, то выборки на частоте 10 МГц вполне достаточно. Все, что выходит за рамки этого, называется передискретизацией. Передискретизация — очень важная функция, поскольку она позволяет эффективно увеличить принимаемое SNR в цифровой области.

В отличие от избыточной выборки, это действие недостаточной выборки. Недостаточная выборка — это выборка с частотой, намного меньшей, чем половина фактической частоты сигнала (см. Раздел ниже о недостаточной выборке). Следовательно, возможна передискретизация и недостаточная выборка одновременно, так как одно определяется относительно ширины полосы, а другое — интересующей частоты.

В любом процессе оцифровки, чем быстрее сигнал дискретизируется, тем ниже минимальный уровень шума, поскольку шум распространяется по большему количеству частот. Общий интегрированный шум остается постоянным, но теперь он распределен по большему количеству частот, что дает преимущества, если за АЦП следует цифровой фильтр. Минимальный уровень шума соответствует уравнению:

Это уравнение представляет уровень шума квантования внутри преобразователя и показывает взаимосвязь между шумом и частотой дискретизации FS.Следовательно, каждый раз, когда частота дискретизации удваивается, эффективный минимальный уровень шума улучшается на 3 дБ!

Цифровая фильтрация удаляет все нежелательные шумы и паразитные сигналы, оставляя только полезный сигнал, как показано на рисунках ниже.

Типичный спектр АЦП до цифровой фильтрации

Типичный спектр АЦП после цифровой фильтрации

SNR АЦП может быть значительно улучшено, как показано на диаграмме выше. Фактически, SNR можно улучшить, используя следующее уравнение:

Как показано, чем больше соотношение между частотой дискретизации и шириной полосы сигнала, тем выше выигрыш от процесса.Фактически достижимо усиление до 30 дБ.

Недискретизация и преобразование частоты

Как указывалось ранее, под дискретизацией понимается процесс дискретизации с частотой, намного меньшей, чем половина фактической частоты сигнала. Например, сигнал 70 МГц, дискретизированный со скоростью 13 MSPS, является примером недостаточной дискретизации.

Недостаточная выборка важна, потому что она может выполнять функцию, очень похожую на смешивание. Когда сигнал недостаточно дискретизирован, частоты накладываются на основную полосу или первую зону Найквиста, как если бы они изначально находились в основной полосе частот.Например, наш вышеупомянутый сигнал 70 МГц при выборке с частотой 13 MSPS будет отображаться на частоте 5 МГц. Математически это можно описать как:

Это уравнение дает результирующую частоту в первой и второй зоне Найквиста. Поскольку АЦП присваивает всю информацию первой зоне Найквиста, результаты, полученные с помощью этого уравнения, должны быть проверены, чтобы увидеть, не превышают ли они f SampleRate /2. Если да, то частота должна быть возвращена в первую зону Найквиста путем вычитания результата из f SampleRate .

В таблице ниже показано, как сигналы могут быть объединены в полосу модулирующих частот и их спектральная ориентация. Хотя процесс выборки (наложения) отличается от микширования (умножения), результаты очень похожи, но имеют периодичность в зависимости от частоты дискретизации. Другое явление — это обращение спектра. Как и в миксерах, некоторые продукты меняются местами в процессе выборки, например, реверсирование верхней и нижней боковой полосы. В таблице ниже также показано, какие случаи вызывают инверсию спектра.

Входной сигнал Диапазон частот Сдвиг частоты Spectral Sense

1 улица Найквист

Зона

постоянного тока — FS / 2 Ввод Нормальный

2 nd Найквист

Зона

ФС / 2 — ФС FS-вход перевернутый

3 рд Найквист

Зона

ФС — 3 ФС / 2 Ввод — FS Нормальный

4 Найквист

Зона

3FS / 2 — 2FS 2FS — ввод перевернутый

5 Найквист

Зона

2FS — 5FS / 2 Вход — 2FS Нормальный

Планирование частот и размещение ответвлений

Одна из самых больших проблем при проектировании радиоархитектуры — это размещение ПЧ частот.Проблема усугубляется тем, что усилители возбуждения и АЦП имеют тенденцию генерировать нежелательные гармоники, которые проявляются в цифровом спектре преобразования данных в виде ложных сигналов. Независимо от того, является ли приложение широкополосным или нет, тщательный выбор частот дискретизации и частот ПЧ может разместить эти паразиты в местах, которые сделают их безвредными при использовании с цифровыми тюнерами / фильтрами, такими как AD6620, которые могут выбрать интересующий сигнал и отклонить все другие. Все это хорошо, потому что при тщательном выборе диапазона входных частот и частоты дискретизации, усилитель возбуждения и гармоники АЦП фактически могут быть выведены за пределы полосы частот.Передискретизация только упрощает дело, предоставляя больше спектра для безвредных гармоник.

Например, если определено, что вторая и третья гармоники являются особенно высокими, путем тщательного выбора места падения аналогового сигнала относительно частоты дискретизации, эти вторая и третья гармоники могут быть размещены вне полосы. Для случая скорости кодирования, равной 40,96 MSPS, и ширины полосы сигнала 5,12 МГц, размещение ПЧ между 5,12 и 10,24 МГц помещает вторую и третью гармоники вне полосы, как показано в таблице ниже.Хотя этот пример очень прост, его можно адаптировать для множества различных приложений.

Как видно, вторая и третья гармоники выходят за пределы интересующей полосы и не создают помех для основных составляющих. Следует отметить, что секунды и трети действительно перекрываются друг с другом, а псевдоним третей вокруг FS / 2. В табличной форме это выглядит, как показано ниже.

Скорость кодирования: 40.96 MSPS
Фундаментальный 5,12 — 10,24 МГц
Вторая гармоника: 10,24 — 20,48 МГц
Третья гармоника: 15,36 — 10,24 МГц

Другой пример частотного планирования можно найти в недостаточной выборке.Если диапазон аналогового входного сигнала составляет от DC до FS / 2, тогда комбинация усилителя и фильтра должна соответствовать требуемым характеристикам. Однако, если сигнал помещается в третью зону Найквиста (от FS до 3FS / 2), от усилителя больше не требуется соответствие гармоническим характеристикам, требуемым спецификациями системы, поскольку все гармоники будут выходить за пределы полосы пропускания фильтра. Например, диапазон фильтра полосы пропускания может быть от FS до 3FS / 2. Вторая гармоника будет охватывать от 2FS до 3FS, что выходит далеко за пределы диапазона фильтров полосы пропускания.Затем нагрузка перекладывается на конструкцию фильтра при условии, что АЦП соответствует основным требованиям на интересующей частоте. Во многих приложениях это выгодный компромисс, поскольку многие сложные фильтры могут быть легко реализованы с использованием как методов ПАВ, так и LCR на этих относительно высоких частотах ПЧ. Хотя этот метод снижает гармонические характеристики усилителя возбуждения, нельзя жертвовать характеристиками интермодуляции.

Использование этого метода для вывода гармоник за пределы интересующей зоны Найквиста позволяет легко фильтровать их, как показано выше.Однако, если АЦП по-прежнему генерирует собственные гармоники, можно использовать ранее описанный метод для тщательного выбора частоты дискретизации и аналоговой частоты, чтобы гармоники попадали в неиспользуемые участки полосы пропускания и подвергались цифровой фильтрации.

Ожидаемые характеристики приемника

Имея в виду эти мысли, как можно определить производительность радио и какие компромиссы можно сделать. Как показано ниже, можно использовать многие методы традиционной радиотехники. На протяжении всего обсуждения, приведенного ниже, существует некоторая разница между многоканальным и одноканальным радио.На них будет указано. Имейте в виду, что это обсуждение не завершено, и многие области остались незатронутыми. Дополнительную информацию по этому вопросу можно найти в одной из ссылок в конце этой статьи. Кроме того, это обсуждение касается только данных, доставленных в DSP. Многие приемники используют собственные схемы для дальнейшего повышения производительности за счет дополнительного подавления шума и устранения гетеродина.

Для дальнейшего обсуждения типовая конструкция приемника показана выше.Рассматриваемое в этом разделе обсуждение начинается с антенны и заканчивается цифровым тюнером / фильтром в конце. За этой точкой находится цифровой процессор, который выходит за рамки данного обсуждения.

Анализ начинается с нескольких предположений. Во-первых, предполагается, что приемник ограничен шумом. Это значит, что внутри полосы отсутствуют шпоры, которые в противном случае ограничили бы производительность. Разумно предположить, что выбор гетеродина и ПЧ может быть таким, что это правда. Кроме того, позже будет показано, что паразиты, генерируемые внутри АЦП, обычно не являются проблемой, поскольку их часто можно устранить с помощью дизеринга или разумного использования передискретизации и размещения сигнала.В некоторых случаях это может быть нереалистичным предположением, но они предоставляют отправную точку, с которой можно определить пределы производительности.

Второе предположение состоит в том, что полоса пропускания входного каскада приемника — это наша полоса Найквиста. Хотя наша фактическая выделенная полоса пропускания может составлять только 5 МГц, использование полосы Найквиста упростит вычисления на этом пути. Следовательно, частота дискретизации 65 MSPS даст полосу Найквиста 32,5 МГц.

Доступная мощность шума

Чтобы начать анализ, необходимо учесть шум на порте антенны.Поскольку правильно подобранная антенна, очевидно, является резистивной, для определения напряжения шума на согласованных входных клеммах можно использовать следующее уравнение.

Доступная мощность от источника, в данном случае антенны, составляет:

Что упрощается, если предыдущее уравнение подставить в:

Таким образом, в действительности доступная мощность шума от источника в этом случае не зависит от импеданса для ненулевых и конечных значений сопротивления.

Это важно, потому что это точка отсчета, с которой будет сравниваться наш приемник. Когда речь идет о коэффициенте шума сцены, часто говорят, что она показывает на «x» дБ выше шума «kT». Это источник этого выражения.

При прохождении каждого каскада через приемник этот шум уменьшается за счет коэффициента шума каскада, как описано ниже. Наконец, когда канал настраивается и фильтруется, большая часть шума удаляется, остается только то, что находится внутри интересующего канала.

Рисунок каскадного шума

Коэффициент шума — это показатель качества, используемый для описания того, сколько шума добавляется к сигналу в цепи приема радиостанции. Обычно он указывается в дБ, хотя при вычислении коэффициента шума используется числовое отношение (не логарифмическое). Не логарифмический коэффициент называется шумовым фактором и обычно обозначается как F , где он определяется, как показано ниже.

После того, как каждому каскаду в радиостанции назначен коэффициент шума, его можно использовать для определения их каскадных характеристик.Общий коэффициент шума, относящийся к входному порту, можно вычислить следующим образом.

Вышеупомянутые F — это коэффициенты шума для каждого из последовательных каскадов, а G — коэффициенты усиления каскадов. На данный момент ни коэффициент шума, ни коэффициенты усиления не представлены в логарифмической форме. Когда применяется это уравнение, все составляющие шума отражаются на порте антенны. Таким образом, доступный шум из предыдущего раздела может быть снижен непосредственно с помощью коэффициента шума.

Например, если доступный шум составляет -100 дБмВт, вычисленный коэффициент шума составляет 10 дБ, а коэффициент преобразования равен 20 дБ, то общий эквивалентный шум на выходе составляет -70 дБмВт.

При применении этих уравнений следует учитывать несколько моментов. Во-первых, пассивные компоненты предполагают, что коэффициент шума равен их потерям. Во-вторых, пассивные компоненты в серии можно суммировать до применения уравнения. Например, если два фильтра нижних частот включены последовательно, каждый с вносимыми потерями 3 дБ, они могут быть объединены, и потери одного элемента предположительно равны 6 дБ.Наконец, смесители часто не имеют коэффициента шума, установленного для них производителем. Если не указано иное, можно использовать вносимые потери, однако, если коэффициент шума поставляется вместе с устройством, его следует использовать.

Коэффициенты шума и АЦП

Хотя коэффициент шума можно назначить АЦП, часто проще работать с АЦП по-другому. АЦП — это устройства напряжения, тогда как коэффициент шума на самом деле является проблемой мощности шума. Поэтому часто бывает проще обработать аналоговые части АЦП с точки зрения коэффициента шума, а затем преобразовать в напряжение на АЦП.Затем преобразуйте шум АЦП во входное опорное напряжение. Затем шум аналогового сигнала и АЦП можно суммировать на входе АЦП, чтобы найти общий эффективный шум.

Для этого приложения был выбран 12-разрядный аналого-цифровой преобразователь AD9042 или AD6640. Эти продукты могут производить выборку до 65 MSPS, скорость, подходящую для оцифровки AMPS всего диапазона и способную работать с опорной тактовой частотой GSM 5x. Этого более чем достаточно для приложений AMPS, GSM и CDMA. В таблице указано, что типичное отношение сигнал / шум составляет 68 дБ.Следовательно, следующим шагом является расчет снижения шума в приемнике из-за шумов АЦП. Опять же, самый простой метод — это преобразовать как SNR, так и шум приемника в среднеквадратичное значение. вольт, а затем суммируйте их для получения общего среднеквадратичного значения. шум. Если АЦП имеет входной диапазон от пика до пика 2 В:

Это напряжение отражает все шумы АЦП, тепловые и квантовые. Полный диапазон АЦП составляет 0,707 В (действующее значение).

После вычисления эквивалентного входного шума АЦП следующее вычисление — это шум, генерируемый самим приемником.Поскольку мы предполагаем, что полоса пропускания приемника равна полосе пропускания Найквиста, частота дискретизации 65 MSPS дает полосу пропускания 32,5 МГц. Исходя из имеющихся уравнений мощности шума, мощность шума от аналогового входного каскада составляет 134,55E15 Вт или -98,7 дБмВт. Это шум, присутствующий в антенне, который должен быть увеличен коэффициентом преобразования и уменьшен коэффициентом шума. Если усиление преобразования составляет 25 дБ, а коэффициент шума составляет 5 дБ, то шум, представленный входной цепи АЦП, составляет:

на 50 Ом (134.9e-12 Вт). Поскольку входной импеданс АЦП составляет около 1000 Ом, мы должны либо согласовать с ним стандартное сопротивление ПЧ 50 Ом, либо уменьшить сопротивление АЦП. Разумный компромисс — уменьшить диапазон до 200 Ом с помощью параллельного резистора, а затем использовать трансформатор 1: 4 для согласования с остальными. Трансформатор также служит для преобразования несимметричного входа в сбалансированный сигнал, необходимого для АЦП, а также для обеспечения некоторого усиления по напряжению. Поскольку имеется скачок импеданса 1: 4, в этом процессе также увеличивается коэффициент усиления по напряжению, равный 2.

Из этого уравнения, наше напряжение, возведенное в квадрат на 50 Ом, составляет 6,745e-9 или на 200 Ом, 26,98e-9.

Теперь, когда мы знаем шум от АЦП и РЧ-интерфейса, общий шум в системе можно вычислить как квадратный корень из суммы квадратов. Таким образом, полное напряжение составляет 325,9 мкВ. Теперь это общий шум, присутствующий в АЦП из-за шума приемника и шума АЦП, включая шум квантования.

Коэффициент преобразования и чувствительность

Как это шумовое напряжение влияет на общую производительность АЦП? Предположим, что в полосе пропускания приемника присутствует только один радиочастотный сигнал.Тогда отношение сигнал / шум будет:

.

Поскольку это приложение с передискретизацией и фактическая ширина полосы сигнала намного меньше, чем частота дискретизации, шум будет значительно уменьшен после цифровой фильтрации. Поскольку полоса пропускания входного каскада такая же, как у нашего АЦП, и шум АЦП, и шум ВЧ / ПЧ будут улучшаться с той же скоростью. Поскольку многие стандарты связи поддерживают узкую полосу пропускания канала, мы примем канал 30 кГц. Таким образом, мы получаем 33,4 дБ от технологического усиления.Следовательно, наше исходное SNR 66,7 дБ теперь составляет 100,1 дБ. Помните, что отношение сигнал / шум увеличилось из-за фильтрации лишнего шума, что является источником усиления технологического процесса.

Рисунок 13 Восемь равных силовых карданов

Если это радиомодуль с несколькими несущими, динамический диапазон АЦП должен использоваться совместно с другими РЧ несущими. Например, если имеется восемь несущих одинаковой мощности, каждый сигнал не должен превышать 1/8 общего диапазона, если рассматриваются сигналы от пика к пику. Однако, поскольку обычно сигналы в приемнике не совпадают по фазе (поскольку пульты дистанционного управления не синхронизированы по фазе), сигналы будут синхронизироваться редко, если вообще когда-либо.Следовательно, требуется намного меньше требуемых 18 дБ. Поскольку на самом деле не более 2 сигналов могут быть настроены одновременно, и поскольку они являются модулированными сигналами, только 3 дБ будут зарезервированы для целей запаса. В том случае, если сигналы действительно выравниваются и приводят к ограничению преобразователя, это произойдет всего за небольшую долю секунды, прежде чем условие перегрузки будет устранено. В случае радиосвязи с одной несущей не требуется места для головы.

В зависимости от схемы модуляции для адекватной демодуляции требуется минимальное отношение C / N.Если схема цифровая, то следует учитывать коэффициент ошибок по битам (BER), как показано ниже. Предполагая, что требуется минимальное отношение C / N 10 дБ, наш уровень входного сигнала не может быть настолько малым, что оставшееся отношение сигнал / шум будет меньше 10 дБ. Таким образом, наш уровень сигнала может упасть на 90,1 дБ от текущего уровня. Поскольку полный диапазон АЦП составляет +4 дБм (200 Ом), уровень сигнала на входе АЦП составляет –86,1 дБмВт. Если бы в тракте РЧ / ПЧ было усиление 25 дБ, то чувствительность приемника на антенне была бы –86,1 минус 25 дБ или –111.1 дБм. Если требуется большая чувствительность, то на ступенях ВЧ / ПЧ можно использовать большее усиление. Однако коэффициент шума не зависит от усиления, и увеличение коэффициента усиления также может отрицательно сказаться на шумовых характеристиках дополнительных каскадов усиления.

Рис.14.Частота ошибок по битам в зависимости от отношения сигнал / шум

АЦП, паразитные сигналы и дизеринг

Пример с ограничением шума недостаточно полно демонстрирует истинные ограничения приемника. Другие ограничения, такие как SFDR, более жесткие, чем SNR и шум.Предположим, что аналого-цифровой преобразователь имеет спецификацию SFDR -80 дБFS или -76 дБм (полная шкала = + 4 дБм). Также предположим, что допустимое отношение несущей к источнику помех, C / I (отличное от C / N) составляет 18 дБ. Это означает, что минимальный уровень сигнала составляет -62 дБ полной шкалы (-80 плюс 18) или -58 дБм. На антенне это -83 дБмВт. Следовательно, как можно видеть, SFDR (однотональный или многотональный) ограничит производительность приемника задолго до того, как будет достигнуто фактическое ограничение шума.

Однако метод, известный как дизеринг, может значительно улучшить SFDR.Как показано в примечании к применению AN410 компании Analog Devices, добавление внеполосного шума может значительно улучшить SFDR до минимального уровня шума. Хотя величина дизеринга зависит от преобразователя, этот метод применим ко всем АЦП, пока статический DNL является ограничением производительности, а не проблемами переменного тока, такими как скорость нарастания. В AD9042, описанном в примечании к применению, добавленный шум составляет всего -32,5 дБмВт или 21 код среднеквадратичного значения. Как показано ниже, графики до и после дизеринга дают представление о потенциале улучшения.Проще говоря, дизеринг работает, беря когерентные паразитные сигналы, генерируемые АЦП, и рандомизирует их. Поскольку энергия паразитов должна быть сохранена, дизеринг просто заставляет их проявляться как дополнительный шум в нижней части преобразователя. Это можно наблюдать на графиках до и после дизеринга как небольшое увеличение среднего минимального уровня шума преобразователя. Таким образом, компромисс, достигнутый за счет использования внеполосного дизеринга, состоит в том, что буквально все генерируемые внутри паразитные сигналы могут быть удалены, однако есть небольшой удар в общем SNR преобразователя, который на практике составляет менее 1 дБ. потери чувствительности по сравнению с примером с ограничением шума и намного лучше, чем пример с ограничением SFDR, показанный ранее.

АЦП без дизеринга

АЦП с дизерингом

Два важных момента о дизеринге перед закрытием темы. Во-первых, в приемнике с несколькими несущими нельзя ожидать, что ни один из каналов будет коррелирован. Если это так, то часто множественные сигналы будут служить самосмешиванием для канала приемника. Хотя в некоторых случаях это верно, иногда потребуется добавить дополнительный дизеринг для заполнения при слабой силе сигнала.

Во-вторых, шума, вносимого одним только аналоговым входным каскадом, недостаточно для дизеринга АЦП.В приведенном выше примере было добавлено 32,5 дБм дизеринга, чтобы обеспечить оптимальное улучшение SFDR. Для сравнения, аналоговый входной каскад обеспечивает мощность шума только –68 дБм, что далеко от того, что необходимо для обеспечения оптимальной производительности.

Точка пересечения третьего порядка

Помимо преобразователя SFDR, РЧ-часть способствует ложным характеристикам приемника. Эти шпоры не подвержены влиянию таких методов, как дизеринг, и их необходимо устранять, чтобы предотвратить нарушение работы приемника.Перехват третьего порядка является важной мерой, поскольку уровни сигнала в цепи приема увеличиваются в зависимости от конструкции приемника.

Чтобы понять, какой уровень производительности требуется от широкополосных радиочастотных компонентов, мы рассмотрим спецификацию GSM, возможно, самого требовательного из приложений приемника.

Приемник GSM должен уметь восстанавливать сигнал с уровнем мощности от -13 до -104 дБм. Предположим также, что полная шкала АЦП составляет 0 дБмВт, а потери через фильтры приемника и смесители составляют 12 дБ.Кроме того, поскольку несколько сигналов должны обрабатываться одновременно, не следует использовать АРУ. Это снизит чувствительность к радиочастоте и приведет к потере более слабого сигнала. Используя эту информацию, рассчитывается усиление RF / IF, равное 25 дБ (0 = -13-6-6 + x).

Рекомендации по перехвату входных данных 3-го порядка

Требуемое усиление 25 дБ распределяется, как показано. Хотя полная система будет иметь дополнительные компоненты, это послужит нашему обсуждению. Исходя из этого, при полномасштабном сигнале GSM на уровне -13 дБм, на входе АЦП будет 0 дБм.Однако при минимальном сигнале GSM -104 дБм, сигнал на АЦП будет -91 дБм. С этого момента приведенное выше обсуждение может быть использовано для определения пригодности АЦП с точки зрения шумовых характеристик и характеристик паразитных помех.

Теперь, имея эти сигналы и требуемые системные коэффициенты усиления, можно проверить характеристики усилителя и смесителя при возбуждении полномасштабным сигналом -13 дБмВт. Решение для продуктов 3-го порядка по натурному сигналу:

Предполагая, что общие паразитные характеристики должны быть больше 100 дБ, решение этого уравнения для входного усилителя показывает, что входной усилитель третьего порядка с IIP> +37 дБм.В смесителе уровень сигнала был увеличен на 10 дБ, а новый уровень сигнала составляет -3 дБмВт. Однако, поскольку микшеры указаны на их выходе, этот уровень снижается как минимум на 6 дБ до –9 дБм. Следовательно, для смесителя OIP> +41 дБм. Так как на их выходе указаны смесители. На последнем этапе усиления сигнал будет ослаблен до -9 дБмВт (как на выходе смесителя). Для усилителя ПЧ IIP> +41 дБм. Если эти характеристики соблюдены, то производительность должна быть равна

.

Джиттер часов АЦП

Одной из динамических характеристик, которая жизненно важна для хороших характеристик радиосвязи, является джиттер тактовой частоты АЦП.Несмотря на то, что низкий джиттер важен для превосходных характеристик основной полосы частот, его влияние усиливается при дискретизации сигналов с более высокой частотой (более высокая скорость нарастания), например, в приложениях с недостаточной дискретизацией. Общий эффект плохой спецификации джиттера — уменьшение отношения сигнал / шум при увеличении входных частот. Термины апертурный джиттер и апертурная неопределенность часто меняются местами в тексте. В этом приложении они имеют то же значение. Неопределенность апертуры — это изменение от образца к образцу в процессе кодирования.Неопределенность апертуры имеет три остаточных эффекта: первый — это увеличение системного шума, второй — неопределенность фактической фазы самого дискретизированного сигнала и третий — межсимвольные помехи. При отборе ПЧ для достижения требуемых шумовых характеристик требуется погрешность апертуры менее 1 пс. С точки зрения фазовой точности и межсимвольной интерференции влияние апертурной неопределенности невелико. В худшем случае 1 пс среднеквадратичное значение. при ПЧ 250 МГц погрешность фазы равна 0.09 градусов среднеквадр. Это вполне приемлемо даже для требовательных спецификаций, таких как GSM. Поэтому основное внимание в этом анализе будет уделено общему вкладу шума из-за апертурной неопределенности.

В синусоиде максимальная скорость нарастания приходится на переход через нуль. В этот момент скорость нарастания определяется первой производной синусоидальной функции, вычисленной при t = 0:

.

оценивается при t = 0, функция косинуса оценивается как 1, а уравнение упрощается до:

Единицами скорости нарастания являются вольты в секунду, они показывают, насколько быстро сигнал проходит через нулевой переход входного сигнала.В системе дискретизации опорные часы используются для дискретизации входного сигнала. Если тактовые импульсы выборки имеют апертурную погрешность, генерируется напряжение ошибки. Это напряжение ошибки может быть определено умножением входной скорости нарастания на «джиттер».

Анализируя единицы, можно увидеть, что это дает единицу вольт. Обычно неопределенность апертуры выражается в среднеквадратичных секундах. и, следовательно, напряжение ошибки будет в среднеквадратичном вольт. Дополнительный анализ этого уравнения показывает, что по мере увеличения частоты аналогового входа среднеквадратичное значение.напряжение ошибки также увеличивается прямо пропорционально неопределенности апертуры.

В преобразователях выборки ПЧ чистота тактовой частоты имеет огромное значение. Как и в процессе микширования, входной сигнал умножается на гетеродин или, в данном случае, тактовую частоту дискретизации. Поскольку умножение во времени является сверткой в ​​частотной области, спектр тактовой частоты дискретизации свертывается со спектром входного сигнала. Поскольку неопределенность апертуры — это широкополосный шум на тактовом сигнале, он также проявляется как широкополосный шум в дискретизированном спектре.А поскольку АЦП — это система дискретизации, спектр является периодическим и повторяется в зависимости от частоты дискретизации. Таким образом, этот широкополосный шум снижает минимальный уровень шума АЦП. Теоретическое соотношение сигнал / шум для АЦП, ограниченное неопределенностью апертуры, определяется следующим уравнением.

Если это уравнение оценивается для аналогового входа 201 МГц и 0,7 пс среднеквадратичное значение. «Джиттер», теоретическое SNR ограничено 61 дБ. Следует отметить, что это то же самое требование, которое требовалось бы, если бы использовалась другая ступень смесителя.Следовательно, системы, которые требуют очень высокого динамического диапазона и очень высоких аналоговых входных частот, также требуют источника кодирования с очень низким «джиттером». При использовании стандартных модулей тактовых генераторов TTL / CMOS, 0,7 пс среднеквадратичное значение. был проверен как для АЦП, так и для генератора. Лучших показателей можно достичь с помощью модулей с низким уровнем шума.

При рассмотрении общей производительности системы можно использовать более обобщенное уравнение. Это уравнение основано на предыдущем уравнении, но включает эффекты теплового шума и дифференциальной нелинейности.

Хотя это простое уравнение, оно дает хорошее представление о шумовых характеристиках, которые можно ожидать от преобразователя данных.

Фазовый шум

Хотя фазовый шум синтезатора похож на джиттер на тактовой частоте кодирования, он немного по-другому влияет на приемник, но, в конце концов, эффекты очень похожи. Основное различие между джиттером и фазовым шумом заключается в том, что джиттер — это широкополосная проблема с однородной плотностью вокруг тактовой частоты дискретизации, а фазовый шум — это неравномерное распределение вокруг гетеродина, которое обычно становится лучше по мере удаления от тона.Как и в случае с джиттером, чем меньше фазового шума, тем лучше.

Поскольку гетеродин смешивается с входящим сигналом, шум гетеродина будет влиять на полезный сигнал. Процесс смесителя в частотной области — это свертка (процесс смесителя во временной области — это умножение). В результате смешения фазовый шум от гетеродина заставляет энергию из соседних (и активных) каналов интегрировать в желаемый канал как увеличенный минимальный уровень шума. Это называется взаимным перемешиванием. Чтобы определить количество шума в неиспользуемом канале, когда альтернативный канал занят сигналом полной мощности, предлагается следующий анализ.

Опять же, поскольку GSM — сложная спецификация, это будет примером. В этом случае верно следующее уравнение.

, где шум — это шум в желаемом канале, вызванный фазовым шумом, x (f) — фазовый шум, выраженный в формате, отличном от логарифма, а p (f) — это функция спектральной плотности функции GMSK. В этом примере предположим, что мощность сигнала GSM составляет -13 дБмВт. Также предположим, что гетеродин имеет постоянный по частоте фазовый шум (чаще всего фазовый шум уменьшается при смещении несущей).При этих предположениях, когда это уравнение интегрируется по ширине полосы канала, выпадает простое уравнение. Поскольку предполагалось, что x (f) постоянный (PN — фазовый шум), а интегральная мощность полномасштабного канала GSM составляет -13 дБмВт, уравнение упрощается до:

Так как цель состоит в том, чтобы требовать, чтобы фазовый шум был ниже теплового шума. Предполагая, что шум на смесителе такой же, как на антенне, можно использовать -121 дБм (шум на 200 кГц на антенне — P a = kTB ).Таким образом, фазовый шум гетеродина должен быть ниже -108 дБмВт при смещении 200 кГц.

Рекомендации

Цифровая обработка ПЧ, Клэй Олмстед и Майк Петровски, TBD, сентябрь 1994 г., стр. 30 — 40.

Методы недискретизации упрощают цифровое радио, Ричард Грошонг и Стивен Рускак, ​​Electronic Design, 23 мая 1991 г., стр. 67 — 78.

Оптимизация АЦП для расширенной обработки сигналов, Том Гратцек и Фрэнк Мёрден, Микроволны и ВЧ перепечатка.

Использование преобразователей с широким динамическим диапазоном для широкополосных радиоприемников, Брэд Брэннон, RF Design, май 1995 г., стр. 50 — 65.

Exact FM Detection of Complex Time Series, Фред Харрис, факультет электротехники и вычислительной техники, Государственный университет Сан-Диего, Сан-Диего, Калифорния 92182.

Введение в радиочастотный дизайн, W.H. Хейворд, Прентис-Холл, 1982.

Solid State Radio Engineering, Krauss, Bostian and Raab, John Wiley & Sons, 1980.

% PDF-1.6
%
758 0 объект
>
эндобдж

xref
758 212
0000000016 00000 н.
0000005020 00000 н.
0000005147 00000 н.
0000005183 00000 п.
0000005482 00000 н.
0000005628 00000 н.
0000005769 00000 н.
0000006122 00000 н.
0000006532 00000 н.
0000007071 00000 н.
0000007515 00000 н.
0000007920 00000 н.
0000008266 00000 н.
0000008767 00000 н.
0000009231 00000 п.
0000009732 00000 н.
0000009943 00000 н.
0000010034 00000 п.
0000053875 00000 п.
0000054104 00000 п.
0000054612 00000 п.
0000054716 00000 п.
0000104647 00000 н.
0000104871 00000 н.
0000105518 00000 п.
0000105632 00000 п.
0000105664 00000 н.
0000105750 00000 н.
0000105824 00000 н.
0000107857 00000 н.
0000107929 00000 п.
0000108063 00000 н.
0000108177 00000 н.
0000108354 00000 п.
0000108467 00000 н.
0000108589 00000 н.
0000108759 00000 н.
0000108894 00000 н.
0000109015 00000 н.
0000109212 00000 н.
0000109344 00000 п.
0000109482 00000 н.
0000109679 00000 н.
0000109827 00000 н.
0000109969 00000 н.
0000110166 00000 п.
0000110312 00000 н.
0000110466 00000 н.
0000110639 00000 п.
0000110802 00000 н.
0000110977 00000 н.
0000111154 00000 н.
0000111357 00000 н.
0000111509 00000 н.
0000111624 00000 н.
0000111779 00000 н.
0000111917 00000 н.
0000112020 00000 н.
0000112204 00000 н.
0000112355 00000 н.
0000112528 00000 н.
0000112646 00000 н.
0000112770 00000 н.
0000112918 00000 н.
0000113068 00000 н.
0000113245 00000 н.
0000113354 00000 н.
0000113477 00000 н.
0000113666 00000 н.
0000113774 00000 н.
0000113892 00000 н.
0000114059 00000 н.
0000114172 00000 н.
0000114273 00000 н.
0000114451 00000 п.
0000114563 00000 н.
0000114665 00000 н.
0000114793 00000 н.
0000114920 00000 н.
0000115050 00000 н.
0000115191 00000 п.
0000115318 00000 п.
0000115464 00000 н.
0000115561 00000 н.
0000115707 00000 н.
0000115817 00000 н.
0000115945 00000 н.
0000116086 00000 н.
0000116206 00000 н.
0000116317 00000 н.
0000116457 00000 н.
0000116614 00000 н.
0000116739 00000 н.
0000116878 00000 н.
0000116988 00000 н.
0000117129 00000 н.
0000117259 00000 н.
0000117388 00000 н.
0000117535 00000 п.
0000117704 00000 н.
0000117853 00000 н.
0000117984 00000 н.
0000118164 00000 н.
0000118307 00000 н.
0000118442 00000 н.
0000118617 00000 н.
0000118751 00000 н.
0000118880 00000 н.
0000119021 00000 н.
0000119204 00000 н.
0000119331 00000 н.
0000119458 00000 н.
0000119598 00000 н.
0000119728 00000 н.
0000119891 00000 н.
0000120004 00000 н.
0000120117 00000 н.
0000120247 00000 н.
0000120376 00000 н.
0000120505 00000 н.
0000120626 00000 н.
0000120762 00000 н.
0000120902 00000 н.
0000121033 00000 н.
0000121191 00000 н.
0000121358 00000 н.
0000121796 00000 н.
0000122081 00000 н.
0000122413 00000 н.
0000122558 00000 н.
0000122703 00000 н.
0000122883 00000 н.
0000123067 00000 н.
0000123245 00000 н.
0000123496 00000 н.
0000123637 00000 н.
0000123915 00000 н.
0000124127 00000 н.
0000124341 00000 п.
0000124503 00000 н.
0000124723 00000 н.
0000124966 00000 н.
0000125212 00000 н.
0000125485 00000 н.
0000125670 00000 н.
0000125841 00000 н.
0000126031 00000 н.
0000126208 00000 н.
0000126407 00000 н.
0000126667 00000 н.
0000126866 00000 н.
0000127037 00000 н.
0000127246 00000 н.
0000127414 00000 н.
0000127608 00000 н.
0000127753 00000 н.
0000127938 00000 п.
0000128113 00000 н.
0000128284 00000 н.
0000128447 00000 н.
0000128653 00000 н.
0000128838 00000 н.
0000129023 00000 н.
0000129180 00000 н.
0000129410 00000 н.
0000129586 00000 н.
0000129755 00000 н.
0000129925 00000 н.
0000130078 00000 н.
0000130208 00000 н.
0000130351 00000 п.
0000130498 00000 п.
0000130649 00000 н.
0000130813 00000 н.
0000130975 00000 н.
0000131129 00000 н.
0000131265 00000 н.
0000131402 00000 н.
0000131528 00000 н.
0000131660 00000 н.
0000131779 00000 п.
0000131935 00000 н.
0000132086 00000 н.
0000132243 00000 н.
0000132384 00000 н.
0000132546 00000 н.
0000132709 00000 н.
0000132842 00000 н.
0000132988 00000 н.
0000133143 00000 н.
0000133307 00000 н.
0000133452 00000 н.
0000133617 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *