25.11.2024

Шаговый двигатель принцип работы для чайников: устройство, принцип работы, типы, схемы подключения

Содержание

устройство, принцип работы, типы, схемы подключения

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие  с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется  из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора.  Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от  5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси.  Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

 

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть  деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему  легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта  можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс  или серию импульсов в определенной последовательности.  В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата.  При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый  — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль)  происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному  USB порту.

Полезное видео

Шаговый Двигатель — Принцип Работы для Чайников

Каким образом роботизированный манипулятор на предприятии повторяет одни и те же движения снова и снова? Как автоматический фрезерный станок может двигаться с такой точностью? Это возможно благодаря шаговому двигателю. Особенность шагового двигателя заключается в том, что он может контролировать угловое положение ротора без замкнутого контура обратной связи, это простая и точная разомкнутая система.

Как работает шаговый двигатель с переменным магнитным сопротивлением

Для начала давайте разберемся, как работает шаговый двигатель с переменным магнитным сопротивлением, который является самым простым. Позднее мы рассмотрим устройство высокоточного и широко используемого типа двигателя. У этого двигателя 6 зубьев на статоре, которые могут быть запитаны от трех отдельных источников постоянного тока. 

Ротор состоит из ряда стальных пластин. У него отличное от статора количество зубьев в данном случае их 4 это сделано намеренно, для того чтобы только одна пара зубьев ротора могла одновременно находиться напротив зубьев статора. 

Вы и сами можете объяснить, как работает этот шаговый двигатель. Если обесточить обмотку A и запитать обмотку B станет ясно, что ротор будет двигаться, как показано на модели. 

Из уроков геометрии понятно, что один шаг соответствует 30 градусам. Чтобы перейти к следующему шагу обесточим обмотку B и запитаем обмотку C. 

После этого вновь запитаем обмотку A. То есть ротор занимает позицию с наименьшим сопротивлением. 

Размер шага двигателя составляет 30 градусов, точность может быть доведена до 15 градусов при помощи одного простого приема, когда запитана обмотка A,  ротор находится в таком положении мы знаем, что если запитать обмотку B он повернется на 30 градусов. Но что произойдет если обмотки A и B будут запитаны одновременно? Ротор займет положение между двумя этими обмотками, то есть повернется на 15 градусов. 

После этого обесточим А. Когда ротор установится напротив обмотки B, запитаем обмотку С, такой тип работы называется режимом дробления шага. 

Как работает гибридный шаговый двигатель

Двигатель который мы рассматривали, называется двигателем с переменным магнитным сопротивлением. Наиболее универсальными и широко распространенными являются гибридные шаговые двигатели. Рассмотрим работу стандартного гибридного двигателя с величиной шага в 1.8 градуса. 

Гибридный двигатель имеет намагниченный по оси ротор со стальными зубчатыми наконечниками. Таким образом, одна сторона ротора является северным магнитным полюсом, а другая южным. 

Точность данного двигателя заключается в продуманном расположении зубьев ротора и статора. Разберемся, как это работает. Ротор имеет 50 зубьев, чтобы понять, как расположены зубья статора для начала, предположим, что у статора тоже 50 зубьев. Однако на самом деле их на 2 меньше, чем у ротора. Таким образом у статор остается 48 зубьев. 

Давайте разделим их на 4 группы попарно, как показано на модели (подробнее смотри на видео). 

Теперь давайте выровняем эти группы, зеленая группа сдвигается так что она оказывается наполовину выровнены с зубьями ротора. Зубья желтой группы полностью смещены относительно зубьев ротора. Синяя группа наполовину выровнена относительно зубьев ротора. Красная группа остается на своем месте, то есть красная группа зубьев полностью выровнена с ротором, а желтая группа смещена. Две другие группы смещены лишь наполовину. 

Следует помнить, что сторона ротора направленная к нам является южным магнитным полюсом. Обмотки статора соединяются следующим образом, они представляют собой две независимые группы обмоток. При подаче питания на обмотку A, статор образует следующую картину намагниченности. Одна пара полюсов статора действует как северный полюс, а другая как южный. Так как противоположные полюса притягиваются, они будут совмещены, полюса с одинаковой полярностью будут смещены. 

Смотрите, что произойдет с ротором при подаче питания на обмотку B, он совершит вращение на небольшой угол чтобы вы равняться с новым северным полюсом. Очевидно, что этот угол составляет одну четвертую часть углового шага. Другими словами, ротор поворачивается на 1,8 градуса, затем задействуется обмотка A с противоположной полярностью и вновь ротор поворачивается на одну целую восемь десятых градуса.

Данный процесс повторяется и двигатель совершает высокоточные движения. Разрешение угла шага может быть улучшено при помощи дробления шага. Интересно отметить, что северные зубчатые наконечники находятся между южными зубчатыми наконечниками, таким образом гарантируется выравнивание полюсов с противоположными полярностями.  

Вот так работает гибридный шаговый двигатель, такие двигатели идеально подходят для применения в областях, где необходимы четкие движения и простое управление.

Шаговые двигатели. Принцип работы и управление


При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.


Величина углового шага редукторного реактивного шагового двигателя определяется выражением:


αш = 360 / Kt * Zр


В выражении для KT величину n2 следует брать равной 1, так как изменение направления поля не влияет на положение ротора.


Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.


Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.


Повышения степени редукции шаговых двигателей как активного, так и реактивного типа, можно достичь применением двух-, трех- и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов — два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время, роторы-звездочки каждого из пакетов не имеют пространственного сдвига, то есть оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной. Кроме того, она требует сложного коммутатора.


Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.


В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.


По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага — больший синхронизирующий момент, лучшие энергетические и динамические характеристики.

Шаговый двигатель принцип работы для чайников – электродвигатель с двумя валами

Шаговый двигатель с 2 валами

  • Станки ЧПУ
    • Серия H
    • Серия GQ
    • Серия KTM
    • Серия ST
    • Серия GT
    • Серия VSK
    • Серия HD (Настольный)
    • Серия STL
    • Серия GTL
    • Серия GR
    • Серия V
    • Серия HM
  • Лазерные станки с ЧПУ
  • Круглофрезерный станок
  • Лазерно-гравировальные станки
  • Станок плазменной резки
  • Многошпиндельные станки
  • Станок для обработки пенопласта
  • 3D Принтеры
    • 3D — Принтеры
    • PLA пластиковая нить
  • Покрасочный станок
  • Комплектующие к ЧПУ
    • Драйверы и контроллеры ШД
      • Системы управления NC Studio
      • Многоканальные драйверы ШД для ЧПУ
      • Драйверы ШД одноканальные
      • Драйверы ШД одноканальные Leadshine
      • Драйверы шаговых серво-двигателей
      • ЧПУ контроллеры и переходники
      • Пульты DSP
      • Блок управления станком ЧПУ
      • Кабель LPT
    • Датчики концевые
    • Блоки питания, трансформаторы, ЭМИ фильтры
      • Импульсные БП стандартные
      • Трансформаторы тороидальные
      • ЭМИ — фильтры
    • Частотные преобразователи
      • Частотные преобразователи Powtran
      • Частотные преобразователи Sunfar
    • Шаговые двигатели и аксессуары
      • Держатели шаговых двигателей
      • Шаговые двигатели
      • Шаговый двигатель с 2 валами
      • Шаговые двигатели с энкодером
      • Шаговые двигатели с редуктором
      • Шаговые двигатели с трапецеидальным винтом
    • Редукторы
      • Планетарные редукторы
      • Червячные редукторы
    • Сервопривод
      • Серводвигатели
      • Серводрайвера
    • Шпиндели электрические
      • Шпиндели жидкостного (водного) охлаждения
      • Шпиндели воздушного охлаждения
      • Прижимы листового материала
      • Шпиндельная головка
      • Крепления для шпинделей алюминиевые
      • Оправки для шпинделей с автосменой
      • Щетка-насадка
      • Системы охлаждения шпинделей
    • Системы аспирации
    • Цилиндрические направляющие
      • Полированные валы и держатели
      • Цилиндрические рельсы
    • Линейные подшипники и модули
      • Линейные подшипники
      • Модули с линейным подшипником
    • Профильные направляющие
    • Шарико-винтовые передачи (ШВП)
    • Опоры ходовых винтов
    • Зубчатые рейки и шестерни
      • Рейка косозубая и шестерня
      • Рейки и шестерни модуль 1
      • Рейки и шестерни модуль 1,5
    • Зубчатые ремни и шкивы
      • Ремни замкнутые
      • Ремни открытые
      • Шкивы
    • Поворотная ось
    • Алюминиевый станочный профиль
    • Кабель-каналы станочные гибкие
    • Гофрозащита
    • Муфты соединительные
      • Кулачковые муфты
      • Мембранные муфты
      • Гибкие муфты
      • Жесткие соединительные муфты (алюминий)
      • Сильфонные муфты
    • Системы СОЖ и масляного тумана
      • Помпы
      • Система автосмазки
      • Распылители масляного тумана
      • Трубки СОЖ
      • Бак для СОЖ
    • Вакуумные столы
  • Комплектующие для лазерных станков
    • Лазерные модули
    • Лазерная трубка
    • Крепление лазерной трубки
    • Источник питания
    • Контроллер управления
    • Лазерные головки
    • Сотовый стол
    • Держатель зеркала
    • Амперметр
    • Зеркала и линзы
  • Готовые модули
  • Режущий инструмент DJTOL
    • Фрезы спиральные
      • Однозаходные стружка вверх
      • Однозаходные стружка вниз
      • Двухзаходные стружка вверх
      • Двухзаходные стружка вниз
      • Двухзаходные со стружкоколом
      • Трехзаходные стружка вверх
      • Трехзаходные стружка вниз
      • Трехзаходные со стружкоколом
      • Четырехзаходные стружка вверх
    • Фрезы по алюминию
      • Спиральная однозаходная (обработка цветного металла)
      • Спиральные фрезы по алюминию HSS Z1
      • Спиральная однозаходная (обработка алюминия)
      • Спиральная двухзаходная (цветной металл)
      • Спиральная трехзаходная (цветной металл)
    • Компрессионые фрезы
      • Однозаходные фрезы
      • Двухзаходные фрезы
      • Трехзаходные фрезы
    • Прямые фрезы
      • Однозаходные
      • Двухзаходные
      • Рашпильные (Кукуруза)
    • Фрезы для 3-D обработки
      • Спиральные однозаходные сферические
      • Спиральные двухзаходные сферические
      • Спиральные однозаходные конические
      • Спиральные двухзаходные конусные сферические
      • Спиральные двухзаходные конусные сферические (сплав Tigra)
      • Прямые двухзаходные конусные (плоский кончик)
      • Прямые двухзаходные конусные сферические
      • Спиральные двухзаходные конусные (плоский кончик)
      • Спиральная однозаходная конусная (Плоский кончик)
      • Прямые двухзаходные сферические
    • Фрезы по стали
      • Спиральная двухзаходная с покрытием ALTiN
      • Спиральная двухзаходная сферическая с поктытием ALTiN
      • Спиральная четырехзаходная фреза с поктытием ALTiN
      • Спиральная четырехзаходная радиусная с поктытием ALTiN
    • Фрезы V-образные
    • Фасоные фрезы
      • Прямая для выравнивая поверхности
      • Сферическая галтельная
      • Кромочная
        • Серия RND
        • Серия HBDA
        • Серия HBDE
        • Серия HBDD
        • Серия HBDC
        • Серия HBDB
      • Полукруглая радиусная
      • Сгибочная монолитная по композиту
    • Сверло для печатных плат
    • Граверы
      • Прямой гравер
      • Конический гравер
      • Конический гравер (однозаходный)
      • Конический гравер (спиральный однозаходный)
      • Конический гравер (сферический)
      • Конический гравер (Пирамидка)
      • Конический гравер по стали
      • Конический двухзаходный гравер (сталь, цветной металл)
      • Конический двухзаходный гравер (Лиственные породы деревьев)
      • Конический гравер пирамидка (Поликристалический алмаз)
      • Гравер прямой с конусом
      • Гравер спиральный с конусом
    • Фрезы алмазные по камню
      • Фреза алмазная V-образная шлифовальная (вакуумная пайка)
      • Фреза алмазная торцевая шлифовальная (вакуумная пайка)
      • Фреза алмазная сферическая шлифовальная (вакуумная пайка)
      • Фреза алмазная коническая шлифовальная (вакуумная пайка)
      • Армированная алмазная концевая фреза
    • Нож флюгерного типа
      • Для плоттера Roland
      • Для плоттера Graphtec
      • Для плоттера Mimaki
    • Фрезы серии TСТ
    • Фрезы для ручного фрезера
      • Фрезы пазовые (ласточкин хвост)
      • Фрезы прямые пазовые (2-а ножа)
      • Фрезы Шип-Паз
      • Фрезы обгонные с нижним подшипником
    • Цанги и гайки
      • Цанги ER11
      • Цанги ER16
      • Цанги ER20
      • Цанги ER25
      • Цанги ER32
      • Цанги Kress
    • Щетки для шлифовки поверхностей
      • Щетки с диаметром хвостовика 3 мм
      • Щетки с диаметром хвостовика 6 мм
      • Щетки с добавлением карбида кремния. d хвостовика 6мм
    • Шлифовальные машинки
    • Сверла чашечные
  • Комплектующие для плазменной резки
    • Комплектующие Hypertherm Powemax
    • Сопла для плазмотронов
    • Источники плазмы
    • Контроллеры
    • Плазмотроны
  • Пневматическое оборудование
    • Распределители воздуха
    • Блоки подготовки воздуха
    • Регуляторы давления воздуха
    • Пневматические цилиндры
    • Фитинги
      • Фитинги разветвители
      • Фитинги прямые
      • Фитинги серии PC
      • Фитинги серии PCF
      • Фитинги серии PM
      • Пневмозаглушки
      • Фитинги с краном
      • Фитинги угловые
    • Быстроразьёмные соединения
      • Розетки серии SH, SP, SF,SM
      • Штекеры серии SH, SP, SF, SM
      • Штуцеры
    • Пневмотрубки
  • Дисковые пилы
    • Дисковая пила серия А
      • Диск по дереву
      • Диск по алюминию
    • Дисковые пилы серия L
  • Оборудование для покраски
    • Красконагнетательные баки
    • Распылитель краски

>Шаговые двигатели. Принцип работы и управление.

Шаговые двигатели — принцип работы

Принцип работы шаговых двигателей, характеристики шаговых двигателей, типы ШД и ключевые различия.

Принцип работы шаговых двигателей

Принцип работы шаговых двигателей можно изложить кратко. ШД, как и все типы двигателей, состоят из статора (состоящего из катушек (обмоток)) и ротора, на котором установлены постоянные магниты.

На картинке изображены 4 обмотки, расположенные на статоре под углом в 90 градусов относительно друг друга. Тип обмотки зависит от конкретного типа подключения шагового двигателя (как подключить шаговый двигатель).На примере выше обмотки двигателя не соединены, что означает, что двигатель с такой схемой имеет шаг поворота в 90 градусов. Обмотки задействуются поочередно по часовой стрелке, а направление вращения вала двигателя обусловлен порядком задействования обмоток. Через обмотки протекает ток с интервалом 1 сек. Вал двигателя вращается на 90 градусов каждый раз, когда через очередную катушку протекает ток.

Шаговые двигатели — применение

Область применения шаговых двигателей довольно широка — шаговые двигатели используются как в промышленности, так и радиолюбителями, конструкторами, при построении роботов и т.д.Также ШД широко используются в принтерах, автоматических инструментах, приводах дисководов, автомобильных приборных панелях и других приложениях, требующих высокой точности позиционирования.

Шаговые двигатели: принцип работы и отличия от двигателей постоянного тока

Двигатели постоянного тока (ДПТ) с постоянными магнитами Lenze начинают работать сразу, как только к якорной обмотке будет приложено постоянное напряжение. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором — коллектором. Постоянные магниты при этом расположены на статоре.

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели и серводвигатели. Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (n шагов на один оборот ротора) и плавности вращения синхронного двигателя. Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении. В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис. 1).

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг. Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ-модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости. Шаговый двигатель транслирует последовательность цифровых переключений в движение. «Вращающееся» магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках. Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных применений.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке.

На рисунке 3 показана последовательность управления для режима с единичным шагом.

На рисунке 4 показана последовательность для полушагового управления.

Максимальная скорость движения определяется исходя из физических возможностей шагового двигателя. При этом скорость регулируется путем изменения размера шага. Более крупные шаги соответствуют большей скорости движения.

В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро%аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота. Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

Шаговые синхронные двигатели активного типа

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления.

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде «звездочки».

Число тактов KT системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления KT=4, а для несимметричной KT=8.

В общем случае число тактов KT зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:

KT = mуn1n2,

где: n1=1 — при симметричной системе коммутации;

n1=2 — при несимметричной системе коммутации;

n2=1 — при однополярной коммутации;

n2=2 — при двуполярной коммутации.

При однополярной коммутации ток в обмотках управления протекает в одном направлении, а при двуполярной — в обеих. Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают. Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1). Для примера приведем двуполюсный трехфазный шаговый двигатель.

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

αш=360/Ктр

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р=4…6. Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.

При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

αш=360/КтZр

В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

Линейные шаговые синхронные двигатели

При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

ΔXш=tz/Кt

где Kt — число тактов схемы управления.

Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

Режимы работы синхронного шагового двигателя

Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода xследующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

Приемистость падает с увеличением нагрузки.

Двигатели с постоянными магнитами:

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты (рис. 1). Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением.

Рис. 1. Двигатель с постоянными магнитами.

Показанный на рисунке двигатель имеет 3 пары полюсов ротора и 2 пары полюсов статора. Двигатель имеет 2 независимые обмотки, каждая из которых намотана на двух противоположных полюсах статора. Такой двигатель, как и рассмотренный ранее двигатель с переменным магнитным сопротивлением, имеет величину шага 30 град. При включени тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48 – 24 шага на оборот (угол шага 7.5 – 15 град).

Рис. 2. Разрез шагового двигателя с постоянными магнитами.

Для удешевления конструкции двигателя магнитопровод статора выполнен в виде штампованного стакана. Внутри находятся полюсные наконечники в виде ламелей. Обмотки фаз размещены на двух разных магнитопроводах, которые установлены друг на друге. Ротор представляет собой цилиндрический многополюсный постоянный магнит.

Двигатели с постоянными магнитами подвержены влиянию обратной ЭДС со стороны ротора, котрая ограничивает максимальную скорость. Для работы на высоких скоростях используются двигатели с переменным магнитным сопротивлением.

Шаговый двигатель: принцип работы

Существует отдельный вид электродвигателей, которые относятся к разряду исполнительных, дискретного действия. Это шаговый двигатель, принцип работы которого основан на воздействии импульсов на ротор, благодаря чему происходит его перемещение под определенным углом, составляющим шаг.

Применение шаговых двигателей

Эти двигатели используются в автоматизированных системах управления. Они сохраняют синхронность в любом положении: при пуске, торможении, вращении или реверсе.

При прохождении по обмоткам управления постоянного тока допускается фиксированная длительная стоянка ротора. Шаговые двигатели используются для питания электронные коммутаторы, управление которыми осуществляется с помощью маломощных импульсов.

Когда по управляющим обмоткам статора происходит прохождение токов, то в это время в роторе развивается синхронизирующий момент, производящий его максимальное перемещение. При взаимодействии магнитных полей статора и ротора, поля их осей совпадают, а ротор находится в устойчивом положении.

Принцип работы для чайников

При переключении обмоток управляющим устройством, ток начинает протекать не по первой, а по второй обмотке. Наступает возникновение синхронизирующего момента, в результате которого происходит перемещение ротора в новую устойчивую позицию.

При последующем включении первой фазы, имеющей обратную полярность, происходит дальнейший поворот ротора. Таким образом, последовательное изменение тока в обмотке статора вызывает перемещение поля статора в пространстве. Когда вращение поля прекращается, происходит остановка ротора.

Магнитное поле, создаваемое в обмотках управления, перемещается на фиксированное значение угла по окружности статора при всех случаях переключения напряжения. Любое единичное переключение токов находится в соответствии с поворотами ротора на определенные углы, называемые шагами. Величина шага напрямую зависит от числа тактов коммутации, происходящих в течение одного периода изменения напряжения.

Таким образом, шаговый двигатель находится в зависимости от количества управляющих обмоток их типа, а, также от определенной величины угла. Синхронный поворот ротора происходит на такое значение угла, которое пропорционально количеству импульсов. При этом, ротор начинает вращаться со средней скоростью, пропорциональной частоте импульсов управления.

Частота приемистости является характерной чертой пусковых свойств двигателя, когда пуск осуществляется при нормальной синхронизации ротора. По сути, любой шаговый двигатель представляет собой синхронный двигатель, работа которого обеспечивается импульсным питанием.

Как подобрать шаговый двигатель

принцип действия, виды, режимы работы

Шаговый двигатель – электрический синхронный мотор, совершающий оборот некоторым количеством равноценных эквивалентных перемещений. От длины элементарного сегмента зависит точность, с которой ротор позиционируется нужным образом. В отдельности минимальное перемещение называется шагом.

Принцип действия шаговых двигателей, разновидности

Шаговый двигатель в комплекте с драйвером выполняет преобразование числа входящих импульсов в заданное угловое перемещение вала. Устройство сопрягается с цифровой техникой, управляющий сигнал часто аналоговый. Входы обмоток посещает синусоида нужной фазы. Драйвер, получающий на контакты цифровой сигнал, декодирует волну, формирует нужные сигналы управления двигателем. Одна, две, три, четыре фазы. Определяется конструкцией, нуждами техники.

Конструкция шагового двигателя

Особенностью шагового двигателя назовем форму стального ротора. Снабжен полюсами, подчеркнутыми путем вынесения на кончик острого либо тупого зубца. Мертвый металл, притягиваемый катушками статора. Характеризуется некоторой намагниченностью остаточного рода, вызванной действием поля. Точное позиционирование полюсов статора обеспечивает шаговому двигателю уникальное свойство: точное позиционирование по углу поворота вала. Из правила встречаются исключения, рассмотренные ниже по тексту.

Шаговые двигатели используются промышленностью, цифровой техникой – где требуется обеспечить точное позиционирование вала. Некоторые источники датируют изобретение серединой XIX века, первые сведения просочились в специализированные журналы в 20-х годах XX века. Речь о трехфазном реактивном шаговом двигателе. Исходное применение традиционно стало военным: на кораблях королевского флота Великобритании узлы направляли в нужную сторону торпеды. Позже технология перекочевала, посетив армию США.

Первый открытый патент получен на прибор с ротором, статором на 32 зуба шотландским инженером Уолкером в 1919 году. Прибор рассчитан работать с трехфазным напряжением. Сегодня шаговые двигатели встречаются в жестких дисках персональных компьютеров, автоматизированных линиях сборки. Ключевыми достоинствами считают низкую стоимость, простоту позиционирования. Альтернатив не придумано. Устройства применяются приблизительно с 70-х годов XX века, формируют четыре основные группы:

  1. Шаговые двигатели на постоянных магнитах.
  2. Гибридные синхронные двигатели.
  3. Вентильные реактивные двигатели.
  4. Шаговые двигатели Лавета.

Полюсы различной намотки, к примеру, унифилярной, бифилярной (см. Катушка индуктивности). В первом случае ротор совершает обороты однонаправленно, если не предусмотреть дополнительную коммутацию фаз. Бифилярный двигатель отрабатывает реверс простой подачей напряжения на другие пары контактов. На каждом полюсе нить проволоки намотана, образуя две катушки. Конструкция такова, что знаки полей противоположные. Обеспечивает простую организацию реверса. Схожие схемы видим на примере двигателя привода барабана стиральной машины.

Мировой практикой принята стандартизированная маркировка указанных разновидностей устройств:

  1. Красный, желтый – первая обмотка.
  2. Черный, оранжевый – вторая обмотка.
  1. Обмотка с центральным общим выводом. Красный, черный, красный с белым – первая обмотка. Зеленый, белый, зеленый с белым – вторая обмотка.
  2. Двойная обмотка полюса. Красный, красный с белым – первая пара первой обмотки. Желтый, желтый с белым – вторая пара первой обмотки. Черный, черный с белым —первая пара второй обмотки. Оранжевый, оранжевый с белым – вторая пара второй обмотки.

Каждая обмотка способна образовывать несколько полюсов. Для включения реверса бифилярных шаговых двигателей коммутируется другая пара контактов. И если для формирования обратного вращения унифилярных разновидностей нужен формирующий контроллер, здесь допустимо использовать рядовой контактор.

Режимы работы шаговых двигателей

Изделия функционируют в нескольких режимах:

  1. Полный шаг реализуется поочередной подачей управляющих напряжений по фазам. Стандартное число – 200 перемещений на 1 оборот.
  2. В режиме половинного шага после активации одной фазы, остается состояние неизменным часть времени включения следующей. Получается, на зуб действуют одновременно два полюса. Вал замирает, фиксируя промежуточное положение. Потом первая фаза пропадает, ротор делает полшага вперед. Несмотря на меньший развиваемый крутящий момент, режим находит большее применение промышленностью, благодаря сокращению уровня вибраций.

    Электрический синхронный мотор

  3. Микрошаговые режимы считаются искусными ноу-хау наработками конкретных производителей. Режимом заправляет специальный чип, генерирующий управляющие напряжения, чтобы точность позиционирования вала находилась в районе сотой шага (20000 перемещений на 1 оборот). Подобные изыски нужны микроэлектронике, не исключено возникновение потребности тонких технических решениях среди промышленных конвейеров. Драйвер генерирует 50 с лишним тысяч циклов управляющих напряжений на оборот.

Шаговые двигатели на постоянном магните

Род двигателей возможно встретить в помпе стиральной машины. К примеру, блок, удаляющий воду бака после стирки, между отдельными этапами цикла. Скорость вращения вала невелика, ротор в составе содержит постоянный магнит, шаг большой. Допустим, 45 градусов. На обмотки статора поочередно подается напряжение, создавая вращающееся магнитное поле. Постоянный магнит вала следует изменениям вектора напряженности.

Достоинствами шаговых двигателей назовем простоту, низкую стоимость. Постоянные магниты часто применяются принтерами. Отличие от других шаговых двигателей: ротор лишен зубцов, полюсов мало. Бывает два, катушек статора – 4, каждым перемещением вал совершает поворот 90 градусов. Требуется 4 фазы, сдвинутые друг относительно друга на 90 градусов. Драйвер просто реализовать при помощи конденсаторов.

Благодаря низкой скорости оборотов двигатель развивает высокий крутящий момент (загружая бумагу из лотка принтера).

Двигатель с постоянным магнитом

Гибридные синхронные двигатели

Гибридные синхронные двигатели используются промышленностью по причине развития высокого крутящего момента, хорошо держат статическую нагрузку. Вал по-прежнему представлен постоянным магнитом, снабжается зубцами, на статоре множество полюсов. Тип двигателей обеспечивает высокие скорости вращения. Каждый шаг в стандартном исполнении равен 1,8 угловых градусов (200 шагов/оборот). Выпускают специализированные исполнения:

  • 0,9 градуса (400 шагов/оборот).
  • 3,6 градуса (100 шагов/оборот).

Вентильные шаговые двигатели

Главным отличием вентильных двигателей считают отсутствие тяжелых постоянных магнитов. Благодаря чему жесткой фиксации положения не происходит при наличии высокой точности. Двигатели идеальны для просмотра слайдов кинопленки. Относительно плавное, точное движение идеально подходит случаю.

Ротор облегченный, стальной, имеет ярко выраженные, сравнительно немногочисленные зубцы. Шаг средний, например, для трех фаз, 12 полюсов выйдет 15 градусов. Расстояние меж полюсами составляет 30 градусов. Промежуточные положения вал занимает в случаях, когда активируются одновременно две соседние фазы. Чередование соответствует обычной промышленной сети (к примеру, 400 вольт).

Главной особенностью вентильных двигателей является сравнительно малое количество тупых зубцов. Высокой точности позиционирования ожидать не приходится. Для реализации продвинутых алгоритмов применяются сложные драйверы.

Шаговые двигатели Лавета

Шаговые двигатели Лавета временами применяются электрическими часами. Сконструированы работать с сигналом одной фазы. Благодаря возможности миниатюризации двигатели Лавета послужат исполнительной частью наручных часов. Название устройства получили именем изобретателя – инженера Мариуса Лавета.

Инженер Мариус Лавет позавидует

В 1936 году выпускник Высшей школы электрики сконструировал двигатель, принесший всемирную известность. Статор выглядит, как у электрического мотора с расщепленными полюсами. Одна катушка. Полюсы образованы единичными витками сравнительно толстой медной проволоки, расположенными на магнитопроводе, создавая нужную фазу ЭДС. Индуцированные токи обеспечивают нужный крутящий момент. Задержка распространения магнитного поля по сердечнику используется сдвигать фазу на 90 градусов, имитируя двухфазное напряжение. Ротор представлен постоянным магнитом.

Конструкции охотно используются бытовой техникой (блендерами, миксерами). Отличие двигателей Лавета в том, что благодаря зубцам вал фиксируется с некоторым шагом. Становится возможным характерное движение секундной стрелки. Как большинство шаговых двигателей, разновидность не предназначена работать на реверс.

Параметры шаговых двигателей

Отдельные параметры шаговых двигателей критичны при выборе соответствующего контроллера, формирующего управляющие напряжения:

  1. Индуктивность. Высокое значение параметра обычно у низкоскоростных двигателей с явным крутящим моментом. При повышении количества оборотов вала параметры оборудования непременно ухудшатся. При низкой индуктивности ток вызывает быстрый отклик, требуется в приводах для чтения оптических дисков.
  2. Потребляемый ток влияет на жесткость переключения меж соседними шагами. Более плавный режим требует снижения параметра. Большой потребляемый ток повышает крутящий момент. Таким образом, правильный выбор параметров загружает плечи проектировщика.
  3. Предельный уровень рабочих температур шаговых двигатель невелик. Верхняя граница находится в области 90 градусов Цельсия. Перегрев возможен на высоких крутящих моментах при значительном потреблении тока. Для разгрузки иногда применяется режим удержания, когда вал стопорится некоторое время.

Разновидности драйверов шаговых двигателей

В глобальном смысле выделяют три группы драйверов управления шаговыми двигателями:

  1. Униполярные формируют импульсы тока одного направления. Простой, неприхотливый метод, использование снижает крутящий момент на 40%. Специалисты объясняют феномен невозможностью одновременного питания всех обмоток, способных участвовать в движении. Методика подходит низким рабочим скоростям.
  2. Драйверы с гасящими резисторами сегодня считаются устаревшими. Позволяют выжать из двигателя максимум скорости. Большое количество энергии выделяется теплом на гасящих резисторах.
  3. Биполярные драйверы популярны сегодня. Игнорируя сложность конструкции, достигается высокая эффективность. Каждый драйвер содержит формирующий блок, составленный четырьмя транзисторами. Питание подается, минуя диоды, с резистора снимается сигнал обратной связи. Напряжение достигает определенного уровня, открываются нужные ключи для снижения. Форма сигнала принимает пилообразную форму, двигатель с высоким постоянством поддерживает заданную мощность.

Шаговые электродвигатели — устройство и принцип работы, виды шд

Сегодня речь пойдет от такой разновидности электродвигателях, как шаговые. Мы подготовили объемный материал, в котором подробно расписаны технические характеристики, устройство и сам принцип работы шаговых двигателей. В конце статьи вас ждет подробное руководство по изготовлению драйвера шд собственными руками, ну и как бонус список подробной литературы по теме. Любые вопросы, как всегда, вы можете задать в комментариях.

Устройство и принцип работы

Шаговые двигатели широко используются в бытовых приборах, транспортных средствах, фрезерных и шлифовальных станках и других производственных механизмах.

Устройство представляет собой движок постоянного тока, один оборот которого разделен на несколько одинаковых шагов (это обеспечивается благодаря контроллеру). Главное его отличие от моторов других типов – отсутствие щеточного механизма.

Шаговый двигатель оснащен блоком управления (приборной панелью), передатчиками и сигнализаторами.

Из чего состоит шаговый двигатель

Как работает шаговый электродвигатель?

Зная принцип работы шагового двигателя, вы сможете самостоятельно установить его или произвести ремонт. Он функционирует следующим образом:

  1. После подачи напряжения на клеммы начинается непрерывное вращение специальных щеток. Входные импульсы устанавливают ведущий вал в положение, которое заранее определено.
  2. Под воздействием импульсов вал перемещается под фиксированным углом.
  3. Внешняя цепь управления, чаще всего представленная микроконтроллером, возбуждает электромагниты зубчатого типа. Один из них (тот, к которому приложена энергия) притягивает к себе зубья шестерни, вследствие чего вал движка делает поворот.
  4. Будучи выровнены по отношению к ведущему электромагниту, остальные магниты смещаются по направлению к следующей магнитной детали.
  5. Вращение шестеренки обеспечивается отключением первого электромагнита и включением следующего.
  6. Шестеренка выравнивается по отношению к предыдущему колесу, после чего весь процесс повторяется столько раз, сколько необходимо.

Данные вращения являются постоянным шагом. Для определения скорости мотора нужно подсчитать количество шагов, требуемых для его полного оборота. Точность работы обеспечивается благодаря микропроцессорным системам управления шаговых двигателей.

Характеристики

Шаговый двигатель с точки зрения механики и электротехники очень сложное устройство, имеющее много механических и электрических параметров. Приведу расшифровку основных технических параметров, которые используются на практике:

  • Количество полных шагов за один оборот. Основной параметр двигателя, определяющий его точность, разрешающую способность, плавность движения. На двигателях серии FL57 этот параметр составляет 200 и 400 шагов на оборот.
  • Угол полного шага. Представление в другом виде предыдущего параметра. Показывает на какой угол повернется вал при одном полном шаге. Может быть подсчитан как 360° / количество полных шагов за оборот. Для двигателей серии FL57 составляет 1,8 ° и 0,9°.
  •  Номинальный ток. Основной электрический параметр. Наибольший допустимый ток, при котором электродвигатель может работать сколь угодно длительное время. Для этого тока указаны механические параметры двигателя.
  • Номинальное напряжение. Допустимое постоянное напряжение на обмотке двигателя в статическом режиме. Часто этот параметр не приводится. Вычисляется по закону Ома через номинальный ток и сопротивление обмотки.
  • Сопротивление обмотки фазы. Сопротивление обмотки двигателя на постоянном токе. Параметр вместе с номинальным током, показывает какое напряжение можно подавать на обмотку двигателя.
  •  Индуктивность фазы. Параметр становится важным на значительных скоростях вращения. От него зависит скорость нарастания тока в обмотке. При высоких частотах переключения фаз приходится увеличивать напряжение, чтобы ток нарастал быстрее.
  •  Крутящий момент. Основной механический параметр. Показывает максимальный крутящий момент, который способен создать двигатель. Иногда приводится механическая характеристика в виде зависимости крутящего момента от частоты вращения.
  •  Момент инерции ротора. Характеризует механическую инерционность ротора двигателя. Чем этот параметр меньше, тем двигатель быстрее разгоняется.
  •  Удерживающий момент. Это крутящий момент при остановленном двигателе. При этом у двигателя должны быть запитаны две фазы номинальным током.
  • Стопорный момент. Момент, необходимый чтобы провернуть вал двигателя при отсутствующем напряжении питания.
  • Сопротивление изоляции. Как у всех электрических приборов – сопротивление между корпусом и обмотками.
  • Пробивное напряжение. Минимальное напряжение, при котором происходит пробой изоляции между обмотками и корпусом. Параметр из раздела электробезопасности.

Типы шаговых двигателей

Основные виды шаговых двигателей:

• с переменным магнитным сопротивлением

• с постоянными магнитами

• гибридные.

Шаговые двигатели с переменным магнитным сопротивлением

У двигателей с переменным магнитным сопротивлением в роторе нет постоянных магнитов. Их ротор выполнен из магнитомягкого материала и имеет зубчатую форму. Магнитный поток замыкается через ближайшие к полюсам статора зубцы.

Зубцы притягиваются к полюсам. Этим и обеспечивается вращение. При тех же размерах, двигатели с переменным магнитным сопротивлением имеют меньший крутящий момент, чем другие типы шаговых двигателей. Применяются они довольно редко.

Двигатели с постоянными магнитами

У шаговых двигателей этого вида ротор содержит постоянные магниты. Общий принцип действия шагового двигателя идентичен двигателям с постоянным магнитом. Только в реальных двигателях магнитов больше. Вот пример двигателя с тремя парами полюсов ротора. У реальных двигателей с постоянными магнитами число шагов на оборот доходит до 48, что соответствует углу шага 7,5 °.

Гибридные двигатели

Гибридные двигатели обеспечивают меньшую величину шага, больший момент и скорость. Число шагов на оборот для такого типа двигателей доходит до 400 (угол шага 0,9°). При этом они более сложные в изготовлении и более дорогие. Я не хочу забивать читателю голову конструкцией этих двигателей. У них есть и зубчатый ротор, и постоянные магниты.

По принципу действия гибридные двигатели эквивалентны двигателям с постоянными магнитами, но с гораздо большим числом полюсов. Это самый распространенный тип шаговых двигателей.

УНИПОЛЯРНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ

Униполярные шаговые двигатели, так же как и биполярные, имеют две обмотки, и каждая из них имеет центральный отвод. В зависимости от требуемого направления магнитного поля, в работу включается соответствующая половина обмотки, что достигается простым переключением ключей и существенно упрощает схему драйвера.

Подобный механизм позволяет в качестве управляющей системы использовать простейший униполярный драйвер с четырьмя ключами.

Униполярный двухфазный шаговый двигатель имеет шесть выводов. Но так же бывает, что средние отводы катушек внутри соединены, что позволяет шаговому двигателю иметь только пять выводов.

Благодаря простоте в эксплуатации, данные двигатели имеют широкую популярность среди как новичков любителей, так и во многих промышленных отраслях, поскольку униполярный шаговый двигатель является самым примитивным и дешевым способом получить высокоточные угловые движения.

БИПОЛЯРНЫЕ ШАГОВЫЕ ДВИГАТЕЛИ

С биполярными шаговыми двигателями дело обстоит немного иначе. Данные двигатели имеют только одну обмотку в одной фазе. Управляющая схема биполярного двигателя должна быть намного сложнее, чтобы менять направление магнитного поля с целью изменить направление тока в обмотке. Этого можно достигнуть с помощью схемы H-bridge. К тому же, для упрощения задачи можно приобрести несколько драйверных чипов, которые вам помогут.

Биполярные шаговые двигатели, в отличие от униполярных имеют два вывода на одну фазу, ни один из которых не является общим. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Униполярные шаговые двигатели, в отличие от биполярных, имеют два вывода за фазу, ни одна из которых не является общей. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

ЛИНЕЙНЫЕ ШАГОВЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

С целью автоматизации некоторых производственных процессов на предприятии, иногда возникает необходимость перемещения объектов в плоскости. Чтобы это сделать, потребуется использовать специальный преобразователь вращательного движения в поступательное, что достигается путем применения кинематики.

При помощи линейных шаговых двигателей можно преобразовать импульсную команду прямо в линейное перемещение, что значительно упростит кинематическую схему всевозможных электрических приводов.

Принципиальная схема работы линейного шагового двигателя

Статор в данном приводе представлен в виде магнитомягкой плиты, а провода подмагничиваются путем работы постоянного магнита.

Зубцовые деления в статоре и подвижной части одинаковые, при этом они могут быть сдвинуты на половину деления в пределах одного провода ротора. Поток подмагничивания и его магнитное сопротивление, в данном случае, не зависят от того, где находится подвижная часть двигателя.

Чтобы переместить объект в плоскости согласно двум координатам, применяют двигатели двухкоординатного типа.

Также в линейных двигателях используется магнитно-воздушная подвеска. Благодаря силе магнитного притяжения ротор притягивается к статору. Далее под ротор сквозь форсунки нагнетают воздух в сжатом виде, вследствие чего появляется сила, отталкивающая ротор от статора.

Так между ними возникает воздушная подушка и ротор висит над статором с наличием минимально зазора. Это и обеспечивает минимум сопротивления движения ротора и высокоточное позиционирование.

Подключение шаговых двигателей

Выбор схемы подключения шагового двигателя зависит от:

  • количества проводов в приводе;
  • способа запуска механизма.

Существующие модели движков имеют 4, 5, 6 или 8 проводов. Прибор с четырьмя проводами можно подключать только к биполярным устройствам. Он оснащен двумя фазными обмотками, каждая из которых имеет два провода. Для пошагового подключения драйвера необходимо определить пары проводов с непрерывной связью с помощью метра.

В механизме с шестью проводами каждая обмотка имеет два провода и центральный кран. Движки этой модели характеризуются высокой мощностью и подключаются как к биполярным, так и к однополярным исполнительным устройствам.

В первом случае используется один центр-кран каждой обмотки и один конец провода.

Во втором случае используются все шесть проводов. Разделение провода осуществляется с помощью измерительного прибора.

Отличие пятипроводного мотора от шестипроводной модели заключается в том, что соединение центральных клемм представляет собой сплошной кабель, который выходит к центральному проводу.

Поскольку отделение одной обмотки от другой без разрывов не представляется возможным, необходимо определить центр провода, после чего соединять его с другими проводниками. Это будет самым безопасным и максимально эффективным решением. Затем движок подключается к сети и проводится проверка его работоспособности.

Для успешной эксплуатации механизма нужно иметь в виду следующие нюансы:

  • Номинальное напряжение производится первичной обмоткой при постоянном токе.
  • Изменение начальной скорости крутящего момента прямо пропорционально изменению тока.
  • Скорость понижения линейного момента на последующих высоких скоростях зависит от индуктивности обмоток и схемы привода.

 

Типичные схемы подключения ШД

Схема подключения 6-ти выводного шагового двигателя к драйверу GeckoDrive (биполярное последовательное подключение обмоток)

Схема подключения 8-ми выводного ШД с биполярным параллельным соединением обмоток к драйверу GeckoDrive

Схема подключения 8-ми выводного ШД с биполярным последовательным соединением обмоток к драйверу GeckoDrive

 Управление шаговыми электродвигателями

Существуют три режима управления шаговым двигателем:

• полношаговый

• полушаговый

• микрошаговый.

Полношаговый режим управления

Первый способ был описан в примерах выше. Это попеременная коммутация фаз, фазы не перекрываются, в каждый момент времени к источнику напряжения подключена только одна фаза.

Способ называется на английском one phase on full step – одна фаза на полный шаг. Точки равновесия ротора совпадают с полюсами статора. Недостатком этого режима является то, что в один и тот же момент используется половина обмоток для биполярного двигателя, и только четверть для униполярного.

Есть вариант полношагового режима управления при котором в одно и то же время включены две фазы. Называется two-phase-on full step – две фазы на полный шаг. При таком способе ротор фиксируется между полюсами статора за счет подачи питания на все обмотки.

полушаговый режим

Это позволяет увеличить крутящий момент двигателя на 40%. Угол шага не меняется, просто ротор в состоянии равновесия смещен на пол шага. Этот способ позволяет от двигателя получить в два раза больше шагов на оборот ротора.

Каждый второй шаг включается одна фаза, а между ними — включаются сразу две.

В результате такой коммутации угловое перемещение шага уменьшается в два раза, или в два раза увеличивается число шагов. Полный момент получить в полушаговом режиме не удается.

Не смотря на это, полушаговый режим используется часто. Уж очень простыми методами он удваивает число шагов двигателя.

Надо помнить, что для обоих режимов справедливо то, что при остановке двигателя со снятием напряжения со всех фаз, ротор двигателя находится в свободном состоянии и может смещаться от механических воздействий.

микрошаговый режми

Чтобы зафиксировать положение ротора, необходимо формировать в обмотках двигателя ток удержания. Этот ток может быть значительно меньше номинального.

Способность шагового двигателя фиксировать свое положение при остановке позволяет обходиться без механических фиксаторов, тормозных систем и т.п.

Управление безколлекторными шд

Для управления шаговым двигателем требуется контроллер. Контроллер, это схема, подающая напряжение к одной из катушек статора. Контроллер изготовлен на базе интегральной микросхемы типа ULN 2003 включающей в себя комплект составных ключей. Каждый ключ имеет на выходе защитные диоды, которые, позволяют подключать индукционные нагрузки, не требуя дополнительной защиты.

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора.

Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Контроллер управления шаговыми двигателями, сделанный своими руками

Задача проста: по готовой схеме и программе Павла Бахтинова с этого форума развести печатную плату, собрать и отладить контроллер управления шаговыми двигателями, установленными в монтировке астрономического телескопа. Далее, необходимо изготовить приличный корпус и пульт управления.

Все начинается с деталек (сразу вспоминается закон Мерфи: «Ни один талант не смог пережить страсти к деталькам» ):

Работа над схемой:

Разводим печатную плату:

Фотошаблон готов:

Тут надо сказать несколько слов о моем НОУ-ХАУ в изготовлении фотошаблонов для перевода рисунка на печатную плату.

Обычно я их печатаю на принтере — чаще на струйном, реже на лазерном, т.к. термопленка давала непредсказуемую усадку после термообработки в лазернике (а шаблоны необходимы для двух сторон), поэтому невозможно было совместить два шаблона с достаточной точностью (до 0,15 мм).

Струйный принтер хорошо повторяет размеры, но не достаточно плотно заполняет черным цветом дорожки, кое-где они все же просвечиваются. Решение этой проблемы было вскоре найдено: печатаем не чистым черным, а чуть светлее в сторону желтого — принтер начинает добавлять к черной краске желтую (непрозрачную для УФ излучения) и дорожки, хотя и выглядят более прозрачными, после перевода фотоспособом получаются более плотные, практически без изьянов.

Главное — подобрать экспозицию:

Идет процесс травления печатной платы:

Протравлена полностью:

Сверлим отверстия диаметром от 0.7мм до 1.5мм самодельным сверлильным станком:

Паяльник старенький да удаленький:

Забиваем плату деталями:

Все детали запаяны:

Обратная сторона платы, начался процесс отладки:

Вот так будем ставить нагревающиеся элементы (те, что выше на рисунке с этой стороны платы стоят — интегральный стабилизатор и две микросхемы — драйверы моторов) вот на такие красивые радиаторы:

В данное время началась работа над пультом. Главное в пульте управления, считаю  — эргономика, насколько только это уместно применить к той коробочке, которая получится после сборки на отечественных БОЛЬШИХ, но надежных микрокнопках.

… И, так, после продолжительного перерыва снова продолжил работу над этим проектом.

Немного поигрался с разными вариантами дизайна пульта и, вот, к чему я пришел:

Недостатки и достоинства шаговых двигателей

Преимущества шаговых двигателей

• Точное позиционирование без обратной связи. Число импульсов определяет угол поворота.

• Двигатель обеспечивает полный крутящий момент при снижении скорости вращения, вплоть до остановки.

• Двигатель фиксирует свое положение при остановке за счет тока удержания.

• Регулировка скорости вращения с высокой точностью без обратной связи.

• Способность быстрого старта, остановки, реверса.

• Высокая надежность. Отсутствие коллекторных щеток. Недостатки шаговых двигателей.

• Сложная система управления.

• Невысокие скорости вращения.

• Возможно явление резонанса.

• Может произойти потеря позиционирования при механических перегрузках.

• Низкая удельная мощность.

Попробуем найти минусы

Как и всему на свете шаговому двигателю присущи определенные достоинства и недостатки.

Но есть области в точной механике, в которых он просто незаменим. Там где надо перемещать механические узлы, мгновенно останавливать, двигать назад, регулировать скорость… Попробуйте мгновенно остановить коллекторный двигатель, и вы забудете о недостатках шагового.

Попробуйте реализовать изменение скорости коллекторного двигателя в широких пределах. Проще поставить шаговый с его недостатками.

Заключение.

В завершении объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

http://robotosha.ru

http://chipok.ru

https://ru.wikipedia.org

Заключение

Если вам была полезна статья и вы желаете отблагодарить автора, то подпишитесь на нашу рассылку вк. Кстати, тех кто вступит ждет в подарок Энциклопедия начинающего электрика в PDF файле.  Ну и будете получать статьи с нашего сайта самыми первыми. Без рекламы и спама, не потому что мы такие честные, а потому что модерация вк очень строгая.

Список дополнительной литературы по шаговым двигателям:

AN2974

doc8017

SKC_stepper_operation

Step_Motor_Basics_Guide

Как вам статья?Poll Options are limited because JavaScript is disabled in your browser. Предыдущая

Электрические машиныМалоизвестные факты о двигателях постоянного тока

Следующая

Электрические машиныЧто такое трехфазный двигатель и как он работает

Как работает шаговый двигатель

Из этой обучающей статьи вы узнаете, как работает шаговый двигатель. Мы расскажем об основных принципах работы шаговых двигателей, их режимах работы и типах шаговых двигателей по конструкции. Вы можете посмотреть следующее видео или прочитать написанную статью.

РЕКОМЕНДУЕТСЯ

Принцип работы


Шаговый двигатель — это бесщеточный двигатель постоянного тока с ступенчатым вращением. Это очень полезно, потому что его можно точно позиционировать без какого-либо датчика обратной связи, который представляет собой контроллер с разомкнутым контуром.Шаговый двигатель состоит из ротора, который обычно представляет собой постоянный магнит, и он окружен обмотками статора. Когда мы активируем обмотки шаг за шагом в определенном порядке и пропускаем через них ток, они намагничивают статор и создают электромагнитные полюса, соответственно, которые вызывают движение двигателя. Это основной принцип работы шаговых двигателей.

Режимы движения


Существует несколько различных способов управления шаговым двигателем.Первый — это волновой привод или однокатушечное возбуждение. В этом режиме мы активируем только одну катушку за раз, что означает, что в этом примере двигателя с 4 катушками ротор будет выполнять полный цикл за 4 шага.

Далее идет режим полного шага привода, который обеспечивает гораздо более высокий выходной крутящий момент, потому что у нас всегда есть 2 активные катушки в данный момент. Однако это не улучшает разрешающую способность шагового двигателя, и снова ротор выполнит полный цикл за 4 шага.

Для увеличения разрешения шагового двигателя мы используем режим Half Step Drive.Этот режим фактически представляет собой комбинацию двух предыдущих режимов.

Здесь у нас есть одна активная катушка, за которой следуют 2 активные катушки, затем снова одна активная катушка, за которой следуют 2 активные катушки и так далее. Таким образом, в этом режиме мы получаем удвоенное разрешение при той же конструкции. Теперь ротор совершит полный цикл за 8 шагов.

Однако наиболее распространенным методом управления шаговыми двигателями в настоящее время является микрошаговый. В этом режиме мы подаем на катушки регулируемый ток в форме синусоидальной волны.Это обеспечит плавное движение ротора, снизит нагрузку на детали и повысит точность шагового двигателя.

Другой способ увеличения разрешающей способности шагового двигателя — это увеличение числа полюсов ротора и числа полюсов статора.

Типы шаговых двигателей по конструкции


По конструкции существует 3 различных типа шаговых двигателей: шаговый двигатель с постоянным магнитом, шаговый двигатель с переменным сопротивлением и гибридный синхронный шаговый двигатель.

Шаговый двигатель Permanent Magnet имеет ротор с постоянными магнитами, который приводится в движение обмотками статора. Они создают полюса противоположной полярности по сравнению с полюсами ротора, который приводит в движение ротор.

Следующий тип, шаговый двигатель Variable Reluctant , использует немагнитный ротор из мягкого железа. Ротор имеет зубья, смещенные относительно статора, и когда мы активируем обмотки в определенном порядке, ротор перемещается соответственно, так что между статором и зубьями ротора

имеется минимальный зазор.

Гибридный синхронный двигатель представляет собой комбинацию двух предыдущих шаговых двигателей.Он имеет зубчатый ротор с постоянными магнитами, а также зубчатый статор. Ротор состоит из двух противоположных по полярности секций, а их зубья смещены, как показано здесь.

Это вид спереди обычно используемого гибридного шагового двигателя, который имеет 8 полюсов на статоре, которые активируются двумя обмотками, A и B. Итак, если мы активируем обмотку A, мы намагнитим 4 полюса, два из которых будут имеют южную полярность, а две из них — северную.

Мы видим, что таким образом зубья роторов совмещены с зубьями полюсов A и не совмещены с зубьями полюсов B.Это означает, что на следующем этапе, когда мы отключим полюса A и активируем полюса B, ротор будет двигаться против часовой стрелки, и его зубцы будут совмещены с зубцами полюсов B.

Если мы продолжаем активировать полюса в определенном порядке, ротор будет двигаться непрерывно. Здесь мы также можем использовать различные режимы вождения, такие как волновой привод, полный шаговый привод, полушаговый привод и микрошаговый режим, для еще большего увеличения разрешения шагового двигателя.

Шаговый двигатель

: основы и принцип работы

Основы шагового двигателя
Что такое шаговый двигатель? Шаговый двигатель — это исполнительный механизм, преобразующий электрический импульс в угловое смещение.Обычно при получении импульсного сигнала шаговый двигатель будет вращаться на фиксированный угол (а именно «угол шага») в соответствии с направлением, установленным для шагового двигателя. Объем углового смещения можно контролировать, контролируя количество импульсов для достижения цели точного позиционирования. Между тем, скорость вращения и ускорение двигателя можно контролировать, регулируя частоту импульсов для достижения цели управления скоростью.

Принцип работы шагового двигателя
Как работает шаговый двигатель? Ротор шагового двигателя представляет собой постоянный магнит, когда ток течет через обмотку статора, обмотка статора создает векторное магнитное поле.Магнитное поле заставляет ротор вращаться на угол, так что пара магнитных полей ротора и направление магнитного поля статора согласованы. Когда векторное магнитное поле статора поворачивается на угол, ротор также вращается вместе с магнитным полем на угол. Каждый раз, когда подается электрический импульс, двигатель вращается еще на один градус. Выходное угловое смещение пропорционально количеству входных импульсов, а скорость пропорциональна частоте импульсов.Измените порядок мощности намотки, двигатель будет реверсивным. Следовательно, он может управлять вращением шагового двигателя, контролируя количество импульсов, частоту и электрическую последовательность каждой фазной обмотки двигателя.

Типы шаговых двигателей
Шаговые двигатели делятся на три типа: шаговые двигатели с постоянными магнитами (PM), шаговые двигатели с переменным сопротивлением (VR) и гибридные шаговые двигатели (HB).

    1. Шаговый двигатель с постоянными магнитами обычно двухфазный, с небольшим крутящим моментом и малым объемом; его шаговый угол обычно равен 7.5 ° или 15 °.
    2. Шаговый двигатель

    3. VR обычно трехфазный, может быть реализован высокий крутящий момент; угол шага обычно составляет 1,5, но шум и вибрация велики; Магнитная цепь ротора шагового двигателя VR изготовлена ​​из магнитомягких материалов. На роторе имеется многофазная обмотка возбуждения. Крутящий момент создается за счет изменения магнитной проводимости.
    4. Шаговый двигатель

    5. HB, показывающий смешение преимуществ PM и VR, делится на 2-фазный, 3-фазный и 5-фазный.Угол шага для 2-фазной схемы обычно составляет 1,8 °, для 3-фазной схемы — 1,2 ° и для 5-фазной схемы — 0,72 °. В основном это широко применяется.

Выбор шагового двигателя

    1. Угол шага: необходимо выбрать угол шага двигателя в соответствии с требованиями точности нагрузки. Наименьший коэффициент разрешения нагрузки обычно преобразуется в вал двигателя, обратите внимание на угол для каждого коэффициента разрешения, а угол шага двигателя должен быть равен или меньше угла.Как правило, шаговый угол 2-фазного двигателя составляет 0,9 ° / 1,8 °, 3-фазного двигателя — 1,2 °, а 5-фазного — 0,36 ° / 0,72 °. Двухфазный шаговый двигатель ATO имеет угол шага 1,8 градуса, а трехфазный шаговый двигатель — угол шага 1,2 градуса.
    2. Статический крутящий момент: выберите статический крутящий момент в соответствии с нагрузкой двигателя, при этом нагрузку можно разделить на инерционную и фрикционную. При прямом запуске двигателя (обычно с низкой скорости на высокую) следует учитывать два вида нагрузки. При запуске двигателя с ускорением учитывайте инерционную нагрузку; когда двигатель вращается с постоянной скоростью, учитывайте только фрикционную нагрузку.Как правило, статический крутящий момент должен быть в пределах 2-3-кратной нагрузки трения.
    3. Ток: Что касается двигателей с одинаковым статическим крутящим моментом, их характеристики движения сильно различаются из-за разницы в текущих параметрах. О величине тока можно судить по диаграмме характеристики крутящего момента и частоты.

Если вы ищете шаговый двигатель Nema 17, шаговый двигатель Nema 23, шаговый двигатель Nema 34, сайт ATO.com — лучший выбор для вас.

Конструкция, работа, типы и применение

Шаговый двигатель — это электромеханическое устройство, преобразующее электрическую энергию в механическую. Кроме того, это бесщеточный синхронный электродвигатель, который может разделить полный оборот на большое количество шагов. Положение двигателя можно точно контролировать без какого-либо механизма обратной связи, если двигатель точно подобран для конкретного применения. Шаговые двигатели аналогичны вентильным реактивным двигателям.Шаговый двигатель использует теорию работы магнитов, чтобы вал двигателя поворачивался на точное расстояние при подаче электрического импульса. У статора восемь полюсов, а у ротора — шесть. Ротору потребуется 24 импульса электричества, чтобы переместить 24 ступени на один полный оборот. Другими словами, ротор будет перемещаться точно на 15 ° за каждый импульс электричества, который получает двигатель.

Конструкция и принцип работы

Конструкция шагового двигателя довольно похожа на двигатель постоянного тока.Он включает в себя постоянный магнит, такой как ротор, который находится посередине, и он будет вращаться, когда на него будет действовать сила. Этот ротор заключен в № статора, намотанного через магнитную катушку. Статор расположен рядом с ротором, так что магнитные поля внутри статоров могут управлять движением ротора.

Шаговый двигатель

Шаговым двигателем можно управлять, запитывая каждый статор один за другим. Таким образом, статор намагничивается и работает как электромагнитный полюс, который использует энергию отталкивания на роторе, чтобы двигаться вперед.Альтернативное намагничивание статора, а также размагничивание будет постепенно сдвигать ротор и позволяет ему вращаться с большим контролем.

Принцип работы шагового двигателя — Электромагнетизм. Он включает в себя ротор с постоянным магнитом, а статор с электромагнитами. Как только питание подается на обмотку статора, внутри статора будет развиваться магнитное поле. Теперь ротор в двигателе начнет двигаться с вращающимся магнитным полем статора.Итак, это основной принцип работы этого двигателя.

Конструкция шагового двигателя

В этом двигателе используется мягкое железо, защищенное электромагнитными статорами. Полюса статора и ротора не зависят от типа шагового двигателя. Как только статоры этого двигателя находятся под напряжением, ротор будет вращаться, чтобы выровняться со статором, в противном случае поворачивается, чтобы иметь наименьший зазор через статор. Таким образом, статоры последовательно активируются для вращения шагового двигателя.

Техника вождения

Техника вождения с шаговым двигателем с могут быть возможны с некоторыми специальными схемами из-за их сложной конструкции. Существует несколько способов управления этим двигателем, некоторые из них обсуждаются ниже на примере четырехфазного шагового двигателя.

Режим одиночного возбуждения

Основным методом управления шаговым двигателем является режим одиночного возбуждения. Это старый метод, который в настоящее время мало используется, но об этом методе нужно знать.В этом методе каждая фаза, в противном случае статор рядом друг с другом, будет запускаться одна за другой поочередно с помощью специальной цепи. Это намагнитит и размагнитит статор, чтобы ротор двигался вперед.

Full Step Drive

В этом методе два статора активируются одновременно, а не один за очень короткий период времени. Этот метод приводит к высокому крутящему моменту и позволяет двигателю управлять высокой нагрузкой.

Полушаговый привод

Этот метод довольно похож на полный шаговый привод, потому что два статора будут расположены рядом друг с другом, так что он будет активирован первым, а третий будет активирован после этого.Этот вид цикла для переключения сначала двух статоров, а затем третьего статора приводит в движение двигатель. Этот метод приведет к улучшенному разрешению шагового двигателя при уменьшении крутящего момента.

Микрошаговый

Этот метод используется чаще всего из-за его точности. Переменный ток шага будет подаваться схемой драйвера шагового двигателя к катушкам статора в форме синусоидального сигнала. Точность каждого шага может быть увеличена за счет этого небольшого шагового тока.Этот метод широко используется, поскольку он обеспечивает высокую точность, а также в значительной степени снижает рабочий шум.

Схема шагового двигателя и его работа

Шаговые двигатели работают иначе, чем щеточные двигатели постоянного тока, которые вращаются, когда на их клеммы подается напряжение. С другой стороны, шаговые двигатели имеют несколько зубчатых электромагнитов, расположенных вокруг куска железа в форме центральной шестерни. Электромагниты получают питание от внешней цепи управления, например, микроконтроллера.

Схема шагового двигателя

Чтобы заставить вал двигателя вращаться, сначала на один электромагнит подается мощность, которая заставляет зубья шестерни магнитно притягиваться к зубцам электромагнита. В момент, когда зубья шестерни выровнены относительно первого электромагнита, они немного смещены относительно следующего электромагнита. Поэтому, когда следующий электромагнит включается, а первый выключается, шестерня слегка поворачивается, чтобы выровняться со следующей, и оттуда процесс повторяется. Каждое из этих небольших поворотов называется шагом, при котором целое число шагов совершает полный оборот.

Таким образом, мотор можно вращать с помощью точного. Шаговые двигатели не вращаются постоянно, они вращаются ступенчато. На статоре закреплены 4 катушки с углом между собой 90 o . Подключение шагового двигателя определяется способом соединения катушек. В шаговом двигателе катушки не соединены. Двигатель имеет шаг вращения на 90, или , при этом на катушки подается питание в циклическом порядке, определяющем направление вращения вала.

Работа этого двигателя отображается с помощью переключателя.Катушки активируются последовательно с интервалом в 1 секунду. Вал вращается на 90, o каждый раз, когда активируется следующая катушка. Его крутящий момент на низкой скорости будет напрямую зависеть от тока.

Типы шаговых двигателей

Существует три основных типа шаговых двигателей:

  • Шаговый двигатель с постоянным магнитом
  • Гибридный синхронный шаговый двигатель
  • Шаговый двигатель с переменным магнитным сопротивлением
Шаговый двигатель с постоянным магнитом

В двигателях с постоянным магнитом используется постоянный магнит (PM) в роторе и действует на притяжение или отталкивание между PM ротора и электромагнитами статора.

Это наиболее распространенный тип шагового двигателя по сравнению с различными типами шаговых двигателей, доступных на рынке. Этот двигатель включает в себя постоянные магниты в конструкции двигателя. Этот тип двигателя также известен как двигатель для жестяных банок. Основное преимущество этого шагового двигателя — меньшая стоимость производства. На каждый оборот приходится 48-24 шага.

Шаговый двигатель с регулируемым сопротивлением

Двигатели с регулируемым сопротивлением (VR) имеют ротор из гладкого железа и работают по принципу, согласно которому минимальное сопротивление достигается при минимальном зазоре, следовательно, точки ротора притягиваются к полюсам магнита статора.

Шаговый двигатель с переменным сопротивлением является основным типом двигателя и используется в течение последних многих лет. Как следует из названия, угловое положение ротора в основном зависит от сопротивления магнитной цепи, которое может образовываться между зубьями статора и ротора.

Гибридный синхронный шаговый двигатель

Гибридные шаговые двигатели названы потому, что в них используется комбинация методов постоянного магнита (PM) и переменного магнитного сопротивления (VR) для достижения максимальной мощности в небольших корпусах.

Наиболее популярным типом двигателя является гибридный шаговый двигатель, поскольку он дает хорошие характеристики по сравнению с ротором с постоянными магнитами с точки зрения скорости, шагового разрешения и удерживающего момента. Но этот тип шагового двигателя дороже по сравнению с шаговыми двигателями с постоянными магнитами. Этот двигатель сочетает в себе характеристики шаговых двигателей с постоянным магнитом и переменного магнитного сопротивления. Эти двигатели используются там, где требуется меньший угол шага, например 1,5, 1,8 и 2,5 градуса.

Как выбрать шаговый двигатель?

Прежде чем выбрать шаговый двигатель, отвечающий вашим требованиям, очень важно изучить кривую крутящего момента двигателя.Таким образом, эту информацию можно получить у разработчика двигателя, и это графический символ крутящего момента двигателя при заданной скорости. Кривая скорости вращения двигателя должна точно соответствовать потребностям приложения; в противном случае не может быть достигнута ожидаемая производительность системы.

Типы подключения

Шаговые двигатели, как правило, являются двухфазными двигателями, такими как униполярные или биполярные. Для каждой фазы в униполярном двигателе есть две обмотки. Здесь центральный вывод — это обычный вывод между двумя обмотками к полюсу.У униполярного двигателя от 5 до 8 выводов.

В конструкции, в которой два общих полюса разделены, но имеют центральную резьбу, этот шаговый двигатель имеет шесть выводов. Если двухполюсные центральные ответвители короткие внутри, то у этого двигателя пять выводов. Униполярный с 8 выводами облегчит как последовательное, так и параллельное соединение, в то время как двигатель с пятью или шестью выводами имеет последовательное соединение обмотки статора. Работа униполярного двигателя может быть упрощена, поскольку во время его работы не требуется реверсировать поток тока в цепи управления, который известен как бифилярные двигатели.

В биполярном шаговом двигателе для каждого полюса имеется одна обмотка. Направление подачи должно измениться через схему управления, чтобы она стала сложной, поэтому эти двигатели называются унифилярными двигателями.

Управление шаговым двигателем с помощью изменяющихся тактовых импульсов

Схема управления шаговым двигателем — это простая и недорогая схема, в основном используемая в приложениях с низким энергопотреблением. Схема, представленная на рисунке, состоит из 555 таймеров IC как стабильного мультивибратора. Частота рассчитывается с использованием данного отношения.

Частота = 1 / T = 1,45 / (RA + 2RB) C, где RA = RB = R2 = R3 = 4,7 кОм и C = C2 = 100 мкФ.

Управление шаговым двигателем путем изменения тактовых импульсов

Выход таймера используется в качестве тактового сигнала для двух двойных триггеров 7474 «D» (U4 и U3), сконфигурированных как кольцевой счетчик. При первоначальном включении питания устанавливается только первый триггер (т. Е. Выход Q на выводе 5 U3 будет на логической «1»), а остальные три триггера сбрасываются (т. Е. Выход Q находится на логическом уровне. 0). При получении тактового импульса выход логической «1» первого триггера смещается на второй триггер (вывод 9 U3).

Таким образом, выход логической 1 продолжает циклически сдвигаться с каждым тактовым импульсом. Выходы Q всех четырех триггеров усиливаются решетками транзисторов Дарлингтона внутри ULN2003 (U2) и подключены к обмоткам шагового двигателя оранжевого, коричневого, желтого, черного цветов на 16, 15, 14, 13 ULN2003, а красный — на + ve поставка.

Общая точка обмотки подключена к источнику постоянного тока +12 В, который также подключен к выводу 9 ULN2003. Цветовой код обмоток может варьироваться от производителя к производителю.Когда питание включено, управляющий сигнал, подключенный к контакту SET первого триггера и контактам CLR трех других триггеров, становится активным ‘низким’ (из-за схемы включения питания при сбросе, сформированной R1 -C1), чтобы установить первый триггер и сбросить остальные три триггера.

При сбросе Q1 IC3 становится «высоким», в то время как все остальные выходы Q становятся «низкими». Внешний сброс может быть активирован нажатием переключателя сброса. Нажав переключатель сброса, вы можете остановить шаговый двигатель.При отпускании переключателя сброса двигатель снова начинает вращаться в том же направлении.

Разница между шаговым двигателем и серводвигателем

Серводвигатели подходят для приложений с высоким крутящим моментом и скоростью, тогда как шаговый двигатель дешевле, поэтому они используются там, где высокий удерживающий момент, ускорение от низкого до среднего, открытый в противном случае закрытый — требуется гибкость работы петли. Разница между шаговым двигателем и серводвигателем заключается в следующем.

Шаговый двигатель

Серводвигатель

Двигатель, который движется дискретными шагами, известен как шаговый двигатель. Серводвигатель — это один из видов двигателей с обратной связью, который подключен к энкодеру для обеспечения обратной связи по скорости и положению.

Шаговый двигатель используется там, где управление, а также точность являются основными приоритетами Серводвигатель используется там, где скорость является основным приоритетом

Общее количество полюсов шагового двигателя колеблется от От 50 до 100 Общее количество полюсов серводвигателя колеблется от 4 до 12
В замкнутой системе эти двигатели движутся с постоянным импульсом Этим двигателям требуется энкодер для изменения импульсов для управления положением.

Крутящий момент высокий на меньшей скорости Крутящий момент низкий на высокой скорости
Время позиционирования меньше при коротких ходах Время позиционирования меньше при длинных ходах
Движение по инерции с высоким допуском Перемещение по инерции с малым допуском
Этот двигатель подходит для механизмов с низкой жесткостью, таких как шкив и ремень Не подходит для механизма с меньшей жесткостью
Высокая скорость реакции Низкая скорость реакции
Эти используются для колеблющихся нагрузок Они не используются для колеблющихся нагрузок
Регулировка усиления / настройки не требуется Требуется регулировка усиления / настройки
Шаговый двигатель против двигателя постоянного тока

Оба Шаговые двигатели и двигатели постоянного тока используются в различных промышленных приложениях, но • Основные различия между этими двумя двигателями немного сбивают с толку.Здесь мы перечисляем некоторые общие характеристики этих двух дизайнов. Каждая характеристика обсуждается ниже.

Характеристики

Шаговый двигатель

Двигатель постоянного тока

Характеристики управления Требуется микроконтроллер

Simple и no24 9024 Диапазон скоростей Низкая от 200 до 2000 об / мин Умеренная
Надежность Высокая Умеренная
Эффективность Низкая Характеристики крутящего момента Наивысший крутящий момент при меньших скоростях Высокий крутящий момент при меньших скоростях
Стоимость Низкий Низкий
Параметры шагового двигателя

, параметры шагового двигателя в основном включают параметры шагового двигателя оборот, шаги за каждую секунду и об / мин.

Угол шага

Угол шага шагового двигателя можно определить как угол, под которым ротор двигателя поворачивается, когда на вход статора подается одиночный импульс. Разрешение двигателя можно определить как количество шагов двигателя и число оборотов ротора.

Разрешение = количество шагов / количество оборотов ротора

Расположение двигателя можно определить через угол шага и он выражается в градусах.Разрешение двигателя (номер шага) — нет. шагов, которые совершают за один оборот ротора. Когда угол шага двигателя мал, разрешение для его расположения является высоким.

Точность расположения объектов с помощью этого двигателя в основном зависит от разрешения. Как только разрешение будет высоким, точность будет низкой.

Некоторые точные двигатели могут создавать 1000 шагов за один оборот, включая угол шага 0,36 градуса.Типичный двигатель имеет угол шага 1,8 градуса с 200 шагами на каждый оборот. Различные углы шага, такие как 15 градусов, 45 градусов и 90 градусов, очень распространены в обычных двигателях. Количество углов может изменяться от двух до шести, а небольшой угол шага может быть достигнут за счет частей полюса с прорезями.

шагов для каждого оборота

Шаги для каждого разрешения могут быть определены как количество углов шага, необходимых для полного оборота. Формула для этого — 360 ° / угол шага.

шагов за каждую секунду

Этот тип параметра в основном используется для измерения количества шагов, пройденных за каждую секунду.

Число оборотов в минуту

Число оборотов в минуту — это число оборотов в минуту. Он используется для измерения частоты вращения. Таким образом, используя этот параметр, мы можем рассчитать количество оборотов за одну минуту. Основное соотношение между параметрами шагового двигателя следующее.

шагов на каждую секунду = оборот в минуту x шагов на оборот / 60

Шаговый двигатель, взаимодействующий с микроконтроллером 8051

Шаговый двигатель, взаимодействующий с 8051, очень прост благодаря использованию трех режимов, таких как волновой привод, полный шаговый привод и полушаг привод, подавая 0 и 1 на четыре провода двигателя в зависимости от того, какой режим привода мы должны выбрать для работы этого двигателя.

Остальные два провода необходимо подключить к источнику напряжения. Здесь используется униполярный шаговый двигатель, где четыре конца катушек подключены к основным четырем контактам порта-2 в микроконтроллере с помощью ULN2003A.

Этот микроконтроллер не обеспечивает достаточный ток для управления катушками, поэтому IC драйвера тока любит ULN2003A. Необходимо использовать ULN2003A, который представляет собой набор из 7 пар NPN транзисторов Дарлингтона. Проектирование пары Дарлингтона может быть выполнено с помощью двух биполярных транзисторов, которые соединены для достижения максимального усиления тока.

В ИС драйвера ULN2003A входные контакты — 7, выходные контакты — 7, где два контакта предназначены для подключения питания и заземления. Здесь используются контакты с 4 входами и 4 выходами. В качестве альтернативы ULN2003A, L293D IC также используется для усиления тока.

Вам нужно очень внимательно следить за двумя общими проводами и четырьмя проводами катушки, иначе шаговый двигатель не будет вращаться. Это можно увидеть, измерив сопротивление с помощью мультиметра, но мультиметр не будет отображать никаких показаний между двумя фазами проводов.Как только общий провод и два других провода находятся в одинаковой фазе, он должен показывать одинаковое сопротивление, тогда как две конечные точки катушек в аналогичной фазе будут демонстрировать двойное сопротивление по сравнению с сопротивлением между общей точкой, а также одной конечной точкой.

Поиск и устранение неисправностей
  • Устранение неисправностей — это процесс проверки состояния двигателя, независимо от того, работает он или нет. Следующий контрольный список используется для поиска и устранения неисправностей шагового двигателя.
  • Сначала проверьте соединения, а также код цепи.
  • Если все в порядке, затем убедитесь, что двигатель получает надлежащее напряжение, иначе он просто вибрирует, но не вращается.
  • Если напряжение питания хорошее, проверьте конечные точки четырех катушек, связанных с ULN2003A IC.
  • Сначала найдите две общие конечные точки и подключите их к источнику питания 12 В, после этого подключите оставшиеся четыре провода к IC ULN2003A. Пока не запустится шаговый двигатель, попробуйте все возможные комбинации. Если это соединение неправильно, то этот двигатель будет вибрировать вместо вращения.
Могут ли шаговые двигатели работать непрерывно?

Как правило, все двигатели работают или вращаются непрерывно, но большинство двигателей не может остановиться, когда они находятся под напряжением. Когда вы пытаетесь ограничить вал двигателя, когда он находится под напряжением, он сгорит или сломается.

В качестве альтернативы шаговые двигатели разработаны так, чтобы делать дискретный шаг, а затем ждать там; снова шаг и оставайся там. Если мы хотим, чтобы двигатель оставался в одном месте на меньшее время, прежде чем снова сделать шаг, он будет выглядеть как непрерывно вращающийся.Энергопотребление этих двигателей велико, но рассеяние мощности в основном происходит, когда двигатель остановлен или неправильно спроектирован, тогда существует вероятность перегрева. По этой причине ток питания двигателя часто снижается, когда двигатель находится в удерживаемом положении в течение более длительного времени.

Основная причина в том, что когда двигатель вращается, его входная электрическая часть может быть изменена на механическую. Когда двигатель останавливается во время вращения, вся входная мощность может быть преобразована в тепло внутри катушки.

Преимущества

К преимуществам шагового двигателя относятся следующие.

  • Надежность
  • Простая конструкция
  • Может работать в системе управления без обратной связи
  • Низкие затраты на техническое обслуживание
  • Работает в любой ситуации
  • Высокая надежность
  • Угол поворота двигателя пропорционален входному импульсу .
  • Двигатель в состоянии покоя развивает полный крутящий момент.
  • Точное позиционирование и повторяемость движения, так как хорошие шаговые двигатели имеют точность 3–5% шага, и эта ошибка не накапливается от одного шага к другому.
  • Отличная реакция на пуск, остановку и движение задним ходом.
  • Очень надежен, так как в двигателе нет контактных щеток. Следовательно, срок службы двигателя просто зависит от срока службы подшипника.
  • Реакция двигателя на импульсы цифрового входа обеспечивает управление без обратной связи, что упрощает управление двигателем и снижает его стоимость.
  • Можно достичь очень низкоскоростного синхронного вращения с нагрузкой, непосредственно связанной с валом.
  • Может быть реализован широкий диапазон скоростей вращения, поскольку скорость пропорциональна частоте входных импульсов.

Недостатки

К недостаткам шагового двигателя можно отнести следующее.

  • Низкий КПД
  • Крутящий момент двигателя будет быстро снижаться со скоростью
  • Низкая точность
  • Обратная связь не используется для определения возможных пропущенных шагов
  • Малый крутящий момент относительно отношения инерции
  • Чрезвычайно шумный
  • Если двигатель не контролируется должным образом, тогда могут возникать резонансы.
  • Работа этого двигателя не из легких на очень высоких скоростях.
  • Требуется специальная цепь управления.
  • По сравнению с двигателями постоянного тока, он использует больший ток.

Применения

Применения шагового двигателя включают следующее.

  1. Промышленные машины — Шаговые двигатели используются в автомобильных датчиках и станках, автоматизированном производственном оборудовании.
  2. Security — новые продукты видеонаблюдения для индустрии безопасности.
  3. Медицина — Шаговые двигатели используются в медицинских сканерах, пробоотборниках, а также в цифровой стоматологической фотографии, жидкостных насосах, респираторах и оборудовании для анализа крови.
  4. Бытовая электроника — Шаговые двигатели в камерах для автоматической фокусировки и масштабирования цифровых камер.

А также есть приложения для бизнес-машин, приложения для компьютерной периферии.

Таким образом, это все об обзоре шагового двигателя, такого как конструкция, принцип работы, различия, преимущества, недостатки и области применения. Теперь у вас есть представление о типах супермоторов и их применении, если у вас есть какие-либо вопросы по этой теме или электрические и электронные проекты, оставьте комментарии ниже.

Photo Credit

Принцип работы шагового двигателя — ваше электрическое руководство

Привет друзья,

В этой статье я обсуждаю принцип работы шагового двигателя , его основы и приложения. Вы найдете это информативным и интересным. Так что продолжайте читать.

Как следует из названия, шаговый двигатель в пределах своего рабочего диапазона и возможностей запускается, останавливается, реверсирует и перемещается под заданным углом шага по командам от электронного логического контроллера.Другими словами, шаговый двигатель — это устройство, которое преобразует цифровые импульсы в точное угловое движение.

Шаговый двигатель — это двигатель постоянного тока с полем, размещенным на роторе в виде постоянных магнитов с двумя, тремя или четырьмя наборами катушек, называемых фазами, размещенными в статоре вокруг ротора. Обмотки подключены к внешнему логическому драйверу, который последовательно подает импульсы напряжения на обмотки. Двигатель реагирует на эти импульсы и по команде выполняет операции пуска, останова и реверса.

И ротор, и статор имеют определенное количество зубцов для соответствия расчетному углу шага. Угол шага определяется как угловое смещение ротора в ответ на каждый импульс.

Положение ротора зависит от угла шага и количества импульсов. Скорость вращения зависит от частоты импульсов (а не от напряжения питания), которые точно контролируются; Таким образом, шаговый двигатель является идеальным приводом для операций, связанных с точным позиционированием. В отличие от управляющих и серводвигателей, управляющая обмотка с обратной связью не требуется для замыкания контура и контроля положения и скорости ротора.

Принцип работы шагового двигателя поясняется на рисунке. Ротор занимает положение по возбуждению обмотки:

  • В положении (а) запитана только обмотка А .
  • В позиции (b) обе обмотки, A и B находятся под напряжением.
  • В положении (с) обмотка В запитана и так далее.

Из приведенного выше рисунка вы легко можете понять, что мы можем пошагово вращать ротор, подавая ток на катушки статора в определенной последовательности.Это то, что мы делаем с шаговыми двигателями. Подробную информацию о работе шагового двигателя вы можете найти в моей следующей статье.

Система шагового двигателя должна ускоряться и замедляться со скоростью, которая позволяет двигателю преодолевать инерцию системы. По этой причине роторы имеют меньший диаметр и большую длину. Если шаговый двигатель динамически перегружен, он будет скользить по фазе. Эти двигатели лучше всего подходят для применений, где нагрузки находятся в пределах мощности двигателя.

Удерживающий момент — это максимальный момент нагрузки, который может быть преодолен двигателем, не вызывая выскальзывания ротора из его устойчивого положения равновесия.

Шаговый двигатель работает точно и точно в широком диапазоне скоростей. Допуск точности — это максимальное отклонение от номинальных значений каждого смещения ротора в ответ на входной импульс в условиях холостого хода. Допуск точности обычно находится в диапазоне от 3 до 5%, и эта ошибка не суммируется.

Диапазон отклика шагового двигателя

Если частота переключения постепенно увеличивается, достигается точка, в которой любое дальнейшее увеличение частоты переключения не может разогнать двигатель от состояния покоя до синхронной скорости. Сообщается, что двигатель достиг скорости «втягивания». Двигатель может функционировать как шаговый двигатель, реагируя на команды пуска-останова только в пределах этой частоты переключения, также называемой «диапазоном реакции».

Если скорость переключения еще больше увеличивается, двигатель работает в диапазоне поворота, где он не реагирует на команды пуска и останова, но развивают достаточный крутящий момент для преодоления момента нагрузки.Дальнейшее увеличение частоты переключения приводит к сбиванию двигателя с толку.

Контроллер шагового двигателя

Блок-схема типичного контроллера шагового двигателя показана на рисунке. Обмотки запитываются в определенной последовательности с заданной скоростью. Поскольку выходные сигналы логических последовательностей слишком слабы для подачи питания на обмотки двигателя, они используются для управления тиристорами, которые, в свою очередь, подают питание на обмотки.

Резонанс в шаговом двигателе

Ротор колеблется из-за инерционного эффекта при каждом новом положении, и этот эффект более заметен на малых скоростях.Если частота шага соответствует одному из обратных пиков этих колебаний, двигатель может иногда возвращаться по фазе вместо шага вперед. Этот эффект известен как резонанс в шаговом двигателе и может нарушить работу. Самое простое решение — не работать вблизи зоны резонанса. Другие меры по преодолению проблемы:

  • Работа в полушаговом режиме.
  • Улучшенное демпфирование.
  • Использование демпфирующих резисторов между фазами.

Применение шаговых двигателей

Чаще всего шаговые двигатели применяются в кварцевых аналоговых часах. Благодаря простоте логического управления, точности и надежности, шаговые двигатели широко используются в периферийных устройствах компьютеров, в станках с ЧПУ, пультах дистанционного управления, контрольно-измерительных приборах и т. Д. Рентгеновские плоттеры, матричные принтеры, считывающие / записывающие головки гибких дисков и винчестерские диски используют шаговые двигатели в качестве приводов позиционирования.Двухфазные двигатели используются для приложений с очень низким крутящим моментом. В основном шаговые двигатели большей мощности бывают трех- или четырехфазными.

Также читайте: Как работает шаговый двигатель?

Спасибо, что прочитали о «принципе работы шагового двигателя».

Шаговый двигатель

: основы, типы и работа

Что такое шаговый двигатель?

Шаговый двигатель или шаговый двигатель — это бесщеточный синхронный двигатель, который делит полный оборот на несколько шагов.В отличие от бесщеточного двигателя постоянного тока, который непрерывно вращается при приложении к нему фиксированного напряжения постоянного тока, шаговый двигатель вращается с дискретными ступенчатыми углами. Таким образом, шаговые двигатели производятся с шагом на оборот 12, 24, 72, 144, 180 и 200, что дает углы шага 30, 15, 5, 2,5, 2 и 1,8 градуса на шаг. Шаговым двигателем можно управлять с обратной связью или без нее.

Рис.1: Изображение обычно используемого бесщеточного шагового двигателя постоянного тока

Как работает шаговый двигатель?

Шаговые двигатели работают по принципу электромагнетизма.Вал ротора из мягкого железа или магнитного поля окружен электромагнитными статорами. Ротор и статор имеют полюса, которые могут быть зубчатыми или нет, в зависимости от типа шагового двигателя. Когда статоры находятся под напряжением, ротор перемещается, чтобы выровнять себя вместе со статором (в случае шагового двигателя с постоянным магнитом) или перемещается, чтобы иметь минимальный зазор со статором (в случае шагового двигателя с переменным сопротивлением). Таким образом, статоры получают питание в последовательности для вращения шагового двигателя. Получите больше информации о работе шаговых двигателей с помощью интересных изображений на сайте Insight по шаговым двигателям.

Рис. 2: Общий обзор внутренней структуры и работы типичного шагового двигателя

Типы шаговых двигателей

По конструкции шаговые двигатели делятся на три основных класса:

1. Шаговый двигатель с постоянным магнитом

2. Шаговый двигатель с регулируемым сопротивлением

3. Гибридный шаговый двигатель

Эти три типа подробно описаны в следующих разделах.

Type1: постоянный магнит

1. Шаговый двигатель с постоянным магнитом :

Полюса ротора и статора шагового двигателя с постоянным магнитом не имеют зубцов. Вместо этого ротор имеет альтернативные северный и южный полюса, параллельные оси вала ротора.

Рис. 3: Схема двухфазного постоянного шагового двигателя в разрезе

Когда статор находится под напряжением, он развивает электромагнитные полюса.Магнитный ротор выравнивается по магнитному полю статора. Затем другой статор активируется в последовательности, так что ротор перемещается и выравнивается с новым магнитным полем. Таким образом, при подаче питания на статоры в фиксированной последовательности шаговый двигатель вращается на фиксированные углы.

Рис. 4: Схема, поясняющая работу шагового двигателя с постоянным магнитом

Разрешающая способность шагового двигателя с постоянным магнитом может быть увеличена путем увеличения числа полюсов в роторе или увеличения числа фаз.

Рис. 5: Рисунок, показывающий способы увеличения разрешения шагового двигателя с постоянным магнитом

Type2: переменное сопротивление

2. Шаговый двигатель с переменным сопротивлением :

Шаговый двигатель с регулируемым сопротивлением имеет зубчатый ротор из немагнитного мягкого железа. Когда катушка статора находится под напряжением, ротор перемещается, чтобы иметь минимальный зазор между статором и его зубьями.

Фиг.6: Принципиальная схема двухфазного шагового двигателя с переменным сопротивлением

Зубья ротора сконструированы таким образом, что, когда они совмещены с одним статором, они смещаются со следующим статором. Теперь, когда следующий статор находится под напряжением, ротор перемещается, чтобы выровнять свои зубья со следующим статором. Таким образом, включение статоров в фиксированной последовательности завершает вращение шагового двигателя.

Рис. 7: Схема, поясняющая работу шагового двигателя с переменным сопротивлением

Разрешающую способность шагового двигателя с регулируемым сопротивлением можно увеличить, увеличив количество зубцов в роторе и увеличив количество фаз.

Рис. 8: Рисунок, показывающий способы увеличения разрешения шагового двигателя с переменным сопротивлением

Type3: Гибрид

3. Гибридный шаговый двигатель :

Гибридный шаговый двигатель представляет собой комбинацию постоянного магнита и переменного магнитного сопротивления. Он имеет ротор с магнитными зубьями, который лучше направляет магнитный поток в предпочтительное место в воздушном зазоре.

Фиг.9: Конструкция двухфазного гибридного двигателя

Магнитный ротор имеет две чашки. Один для северных полюсов и второй для южных полюсов. Чашки ротора сконструированы таким образом, что северный и южный полюса располагаются поочередно. Оцените преимущества гибридного шагового двигателя.

Рис. 10: Схема, показывающая внутреннюю структуру магнитного ротора в гибридном двигателе

Гибридный двигатель вращается по тому же принципу, последовательно запитывая катушки статора.

Рис. 11: Схема, поясняющая работу гибридного шагового двигателя

Типы электропроводки

Типы обмоток и выводов

Шаговые двигатели в основном двухфазные. Они могут быть однополярными или биполярными. В униполярном шаговом двигателе по две обмотки на фазу. Две обмотки на полюс могут иметь один общий вывод, то есть с отводом по центру. У униполярного двигателя пять, шесть или восемь выводов.В конструкциях, где два общих полюса разделены, но имеют отводы по центру, двигатель имеет шесть выводов. Если центральные отводы двух полюсов внутри короткие, у двигателя пять выводов. Униполярный восьмиполюсный двигатель обеспечивает последовательное и параллельное соединение, тогда как пяти- и шестиполюсные двигатели имеют последовательное соединение обмоток статора. Униполярный двигатель упрощает работу, поскольку при работе с ними нет необходимости реверсировать ток в цепи управления. Их также называют бифилярными двигателями.

Рис.12: Схема подключения униполярного шагового двигателя с разными выводами

В биполярном шаговом двигателе одна обмотка на полюс. Направление тока должно быть изменено схемой управления, поэтому схема управления биполярным шаговым двигателем становится сложной. Их еще называют унифилярными двигателями.

Рис.13: Схема подключения биполярного шагового двигателя с выводами

Шаговые режимы

Существует три тактовых режима шагового двигателя.Шаговый режим относится к последовательности, в которой катушки статора находятся под напряжением.

1. Волновой привод (одна фаза включена одновременно)

2. Полный привод (одновременное включение двух фаз)

3. Полупривод (одновременное включение одной и двух фаз)

1. Волновой привод :

В пошаговом режиме волнового привода одновременно запитывается только одна фаза.

Рис.14: Схема пошагового режима волнового привода в шаговом двигателе

2. Полный привод :

При полном приводе одновременно запитаны две фазы.

Рис.15: Схема шагового режима полного привода в шаговом двигателе

3. Полупривод :

В полуприводе поочередно запитываются одна и две фазы. Это увеличивает разрешающую способность двигателя.

Рис.16: Схема тактового режима половинного привода в шаговом двигателе

]]>

]]>


В рубрике: Последние статьи
С тегами: гибрид, двигатель, постоянный магнит, шаговый двигатель, переменное сопротивление


Что такое шаговый двигатель?

Шаговый двигатель — это бесщеточный синхронный электродвигатель, который преобразует цифровые импульсы в механическое вращение вала.Его нормальное движение вала состоит из дискретных угловых движений.
движения практически одинаковой величины при управлении от последовательно переключаемого постоянного тока
источник питания.

Шаговый двигатель — это устройство цифрового ввода-вывода. Он особенно хорошо подходит для типа
приложение, в котором управляющие сигналы появляются в виде цифровых импульсов, а не аналоговых напряжений.

Один цифровой импульс на привод шагового двигателя или преобразователь заставляет двигатель увеличивать один точный
угол движения. По мере увеличения частоты цифровых импульсов шаговое движение меняется на
непрерывное вращение.

Некоторые промышленные и научные применения шаговых двигателей включают робототехнику, станки, механизмы захвата и размещения, автоматизированные машины для резки и склеивания проволоки и даже точные устройства управления потоками.

Как работает шаговый двигатель?

Каждый оборот шагового двигателя делится на дискретное количество шагов, во многих случаях 200 шагов, и для каждого шага двигателю необходимо посылать отдельный импульс.Шаговый двигатель может делать только один шаг за раз, и каждый шаг одинакового размера.

Поскольку каждый импульс заставляет двигатель вращаться на точный угол, обычно 1,8 °, положением двигателя можно управлять без какого-либо механизма обратной связи. По мере увеличения частоты цифровых импульсов шаговое движение переходит в непрерывное вращение, при этом скорость вращения прямо пропорциональна частоте импульсов.

Шаговые двигатели используются каждый день как в промышленных, так и в коммерческих целях из-за их низкой стоимости, высокой надежности, высокого крутящего момента на низких скоростях и простой, прочной конструкции, которая работает практически в любых условиях.

  • Угол поворота двигателя пропорционален входному импульсу.
  • Двигатель имеет полный крутящий момент в состоянии покоя (если обмотки находятся под напряжением).
  • Точное позиционирование и повторяемость движения, так как хорошие шаговые двигатели имеют точность от 3 до 5% шага, и эта ошибка не суммируется от одного шага к другому.
  • Отличная реакция на пуск / остановку / движение задним ходом.
  • Очень надежен, так как в двигателе нет контактных щеток. Следовательно, срок службы шагового двигателя просто зависит от срока службы подшипника.
  • Шаговые двигатели реагируют на цифровые входные импульсы, обеспечивая управление без обратной связи, что упрощает управление двигателем и снижает его стоимость.
  • Можно добиться синхронного вращения на очень низкой скорости с нагрузкой, непосредственно связанной с валом.
  • Может быть реализован широкий диапазон скоростей вращения, поскольку скорость пропорциональна частоте входных импульсов.

Выбор шагового двигателя и контроллера

Выбор шагового двигателя зависит от требований к крутящему моменту и скорости. Используйте кривую крутящий момент-скорость двигателя (указанную в технических характеристиках каждого привода), чтобы выбрать двигатель, который будет выполнять эту работу.

Каждый контроллер шагового двигателя в строке Omegamation показывает кривые крутящий момент-скорость для рекомендуемых двигателей этого привода.Если ваши требования к крутящему моменту и скорости могут быть удовлетворены с помощью нескольких шаговых двигателей, выберите контроллер, основанный на потребностях вашей системы движения — шаг / направление, автономный программируемый, аналоговые входы, микрошаговый — затем выберите один из рекомендуемых двигателей для этого контроллера. .

Список рекомендуемых двигателей основан на обширных испытаниях, проведенных производителем для обеспечения оптимальной производительности комбинации шагового двигателя и контроллера.

Типы шаговых двигателей

Существует три основных типа шаговых двигателей:

  • Активный ротор: шаговый двигатель с постоянными магнитами (PM)
  • Реактивный ротор: шаговый двигатель с регулируемым сопротивлением (VR)
  • Комбинация VR и PM: гибридный шаговый двигатель (HY)

Это бесщеточные электрические машины, которые вращаются под фиксированным углом.
увеличивается при подключении к последовательно переключаемому постоянному току.При использовании переменного тока вращение по существу
непрерывный.

Шаговый двигатель с постоянным магнитом

Этот тип шагового двигателя имеет ротор с постоянными магнитами. Статор
может быть аналогичен традиционному 2- или 3-фазному индуктивному
двигатель или сконструированный аналогично штампованному двигателю. Последний является
самый популярный тип шагового двигателя.

a.) Обычный постоянный магнит. На рисунке 1 показана схема обычного
шаговый двигатель с ротором с постоянными магнитами.2-х фазная обмотка
проиллюстрировано. На рисунке 1а показана фаза А.
запитан с положительной клеммы «A». Поле находится под углом 0 °.
Когда катушка намотана, как показано, северный полюс
ротор также находится на 0 °.

Вал совершает один оборот за каждый полный оборот
электромагнитного поля в этом двигателе. На рисунке 2 показан тот же шаговый двигатель с обеими обмотками под напряжением. Важный
разница здесь в том, что результирующее электромагнитное поле находится между
два полюса.На рисунке 2 поле переместилось на 45 ° от
поле на Рисунке 1.

Как и в схеме однофазного включения, вал завершает один
оборот за каждый полный оборот электромагнитного поля.
Должно быть очевидно, что этот мотор может полушага; т.е. шаг в малом
шаг шага. Это возможно за счет сочетания подачи питания
показано на Рисунке 1, с показанным на Рисунке 2. На Рисунке 3 показаны схемы
Шаговый двигатель с постоянными магнитами с полушаговым движением ротора.

Как и на предыдущих схемах, ротор и вал движутся через
тот же угол, что и поле. Обратите внимание, что каждый шаг приводил к повороту на 45 °.
вместо 90 ° на предыдущей диаграмме.
Шаговый двигатель с постоянным магнитом может быть намотан бифилярным двигателем.
обмотки, чтобы избежать необходимости обратной полярности
обмотка. На рисунке 4 показана бифилярная обмотка при
В таблице IV показана последовательность включения.

Бифилярные обмотки проще переключать с помощью транзисторного контроллера.Требуется меньше переключающих транзисторов.
б.) Штампованные или штабелированные шаговые двигатели с постоянными магнитами. В
самый популярный тип шагового двигателя с постоянным магнитом — это так
называется штампованным типом, зубчатым когтем, листовым металлом, жестяной банкой или просто
невысокая стоимость мотора. Этот мотор сложно проиллюстрировать наглядно
из-за того, как он построен.

Этот двигатель имеет пару катушек, окружающих ротор с постоянными магнитами.
Катушки заключены в корпус из мягкого железа с зубьями на
внутри реагирует с ротором.Каждый корпус катушки имеет одинаковый
количество зубьев как количество полюсов ротора. Корпуса
радиально смещены друг относительно друга на половину шага зубьев.

Шаговый двигатель с регулируемым сопротивлением

Этот тип шагового двигателя имеет электромагнитный статор с
ротор из магнитомягкого железа с зубьями и пазами, подобными ротору
ротор индукторного генератора. В то время как двигатели с постоянными магнитами в основном
Для 2-фазных машин, для двигателей VR требуется не менее 3-х фаз. Большинство VR
шаговые двигатели имеют 3 или 4 фазы, хотя 5-фазные двигатели VR
имеется в наличии.

В шаговом двигателе VR поле движется с другой скоростью, чем ротор.

Обратите внимание, что катушка фазы A имеет два
южные полюса и отсутствие северных полюсов для пути возврата потока. Вы можете отдохнуть
уверен, что будет один. Поток вернется через путь
наименьшего сопротивления, а именно через пары полюсов, которые являются ближайшими
до двух зубьев ротора. Это зависит от положения ротора. Поток индуцирует
напряжение в катушках, намотанных на полюс. Это вызывает ток в
обмотка, замедляющая ротор.Величина тока определяется
напряжение на катушке. Катушка с диодным зажимом будет иметь больше
тока, чем резисторный диод или обмотка с фиксатором стабилитрона.

Гибридный шаговый двигатель

Этот тип двигателя часто называют постоянным магнитом.
мотор. Он использует комбинацию постоянного магнита и переменного
структура сопротивления. Его конструкция аналогична конструкции
Индукционный двигатель.

Ротор имеет два
концевые детали (хомуты) с выступающими полюсами, расположенными на одинаковом расстоянии, но радиально
смещены друг от друга на половину шага зубьев.Круглый перманент
магнит разделяет их. Ярма имеют практически равномерный поток.
противоположной полярности. Статор изготовлен из многослойной стали.
Некоторые двигатели имеют 4 катушки.
в двух группах по 2 катушки последовательно. Одна пара катушек называется фазой A и
другая фаза B.

Число полных шагов на оборот может быть определено из
следующая формула:

SPR = NR x Ø

Где: SPR = количество шагов на оборот

NR = общее количество зубьев ротора (всего для
оба хомута)

Ø = количество фаз двигателя

или: NR = SPR / Ø

Они сконструированы с полюсами статора с несколькими зубьями и ротором с постоянными магнитами.Стандартные гибридные двигатели имеют 200 зубцов ротора и вращаются с шагом 1,8 °. Поскольку они демонстрируют высокий статический и динамический крутящий момент и работают с очень высокой частотой шагов, гибридные шаговые двигатели используются в широком спектре коммерческих приложений, включая компьютерные дисководы, принтеры / плоттеры и проигрыватели компакт-дисков.

Пошаговые режимы

«Шаговые режимы» шагового двигателя включают полный, половинный и микрошаговый. Тип выхода шагового режима любого шагового двигателя зависит от конструкции контроллера.Omegamation ™ предлагает приводы с шаговыми двигателями с переключаемыми полными и полушаговыми режимами, а также микрошаговые приводы с выбираемым переключателем или программно выбираемым разрешением.

Полный шаг

Стандартные гибридные шаговые двигатели имеют 200 зубцов ротора или 200 полных шагов на оборот вала двигателя. Разделение 200 шагов на 360 ° вращения равняется полному углу шага 1,8 °. Обычно режим полного шага достигается за счет подачи питания на обе обмотки при попеременном реверсировании тока.По сути, один цифровой импульс от драйвера эквивалентен одному шагу.

Полушаг

Полушаг просто означает, что шаговый двигатель вращается со скоростью 400 шагов за оборот. В этом режиме запитывается одна обмотка, а затем поочередно запитываются две обмотки, в результате чего ротор вращается на половину расстояния, или 0,9 °. Хотя он обеспечивает примерно на 30% меньше крутящего момента, полушаговый режим обеспечивает более плавное движение, чем полушаговый режим.

Microste

Микрошаговый двигатель — это относительно новая технология шагового двигателя, которая регулирует ток в обмотке двигателя до такой степени, что дополнительно подразделяет количество позиций между полюсами.Микрошаговые приводы

Omegamation способны разделять полный шаг (1,8 °) на 256 микрошагов, что дает 51 200 шагов на оборот (0,007 ° / шаг). Микрошаг обычно используется в приложениях, требующих точного позиционирования и более плавного движения в широком диапазоне скоростей. Как и полушаговый режим, микрошаговый режим обеспечивает примерно на 30% меньше крутящего момента, чем полушаговый режим.

Управление линейным шаговым двигателем

Вращательное движение шагового двигателя может быть преобразовано в линейное движение с помощью системы привода ходового винта / червячной передачи (см. Рисунок B).Шаг или шаг ходового винта — это линейное расстояние, пройденное за один оборот винта. Если шаг равен одному дюйму на оборот, и есть 200 полных шагов на оборот, то разрешение системы ходового винта составляет 0,005 дюйма на шаг. Еще более высокое разрешение возможно при использовании шагового двигателя / системы привода в микрошаговом режиме.
Серия

в сравнении с параллельным подключением

Есть два способа подключения шагового двигателя: последовательно или параллельно.Последовательное соединение обеспечивает высокую индуктивность и, следовательно, больший крутящий момент на низких скоростях. Параллельное соединение снижает индуктивность, что приводит к увеличению крутящего момента на более высоких скоростях.

Контроллер шагового двигателя Обзор технологии

Драйвер получает сигналы шага и направления от индексатора или контроллера шагового двигателя и преобразует их в электрические сигналы для запуска шагового двигателя. На каждую ступень вала двигателя требуется один импульс.

В полношаговом режиме со стандартным 200-шаговым двигателем требуется 200 шаговых импульсов для совершения одного оборота. Скорость вращения прямо пропорциональна частоте импульсов. Некоторые системы управления имеют встроенный генератор, который позволяет использовать внешний аналоговый сигнал или джойстик для установки скорости двигателя.

Скорость и крутящий момент шагового двигателя основаны на протекании тока от драйвера к обмотке двигателя. Фактор, который препятствует потоку или ограничивает время, необходимое току для возбуждения обмотки, известен как индуктивность.Влияние индуктивности, большинство типов цепей управления предназначены для подачи большего количества напряжения, чем номинальное напряжение двигателя.

Чем выше выходное напряжение контроллера, тем выше уровень крутящего момента в зависимости от скорости. Как правило, выходное напряжение драйвера (напряжение шины) должно быть в 5-20 раз выше номинального напряжения двигателя. Чтобы защитить двигатель от повреждения, привод шагового двигателя должен быть ограничен по току до номинального тока шагового двигателя.

Обзор контроллера шагового двигателя

Индексатор, или контроллер шагового двигателя, выдает драйверу выходные данные шага и направления. Для большинства приложений требуется, чтобы индексатор управлял и другими функциями управления, включая ускорение, замедление, количество шагов в секунду и расстояние. Индексатор также может взаимодействовать со многими другими внешними сигналами и управлять ими.

Связь с системой управления осуществляется через последовательный порт RS-232 и в некоторых случаях порт RS485.В любом случае контроллер шагового двигателя способен принимать высокоуровневые команды от главного компьютера и генерировать необходимые импульсы шага и направления для драйвера.

Контроллер включает в себя дополнительные входы / выходы для мониторинга входов от внешних источников, таких как пусковой, толчковый, исходный или концевой выключатель. Он также может запускать другие функции машины через выходные контакты ввода / вывода.

Автономная работа

В автономном режиме контроллер может работать независимо от главного компьютера.После загрузки в энергонезависимую память программы движения можно запускать с различных типов операторских интерфейсов, таких как клавиатура или сенсорный экран, или с переключателя через вспомогательные входы ввода / вывода.

Автономная система управления шаговым двигателем часто комплектуется драйвером, источником питания и дополнительной обратной связью энкодера для приложений с «замкнутым контуром», требующих обнаружения опрокидывания и точной компенсации положения двигателя.

Многоосевое управление

Многие приложения для управления движением требуют управления более чем одним шаговым двигателем.В таких случаях доступен контроллер многоосного шагового двигателя. К сетевому концентратору HUB 444, например, может быть подключено до четырех шаговых приводов, причем каждый привод подключен к отдельному шаговому двигателю. Сетевой концентратор обеспечивает согласованное перемещение приложений, требующих высокой степени синхронизации, например круговой или линейной интерполяции.

Что такое шаговый двигатель? Типы, конструкция, работа и применение

Типы шаговых двигателей — их конструкция, работа и применение

Изобретение специальных карт драйверов шаговых двигателей и других технологий цифрового управления для сопряжения шагового двигателя с системами на базе ПК являются причиной широкого распространения шаговых двигателей в последнее время.Шаговые двигатели становятся идеальным выбором для систем автоматизации, требующих точного управления скоростью или точного позиционирования, либо того и другого.

Поскольку мы знаем, что многие промышленные электродвигатели используются с управлением с обратной связью с обратной связью для достижения точного позиционирования или точного управления скоростью, с другой стороны, шаговый двигатель может работать с контроллером без обратной связи. Это, в свою очередь, снижает общую стоимость системы и упрощает конструкцию машины по сравнению с сервосистемой управления. Кратко остановимся на шаговом двигателе и его типах .

Что такое шаговый двигатель?

Шаговый двигатель — это бесщеточное электромеханическое устройство, которое преобразует последовательность электрических импульсов, приложенных к их обмоткам возбуждения, в точно определенное пошаговое механическое вращение вала. Вал двигателя вращается на фиксированный угол для каждого дискретного импульса. Это вращение может быть линейным или угловым, при вводе одиночного импульса происходит одно шаговое движение.

Когда применяется последовательность импульсов, она поворачивается на определенный угол.Угол поворота вала шагового двигателя для каждого импульса называется углом шага, который обычно выражается в градусах.

Количество входных импульсов, подаваемых на двигатель, определяет угол шага, и, следовательно, положение вала двигателя регулируется путем управления количеством импульсов. Эта уникальная особенность делает шаговый двигатель подходящим для системы управления без обратной связи, в которой точное положение вала поддерживается с помощью точного количества импульсов без использования датчика обратной связи.

Если угол шага меньше, тем больше будет количество шагов на оборот и выше будет точность полученного положения. Углы шага могут составлять от 90 градусов до 0,72 градуса, однако обычно используемые углы шага составляют 1,8 градуса, 2,5 градуса, 7,5 градуса и 15 градусов.

Направление вращения вала зависит от последовательности импульсов, подаваемых на статор. Скорость вала или средняя скорость двигателя прямо пропорциональна частоте (скорости входных импульсов) входных импульсов, подаваемых на обмотки возбуждения.Следовательно, если частота низкая, шаговый двигатель вращается ступенчато, а при высокой частоте он постоянно вращается, как двигатель постоянного тока, из-за инерции.

Как и все электродвигатели, он имеет статор и ротор. Ротор — подвижная часть, не имеющая обмоток, щеток и коллектора. Обычно роторы либо с переменным сопротивлением, либо с постоянными магнитами. Статор часто состоит из многополюсных и многофазных обмоток, обычно из трех или четырех фазных обмоток, намотанных на необходимое количество полюсов, определяемое желаемым угловым смещением на входной импульс.

В отличие от других двигателей, он работает с запрограммированными дискретными импульсами управления, которые подаются на обмотки статора через электронный привод. Вращение происходит за счет магнитного взаимодействия между полюсами последовательно включенной обмотки статора и полюсами ротора.

Конструкция шагового двигателя

На сегодняшнем рынке доступно несколько типов шаговых двигателей с широким диапазоном размеров, количества шагов, конструкций, проводки, передачи и других электрических характеристик.Поскольку эти двигатели могут работать в дискретном режиме, они хорошо подходят для взаимодействия с устройствами цифрового управления, такими как компьютеры.

Благодаря точному контролю скорости, вращения, направления и углового положения, они представляют особый интерес в системах управления производственными процессами, станках с ЧПУ, робототехнике, системах автоматизации производства и контрольно-измерительных приборах.

Типы шаговых двигателей

Существует три основных категории шаговых двигателей , а именно

  • Шаговый двигатель с постоянным магнитом
  • Шаговый двигатель с переменным сопротивлением
  • Гибридный шаговый двигатель Во всех этих двигателях в статоре используются обмотки возбуждения, где количество обмоток относится к количеству фаз.

    Напряжение постоянного тока применяется в качестве возбуждения к катушкам обмоток, и каждый вывод обмотки подключается к источнику через твердотельный переключатель. Конструкция его ротора зависит от типа шагового двигателя: ротор из мягкой стали с выступающими полюсами, цилиндрический ротор с постоянными магнитами и постоянный магнит с зубьями из мягкой стали. Обсудим эти типы подробнее.

    Шаговый двигатель с переменным сопротивлением

    Это базовый тип шагового двигателя , который существует уже долгое время и обеспечивает самый простой способ понять принцип работы с точки зрения конструкции.Как следует из названия, угловое положение ротора зависит от сопротивления магнитной цепи, образованной между полюсами (зубьями) статора и зубьями ротора.

    Шаговый двигатель с регулируемым сопротивлением

    Конструкция шагового двигателя с регулируемым сопротивлением

    Он состоит из статора с обмоткой и многозубого ротора из мягкого железа. Статор состоит из листов кремнистой стали, на которые намотаны обмотки статора. Обычно он наматывается на три фазы, которые распределяются между парами полюсов.

    Количество полюсов на статоре, сформированное таким образом, равно кратному количеству фаз, для которых обмотки намотаны на статоре. На рисунке ниже статор имеет 12 равноотстоящих полюсов, каждый из которых намотан возбуждающей катушкой. Эти три фазы запитываются от источника постоянного тока с помощью твердотельных переключателей.

    Ротор не имеет обмоток и является явнополюсным, полностью изготовленным из стальных пластин с прорезями. Выступающие зубья полюса ротора имеют такую ​​же ширину, как и зубцы статора.Число полюсов статора отличается от числа полюсов ротора, что обеспечивает возможность самозапуска и двунаправленного вращения двигателя.

    Отношение полюсов ротора к полюсам статора для трехфазного шагового двигателя определяется как Nr = Ns ± (Ns / q). Здесь Ns = 12 и q = 3, и, следовательно, Nr = 12 ± (12/3) = 16 или 8. Ниже показан 8-полюсный ротор без возбуждения.

    Конструкция шагового двигателя с переменным сопротивлением

    Работа шагового двигателя с переменным сопротивлением

    Шаговый двигатель работает по принципу , согласно которому ротор совмещается в определенном положении с зубцами полюса возбуждения в магнитной цепи с минимальным сопротивлением. путь существует.Всякий раз, когда к двигателю подается питание и возбуждая конкретную обмотку, он создает свое магнитное поле и развивает свои собственные магнитные полюса.

    Из-за остаточного магнетизма в полюсах магнита ротора это заставит ротор перемещаться в такое положение, чтобы достичь положения минимального сопротивления, и, следовательно, один набор полюсов ротора выровнен с набором полюсов статора под напряжением. В этом положении ось магнитного поля статора совпадает с осью, проходящей через любые два магнитных полюса ротора.

    Когда ротор совмещен с полюсами статора, он обладает достаточной магнитной силой, чтобы удерживать вал от перемещения в следующее положение по часовой стрелке или против часовой стрелки.

    Рассмотрим принципиальную схему трехфазного, 6 полюсов статора и 4 зубьев ротора, показанную на рисунке ниже. Когда фаза A-A ’снабжается источником постоянного тока путем замыкания переключателя -1, обмотка становится магнитом, в результате чего один зуб становится северным, а другой — южным. Таким образом, магнитная ось статора лежит вдоль этих полюсов.

    За счет силы притяжения, северный полюс обмотки статора притягивает ближайший зуб ротора противоположной полярности, то есть южный и южный полюс притягивают ближайший зуб ротора противоположной полярности, то есть север. Затем ротор настраивается в положение с минимальным сопротивлением, при котором магнитная ось ротора точно совпадает с магнитной осью статора.

    Работа шагового двигателя с переменным сопротивлением

    Когда фаза B-B ‘активируется включением переключателя -2, сохраняя фазу A-A’ обесточенной путем размыкания переключателя-1, обмотка B-B ‘будет создавать магнитный поток и, следовательно, магнитная ось статора смещается вдоль образованных им полюсов.Следовательно, ротор смещается в сторону наименьшего сопротивления с намагниченными зубьями статора и вращается на угол 30 градусов по часовой стрелке.

    Когда переключатель-3 находится под напряжением после размыкания переключателя-2, включается фаза C-C ’, зубья ротора выравниваются с новым положением, перемещаясь на дополнительный угол 30 градусов. Таким образом, ротор движется по часовой стрелке или против часовой стрелки, последовательно возбуждая обмотки статора в определенной последовательности. Угол шага этого 3-фазного 4-полюсного шагового двигателя с зубьями ротора выражается как 360 / (4 × 3) = 30 градусов (как угол шага = 360 / Nr × q).

    Угол шага можно еще больше уменьшить, увеличив количество полюсов на статоре и роторе, в этом случае двигатели часто имеют дополнительные фазные обмотки. Это также может быть достигнуто за счет принятия другой конструкции шаговых двигателей , такой как многостаковый механизм и редукторный механизм.

    Шаговый двигатель с постоянным магнитом

    Двигатель с постоянным магнитом, пожалуй, самый распространенный среди нескольких типов шаговых двигателей.Как следует из названия, он добавляет постоянные магниты в конструкцию двигателя. Этот тип шаговых двигателей также обозначается как мотор-накопитель или мотор-цилиндр . Главное достоинство этого мотора — невысокая стоимость изготовления. Этот тип двигателя имеет 48-24 шага на оборот.

    Шаговый двигатель с постоянным магнитом

    Конструкция Шаговый двигатель с постоянным магнитом

    В этом двигателе статор является многополюсным, и его конструкция аналогична конструкции шагового двигателя с переменным сопротивлением, как описано выше.Он состоит из периферии с прорезями, на которые намотаны катушки статора. Он имеет выступающие полюса на щелевой конструкции, где намотанные обмотки могут быть двух-, трех- или четырехфазными.

    Концевые выводы всех этих обмоток выкуплены и подключены к цепи возбуждения постоянного тока через твердотельные переключатели в цепи управления.

    Конструкция Шаговый двигатель с постоянным магнитом

    Ротор изготовлен из материала постоянного магнита, такого как феррит, который может иметь форму цилиндрического или выступающего полюса, но обычно это гладкий цилиндрический тип.Ротор спроектирован так, чтобы иметь четное количество полюсов постоянного магнита с чередованием северной и южной полярностей.

    Работа шагового двигателя с постоянным магнитом

    Принцип действия этого двигателя основан на том, что разные полюса притягиваются друг к другу, а подобные полюса отталкиваются. Когда обмотки статора возбуждаются источником постоянного тока, он создает магнитный поток и устанавливает северный и южный полюса. Из-за силы притяжения и отталкивания между полюсами ротора постоянного магнита и полюсами статора, ротор начинает двигаться вверх до положения, для которого на статор подаются импульсы.

    Рассмотрим двухфазный шаговый двигатель с двумя полюсами ротора с постоянными магнитами, как показано на рисунке ниже.

    Работа шагового двигателя с постоянным магнитом:

    Когда фаза A запитана плюсом по отношению к A ’, обмотки устанавливают северный и южный полюса. Из-за силы притяжения полюса ротора совпадают с полюсами статора, так что ось магнитного полюса ротора согласовывается с осью статора, как показано на рисунке.

    Когда возбуждение переключается на фазу B и отключается фаза A, ротор дополнительно настраивается на магнитную ось фазы B и, таким образом, поворачивается на 90 градусов по часовой стрелке.

    Затем, если фаза A питается отрицательным током по отношению к A ’, образование полюсов статора заставляет ротор перемещаться еще на 90 градусов по часовой стрелке.

    Таким же образом, если фаза B возбуждается отрицательным током путем замыкания переключателя фазы A, ротор поворачивается еще на 90 градусов в том же направлении. Затем, если фаза A возбуждается положительным током, ротор возвращается в исходное положение, совершая полный оборот на 360 градусов.Это означает, что всякий раз, когда статор возбужден, ротор стремится повернуться на 90 градусов по часовой стрелке.

    Угол шага этого 2-фазного 2-полюсного роторного двигателя с постоянными магнитами выражается как 360 / (2 × 2) = 90 градусов. Размер шага может быть уменьшен за счет одновременного включения двух фаз или последовательности режимов однофазного включения и двухфазного включения с правильной полярностью.

    Гибридный шаговый двигатель

    Это самый популярный тип шагового двигателя , поскольку он обеспечивает лучшую производительность, чем ротор с постоянными магнитами, с точки зрения шагового разрешения, удерживающего момента и скорости.Однако эти двигатели дороже шаговых двигателей с постоянными магнитами. Он сочетает в себе лучшие характеристики шаговых двигателей с переменным сопротивлением и шаговых двигателей с постоянными магнитами. Эти двигатели используются в приложениях, где требуется очень маленький шаговый угол, например 1,5, 1,8 и 2,5 градуса.

    Гибридный шаговый двигатель

    Конструкция гибридного шагового двигателя

    Статор этого двигателя такой же, как у его постоянного магнита или аналога реактивного типа. Катушки статора намотаны на чередующиеся полюсы.При этом катушки разных фаз намотаны на каждый полюс, обычно две катушки на полюсе, что называется бифилярным соединением.

    Ротор состоит из постоянного магнита, намагниченного в осевом направлении для создания пары магнитных полюсов (полюсов N и S). Каждый полюс покрыт равномерно расположенными зубцами. Зубья состоят из мягкой стали и двух секций, на каждом полюсе которых смещены друг к другу с шагом в половину зуба.

    Работа гибридного шагового двигателя

    Этот двигатель работает так же, как и шаговый двигатель с постоянными магнитами.На рисунке выше показан двухфазный, 4-полюсный гибридный шаговый двигатель с 6 зубьями. Когда фаза A-A ’возбуждается источником постоянного тока, сохраняя невозбужденный B-B’, ротор выравнивается так, что южный полюс ротора обращен к северному полюсу статора, а северный полюс ротора обращен к южному полюсу статора.

    Работа гибридного шагового двигателя

    Теперь, если фаза B-B ‘возбуждена, удерживая A-A’ выключенным таким образом, что верхний полюс становится северным, а нижний — южным, тогда ротор будет выровнен в новое положение на движение против часовой стрелки.Если фаза B-B ’возбуждается противоположно, так что верхний полюс становится южным, а нижний — северным, то ротор будет вращаться по часовой стрелке.

    При правильной последовательности импульсов на статор двигатель будет вращаться в желаемом направлении. При каждом возбуждении ротор блокируется в новом положении, и даже если возбуждение снимается, двигатель по-прежнему сохраняет заблокированное состояние из-за возбуждения постоянным магнитом. Угол шага этого 2-фазного, 4-полюсного, 6-зубчатого роторного двигателя составляет 360 / (2 × 6) = 30 градусов.На практике гибридные двигатели конструируются с большим количеством полюсов ротора, чтобы получить высокое угловое разрешение.

    Униполярные и биполярные шаговые двигатели

    Рассмотренные выше двигатели могут быть униполярными или биполярными в зависимости от расположения обмоток катушки. Используется униполярный двигатель с двумя обмотками на фазу, и, следовательно, направление тока через эти обмотки изменяет вращение двигателя. В этой конфигурации ток проходит в одном направлении в одной катушке и в противоположном направлении в другой катушке.

    На рисунке ниже показан двухфазный униполярный шаговый двигатель, в котором катушки A и C предназначены для одной фазы, а B и D — для другой фазы. В каждой фазе каждая катушка передает ток в направлении, противоположном направлению тока другой катушки. Только одна катушка будет пропускать ток в каждой фазе для достижения определенного направления вращения. Таким образом, просто переключая клеммы на каждую катушку, можно управлять направлением вращения.

    Работа двухфазного униполярного шагового двигателя

    В случае биполярного шагового двигателя каждая фаза состоит из одной обмотки, а не из двух в случае униполярной.В этом случае направление вращения регулируется путем изменения направления тока через обмотки. Следовательно, для реверсирования тока требуется сложная схема возбуждения.

    2-фазный биполярный шаговый двигатель

    Тактовые режимы шагового двигателя

    Типичное шаговое действие заставляет двигатель шагать через последовательность положений равновесия в ответ на подаваемые на него импульсы тока. Шаговое действие можно изменять по-разному, просто изменяя последовательность подачи питания на обмотки статора.Ниже приведены наиболее распространенные режимы работы или движения шаговых двигателей.

    1. Шаг волны
    2. Полный шаг
    3. Полушаг
    4. Микрошаг

    Режим шага волны

    Режим шага волны самый простой из всех других режимов, в которых только одна обмотка находится под напряжением в любой момент времени. Каждая катушка фазы поочередно подключается к источнику питания. В таблице ниже показан порядок включения катушек в 4-фазном шаговом двигателе.

    В этом режиме двигатель дает максимальный угол шага по сравнению со всеми другими режимами. Это самый простой и наиболее часто используемый режим для пошагового выполнения; однако создаваемый крутящий момент меньше, поскольку в данный момент используется некоторая часть всей обмотки.

    Режим полного шага

    В этом приводе или режиме две фазы статора возбуждаются одновременно в любой момент времени. Когда две фазы запитаны вместе, ротор будет испытывать крутящий момент от обеих фаз и придет в положение равновесия, которое будет чередоваться между двумя соседними положениями ступенек волны или однофазным возбуждением.Таким образом, этот шаг обеспечивает лучший удерживающий момент, чем волновой шаг. В таблице ниже показан полный шаговый привод для 4-фазного шагового двигателя.

    Полушаговый режим

    Это комбинация волнового и полушагового режимов. При этом однофазное и двухфазное возбуждение выполняются поочередно, то есть однофазное включение, двухфазное включение и так далее. Угол шага в этом режиме становится половиной полного угла шага. Этот режим привода имеет самый высокий крутящий момент и стабильность по сравнению со всеми другими режимами.Таблица, содержащая последовательность импульсов фазы для 4-фазного двигателя с полушагом, приведена ниже.

    Режим микрошага

    В этом режиме каждый шаг двигателя разделен на несколько небольших шагов, даже на сотни фиксированных положений, поэтому достигается большее разрешение позиционирования. При этом токи через обмотки постоянно меняются, чтобы получить очень маленькие шаги. При этом одновременно возбуждаются две фазы, но с разными токами в каждой фазе.

    Например, ток через фазу -1 поддерживается постоянным, в то время как ток через фазу 2 увеличивается пошагово до максимального значения тока, будь то отрицательное или положительное. Затем ток в фазе 1 постепенно уменьшается или увеличивается до нуля. Таким образом, двигатель будет производить шаг небольшого размера.

    Все эти пошаговые режимы могут быть получены с помощью каждого типа шагового двигателя, описанного выше. Однако направление тока в каждой обмотке во время этих этапов может изменяться в зависимости от типа двигателя, будь то однополярный или биполярный.

    Преимущества шагового двигателя

    • В состоянии покоя двигатель имеет полный крутящий момент. Неважно, нет ли момента или смены позиции.
    • Обладает хорошей реакцией на пуск, остановку и движение задним ходом.
    • Поскольку в шаговом двигателе нет контактных щеток, он надежен, а срок службы зависит от подшипников двигателя.
    • Угол поворота двигателя прямо пропорционален входным сигналам.
    • Это просто и менее затратно в управлении, поскольку двигатель обеспечивает управление без обратной связи при ответе на цифровые входные сигналы.
    • Скорость двигателя прямо пропорциональна частоте входных импульсов, таким образом можно достичь широкого диапазона скорости вращения.
    • Когда нагрузка приложена к валу, все еще возможно реализовать синхронное вращение с низкой скоростью.
    • Точное позиционирование и повторяемость движения хороши, так как имеет точность шага 3-5%, где погрешность не суммируется от одного шага к другому.
    • Шаговые двигатели более безопасны и дешевы (по сравнению с серводвигателями), имеют высокий крутящий момент на низких скоростях, высокую надежность и простую конструкцию, которая работает в любых условиях.

    Недостатки шаговых двигателей

    • Шаговые двигатели с низким КПД.
    • Имеет низкую точность.
    • Его крутящий момент очень быстро снижается со скоростью.
    • Поскольку шаговый двигатель работает в режиме управления без обратной связи, нет обратной связи, указывающей на возможные пропущенные шаги.
    • Он имеет низкое отношение крутящего момента к моменту инерции, что означает, что он не может очень быстро разгонять груз.
    • Они шумные.

    Применения шаговых двигателей

    • Шаговые двигатели используются в автоматизированном производственном оборудовании, автомобильных датчиках и промышленных машинах, таких как упаковка, этикетирование, наполнение и резка и т. Д.
    • Он широко используется в устройствах безопасности, таких как камеры безопасности и наблюдения.
    • В медицинской промышленности шаговые двигатели широко используются в образцах, цифровой стоматологической фотографии, респираторах, жидкостных насосах, оборудовании для анализа крови, медицинских сканерах и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *