20.01.2025

Оптрон что такое: Оптрон (Оптопара) что это такое, принцип работы, проверка мультиметром

Содержание

2. Оптроны и оптоэлектронные микросхемы. Введение в оптоэлектронику

2.1. Устройство и основные параметры оптронов

2.1.1. Схема оптрона

2.1.2. Элементы оптопары

2.1.3. Параметры, характеризующие работу оптронов

2.2. Типы оптронов

2.2.1. Резисторные оптопары

2.2.2. Диодные оптопары

2.2.3. Транзисторные оптопары

2.2.4. Тиристорные оптопары

2.2.5. Параметры оптронов различного типа

2.2.6. Оптоэлектронные микросхемы

2.3. Применение оптронов

2.3.1. Применение оптронов в цифровых и линейных схемах

2.3.2. Управление процессами в высоковольтных цепях

2.3.3. Использование оптронов для получения информации оптическим методом

2.3.4. Другие применения оптронов

2.1. Устройство и основные параметры оптронов

2.1.1. Схема оптрона

Оптрон — это прибор, содержащий источник и приемник излучения, которые оптически и конструктивно связаны друг с другом. Источниками света могут служить лампы накаливания, неоновые лампы, электролюминесцентные панели, однако в большинстве случаев ими являются светодиоды. В качестве приемника излучения используют фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Средой оптического канала, связывающего излучатель и приемник, могут служить воздух, стекло, пластмасса и другие прозрачные вещества.

Подпись: Рис. 2.1. Структурная схема оптрона

Элементарный оптрон, содержащий один источник и один приемник излучения, называют также оптопарой. Будучи объединенными в микросхему вместе с одним или несколькими согласующими или усиливающими устройствами, оптопары образуют оптоэлектронную интегральную микросхему.

В оптронах происходит двойное преобразование энергии (рис. 2.1). Входной электрический сигнал (характеризующийся

силой тока I1 или напряжением U1) преобразуется источником излучения 1 в световой (поток света Ф1), который передается затем по оптическому каналу 2 к фотоприемнику 3. Фотоприемник осуществляет обратное превращение светового сигнала в электрический I2, U2. Среда оптического канала может быть управляемой (например обладать электрооптическими свойствами), что отражено и рис. 2.1 введением в схему устройства управления 4, которое преобразует световой поток Ф1 в поток Ф2. Для согласования параметров оптронов с другими элементами электронных схем могут использоваться дополнительные входные и выходные устройства.

На рис. 2.1 фотоприемник и излучатель электрически не соединены друг с другом. Такие оптроны с успехом могут использоваться в качестве элементов гальванической развязки. Однако введение электрической, а также оптической обратной связи между компонентами оптрона способно существенно расширить его возможности. В этом случае он может быть использован как прибор, позволяющий генерировать и усиливать электрические и оптические сигналы, как запоминающее устройство и т. д.

Помимо уже указанных достоинств оптрон характеризуется:

  • высокой помехозащищенностью (поскольку его оптический канал невосприимчив к воздействию посторонних электромагнитных полей), а также однонаправленностью передачи оптического сигнала;
  • широкой частотной полосой пропускания и, в частности, способностью преобразовывать и передавать не только импульсные сигналы, но и постоянную составляющую;
  • совместимостью с другими изделиями полупроводниковой микроэлектроники.

Среди недостатков, присущих современным оптронам, необходимо прежде всего отметить их низкий к. п. д., что связано с большими потерями энергии при преобразовании электрического сигнала в оптический и обратно. Так же как и у других полупроводниковых приборов, параметры оптронов чувствительны к изменению температуры. От температуры в частности, сильно зависит срок службы таких устройств, который и так во многих случаях оказывается недостаточно высоким даже при комнатной температуре. К недостаткам нужно отнести также относительно высокий уровень собственных шумов и определенное конструкторско-технологическое несовершенство современных оптронов. Выпускаемые приборы изготовляют по гибридной технологии, при этом в одном устройстве необходимо довольно точно совмещать разнородные элементы—излучатель и фотоприемник.

Перечисленные недостатки ограничивают область применения оптронов, однако по мере совершенствования материале и технологии, решения ряда схемотехнических задач эти недостатки проявляются все в меньшей степени.

2.1.2. Элементы оптопары

Достижение высокого к. п. д. оптрона связано с получением высоких значений параметров, характеризующих преобразование и передачу энергии во всех его элементах. Желательно, чтобы параметры составных частей оптопары были согласованы по спектральным характеристикам, быстродействию, температурным свойствам, габаритам; при этом определенные требования предъявляются и на основе технологических соображений. В результате зачастую одно или несколько из вышеперечисленных требований приходится нарушать ради получения максимальных значений каких-либо определенных параметров.

Как уже отмечалось, источником излучения в оптронах в большинстве случаев служат инжекционные светодиоды. Помимо необходимости получения возможно больших к.п.д. преобразования электрической энергии в световую и высокого быстродействия светодиоды, применяемые в оптронах, должны обладать достаточно узкой направленностью излучения (для снижения потерь энергии на пути от источника света к фотоприемнику) и работать при сравнительно небольших входных токах (для согласования с микроэлектронными системами управления). Желательно также, чтобы квантовый выход таких излучателей был постоянным в по возможности более широком диапазоне входных токов, что важно для использования этих приборов в аналоговых схемах. В оптронах могут применяться также полупроводниковые лазеры . Этому препятствуют, однако, большие значения рабочих токов таких приборов, их сравнительно низкая долговечность и высокая стоимость.

Наиболее употребительными материалами для излучателей оптронов являются GaAs, GaAlAs, GaAsP. Светодиоды на основе этих материалов излучают в красной (0,67—0,7 мкм) и ближней инфракрасной (0,8-0,95 мкм) областях спектра. В отличие от обычных светодиодных индикаторов, для которых во многих случаях важно увеличение размеров высвечиваемых символов, излучающая область светодиодов, применяемых в оптронах, должна иметь минимальную площадь, так как при этом не только уменьшаются потери излучения, но и ослабляются требования к точности совмещения этой области с приемным окном фотоприемника. Номинальное напряжение возбуждения подобных светодиодов составляет 1,2—1,7 В, потребляемая ими мощность— 1—50 мВт.

Среду оптического канала выбирают, исходя из следующих соображений. Во-первых, она должна сводить к минимуму потери света, для чего материал оптического канала должен не только быть спектрально согласован с излучателем и фотоприемником, но и иметь показатель преломления, близкий к тем, которыми характеризуются эти элементы оптопары. Во-вторых, материал оптического канала должен обеспечивая высокий уровень электрической изоляции между входом и выходом оптрона (сопротивление изоляции оптопары обычно составляет ~ 1 • 1012 Ом). В-третьих, зачастую оптической среде приходится выполнять дополнительную функцию — служить основой, придающей оптрону конструктивную целостность и предохраняющей его элементы от механических, климатических и радиационных воздействий.

Используют по крайней мере три основных варианта оптического канала. В первом оптической средой служат полимерные оптические клеи, лаки, вязкие вещества (например, незасыхающие вазелиноподобные силиконовые составы), а также некоторые марки стекол (например, халькогенидные). Второй вариант оптического канала — воздушный, при этом для лучшей светопередачи могут использоваться фокусирующие системы на основе стеклянных линз. Третий вариант связан с использованием в качестве оптического канала волоконных световодов. Выбор варианта обусловливается требованиями, связанными с применением оптопары. Так, для получения высоких значений электрической изоляции, создания коротких линий оптической связи используют волоконные световоды, для устройств считывания информации с перфоленты требуется воздушный канал (перфоленту вводят в зазор между излучателем и фотоприемником) и т. д. Кроме того, необходимо учитывать, что многие из перечисленных материалов имеют свои недостатки. Так, полимеры характеризуются провалами спектра пропускания в ближней инфракрасной области (эти провалы обусловлены резонансным поглощением света химическими группами ОН, СН3, СН2, NH2, NH), а также изменением основных параметров со временем (что, естественно, сказывается на характеристиках всей оптопары в целом). Со своей стороны, стекла, применяемые в оптронах, менее устойчивы к резким перепадам температуры, имеют невысокую адгезию к материалам излучателя и фотоприемника.

Важнейшим достоинством оптронов является их способность осуществлять гальваническую развязку элементов электронной схемы. Оптроны, у которых в качестве оптического канала используют тонкие слои полимерных лаков или стекол обладают сравнительно невысокой электрической прочностью изоляции. Так называемое статическое напряжение изоляции Uиз (максимально допустимое постоянное напряжение между входом и выходом оптопары) у них составляет 100—500 В. У оптронов с воздушным зазором значение Uиз выше (до 1 — 5 кВ) и ограничивается уже электрической прочностью корпуса прибора; в оптронах с волоконными световодами максимально допустимое статическое напряжение изоляции может достигать 50—150 кВ.

К. п. д. оптрона, его срок службы, а также ряд других параметров в значительной степени определяются излучателем, и именно поэтому совершенствованию светодиодов уделяется большое внимание. В то же время оптрон как элемент электронной схемы характеризуется не столько излучателем, сколько типом используемого фотоприемника. С практической точки зрения важно, какие функции способен выполнять прибор, а это как раз и определяется фотоприемником, который, таким образом, должен обладать не только высокой эффективностью преобразования падающего на него излучения в электрический ток, но и требуемым быстродействием. В связи с этим различают оптопары резисторного, диодного, транзисторного и тиристорного типов.

Основным материалом фотоприемников для оптронов служит кремний, применяемый в диодных, транзисторных и тиристорных оптопарах. Так, кремниевый pin-фотодиод по спектру и быстродействию хорошо согласуется со светодиодами на основе GaAs:Zn, GaAlAs, GaAsP, а кремниевые фототранзисторы и фототиристоры—с GaAlAs- и GaAs : Si-излучателями. В качестве материала фоторезисторов широко используют CdS и CdSe, хорошо согласующиеся по спектру с излучателями на основе GaP и GaAsP. Следует отметить, однако, что быстродействие фотоприемника зачастую ограничивает быстродействие всей оптопары в целом (это имеет место прежде всего в резисторных оптопарах).

2.1.3. Параметры, характеризующие работу оптронов

Элементарный оптрон является четырехполюсным прибором, свойства которого определяются прежде всего тремя основными характеристиками — входной, передаточной и выходной. Входной является вольт-амперная характеристика излучателя, а выходной—соответствующая характеристика фотоприемника (при заданном токе на входе оптопары).

Передаточной характеристикой называют зависимость тока I2 на выходе оптрона от тока I1 на его входе; в общем случае эта зависимость является нелинейной, что приводит к некоторому искажению формы передаваемого сигнала.

Суммарное быстродействие оптопары часто характеризуют временем переключения:

Подпись: Рис. 2.1. Структурная схема оптрона , (2.1)

где t1 и t 2 — соответственно времена нарастания и спада сигнала на выходе оптрона. Время переключения неодинаково у разных типов оптопар, оно зависит также от режимов их работы и может составлять от 10-9 до 10-1 с. Помимо времен переключения, быстродействие некоторых классов оптронов может быть задано граничной частотой fгр. В зависимости от типа оптрона fгр = 0,005… 10 МГц.

Параметром, тесно связанным с зависимостью I2(I1) и часто используемым на практике, является коэффициент передачи по току (статический)

Подпись: Рис. 2.1. Структурная схема оптрона . (2.2)

В общем случае, особенно при высоких температурах, когда существен темповой ток Iт на выходе фотоприемника,

Подпись: Рис. 2.1. Структурная схема оптрона . (2.3)

Для большинства типов оптопар kI является паспортный параметром, причем он может составлять от 0,5% (диодные; оптопары) до ~1000% (транзисторные оптопары с составным фототранзистором).

Важными для характеристики оптопары являются параметры ее изоляции. Среди этих параметров — максимально допустимое напряжение между входом и выходом (уже упоминавшееся в п. 2.1.2 статическое — Uиз, а также пиковое, максимально допустимое при работе с переменными сигналами). Кроме того, оптопары характеризуются сопротивлением изоляции Rиз и проходной емкостью Спр (емкостью между входом и выходом оптопары). У большинства типов оптопар Rиз может достигать 1·1012 Оm, что исключает обратную связь фотоприемника и излучателя по постоянному току. В то же время связь по переменному току может оказаться существенной. Действительно, скачок напряжения ΔU2 на выходе оптопары (за время Δt) может привести к тому, что через излучатель оптопары потечет емкостный ток

Подпись: Рис. 2.1. Структурная схема оптрона , (2.4)

который может привести к заметному сигналу на выходе даже при малой проходной емкости.

В связи с этим для многих типов оптопар актуальность) приобретает задача снижения Спр (обычно она порядка 1 пФ), решение которой может быть связано, например, с увеличением длины оптического канала между излучателем и фотоприемником.

Подпись: Рис. 2.2. Примеры различных конструкций оптроновПодпись: Рис. 2.2. Примеры различных конструкций оптронов

Конструктивно-технологическое оформление оптронов (рис. 2.2, а) определяется требованиями по оптимизации тех или иных параметров этих приборов (1-излучатель, 2-фотоприемник, 3 — оптический канал, 4 — корпус, 5 — электрические выводы). Так, введение помимо полимерного клея стеклянной прокладки в пространство между излучателем и фотоприемником позволяет увеличить Rиз и снизить Спр до 0,01 пФ. Еще большего эффекта можно достичь, используя в качестве оптического канала волоконный световод (рис. 2.2, б). Приборы, изображенные на рис. 2.2, в, г, характеризуются повышенным значением коэффициента передачи по току: потери света в устройствах этого типа сведены к минимуму в первом случае вследствие того, что поток излучения падает на границу раздела элементов оптопары перпендикулярно, во втором — из-за введения в конструкцию дополнительной отражающей поверхности 6.

Исходя из значений Uиэ, Rиз, Спр, а также входной и выходной характеристик оптопары, для каждого типа оптронов задают предельные эксплуатационные данные о входных и выходных напряжениях и токах, напряжении между входом и выходом, указывают максимальную допустимую температуру и т. д. Все эти параметры, а также некоторые Другие обычно приводятся в справочниках.

Общей особенностью рассматриваемых оптронов является то, что они представляют собой не монолитные, а сборные конструкции, элементы которых связаны между собой общим корпусом, оптическим клеем и т. д. Дальнейшее совершенствование оптронов (снижение габаритов, повышение к. п. д., воспроизводимости параметров) связано в первую очередь с созданием монолитных приборов, у которых и излучатель, и фотоприемник либо созданы в одном кристалле, либо выращены на общей подложке с применением тонкопленочной технологии. Следует, однако, отметить, что у таких приборов первостепенную важность могут приобрести другие проблемы, например обеспечение высоких значений параметров изоляции.

2.2. Типы оптронов

2.2.1. Резисторные оптопары

В качестве фотоприемников оптопар этого типа используют фоторезисторы на основе CdS и CdSe. При засветке фоторезисторов их сопротивление снижается от RT (темнового) до RCE (при освещении). Одним из основных параметров резисторных оптопар является отношение этих сопротивлений; значение RТ/RCB может достигать 104–107.

Фоторезисторы обладают, как правило, большой инерционностью. Именно поэтому в фоторезисторных оптопарах в качестве источников излучения широко применяют миниатюрные лампы накаливания, к достоинствам которых следует отнести хорошую воспроизводимость параметров, большой срок службы, малую стоимость. Невысокое быстродействие (время переключения — порядка 1·10-2с) ламп накаливания в оптопарах этого типа не является их недостатком, поскольку общее время переключения (до 10-1 с) определяется фотоприемником. Кроме ламп накаливания в резисторных оптопарах используют светодиоды на основе GaP, спектр излучения которых хорошо согласован со спектрами возбуждения фотопроводимости CdS- и CdSe-фотоприемников.

Некоторые характеристики резисторных оптопар представлены на рис. 2.3. Увеличение тока I1 на входе оптрона сопровождается увеличением светового потока излучателя, в результате чего RCB снижается (рис. 2.3, а). Повышение температуры Т ведет к снижению подвижности свободных носителей заряда в фоторезисторе, увеличению Rсв, а следовательно, к спаду I2 при том же напряжении U2 на выходе (рис. 2.3,6). С ростом Т не только происходит увеличение RCB, но снижается и RT (растет концентрация собственных носителей заряда в зоне проводимости полупроводника). При этом отношение RТ/RCB очень сильно падает (при 70° С оно может составлять лишь примерно 1·102), что делает резисторную оптопару практически непригодной для использования при высоких температурах.

Подпись: Рис. 2.3. Характеристики резисторных оптопарПодпись: Рис. 2.3. Характеристики резисторных оптопар

Инерционность резисторных оптопар сказывается на их частотных характеристиках, что иллюстрируется рис. 2.3,в. На рисунке по вертикали отложен коэффициент передачи по току, который в случае оптопар этого типа носит формальный характер, поскольку в выражение (2.2) для kI подставляется просто значение тока I2, соответствующее окончанию линейного участка вольт-амперной характеристики фоторезистора.

Достоинствами резисторных оптопар, определяющими их широкое применение в различных типах оптоэлектронных схем, являются линейность и симметричность выходной характеристики (независимость от полярности включения фоторезистора), отсутствие фото-э. д. с., высокие значения достижимого напряжения на выходе (до 250 В) и темнового сопротивления Rт≈1·106÷1·1011 Ом).

2.2.2. Диодные оптопары

Оптопары этого типа изготовляют на основе кремниевых pin-фотодиодов и арсенидгаллиевых светодиодов.

На рис. 2.4 изображены типичные графики зависимостей коэффициента передачи по току kI от входного тока I1, напряжения на выходе U2 и температуры Т. Из рис. 2.4, а следует, что у диодных оптопар kI остается практически постоянным в широком диапазоне входных токов, что обусловлено постоянством в этом диапазоне квантового выхода ηк светодиода. Подъем в области малых и спад в области больших входных токов (когда начинает сказываться разогрев прибора) также определяется поведением ηк. Квантовый выход фотодиода η3 при этом, как правило, не меняется. Это следует, в частности, из рис. 1.5 и формулы (1-11) — зависимость фототока от падающего потока излучения линейна в рабочем диапазоне значений потоков.

Разогрев оптопары может привести и к снижению η3.

Оценим значение kI для диодной оптопары.

Поток излучения Ф1, испускаемого светодиодом, связан с входным током I1 соотношением

Подпись: Рис. 2.3. Характеристики резисторных оптопар. (2.5)

(Здесь ηке — внешний квантовый выход светодиода). В то же время ток на выходе фотоприемника

Подпись: Рис. 2.3. Характеристики резисторных оптопар (2.6)

где η3 — квантовый выход фотодиода, а Ф2— поток излучения, падающий на фотодиод.

Из соотношений (2.5) и (2.6) получаем, что

Подпись: Рис. 2.3. Характеристики резисторных оптопар (2.7)

где Подпись: Рис. 2.3. Характеристики резисторных оптопар= Ф21 — коэффициент, учитывающий потери излучения на пути от светодиода к фотоприемнику.

Полагая, что η3≈1 (т.е. каждый фотон, достигнувший фотоприемника, генерирует носитель фототока; это хорошо выполняется, например, в случае pin-фотодиодов), получаем:

kI ≈ ηкеk/.

В идеальном случае, когда потерь света почти не происходит, можно считать, что kI≈ηке, однако зачастую коэффициент k‘ оказывается заметно меньше единицы. Учитывая, что у реальных светодиодов ηке≈10%, получаем, что для диодных оптопар коэффициент kI вряд ли может превышать нескольких процентов.

Подпись: Рис. 2.4. Зависимости коэффициента передачи по току от условий работы для диодной оптопарыПодпись: Рис. 2.4. Зависимости коэффициента передачи по току от условий работы для диодной оптопары

Помимо зависимости kI (I1) на рис. 2.4 представлены еще две. Так, на рис. 2.4,б изображена зависимость коэффициента передачи по току диодных оптопар от обратного напряжения на выходе прибора— она довольно слаба. Температурная же зависимость kI диодных оптронов выражена более ярко (рис. 2.4, в), что объясняется зависимостью от Т параметров всех элементов оптопары и в первую очередь—излучателя.

В целом, поскольку у современных диодных оптронов значение коэффициента передачи по току составляет единицы процентов, это означает, что на выходе таких оптопар практически можно получать лишь токи, не превышающие одного-двух миллиампер.

Предельно достижимое время переключения tп диодных оптопар может меняться в довольно широких пределах (0,1 — 10 мкс) в зависимости от марки прибора. Но на практике получить подобное быстродействие довольно трудно, так как из-за малости выходного тока их приходится включать на большую нагрузку. В этом случае существенным оказывается уже время перезарядки, определяемое сопротивлением нагрузки Rн и выходной емкостью оптопары С2. Так, при Rн =(2÷20) кОм и С2 = 50 пФ постоянная времени перезарядки равна 0,1—1 мкс, что сравнимо по величине с предельными значениями tп.

Диодные оптопары могут работать в вентильном режиме, когда оптрон выступает в качестве источника питания. Оптроны, предназначенные для этих целей, имеют повышенное (3–4%) значение kI, однако к. п. д. таких приборов также составляет лишь около одного процента.

Среди выпускаемых диодных оптопар можно выделить, наконец, группу приборов, оптический канал которых выполнен в виде световода длиной 30—100мм. Эти приборы характеризуются высокой электрической прочностью (Uиз = 20≈50 кВ) и малой проходной емкостью пр=0,01 пФ).

2.2.3. Транзисторные оптопары

К этому классу приборов относятся диодно-транзисторные (приемником излучения является фотодиод, один из выводов которого соединен с базой транзистора, введенного в состав оптрона) и транзисторные (приемником излучения служит фототранзистор) оптопары, а также оптроны с составным фототранзистором. Их параметры существенно отличаются друг от друга. Так, оптопары с составным фототранзистором обладают наилучшими передаточными характеристиками по току (в результате внутреннего усиления сигнала kI может достигать 1000%), зато диодно-транзисторные имеют большее быстродействие (tп = 2÷4 мкс). При этом оказывается, что для оптопар перечисленных типов отношение остается постоянным в широком интервале значений входных токов. Параметр D называют добротностью оптрона, его значение зависит от параметров изоляции (в частности, от Uиз). Для транзисторных оптронов Uиз = 1÷5 кВ, D= 0,1÷1% мкс-1.

Подпись: Рис. 2.4. Зависимости коэффициента передачи по току от условий работы для диодной оптопары(2.8)

Подпись: Рис.2.5.Зависимости коэффициента передачи по току транзисторных оптопар от входного тока (в активном режиме)Подпись: Рис.2.5.Зависимости коэффициента передачи по току транзисторных оптопар от входного тока (в активном режиме)Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары

Так же как и в случае диодных оптопар, материалом фотоприемников чаще всего является кремний; излучателями в таких приборах служат арсенид-галлиевые светодиоды.

Транзисторные оптопары привлекают внимание возможностью управления коллекторным током как оптическими методами, так и электрическими. Эти приборы позволяют получать высокие значения коэффициента передачи по току и соответственно большие I2 (чем они выгодно отличаются от диодных оптопар) при удовлетворительном быстродействии.

На рис. 2.5 приведены типичные зависимости kI от входного тока для транзисторной (кривая 3), диодно-транзисторной (кривая 1) оптопар, а также для оптопары с составным фототранзистором (кривая 2). Сравнение этого рисунка с рис. 2.4, а показывает, что характеристики таких оптопар сильно отличаются от полученных для диодного оптрона. Это связано с тем, что коэффициент усиления транзистора зависит от тока базы и потому не является постоянной величиной.

Температурные зависимости kI транзисторного оптрона при больших (кривая 1) и малых (кривая 2) входных токах представлены на рис. 2.6. Видно, что при больших I1 коэффициент передачи по току с изменением температуры ведете себя примерно так же, как и в случае диодных оптопар (см. рис. 2.4,6). В общем случае характер кривых kI (T) определяется зависимостями от температуры квантового выхода как светодиода, так и фототранзистора.

Особенностью всех оптопар с излучателями-светодиодами является уменьшение t1 и увеличение t2 с ростом входного тока. Именно поэтому соответствующие характеристики транзисторных и диодных оптопар оказываются сходными.

Повышение температуры приводит к возрастанию инерционности транзисторных оптопар. Одновременно увеличивается и темновой ток фотоприемника. Это особенно сильно сказывается в случае оптопар с составными фототранзисторами: при увеличении температуры от 25 до 100 °С их темновой ток возрастает в 104—105 раз (у обычных транзисторных оптопар это изменение лежит в пределах 102-—103).

2.2.4. Тиристорные оптопары

Тиристорные оптопары используют в качестве ключей для коммутации сильнотоковых и высоковольтных цепей как радиоэлектронного (U2 = 50÷600 В, I2 = 0,1-10 А), так и электротехнического (U2= 100÷300 В, I2 = 6,3÷320 А) назначения. Важным достоинством этих приборов является то, что, управляя значительными мощностями в нагрузке, они тем не менее по входу совместимы с интегральными микросхемами.

В зависимости от гарантируемых значений коммутируемых напряжений и токов, а также от времени переключения тиристорные оптопары подразделяются на большое число групп. В целом типичные значения t1 составляют 10—30 мс, t2 = 30÷250 мкс.

Поскольку тиристорные оптопары работают в ключевом режиме, то параметр kI для них лишен смысла. Поэтому удобнее характеризовать такие оптопары номинальным значением I1 при котором открывается фототиристор, а также — максимально допустимым входным током помехи (максимальным значением I1, при котором еще не происходит включение фототиристора). Значение силы номинального входного тока для разных типов тиристорных оптопар лежит в пределах 20—200 мА, максимально допустимый ток помехи для оптопары АОУ 103, например, равен 0,5 мА.

2.2.5. Параметры оптронов различного типа

Ниже приводится краткая сводная таблица основных характеристик некоторых элементарных оптронов (табл. 2.1). В обозначениях отечественных оптронов первая буква (или цифра) определяет материал излучателя (А или 3 — GaAlAs или GaAs), вторая буква (О) указывает на принадлежность прибора к классу оптопар, а третья отражает тип фотоприемника (Д—фотодиод, Т—фототранзистор, У — фототиристор). Резисторные оптопары (исторически первый тип оптопар) сохраняют свое первоначальное обозначение ОЭП (оптоэлектронный прибор). Некоторые из оптронов могут иметь обозначения, отличающиеся от тех, которые указаны выше (например, К249КП1—оптоэлектронный ключ, состоящий из излучающего диода на основе арсенид-галлий-алюминия и кремниевого фототранзистора, в который входят две транзисторные оптопары).

Кроме рассмотренных в настоящей главе типов оптопар следует упомянуть также о некоторых других видах оптронов. К ним можно отнести приборы, у которых в качестве фотоприемников используют МДП-фотоварикапы и полевые фототранзисторы, дифференциальные оптроны (один излучатель в которых работает на два идентичных фотоприемника),

а также оптопары, у которых источником излучения является полупроводниковый лазер (например, на основе GaAlAs или GalnAsP).

Таблица 2.1. Обозначения и значения основных параметров различных оптронов

















Типы оптронов

Обозначения и параметры

Резисторные

Диодные

Транзисторные

Тиристорные

диодно-транзисторные

транзисторные общего назначения

с составным фототранзистором

Схемное обозначение

Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары



 
 Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары


 



 
 Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары


 



 
 Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары


 



 
 Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары


 



 
 Подпись: Рис.2.6. Температурные зависимости kI при больших (1) и малых (2) входных токах для транзисторной оптопары


 

Буквенный элемент обозначения

ОЭП

АОД

АОД, КОЛ

АОТ

АОТ

АОУ, ТО

Коэффициент передачи по току kI, %

1 – 4

0,5 – 3,5

10 – 40

30 – 100

200 – 800

Граничная частота fгр, МГц

0,005 – 0,01

1 – 10

0,01 – 0,5

0,01 – 0,5

0,001 – 0,01

Время, мкс: включения t1

1·103–1·105

0,1–1

1–2

4–10

10–100

10–30

выключения t2

1·103–1·105

0,1–1

1–2

4–30

10–100

30–250

Параметры входной цепи:      

I1, мА

5–20

10–40

5–20

10–40

1–30

10–800

U1, В

2–6

1,1–1,8

1–2

1–2

1–5

1–3

Параметры выходной цепи:      

I2, мА

0,2–7

0,1–1,5

5–30

5–50

100–200

(0,1–320)х103

U2, В

5–250

1–100

5–30

5–30

5–30

50–1300

Сопротивление изоляции Rиз, Ом

1·109

1·109–1010

1010

5·108

1·109

5·108

2.2.6. Оптоэлектронные микросхемы

Приборы этого типа содержат одну или несколько оптопар, а также согласующие элементы или электронные интегральные схемы, объединенные при помощи гибридной технологии в один корпус. Оптоэлектронные микросхемы обладают более широкими возможностями, чем элементарные оптроны. Их можно разделить на три основные группы.

К первой относятся переключательные микросхемы; эта группа наиболее многочисленна. Примером прибора этого типа может служить микросхема серии 249ЛП1 (рис. 2.7, а), в который объединены диодный оптрон и стандартная интегральная схема, имеющая два статических состояния, при одном из которых напряжение на ее выходе равно примерно 0,3 В, а при другом — около 3 В.

Во вторую группу объединены линейные, оптоэлектронные микросхемы, которые способны выполнять аналоговые преобразования сигналов. В качестве примера можно привести микросхему серии К249КН1, линейную по выходной цепи, которая состоит из двух диодных оптронов, работающих в режиме фотоэлементов и выполняющих функции широкополосного (вплоть до передачи постоянного сигнала) трансформатора (рис. 2.7,6).

Подпись: Рис.2.7. Примеры оптоэлектронных микросхемПодпись: Рис.2.7. Примеры оптоэлектронных микросхем

Оптрон — Википедия. Что такое Оптрон

Различные виды оптронов

Оптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и, как правило, объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

Классификация

По степени интеграции

  • оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
  • оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).

По типу оптического канала

  • с открытым оптическим каналом
  • с закрытым оптическим каналом

По типу фотоприёмника

По типу источников света

Оптроны с полевым транзистором или фотосимистором иногда именуют оптореле или твердотельным реле.

В настоящее время в оптоэлектронике можно выделить два направления.

  1. Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренним фотоэффектом и электролюминесценцией.
  2. Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т. д.

Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:

  • Оптроны
  • Квантооптические элементы.

Они являются представителями соответственно электронно-оптического и оптического направлений.

Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.

Использование

Оптроны имеют несколько областей применения, использующих их различные свойства:

Механическое воздействие

Оптронный координатный счётчик в механической мыши

Оптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца или начала (аналогично механическому концевому выключателю), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, анемометры).

Гальваническая развязка

Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например MIDI, предписывают обязательную оптронную развязку. Различают два основных типа оптронов, предназначенных для использования в цепях гальванической развязки: оптопары и оптореле. Основное отличие между ними в том, что оптопары, как правило, используются для передачи информации, а оптореле используется для коммутации сигнальных или силовых цепей.

Оптопары

Транзисторные или интегральные оптопары, как правило, применяются для гальванической развязки сигнальных цепей или цепей с малым током коммутации. В качестве коммутирующего элемента используются биполярные транзисторы, цепи управления цифровыми входами, специализированные цепи (например, для управления силовым MOSFET или IGBT — оптодрайверы).

Свойства и характеристики оптопар

Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора. Оптопары гальванической развязки выпускаются в корпусах DIP, SOP, SSOP, Mini flat-lead. Для каждого типа корпусов характерны свои напряжения изоляции. Для того, чтобы обеспечить большие пробивные напряжения, необходимо, чтобы конструкция оптопары имела как можно большие расстояния не только между светодиодом и фотоприемником, но так же как можно большие расстояния по внутренней и по внешней стороне корпуса. Иногда производители выпускают специализированные семейства оптопар, соответствующие международным стандартам безопасности. Эти оптопары характеризуются повышенной электрической прочностью.

Одним из основных параметров, характеризующих транзисторную оптопару, является коэффициент передачи тока. Производители оптопар выполняют сортировку, присваивая в зависимости от коэффициента передачи тот или иной ренкинг, который указывается в наименовании.

Нижняя рабочая частота оптрона не ограничена: оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами нижних частот с граничной полосой порядка единиц Гц.

Шумы транзисторной оптопары

Для транзисторных оптопар характерным является появление шума, связанного с одной стороны наличием проходной ёмкости между светодиодом и базой транзистора, с другой стороны наличием паразитной ёмкости между коллектором и базой фототранзистора. Для борьбы с первым типом шумов в конструкцию оптопары вносят специальный экран. Второго типа шумов удается избежать правильно подобрав режимы работы оптопары.

Типы оптопар для гальванической развязки
  • Стандартные со входом по постоянному току
  • Стандартные со входом по переменному току
  • С малыми входными токами
  • С высоким напряжением коллектор-эмиттер
  • Высокоскоростные оптопары
  • Оптопары с изолирующим усилителем
  • Драйверы двигателей и IGBT
Примеры применения оптопар
  • В телекоммуникационном оборудовании
  • В цепях сопряжения с исполнительными устройствами
  • В импульсных источниках питания.
  • В высоковольтных цепях
  • В системах управления двигателями
  • В системах вентиляции и кондиционирования
  • В системах освещения
  • В электросчетчиках
Оптореле

Оптореле (Твердотельные реле), как правило, применяются для коммутации цепей с большим током коммутации. В качестве коммутирующего элемента используется как правило пара встречно включенных MOSFET транзисторов, благодаря чему оптореле способно работать в цепях переменного тока.

Свойства и характеристики оптореле

Оптореле имеют три топологии. Нормально разомкнутые — топология А, нормально замкнутые — топология Б и переключающая — топология С. Нормально разомкнутая топология предполагает замыкание коммутирующей цепи только при подаче управляющего напряжение на светодиод. Нормально замкнутая топология предполагает размыкание коммутирующей цепи при подаче управляющего напряжения на светодиод. Переключающая топология, как следует из названия имеет комбинацию внутри оптореле нормально замкнутых и нормально разомкнутых каналов.
Стандартными корпусами для оптореле являются DIP8, DIP6, SOP8, SOP4, Mini flat-lead 4.
Аналогично оптопарам, оптореле также характеризуются электрической прочностью.

Типы оптореле
  • Стандартные оптореле
  • Оптореле с малым сопротивлением
  • Оптореле с малым СxR
  • Оптореле с малым напряжением смещения
  • Оптореле с высоким напряжением изоляции
Примеры применения оптореле
  • В модемах
  • В измерительных устройствах, IC тестеры
  • Для сопряжения с исполнительными устройствами
  • В автоматических телефонных станциях
  • Счетчики электричества, тепла, газа
  • Коммутаторы сигналов

Неэлектрическая передача

На принципе оптрона построены такие приспособления как:

  • беспроводные пульты и оптические устройства ввода
  • беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов

Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на них радиации, а фотоприёмник фиксирует возникшее свечение и сообщает о тревоге.

Литература

  • Гребнев А. К., Гридин В. Н., Дмитриев В. П. Оптоэлектронные элементы и устройства / Под. ред. Ю. В. Гуляева. — М.: Радио и связь, 1998. — 336 с. — ISBN 5-256-01385-8.
  • Розеншер, Э., Винтер, Б. Оптоэлектроника = Optoélectronique / Пер. с фр.. — М.: Техносфера, 2004. — 592 с. — ISBN 5-94836-031-8.

Ссылки

Гальваническая развязка. Кто, если не оптрон? / Хабр

Есть в электронике такое понятие как гальваническая развязка. Её классическое определение — передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.

Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.


Речь, как уже сказано, пойдет о изоляции цифровых сигналов. Далее по тексту под гальванической развязкой будем понимать передачу информационного сигнала между двумя независимыми электрическими цепями.

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.

Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.

Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.

Итак, гальваническая развязка сигнала служит для защиты человека и техники.

Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.

Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Как оно работает

Традиционно гальваническая развязка строится на двух элементах — трансформаторах и оптронах. Если опустить детали, то первые применяются для аналоговых сигналов, а вторые — для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.

Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.

Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий.

Цифровые изоляторы — это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.

Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на полиимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала — один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.

Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.

Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях эквивалентно гальванической развязке.

Если последнее предложение вас взбудоражило..Если вы почувствовали жгучее желание закричать что гальванической развязки на конденсаторах быть не может, то рекомендую посетить треды вроде этого. Когда ваша ярость утихнет, обратите внимание что все эти споры датируются 2006 годом. Туда, как и в 2007, мы, как известно, не вернемся. А изоляторы с емкостным барьером давно производятся, используются и отлично работают.

Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями — Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.

На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.

Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.

Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.

Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов — «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек.

Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется.

Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.

Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.

Дифференциальная передача — это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.

Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keying) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» — отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.

Цифровые изоляторы Silicon Labs превосходят микросхемы ADUM-ы по большинству ключевых характеристик. Микросхемы от TI обеспечивают примерно такое же качество работы как Silicon Labs, но в отдельных случаях уступают в точности передачи сигнала.

Где оно работает

Хочется добавить пару слов о том в каких микросхемах используется изоляционный барьер.
Первыми стоит назвать цифровые изоляторы. Они представляют собой несколько изолированных цифровых каналов, объединенных в одном корпусе. Выпускаются микросхемы с различной конфигурацией входных и выходных однонаправленных каналов, изоляторы с двунаправленными каналами (используются для развязки шинных интерфейсов), изоляторы со встроенным DC/DC-контроллером для изоляции питания.Ещё больше картинокМикросхема серии Si86xx — цифровой изолятор с четырьмя прямыми и двумя обратными каналами

Микросхема серии Si860x — цифровой изолятор с двумя двунаправленными и двумя однонаправленными каналами

Микросхема серии Si88xx — цифровой изолятор с двумя каналами и встроенным DC/DC-контроллером

Кроме цифровых изоляторов выпускаются изолированные драйверы силовых транзисторов, в том числе на посадочное место оптодрайверов, усилители токового шунта, гальваноразвязанные АЦП и др.
Ещё больше картинокМикросхема серии Si823x — изолированный драйвер верхнего и нижнего ключа

Микросхема серии Si8261 — изолированный драйвер с эмулятором светодиода на входе

Микросхема серии Si8920 — изолированный усилитель токового шунта

Микросхема серии Si890x — изолированный АЦП

Слово ОПТРОН — Что такое ОПТРОН?

Слово состоит из 6 букв:

первая о,

вторая п,

третья т,

четвёртая р,

пятая о,

последняя н,

Слово оптрон английскими буквами(транслитом) — optron

Значения слова оптрон. Что такое оптрон?

Оптрон

Оптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов)…

ru.wikipedia.org

Оптро́н прибор, состоящий из помещённых в общем корпусе излучателя света (обычно светоизлучающего диода) и фотоприёмника (фотодиода, фоторезистора, фототранзистора и т. д.), между которыми имеется оптическая связь и обеспечена электрическая изоляция.

Энциклопедия техники

Оптрон, прибор, состоящий из излучателя света и фотоприёмника, связанных друг с другом оптически и помещенных в общем корпусе. Иногда О. называют также пару «излучатель-фотоприёмник» с любыми видами оптической и электрической связи между ними.

БСЭ. — 1969—1978

Оптро́н

Оптро́н — прибор, состоящий из помещённых в общем корпусе излучателя света (обычно светоизлучающего диода) и фотоприёмника (фотодиода, фоторезистора, фототранзистора и т. д.)…

Энциклопедия техники

Русский язык

Оптро́н, -а.

Орфографический словарь. — 2004


  1. оптоэлектроника
  2. оптоэлектронный
  3. оптронный
  4. оптрон
  5. опт
  6. опубликовавший
  7. опубликование

Оптрон — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Optoisolator Pinout.svg
Різні види оптронів

Оптрон (оптопара) (від ОПтика і елекТРОН) — найпростіший оптикоелектронний пристрій, що складається з джерела світла, фотоприймача й оптичного узгоджувального або керуючого середовища. Оптрони широко використовують у пристроях обчислювальної техніки, автоматики тощо.

Оптопара — оптоелектронний напівпровідниковий прилад, який складається з випромінювача та приймача випромінювання, між якими є оптичний зв’язок і забезпечена електрична ізоляція.
[1]

Для сучасних цифрових технологій оптрони уже занадто повільні і
громіздкі. Від 1990-х років, дослідники вивчили і поліпшили інші, швидші
і компактніші технології. Ізолятори, на основі пласких трансформаторів
(Analog Devices) і на основі ємнісного зв’язку (Texas Instruments) були
популярні на початку 2000-х. Третя альтернативна технологія,
базована на ефекті гігантського
магнетоопору , відома на ринку з 2002 року ( NVE Corporation). На
2010 рік, промислові зразки мають швидкість до 150 Мб/с і стійкість до
перенапруг до 25 кВ/мкс, порівняно з 10 кВ/мкс для оптоізоляторів. На
відміну від оптоізоляторів, які переважно є збіркою дискретних
світлодіодів і сенсорів, нові прилади є мікросхемами, кількість каналів
у яких легко нарощується.

  • Словник іншомовних слів за ред. О. С. Мельничука. Головна редакція Української радянської енциклопедії. Київ 1977.
  • ДСТУ 2449-94 Прилади напівпровідникові. Терміни та визначення.

Что такое оптопара, оптоизолятор, оптопара »Электроника

Оптопары и оптоизоляторы используют светодиоды, фотодиоды и фототранзисторы и используются для соединения цепей вместе, но изолируют их электрически.


Фототранзистор Включает:
Основы фототранзистора
Приложения и схемы
Фотодарлингтон
Оптопара / оптоизолятор


Оптопары можно описать разными именами, включая оптоизолятор и оптопару.

По сути, оптопара или оптопара — это полупроводниковое устройство, которое использует короткий оптический путь или линию связи для передачи сигнала от одной электрической цепи к другой, обеспечивая при этом электрическую изоляцию.

Оптопары или оптопары обычно содержатся в одном корпусе, часто размером с интегральную схему, хотя возможны большие различия в зависимости от предполагаемого применения.

Оптопары или оптопары

используются для выполнения множества функций: их можно использовать для связи данных по двум цепям, их можно использовать в оптических кодировщиках, где оптопара обеспечивает средства обнаружения видимых краевых переходов на колесе кодировщика для определения положения и т. Д. ., и их можно использовать во многих других схемах, где необходимы оптические линии связи и переходы.

Они даже образуют важный элемент в твердотельных реле, где оптическая связь используется для электрической изоляции входа и выхода, позволяя переключать выход в соответствии с состоянием входа. В результате оптические соединители или оптопары используются в удивительно большое количество схем.

Dual in line optocoupler Оптопара

Основы оптопары / оптопары

Оптрон — это компонент, который содержит два элемента, необходимых для оптопары:

  • Излучатель света: Излучатель света находится на стороне входа и принимает входящий сигнал и преобразует его в световой сигнал.Обычно излучателем света является светоизлучающий диод.
  • Детектор света: Детектор света в оптроне или оптоизоляторе обнаруживает свет от излучателя и преобразует его обратно в электрический сигнал. Детектор света может быть любым из множества различных типов устройств от фотодиода до фототранзистора, фотодарлингтона и т. Д.

Излучатель света и детектор настроены так, чтобы соответствовать друг другу, имея совпадающие длины волн, так что достигается максимальная связь.

Оптрон также может содержать другие схемы, например, он может включать в себя последовательный резистор для светодиода или даже возможность возбуждения диода. Оптрон может также включать выходной усилитель.

Хотя оптопара или оптоизолятор обычно рассматривается как единый интегрированный корпус, можно достичь того же результата, используя отдельные устройства. Однако необходимо учитывать механическое устройство, и это часто делает оптрон, сделанный из отдельных устройств, менее удобным, хотя для оптоизоляторов может возникнуть необходимость в использовании отдельных компонентов для некоторых приложений.

Терминология оптопары / оптопары

Термины «оптопара», «оптопара» и «оптоизолятор» часто используются взаимозаменяемо в электронной и технической литературе, когда они относятся к компонентам, выполняющим одни и те же функции.

Строго говоря, существуют различия между терминами оптоизолятор и оптрон. Различие между оптопарой и оптоизолятором заключается в ожидаемой разнице напряжений между входом и выходом:

  • Оптрон: Обычно считается, что оптрон используется для аналоговой передачи цифровой информации между цепями при сохранении гальванической развязки при потенциалах до 5000 вольт.
  • Оптоизолятор: Оптоизолятор обычно используется в энергосистемах и используется для передачи аналоговой или цифровой информации между цепями, где разность потенциалов превышает 5 000 вольт.

Это приблизительное руководство по различиям между оптопарами и оптоизоляторами. Однако эти термины по-прежнему широко используются как синонимы.

Обозначение оптрона

Символ оптопары, используемый в принципиальных схемах, указывает функцию и внутренние элементы внутри всего компонента.Символ показывает светодиод, который обычно используется как излучатель света. Символ оптопары также показывает приемник, часто фототранзистор или фотодарлингтон, хотя также могут использоваться другие устройства, включая светочувствительные диаки и т. Д. Соответствующий тип устройства показан внутри символа цепи оптопары.

Обозначение оптопары или цепи оптопары
(версия с фототранзистором)

Оптопары также могут быть изготовлены с использованием других компонентов. Один из форматов, который используется в некоторых приложениях питания переменного тока, — это оптопара, основанная на диакрите.Его можно использовать для запуска симистора для переключения сети или управления углом проводимости (т. Е. Диммирования).

Обозначение фотодиодной схемы

Пакеты оптопары и оптоизолятора

Существует множество различных пакетов, используемых как для оптопар, так и для оптоизоляторов.

Для оптопар, которые используются для более низких напряжений, доступны различные пакеты. Часто оптопары поставляются в небольших корпусах, похожих, но не всегда идентичных знакомым корпусам Dual-In-Line (DIL) IC для обычных компонентов.Также доступны версии SMD, опять же в таких пакетах, как пакеты Small Outline Integrated Circuit (SOIC). Они обеспечивают очень компактные варианты размещения оптопар. Однако убедитесь, что выполнены все требования к изоляции.

Для оптоизоляторов, работающих при гораздо более высоких напряжениях, доступны различные пакеты. Оптоизоляторы могут быть получены в корпусах самых разных стилей, включая прямоугольники, цилиндры и специальные конфигурации. Эти типы корпусов предназначены для обеспечения более высоких напряжений изоляции, чем те, которые могут быть достигнуты с помощью корпусов DIL и SMD, таких как SOIC.

Технические характеристики оптопары и оптоизолятора

Есть несколько параметров и спецификаций, которые необходимо учитывать при использовании оптопар и оптоизоляторов:

  • Коэффициент передачи тока, CTR: Коэффициент передачи тока оптопары — одна из ключевых характеристик. Это отношение тока, протекающего в устройстве вывода, к току на устройстве ввода. CTR будет варьироваться в зависимости от типа оптопары, используемой на выходе, те, которые используют фотодарлингтоны, будут намного выше, чем те, которые используют обычные фототранзисторы.Значения могут находиться в диапазоне от 10% до 2000% — 5000%. Следует отметить, что CTR имеет тенденцию меняться в зависимости от уровня входного тока. Хотя он будет варьироваться в зависимости от устройства, для мужских оптопар он будет максимальным при уровнях входного тока около 10 мА, падающих в обе стороны от этого значения.
  • Пропускная способность: Чтобы понять максимальные скорости передачи данных, на которые можно рассчитывать с оптопарой, необходимо знать пропускную способность. Для многих оптопар, использующих фототранзисторы, он может быть только в области 250 кГц, а для тех, кто использует фотодарлингтоны, может составлять десятую часть этого числа.Доступны несколько более быстрых оптопар. Обычно чем ниже CTR, тем быстрее увеличивается и уменьшается время
  • Входной ток: Это ток, необходимый для входного передающего устройства — светодиода. Значение используется для расчета последовательного резистора, используемого для ограничения тока.
  • Максимальное напряжение выходного устройства: Для оптопар, использующих транзисторы, максимальное значение будет равно V CE (max) для транзистора.Для оптопар, использующих на выходе другие устройства, следует использовать эквивалентный номинал. Также помните, что следует сохранять соответствующую маржу, поскольку никогда не рекомендуется использовать устройства, близкие к их максимальным характеристикам.

Различия между оптопарами и твердотельными реле

Есть много общего между оптопарами / изоляторами и т. Д. И твердотельными реле.

Твердотельные реле используются во многих областях в качестве электронных переключателей для управления питанием переменного или постоянного тока.

В твердотельных реле в качестве основы для работы используется технология оптронной связи, поскольку они должны обеспечивать высокий уровень сопротивления и развязку между входными и выходными цепями.

Основное различие между оптопарами и твердотельными переключателями заключается в том, что оптопары и т.п. обычно используются для приложений с низким энергопотреблением. Твердотельные реле используются для гораздо более высоких уровней мощности. Часто твердотельные реле используются для переключения уровней напряжения до сотен вольт и более и уровней тока до десятков ампер и более.

Обычно оптопары содержатся в небольших корпусах ИС либо в виде устройств для поверхностного монтажа, либо в виде полупроводниковых устройств с выводами. Однако твердотельные реле обычно содержатся в гораздо более крупных корпусах, часто требующих прикручивания к радиатору. Они также часто имеют винтовые контакты для обеспечения необходимой пропускной способности по току.

В дополнение к этому твердотельные реле часто содержат дополнительные схемы — они часто представляют собой полный блок схемы. Они могут содержать схему управления светодиодами в оптопередатчике, а также могут содержать схему защиты от импульсных перенапряжений и переходных процессов на выходе.Для приложений переменного тока некоторые твердотельные реле обеспечивают переключение перехода через нуль для сигналов переменного тока, когда выходное устройство переключается только тогда, когда форма сигнала переменного тока проходит через положение нулевого напряжения. Это снижает электромагнитные помехи, EMI.

Оптопары, оптопары и оптоизоляторы, возможно, используются более широко, чем может показаться на первый взгляд. Их можно использовать по-разному, обеспечивая оптические связи между цепями. Это можно использовать для передачи данных, обеспечения гальванической развязки между цепями или для обнаружения разрыва связи.Каким бы способом они ни использовались, они обеспечивают неоценимую функцию во многих электронных схемах.

Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
FET
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле

Вернуться в меню «Компоненты». . .

.

Как работает оптопара | EAGLE

Вам нужно защитить чувствительные низковольтные компоненты и изолировать цепи на вашей печатной плате? Оптопара может сделать эту работу. Да будет свет! Это устройство позволяет передавать электрический сигнал между двумя изолированными цепями, состоящими из двух частей: светодиода, излучающего инфракрасный свет, и светочувствительного устройства, которое обнаруживает свет от светодиода. Обе эти части содержатся в традиционном черном ящике с парой контактов для подключения. С первого взгляда легко перепутать оптопару с интегральной схемой (ИС).

triac-optocoupler

Эта симисторная оптопара выглядит как ИС. (Источник изображения)

Как это работает

Сначала к оптрону подается ток

А, благодаря чему инфракрасный светодиод излучает свет, пропорциональный току. Когда свет попадает на светочувствительное устройство, он включается и начинает проводить ток, как любой обычный транзистор.

optocoupler-diagram

Как работает оптопара. (Источник изображения)

Светочувствительное устройство по умолчанию обычно не подсоединяется, чтобы обеспечить максимальную чувствительность к инфракрасному свету.Он также может быть подключен к земле с помощью внешнего резистора для большей степени контроля чувствительности переключения.

optocoupler-circuit

Оптопара эффективно изолирует выходную и входную цепи. (Источник изображения)

Это устройство в основном работает как переключатель, соединяющий две изолированные цепи на вашей печатной плате. Когда ток через светодиод перестает течь, светочувствительное устройство также перестает проводить и отключается. Все это переключение происходит через пустоту из стекла, пластика или воздуха без электрических частей между светодиодом или светочувствительным устройством.Все дело в свете.

Преимущества и типы

Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения питания и т. Д., Тогда вам понадобится способ защиты низковольтных устройств. При правильном использовании оптопара может эффективно:

  • Удалить электрические помехи из сигналов
  • Изолируйте низковольтные устройства от высоковольтных цепей
  • Позволяет использовать небольшие цифровые сигналы для управления более высокими напряжениями переменного тока

Оптопары бывают четырех конфигураций.Каждая конфигурация использует один и тот же инфракрасный светодиод с другим светочувствительным устройством. К ним относятся:

Фототранзистор и Photo-Darlington , которые обычно используются в цепях постоянного тока, и Photo-SCR и Photo-TRIAC , которые используются для управления цепями переменного тока.

four-types-of-optocouplers

Четыре типа оптопар. (Источник изображения)

Если вы любите приключения, вы даже можете сделать самодельный оптрон с некоторыми запасными частями.Просто совместите светодиод и фототранзистор внутри светоотражающей пластиковой трубки.

homemade-optocoupler

Самодельная оптопара, состоящая всего из трех простых частей. (Источник изображения)

Типичные области применения

Оптопары

могут использоваться отдельно в качестве переключающих устройств или использоваться с другими электронными устройствами для обеспечения изоляции между цепями низкого и высокого напряжения. Обычно эти устройства используются для:

  • Микропроцессорное переключение входов / выходов
  • Контроль мощности постоянного и переменного тока
  • Защита коммуникационного оборудования
  • Регламент электропитания

В этих приложениях вы встретите различные конфигурации.Некоторые примеры включают:

Оптранзисторный переключатель постоянного тока

Эта конфигурация обнаруживает сигналы постоянного тока, а также позволяет управлять оборудованием с питанием от переменного тока. MOC3020 идеально подходит для управления подключением к сети или подачи импульса затвора на другой фото-симистор с токоограничивающим резистором.

opto-transistor-dc-switch

(Источник изображения)

Симистор оптопара

Эта конфигурация позволит вам управлять нагрузками с питанием от переменного тока, такими как двигатели и лампы. Он также способен проводить обе половины цикла переменного тока с обнаружением перехода через ноль.Это позволяет нагрузке получать полную мощность без значительных всплесков тока при переключении индуктивных нагрузок.

triac-optocoupler

(Источник изображения)

Рекомендации по компоновке печатной платы

Прежде чем добавлять оптопару в компоновку печатной платы, примите во внимание следующие три правила:

  • Держите заземляющие соединения оптопары отдельно

Стандартная оптопара включает два контакта заземления: один для светодиода, а другой — для светочувствительного устройства. Соединение обоих этих заземлений вместе откроет вашу чувствительную схему для любого шума от внешнего заземления.Чтобы избежать этого, всегда создавайте две точки подключения: одну для контактов внешнего заземления, а другую — для входных заземляющих проводов.

  • Выберите правильное значение резистора ограничения тока

Выбор резистора ограничения тока, который работает при минимальном значении оптопары, приведет к нестабильному поведению. Также можно выбрать резистор, обеспечивающий слишком большой ток, при котором светодиод лопнет. При выборе значения для вашего резистора обязательно найдите значение минимального прямого тока из таблицы Current Transfer Ratio в таблице данных оптопары.У Vishay есть отличное руководство по чтению таблицы данных оптопары здесь.

  • Знайте, какой тип оптопары вам нужен

Не все оптопары созданы равными, и вам нужно будет выбрать правильный тип для вашего приложения. Например, опто-симистор используется, если вам нужно управлять нагрузкой переменного тока. Opto-Darlington предназначены только для малых входных токов. Если все, что вам нужно, это стандартная изоляция входа, то обычная оптопара PC817 выполнит свою работу. Эту статью от Nuts and Volts определенно стоит прочитать, чтобы понять типы и различия оптопар.

Библиотеки оптопар в EAGLE

Управляемые онлайн-библиотеки Autodesk EAGLE включают целую категорию оптопар для использования в вашем следующем проекте. Это лучше, чем создавать свои собственные пакеты и символы с нуля! Чтобы использовать эту библиотеку, убедитесь, что optocoupler.lbr активирован в панели управления Autodesk EAGLE, как показано ниже. Если да, то в следующий раз, когда вам понадобится добавить компонент, у вас будет доступ ко всем этим устройствам.

optocoupler-library-use

Готовы начать изоляцию цепей и защиту низковольтных устройств? Загрузите Autodesk EAGLE бесплатно сегодня, чтобы начать использовать прилагаемые библиотеки оптопары!

.

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.
На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения,
калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee,
LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д.Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

IoT based Fall Detection System architecture

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей.
В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей.
Узнать больше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета.
• Система измерения столкновения
• Система отслеживания скоропортящихся продуктов и овощей
• Система помощи водителю
• Система умной торговли
• Система мониторинга качества воды
• Система Smart Grid
• Система умного освещения на базе Zigbee
• Система интеллектуальной парковки на основе Zigbee.
• Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты.
Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно.
Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP.

Читать дальше➤


5G cell phone architecture

Основы повторителей и типы повторителей :
В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Которые используются в беспроводной связи.
Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G.
Архитектура сотового телефона.
Читать дальше➤


5G cell phone architecture

Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в одном канале,
ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д.
5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR
• Часть полосы пропускания 5G NR
• 5G NR CORESET
• Форматы DCI 5G NR
• 5G NR UCI
• Форматы слотов 5G NR
• IE 5G NR RRC
• 5G NR SSB, SS, PBCH
• 5G NR PRACH
• 5G NR PDCCH
• 5G NR PUCCH
• Эталонные сигналы 5G NR
• 5G NR m-последовательность
• Золотая последовательность 5G NR
• 5G NR Zadoff Chu Sequence
• Физический уровень 5G NR
• Уровень MAC 5G NR
• Уровень 5G NR RLC
• Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как
сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS,
GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д.
См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Руководство по основам 5G
Полосы частот
руководство по миллиметровым волнам
Волновая рамка 5G мм
Зондирование волнового канала 5G мм
4G против 5G
Тестовое оборудование 5G
Сетевая архитектура 5G
Сетевые интерфейсы 5G NR
канальное зондирование
Типы каналов
5G FDD против TDD
Разделение сети 5G NR
Что такое 5G NR
Режимы развертывания 5G NR
Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения,
Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы,
Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания,
MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона,
Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC).
Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE,
Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE,
Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C.
для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO,
колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера
➤Конструкция RF фильтра
➤VSAT Система
➤Типы и основы микрополосковой печати
➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе
Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M.
➤ Генерация и анализ сигналов
➤Измерения слоя PHY
➤Тест устройства на соответствие WiMAX
➤ Тест на соответствие Zigbee
➤ Тест на соответствие LTE UE
➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель,
фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи.
Оптические компоненты INDEX >>
➤Учебник по оптоволоконной связи
➤APS в SDH
➤SONET основы
➤SDH Рамочная конструкция
➤SONET против SDH


Поставщики и производители беспроводных радиочастотных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений,
см. ИНДЕКС поставщиков >>.

RF Wireless World Home Page-Passive RF components

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, микросхема индуктивности, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE
➤RF Циркулятор
➤RF Изолятор
➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW.
Эти коды полезны для новичков в этих языках.
ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL
➤Код MATLAB для дескремблера
➤32-битный код ALU Verilog
➤T, D, JK, SR триггеры labview коды

* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: Часто мойте их.
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: не трогайте его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и
установить систему видеонаблюдения >>
чтобы спасти сотни жизней.
Использование концепции телемедицины стало очень популярным в
таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Калькуляторы и преобразователи беспроводной связи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц.
Это касается беспроводных технологий, таких как GSM, UMTS, LTE, 5G NR и т. Д.
СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR
➤5G NR ARFCN против преобразования частоты
➤Калькулятор скорости передачи данных LoRa
➤LTE EARFCN для преобразования частоты
➤ Калькулятор антенны Яги
➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet,
6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ
➤EnOcean
➤Учебник по LoRa
➤Учебник по SIGFOX
➤WHDI
➤6LoWPAN
➤Zigbee RF4CE
➤NFC
➤Lonworks
➤CEBus
➤UPB

СВЯЗАННЫЕ ЗАПИСИ

RF Wireless Учебники

Различные типы датчиков

Поделиться страницей

Перевести

.

Оптопара — Википедия

Een оптопара — это een kleine geïntegreerde schakeling waarin zich een led en een lichtgevoelige transistor bevinden.
Дверь een bepaalde, охватывающая aan de klemmen van de led te leggen zal de transistor in geleiding gaan. Hierdoor kan een signaal in de ene schakeling worden overgedragen op een andere schakeling zonder dat deze schakelingen elektrisch met elkaar verbonden zijn, Wat uit veiligheidsoverwegingen in veel apparatuur (bijvoorbeeld ische apparaten).Dit zorgt dus voor een galvanische scheiding die gemakkelijk toe te passen is in kleine elektronische schakelingen.

Этот оптоизолятор, работающий с эффектами, является бесшумным, как и реле, требуется конфигурация выходного электрического сигнала на входе. De diode kan gezien worden als de zender en de fototransistor bijgevolg als ontvanger. Диодный электронный сигнал в собственном транзисторе работает.

De configuratie werkt als een schakelaar.Transistor gaat in geleiding as hij door licht wordt beschenen. Чтобы предотвратить появление транзистора, он остановился на пути к двери транзистора.

Ретро датчик обнаруживает анвезигейд ванны объекта. Licht wordt gereflecteerd door een object in de buurt en de transistor wordt hierdoor aangedreven. Еще один объект в разработке дизайна — это kan het licht van de lichtbron de transistor nooit bereiken.

Транзисторный ответвитель Дарлингтона

Транзисторный соединитель Дарлингтона Wordt gebruikt wanneer een hogere output nodig is dan enkel de fototransistor kan voorzien.Het nadeel хорошо знаком с фотодарлингтоном и его впечатлениями от фототранзистора.

Een LASCR (Light Activated Silicon Controlled Rectifier) ​​ответвитель на выходе может быть использован для расширения узла связи. Dit dient voor het activeren van elektromechanische apparaten.

Выходной соединитель фототриака

Dit apparaat представляет собой простой симистор в werking te zetten.

Оптически изолированный линейный ответвитель переменного тока

Оптически изолированный преобразователь линейного ответвителя переменного тока имеет различные возможности в помещении, а также различные варианты расширения.Лучше всего использовать фотодиод Ван де Верстеркер. Lichtvariaties van de led worden opgevangen door de fotodiode, die dan de versterker voorziet van een ingangssignaal. Этап эмиттер-повторитель управляет данными буфера для действующего элемента ван де Верстеркера. Deze configuratie wordt vaak gebruikt bij аудио приложений.

Bronnen, noten en / of referenties

  • Томас Л. Флойд Электронные устройства, седьмое издание . Прентис Холл.
  • И. Маесен, Р. Петерс, Э. Вранкен Basis Elektronica . Wolters Plantyn.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *