Переменный ток. Переменный ток это


Переменный ток - это... Что такое Переменный ток?

Переме́нный ток, AC (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Преимущества сетей переменного тока

  • Напряжение в сетях переменного тока легко преобразуется от одного уровня к другому путем применения трансформатора.
  • Асинхронные электродвигатели переменного тока проще и надежнее двигателей постоянного тока. (90% вырабатываемой электроэнергии потребляется асинхронными электродвигателями[источник не указан 1115 дней]).
  • Возможность передачи на более длинные расстояния, нежели постоянный.

Генерирование переменного тока

Преобразователь постоянного тока в переменный.

Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

Стандарты частоты

В большинстве стран применяются частоты 50 или 60 Гц (60 - этот вариант принят в США) В некоторых странах, например, в Японии, используются оба стандарта. Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария).

В текстильной промышленности, авиации, метрополитене и военной технике для снижения веса устройств или с целью повышения частот вращения могут применять частоту 400 Гц (однако, чаще всего - метрополитены электрифицированы по системе постоянного тока), а в морском флоте 500 Гц.

Электрификация ПТ

В России и СНГ около половины всех ЖД работает на переменном токе частотой 50Гц.[источник не указан 345 дней]

Ссылки

См. также

med.academic.ru

Переменный электрический ток

 

Переменный электрический ток - ток с меняющимися во времени направлением и силой. Те токи, которые изменяются только по величине, называются пульсирующими. В промышленности и быту чаще всего используется переменный синусоидальный ток.

Преобразование постоянного тока в переменный электрический можно выполнить следующим образом. Поместим в равномерное постоянное магнитное поле виток проволоки. При равномерном вращении этого витка вокруг оси магнитный поток будет непрерывно меняться как по величине, так и по направлению. Вследствие этого, по закону электромагнитной индукции, в витке образуется переменная по направлению и величине электродвижущая сила (ЭДС). Если такой виток присоединить к внешней цепи, то в ней мы получим переменный электрический ток.

Когда плоскость вращающегося витка становится перпендикулярна по отношению к силовым линиям данного магнитного поля, проходящий сквозь нее магнитный поток - наибольший (Φ = Φmax), скорость же изменения его равна нулю (ΔΦ/Δt = 0), так как, проходя через такое положение, проводники витка проскальзывают по силовым линиям поля, не пересекая их. А значит, ЭДС индукции, образующаяся в витке, станет равна нулю (Е = 0).

Когда же плоскость витка параллельна силовым линиям поля, поток, пронизывающий ее, равен нулю (Φ = 0), скорость же изменения его в таком положении наибольшая ((ΔΦ/Δt)max), поскольку проводники витка движутся перпендикулярно относительно силовых линий.

ЭДС, возникающая в этом случае в витке, имеет наибольшее значение (E = Emax). При дальнейшем вращении витка скорость изменения потока, пронизывающего виток, будет увеличиваться; значит, ЭДС по абсолютной величине будет возрастать от 0 до Emax. Так, уровень ЭДС индукции во вращающемся витке за один его оборот изменяется от –Emax до +Emax.

Разомкнем виток проволоки и присоединим его к осциллографу. Когда виток вращается в магнитном поле, осциллограф запишет все изменения тока, по которым можно будет судить и об изменении электродвижущей силы в витке за время одного оборота.

Ток, возникающий в витке при его равномерном обращении в равномерном магнитном поле, как показывает осциллограмма, изменяется синусоидально. Такой ток называют переменным синусоидальным.

Промежуток времени, за который электродвижущая сила выполняет одно колебание, называют периодом переменного тока.

Буквенное обозначение периода колебания - Т. Число колебаний за 1 секунду - частота тока, которую обозначают буквой f. Ее единица измерения - герц (Гц):

f = 1/T, либо T = 1/f.

Если значение ЭДС в некоторый произвольный момент времени мы обозначим через е (ее мгновенное значение), а самое большое значение (амплитудное) – через Emax, то закон, выражающий зависимость е от времени, в случае синусоидального тока можно выразить в виде следующего выражения:

e = Emax˖sin (2/T)t.

В большинстве стран в промышленности и в быту используют переменный электрический ток с частотой 50 Гц, продолжительностью периода 0,02 секунды.

Получение переменного электрического тока из механической энергии выполняется при помощи специальных машин, которые называют генераторами. В основе принципа их работы - закон электромагнитной индукции. Самая простая схема генератора может быть представлена в виде рамки, вращающейся вокруг оси в магнитном поле электромагнита или постоянного магнита. При вращении рамки в ней образуется переменная электродвижущая сила. Соединив рамку с внешней цепью, получим переменный электрический ток. Генератор переменного тока, имеющий неподвижную магнитную систему и вращающиеся витки, строится достаточно редко.

Почти во всех таких генераторах обмотка (якорь) установлена неподвижно, а магнитная система (индуктор) вращается. Недвижимую часть генератора называют статор, а подвижную – ротор.

fb.ru

Переменный ток - это... Что такое Переменный ток?

Переме́нный ток, AC (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Преимущества сетей переменного тока

  • Напряжение в сетях переменного тока легко преобразуется от одного уровня к другому путем применения трансформатора.
  • Асинхронные электродвигатели переменного тока проще и надежнее двигателей постоянного тока. (90% вырабатываемой электроэнергии потребляется асинхронными электродвигателями[источник не указан 1115 дней]).
  • Возможность передачи на более длинные расстояния, нежели постоянный.

Генерирование переменного тока

Преобразователь постоянного тока в переменный.

Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

Стандарты частоты

В большинстве стран применяются частоты 50 или 60 Гц (60 - этот вариант принят в США) В некоторых странах, например, в Японии, используются оба стандарта. Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария).

В текстильной промышленности, авиации, метрополитене и военной технике для снижения веса устройств или с целью повышения частот вращения могут применять частоту 400 Гц (однако, чаще всего - метрополитены электрифицированы по системе постоянного тока), а в морском флоте 500 Гц.

Электрификация ПТ

В России и СНГ около половины всех ЖД работает на переменном токе частотой 50Гц.[источник не указан 345 дней]

Ссылки

См. также

ushakov.academic.ru

Переменный ток. Объясните мне как получают переменный ток.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока. Схема устройства (модель) простейшего генератора переменного тока. Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам) . Схема простейшего генератора переменного тока Убедимся в том, что такое устройство действительно является источником переменной ЭДС. Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС. Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС. В любой момент времени ЭДС (Электродвижущая сила, сокращенно ЭДС) , возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой. В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки. Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки. Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита. Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется. Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению. ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи. Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток. Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Это объясняется преимуществом производства и распределения этой энергии. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую. 7. ПЕРЕМЕННЫЙ ТОК ido.tsu.ru/schools/physmat/data/res/elmag/uchpos/text/7_1.html‎ Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию. Переменный электрический ток selectelement.ru/basic-concepts/electric-ac.php‎ §46. Получение переменного тока | Электротехника electrono.ru/peremennyj-tok/46-poluchenie-peremennogo-toka‎

Скопируй эту ссылку в адресную строку <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Генератор_переменного_тока" target="_blank">http://ru.wikipedia.org/wiki/Генератор_переменного_тока</a>

touch.otvet.mail.ru

Переменный ток — Циклопедия

Координаты: абсцисса — время, ордината — вольтаж.

Переменный ток — электрический ток, сила которого периодически меняется со временем.

В основном колебания тока происходят по гармоническому закону

[math] I = I_0 \cos(2 \pi \nu t - \varphi)[/math],

де [math] I_0 [/math] — амплитуда тока, [math] \nu [/math] — частота, [math] \varphi [/math] — фаза тока.

Переменный ток возникает в электрической цепи с переменным напряжением. Колебания напряжения происходят по подобному закону, однако, в общем случае со сдвигом фазы [math] \Delta \varphi [/math]

[math] U = U_0 \cos (2 \pi \nu t - \varphi -\Delta \varphi) [/math]

Индуктивность — элемент цепи учитывающий энергию магнитного поля. При изменении тока в индуктивности возникает ЭДС самоиндукции. Чтобы через индуктивность проходил переменный ток до ее вывода надо подложить напряжение индуктивности.

Преимуществом переменного тока является то, что его легче производить и передавать к потребителю. Постоянный ток можно получить из переменного с помощью выпрямления.

[править] Физика переменного тока

Особенностью переменного тока является то, что некоторые элементы электрической цепи влияют не только на амплитуду тока, но и на его фазу. Поэтому для расчетов электрических цепей вместо сопротивлений используются комплексные опоры — импеданс, а все расчеты производятся с использованием комплексных чисел.

Мгновенное значение мощности электрического тока равно

[math] S = IU \, [/math], полная мощность [math] P = IU\cos\,\Delta\varphi [/math], активная мощность [math] Q = IU\sin\,\Delta\varphi [/math], реактивная мощность

где U — напряжение, а [math] \Delta \varphi [/math] — сдвиг фаз между напряжением и током.

Однако практичнее использовать усредненное значение мощности

[math] \langle P \rangle = \frac{1}{2} I_0 U_0[/math],

где [math] I_0 [/math] — амплитудное значение силы тока, [math] U_0 [/math] — амплитудное значение напряжения.

Переменный ток характеризуют также действующими значениями силы тока и напряжения

[math] I_a = \frac{1}{\sqrt{2}}I_0[/math] [math] U_a = \frac{1}{\sqrt{2}}U_0 [/math]

[править] Производство и передача переменного тока

[править] Генератор переменного тока

Генератором переменного тока является система из неподвижного статора (состоит из стального сердечника и обмотки) и ротора (электромагнит со стальным сердечником), который вращается внутри него. Через два контактных кольца, к которым прижаты скользящие контакты щетки, проводится электрический ток. Электромагнит создает магнитное поле, которое вращается с угловой скоростью вращения ротора и возбуждает в обмотке статора ЭДС индукции. Чтобы ротор вращался и создавал магнитное поле, которое вызывает в статоре ЭДС индукции, ему необходимо предоставлять энергию. Ротор вращается в электростанциях с помощью паровых (ТЭС и АЭС) или гидротурбин (ГЭС).

[править] Трансформатор

Для того, чтобы снизить напряжение, необходимое для потребителей на выходе электрогенераторов (220 В), и повысить напряжение, необходимое для передачи ее по ЛЭП (400—500 кВ), нужен трансформатор. Он состоит из первичной и вторичной катушек и замкнутого сердечника. При подаче напряжения на первичную катушку возникает переменный ток. В сердцевине он превращается в магнитный поток, который затем проходит через обе катушки и вызывает их ЭДС (электродвижущую силу, которая образуется в результате воздействия на катушки магнитного поля).

cyclowiki.org

Переменный ток Википедия

     Постоянный ток Три примера переменных токов:      Синусоидальный ток      Пульсирующий ток, форма импульсов близка к пилообразной      Случайно изменяющийся ток

Переме́нный ток  — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].

Хотя переменный ток часто переводят на английский как alternating current, эти термины не являются эквивалентными. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.

Общее понятие о переменном токе[ | код]

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

П

ru-wiki.ru

Переменный ток - это... Что такое Переменный ток?

Если какой-либо источник тока вызывает в данном проводнике или в данной замкнутой цепи электродвижущую силу и эта электродвижущая сила непрерывно изменяется по величине и по направлению, т. е. представляется периодической функцией времени, то в рассматриваемом проводнике или в рассматриваемой замкнутой цепи появляется электрический ток, сила которого и направление изменяются также непрерывно со временем. Такой ток и носит название П. тока. Возникновение такого тока в проводнике осложняется явлениями индукции. В самом деле, вследствие непрерывного изменения силы П. тока возбуждается в проводнике, в котором происходит этот ток, особая электродвижущая сила, происходящая: 1) от самоиндукции, т. е. от индукции самого данного проводника с П. током, и 2) от индукции на этот проводник других проводников, находящихся вблизи первого проводника, так как в таких проводниках возникают также П. токи от индуктивного действия на них рассматриваемого проводника с П. током. Итак, полная электродвижущая сила, возбуждающая в какой-либо момент времени в данном проводнике электрический ток, представляет собой сумму электродвижущей силы источника тока и всех других электродвижущих сил, возникающих вследствие индукции. Обозначая через Е электродвижущую силу источника тока, причем, по условию, Е выражается какой-либо периодической функцией времени f(t), через L коэффициент самоиндукции данного проводника (см. Самоиндукция), через i силу тока в этом проводнике, через M1, M2, ... коэффициенты взаимной индукции данного проводника и других соседних с ним проводников, в которых силы токов суть i1, i2..., и пользуясь законами индукции токов, мы будем иметь для полной электродвижущей силы в данном проводнике выражение

E = E — Ldi/dt — M1di1/dt — M2di2/dt...

Обозначая сопротивление данного проводника через R, мы получаем по закону Ома для силы тока в этом проводнике выражение

i = (E — Ldi/dt — M1di1/dt — M2di2/dt...)/R.... (1)

Положим, что вблизи данного проводника не имеется никаких других проводников. В этом случае мы имеем

i = (E — Ldi/dt)/R.... (2)

Здесь по условию E = f(t), причем f(t) есть периодическая функция времени. Но по теореме Фурье всякая периодическая функция t может быть представлена в виде следующего ряда:

f(t) = A + E0Sin(2πt/T — α) + E'0Sin(4πt/T — α') + E"0Sin(6πt/T — α") +...

т. е. электродвижущая сила Е может быть рассматриваема как сумма постоянной электродвижущей силы А и электродвижущих сил, которые изменяются со временем по закону гармонического колебания (т. е. пропорционально синусам углов, непрерывно изменяющихся со временем) и которых периоды суть T, 1/2T, 1/3T..., а наибольшие величины суть Е0, Е'0, Е"0..., причем моменты, когда эти отдельные электродвижущие силы достигают своих наибольших величин или когда они обращаются в 0, различны, т. е. фазы этих электродвижущих сил неодинаковы. При таком характере электродвижущей силы E, действующей в проводнике, ток i, появляющийся в нем, может быть рассматриваем как ток, слагающийся из отдельных токов j, i0, i', i"..., которые возбуждаются в этом проводнике вследствие действия отдельных электродвижущих сил:

A, E0Sin(2πt/T — α), E'0Sin(2πt/(1/2T) — α'), E"0Sin(2πt/(1/3T) — α"),...

Наиболее простой и к тому же наиболее часто рассматриваемый в практике случай будет тот, когда электродвижущая сила, действующая в проводнике, выражается через

E = E0Sin2πt/T... (3)

т. е. эта электродвижущая сила изменяется со временем гармонически. Такую электродвижущую силу представляет электродвижущая сила, которая вследствие индукции появляется в какой-либо катушке, приготовленной из изолированной проволоки и приводимой в однородном магнитном поле в равномерное вращение около оси, лежащей в плоскости какого-либо оборота этой катушки и не совпадающей с направлением силовых линий поля. Такая же электродвижущая сила возбуждается и многими динамо-машинами П. тока. В данном случае мы получаем из выражения для i следующее дифференциальное уравнение:

di/dt + (R/L)i = (E0/L)Sin2πt/T... (4)

Интегрируя это уравнение и принимая во внимание, что при стационарном характере изменения величины электродвижущей силы и изменение силы тока должно быть также стационарного характера, получаем

,

причем tgθ = 2πL/TR... (6)

или, обозначая через n число полных изменений электродвижущей силы в течение одной секунды, т. е. полагая n = t/T, имеем

и tgθ = 2πnL/R... (6')

Полученное выражение для силы П. тока показывает, что продолжительность одного полного изменения силы этого тока (период этого тока) одинакова с продолжительностью одного полного изменения вызывающей этот ток электродвижущей силы Е. Но если только проводник, в котором является П. ток, не неиндуктивен, т. е. для этого проводника величина коэффициента самоиндукции L не равна 0, то развитие тока не совпадает по времени с развитием электродвижущей силы. В своем изменении ток запаздывает относительно электродвижущей силы. Между фазами электродвижущей силы и тока получается постоянная разность, выраженная через θ и удовлетворяющая равенству tgθ=2πnL/R. Как видно из этой формулы, при большом числе перемен тока в единицу времени, при значительной величине L и малом сопротивлении R, разность фаз θ мало отличается от π/2, т. е. в тот момент, когда электродвижущая сила Е достигает своей наибольшей величины, сила тока весьма близка к 0, и обратно. Итак, явление П. тока в проводнике происходит так, как будто в данный момент t действует в этом проводнике электродвижущая сила не E0Sin2πt/T, а сила, равная E0Sin(2πt/T — θ), и, кроме того, как будто проводник имеет сопротивление не R, но большее, равное . Последнее сопротивление, т. е. , носит название кажущегося сопротивления проводника при существовании в нем П. тока. Кажущееся сопротивление проводника при значительной величине L, как это будет в том случае, когда проводник имеет форму спирали или намотан в виде катушки и в особенности когда внутри такой катушки находится железо (пучок железных проволок или сложенные вместе железные полосы), может во много раз превышать сопротивление R, т. е. сопротивление, оказываемое этим проводником постоянному току. Но и при небольшой величине L кажущееся сопротивление будет большое, когда n велико. Нужно еще заметить, что при очень больших величинах n (тысячи для железных проволок и стержней, миллионы для проводников из немагнитных металлов) кажущееся сопротивление проводника должно быть выражено через , т. е. входящие в выражение кажущегося сопротивления величины R' и L' отличаются от величин R и L, определяемых из опытов с токами, постоянными и П. со сравнительно небольшой величиной n. Это происходит оттого, что при очень большой величине n П. токи не проникают, как показывает теория и подтверждают опыты, всей внутренней массы проводника. В этом случае такие П. токи, т. е. П. токи очень большой частоты, распространяются только по поверхностным слоям проводника, а потому сплошной цилиндр или проволока являются по отношению к этим токам эквивалентными проводникам, имеющим форму трубок того же внешнего диаметра, как сплошной цилиндр или проволока. Для цилиндрических проводников с поперечным сечением в виде круга найдены Рэлэем следующие выражения для R' и L':

R' = R(1 + 1/12(μ2l2p2/R2) — 1/180(μ4l4p4/R4) +... ),

L' = l{A + μ(1/2 — 1/48(μ2l2p2/R2) + 13/8640(μ4l4p4/R4—... )}.

Здесь μ обозначает магнитную проницаемость вещества проводника, l обозначает длину его, p = 2πn. Эти формулы значительно упрощаются, если положить, что n очень велико. В последнем случае мы получим

.

Возникновение в проводнике П. токов с очень большим числом перемен происходит в случае колебательных разрядов через этот проводник какого-либо наэлектризованного тела или конденсатора (см. Колебательный разряд). Такое же явление встречается при ударе молнии в громоотвод (см.). П. токи чрезвычайно большой частоты (например, токи Тесла) не вызывают никакого болевого ощущения в человеческом организме, тогда как П. токи со сравнительно небольшим числом n производят весьма сильные физиологические действия на нервную систему человека и животных.

Вместо выражения (5') можно написать

i = JSin(2πt/T — θ) = JSin2πt'/T... (7).

Здесь J обозначает наибольшую величину силы П. тока. Из формулы (7) мы получаем для средней арифметической величины силы тока (im) (средней для всех значений i между 0 и J) выражение:

.

Средняя квадратичная сила П. тока (ie), или, по современной номенклатуре, действующая сила переменного тока (intensité efficace) получается по формуле

Итак, имеем , откуда, обратно, получаем .

Приборы, служащие для измерения силы П. тока (электродинамометры и амметры), обыкновенно и показывают величину ie, так как эти приборы основаны на действиях, пропорциональных квадрату силы тока. В самом деле, эти приборы основаны или на электродинамическом действии тока, или на тепловом его действии, или на действии тока на намагничиваемое им железо.

Подобным же образом, как при определении im и ie, мы находим для средней арифметической величины (Еm) электродвижущей силы выражение

Em = 2E0/π = 0,637E0

и для средней квадратичной величины (Еe ) или, по современной номенклатуре, для действующей электродвижущей силы Еe (force électromotrice efficace) выражение

Средняя работа в единицу времени (Wm), необходимая для поддержания в проводнике П. тока, выражается через

Такая же работа в течение единицы времени совершается в среднем и током. Эта работа будет очень мала, когда разность фаз θ близка к π/2.

Положим, что вблизи данного неизменяемого проводника с П. током находится другой неизменяемый замкнутый проводник, в котором появляются индукционные токи, происходящие от действия на этот проводник данного проводника с П. током в нем.

Обозначая через R1 и R2 сопротивления первого и второго проводников, через L1 и и L2 — коэффициенты самоиндукции этих проводников, через M — коэффициент взаимной индукции их, через Е = Е0Sin2πnt — электродвижущую силу в первом проводнике и через i1, i2 силы токов в них, мы получаем при помощи выражения (1) следующие дифференциальные уравнения:

L1di1/dt + Mdi2/dt + R1i1— E0Sin2πnt = 0,

L2di2/dt + Mdi1/dt + R2i2= 0.

Отсюда находим

.

Итак, присутствие какого-либо замкнутого проводника вблизи данного проводника, в котором действует гармонически изменяющаяся электродвижущая сила, производит изменение кажущегося сопротивления этого проводника так, как будто истинное сопротивление (R1) этого проводника увеличивается, а коэффициент самоиндукции (L1) его уменьшается. На этом основано регулирование П. токов, употребляемых в электротехнике, при помощи вдвигания или выдвигания замкнутой катушки внутрь другой катушки, введенной в цепь регулируемого тока.

Влияние самоиндукции цепи на силу тока в этой цепи, когда возбуждающая ток электродвижущая сила изменяется гармонически, т. е. выражается через Е = E0Sin2πnt, может быть уменьшено употреблением конденсатора. В самом деле, поместив в цепь П. тока конденсатор, емкость которого пусть будет обозначена через С, а разность потенциалов в какой-либо момент времени через V, мы получаем для силы тока в цепи выражения

i = (E — Ldi/dt — V)/R... (9) и i = CdV/dt... (10).

Так как при Е = E0Sin2πnt должно быть i = JSin(2πnt — θ), то получается

V = — (J/2πnC)Cos(2πnt — θ) = —(1/4π2n2C)di/dt... (11).

При помощи формул (9) и (11) находим . Отсюда получаем и .

Итак, введение конденсатора с емкостью С в цепь П. (гармонически изменяющегося) тока производит уменьшение коэффициента самоиндукции цепи на величину 1/(4π2n2C), т. е. конденсатор, введенный в такую цепь, может быть уподоблен проводнику, сопротивление которого равно 0, а коэффициент самоиндукции равен — 1/(4π2n2C). Введение конденсатора в цепь изменяет также и разность фаз электродвижущей силы и тока, как это видно из формул (6') и (14). Введение конденсатора с емкостью С в ответвление цепи можно рассматривать, как помещение в это ответвление проводника, сопротивление которого равно 0, а коэффициент самоиндукции равен — 1/(4π2n2C).

Если П., гармонически изменяющийся ток разветвляется в сети проводников, причем отдельные ветви обладают самоиндукцией и емкостью, то определение силы тока в какой-либо такой ветви может быть произведено следующим образом. Пусть сила тока в главной ветви, из которой ток разделяется на отдельные ветви, выражается через i = 2JCos2πnt = 2Jcospt... (15). Здесь введено обозначение p = 2πn.

Но , где е основание натуральных логарифмов. Поэтому мы можем положить

.

Сила тока в какой нибудь ветви может быть выражена через

.

Коэффициенты KS и K'S для различных ветвей s находятся из обобщенных уравнений Кирхгофа, примененных к рассматриваемой сети проводников. А именно для каждой точки разветвлений, т. е. для каждой точки, в которой пересекаются проводники должно быть ΣSKS=0, ΣSK'S=0... (18) и для каждого замкнутого контура, состоящего из ветвей сети, должно быть ΣSKS WS=0, ΣSK'SWS=0... (19), причем

.

Здесь rS обозначает сопротивление ветви s, LS — коэффициент самоиндукции этой ветви и CS — емкость ее.

Система П., гармонически изменяющихся токов с постоянной разностью фаз между двумя соседними токами носит название многофазного тока. Так, многофазный ток образуют n токов, силы которых выражаются через

i1= J Sin2πnt

i2= J Sin(2πnt + 2π/n)

i3= J Sin(2πnt + 4π/n)

...................

in—1 = J Sin(2πnt + (n—2)2π/n)

in = J Sin(2πnt + (n—1)2π/n).

Сумма этих токов в каждый отдельный момент равна 0, в чем легко убедиться, сложив вместе выражения i1, i2, i3,...in-1, in. Вследствие этого свойства такая система n токов, образуемая генератором, требует всего только n проводников, соединенных вместе их концами. Наиболее часто употребляется в электротехнике трехфазный ток, т. е. 3 тока, отличающиеся друг от друга по фазе на 120°. Такие многофазные токи употребляются главным образом для приведения во вращение электродвигателей с вращающимся магнитным полем (см. Электродвигатель). П. ток образует вокруг себя переменное магнитное поле, а потому если такой П. ток проходит по обмотке с сердечником из железа, то он возбуждает в этом железе П. магнитный поток и этот П. магнитный поток, период которого одинаков с периодом П. тока, вызывает индукционые токи, также П. и того же периода, в другой обмотке, окружающей собой сердечник первой и замкнутой какими-либо проводниками. Действующая электродвижущая сила в цепи этой второй обмотки может быть весьма различна, смотря по тому, каково отношение между числами оборотов проволоки в той и в другой обмотке. На этом начале устраиваются особые приборы, называемые трансформаторами и предназначаемые для превращения переменных токов малой силы и большого напряжения в П. токи большой силы и малого напряжения и обратно (см. Трансформатор). Благодаря возможности весьма легко, без употребления сложных и дорогостоящих приборов трансформировать П. токи из одних в другие, эти П. токи вошли в большое употребление на практике для целей электрического освещения и передачи электрической энергии на расстояние (см. Передача энергии).

И. Боргман.

dic.academic.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.