22.11.2024

Схема включения p1014ap06: datasheet NCP1014AP06

Содержание

Применение контроллеров NCP101X/102X при разработке сетевых источников питания средней мощности

19 марта 2010

Разработка источника питания (ИП) является одним из самых ответственных этапов разработки электронной техники. От него напрямую зависят такие важные параметры, как рабочий диапазон входного напряжения, потребляемая мощность в дежурном режиме, габаритные размеры, надежность, электромагнитная совместимость и себестоимость. Однако на практике не всегда получается выделить достаточные ресурсы для выполнения этого этапа работ, т.к. большая часть времени затрачивается на реализацию функций электронного устройства. В таких условиях на выручку могут прийти готовые модули AC/DC- или DC/DC-преобразователей. Их применение позволяет свести до минимума затраты времени на проектирование, однако, ввиду сравнительно высокой стоимости, может сделать конечное решение неконкурентоспособным. Компромиссом в такой ситуации могут служить высокоинтегрированные контроллеры импульсных ИП, но при условии, что они отличаются приемлемой ценой, предельной простотой схемы включения и не требуют долгого обоснования параметров схемы включения. Сопутствующими бонусами такого выбора могут оказаться передовые рабочие характеристики, соответствие разнообразным регуляторным нормам и стандартам, возможность использования миниатюрных емкостных и индуктивных элементов и др.

Примером таких высокоинтегрированных контроллеров является семейство микросхем NCP101X/102X компании ON Semiconductor. Прототипом для их создания послужило еще одно семейство этой компании — NCP1200, широкая популярность которого стала ярким подтверждением правильности новой концепции построения контроллера, которая, несмотря на компактность его конструкции (восьмивыводной корпус), обеспечивает необходимую гибкость в решении различных задач проектирования ИП. Концепция компактности и гибкости была полностью воплощена и даже усилена в новых семействах контроллеров NCP101X/102X, принципиальное отличие которых заключается в дополнительной интеграции силового коммутатора на напряжение 700 В, что еще больше упростило схему включения.

Контроллеры NCP101X/102X изготавливаются в корпусах трех типов SOT-223, PDIP-7 и PDIP-7 GULLWING (см. рис. 1) с расположением выводов, показанном на рис. 2.

 

Конструкция и маркировка

 

Рис. 1. Конструкция и маркировка

 

Расположение выводов

 

 

Рис. 2. Расположение выводов

Последний корпус является особой версией PDIP-7 со специальной формовкой выводов, которая делает его пригодным для поверхностного монтажа. Типоразмер этих PDIP-корпусов полностью идентичен популярному корпусу PDIP-8, а отличие состоит лишь в физическом отсутствии одного вывода (6), что было сделано из соображений увеличения путей утечки вокруг высоковольтного вывода DRAIN (5). Представители семейств NCP101X/102X классифицированы по установленному внутреннему порогу ограничения тока через силовой коммутатор (см. таблицу 1), и таким образом каждый из них ориентирован на достижение определенного уровня выходной мощности ИП.

Таблица 1. Основные технические характеристики контроллеров NCP101X/102X  

Наименование RDSON, Ом FSW (ном.), кГц IP, мА IDSS1), мА Функция ограничения выходной мощности при повышенном сетевом напряжении Функция блокировки при недопустимом снижении сетевого напряжения Ориентировочная выходная
мощность2), Вт
Корпус
с DSS без DSS
230 В ±15% 100… 260 В 230 В ±15% 100… 260 В
NCP1010 2265/100/1301008,5НетНет4,224,227-выв. PDIP, 4-выв. SOT-223
NCP1011 2265/100/1302508,5НетНет10,64,910,64,97-выв. PDIP
(в т.ч. Gull Wing), 4-выв. SOT-223
NCP1012 1165/100/1302508НетНет10,64,910,64,97-выв. PDIP
(в т.ч. Gull Wing), 4-выв. SOT-223
NCP1013 1165/100/1303508НетНет14,86,814,86,87-выв. PDIP, 4-выв. SOT-223
NCP1014 1165/1004508НетНет17,37,8198,87-выв. PDIP
(в т.ч. Gull Wing), 4-выв. SOT-223
NCP1015 1165/1004508НетНет1461987-выв. PDIP, 4-выв. SOT-223
NCP1027 5,865/100800ЕстьЕсть  25157-выв. PDIP
NCP1028 5,865/100800ЕстьЕсть  25157-выв. PDIP
Примечание:
1) потребляемый ток при использовании питания по методу DSS;
2) температура окружающей среды 50°С, частота преобразования 65 кГц, открытая конструкция.

Каждый из представителей семейств также доступен в исполнениях с разной частотой преобразования, как указано в таблице 1. Кроме того, некоторые представители семейств отличаются реализацией отдельных функций, а в целом семейство NCP102X характеризуется усиленными функциями защиты. Однако прежде чем говорить об отличиях, рассмотрим базовый набор особенностей и функций всех контроллеров.

 

Общие особенности NCP101X/102X

  • В схему встроен 700-вольтовый MOSFET-транзистор с малым сопротивлением открытого канала.
  • Реализовано токовое управление преобразованием на фиксированной частоте.
  • В целях снижения электромагнитных излучений частота преобразования колеблется в пределах ±3…6% относительно ее предустановленного значения, тем самым размывая мощность излучаемых помех в пределах определенного частотного диапазона.
  • Возможна работа с пропуском циклов ШИМ при малых нагрузках и, как следствие, высокий КПД во всем диапазоне нагружения и малая потребляемая мощность на холостом ходу (менее 100 мВт).
  • Переход в режим пропуска импульсов осуществляется только тогда, когда потребность в пиковом токе (IP) станет ниже 1/4 от внутреннего заданного порога, что исключает проблему генерации акустического шума даже при использовании недорогих моделей импульсных трансформаторов.
  • Встроенная высоковольтная схема запуска способна обеспечить непрерывность питания микросхемы и избавить от необходимости применения трансформатора с третьей вспомогательной обмоткой для питания контроллера после его запуска. Такой способ электропитания описан производителем как DSS (от Dynamic Self-Supply, т.е. автономное динамическое питание), однако его использование неизбежно ограничивает выходную мощность ИП вследствие ограничения заполнения импульсов до 45%. По этой причине использование DSS у NCP102x, ввиду их ориентированности на более мощные ИП, является нецелесообразным.
  • Реализована функция защиты от короткого замыкания на выходе с автоматической разблокировкой после устранения короткого замыкания (реализована путем непрерывного контроля уровня напряжения на входе FB, который при коротком замыкании становится завышенным).
  • Имеется функция плавного старта (1мс).
  • Имеется функция защиты от перегрева.
  • Вывод обратной связи по напряжению (FB) напрямую подключается к выходной части транзисторной оптопары.

 

Отличия NCP1010-1014 от NCP1015

По набору особенностей контроллер NCP1015 полностью идентичен остальным представителям семейства NCP101x за одним единственным исключением — он не поддерживает функции блокировки при перенапряжении на выводе VCC. Данная функция важна в ИП, где в целях повышения выходной мощности и снижения потребляемой на холостом ходу мощности взамен DSS используется питание вывода VCC через вспомогательную обмотку. При возникновении обрыва в цепи обратной связи по напряжению (который ведет к опасному росту всех выходных напряжений) в случае NCP1010-1014 произойдет блокировка контроллера, при этом его разблокировка возможна только повторной подачей питания. В случае NCP1015 блокировка не произойдет, а защитное действие ограничится лишь отсечкой избыточного напряжения на выводе VCC встроенным стабилитроном.

 

Отличия NCP1027 и NCP1028

В продолжение темы защиты от перенапряжения, реализованной через вывод VCC, следует отметить, что идентичные отличия имеют место и между контроллерами NCP102x. NCP1028 не поддерживает данной функции, а у NCP1027 она поддерживается, но отличным от NCP1010-1014 образом. В случае NCP1027 разблокировка происходит автоматически, не требуя повторной подачи питания.

 

Отличия NCP101x и NCP102x

NCP102x поддерживают дополнительные функции, для которых выделены три отдельных вывода: RC, BO и OPP. Вывод RC относится к функции компенсации пилообразным сигналом. Данный вывод предназначен для управления наклоном этого сигнала путем установки внешнего резистора требуемого номинала между RC и GND. Потребность в такой функции возникает в ИП, выполненных по топологии с непрерывной проводимостью (CCM), т.к. применение в нем контроллера, использующего токовое управление преобразованием, может привести к субгармоническим колебаниям. Если потребность в данной функции отсутствует, вывод RC необходимо соединить с VCC. Другая особенность NCP102x — функция блокировки при снижении напряжения, которой можно управлять через вывод BO путем подключения резистивного делителя напряжения к выпрямленному сетевому напряжению. Если напряжение на этом выводе становится ниже порогового уровня, выходной коммутатор переходит в отключенное состояние. Как только сетевое напряжение возвратится в нормальный диапазон, контроллер возобновит работу. Вывод BO также имеет альтернативное назначение. Его можно использовать для необратимой блокировки контроллера. Для этого на BO необходимо подать внешнее напряжение выше 3,5 В. В этом случае контроллер полностью заблокируется, а его разблокировка возможна только повторной подачей сетевого напряжения. Совместное использование рассмотренных возможностей вывода BO иллюстрирует рис. 3.

 

Пример использования возможностей вывода BO

 

Рис. 3. Пример использования возможностей вывода BO

 

Здесь порог блокировки при снижении напряжения задается резисторами RUPPER и RLOWER. Дополнительно предусмотрен транзистор Q1, который в случае отпирания подает напряжение VCC на вывод BO и, таким образом, необратимо блокирует контроллер. Условиями отпирания транзистора являются снижение сопротивления терморезистора в случае недопустимого превышения окружающей температуры или отпирание транзисторной оптопары в случае выявленного (с более высокой точностью, чем через вывод VCC) перенапряжения на выходе. Наконец третья особенность NCP102x — функция компенсации роста выходной мощности при повышенном сетевом напряжении. Необходимость в такой функции вызвана задержкой в обнаружении достижения током, протекающим через коммутатор, предустановленного пикового значения и, как следствие, кратковременное превышение этого значения. При работе ИП с напряжением, близким к верхней границе его рабочего диапазона, это может привести к нежелательному повышению выходной мощности. Чтобы исключить такой рост мощности, к выводу OPP подключается делитель выпрямленного сетевого напряжения (схема идентична выводу BO) с требуемыми параметрами. Если потребность в этой функции отсутствует, вывод OPP необходимо подключить к цепи GND.

Еще одно важное преимущество контроллеров NCP101x/NCP102x — доступность обширной технической поддержки в виде оценочных плат (см. таблицу 2, рис. 5 и 6; доступны для заказа через КОМПЭЛ), документации к ним и рекомендаций по применению (AND8125/D, AND8134/D, AND8142-D). Эти рекомендации дают исчерпывающие ответы на вопросы, связанные с применением контроллеров, и обоснования параметров схемы их включения в конкретном применении. Также следует обратить внимание на доступность SPICE-моделей контроллеров, которые дают возможность проверить выполненные расчеты с помощью схемного симулятора.

Таблица 2. Обзор оценочных плат  

Код заказа Наименование Краткое описание
NCP1012GEVB Оценочная плата импульсного ИП на основе NCP1012Плата демонстрирует реализацию импульсного ИП с универсальным сетевым входом (127/220 В) и выходной мощностью 6,5 Вт. КПД изменяется в пределах 75,7…76,5% при работе с входным напряжением 100…230 В. Здесь также демонстрируется преимущество метода DSS, который позволяет использовать более простой (двухобмоточный) импульсный трансформатор.
NCP1013ADAPEVB Оценочная плата сетевого адаптера мощностью 6 или 12 Вт на основе NCP1013На плате собран импульсный ИП с универсальным сетевым входом и выходом 12/0,65 В/А. На плате предусмотрена перемычка, которая позволяет сделать выбор: использовать DSS или питаться от вспомогательной обмотки. Это дает возможность сопоставить изменение выходной мощности и потребляемой мощности на холостом ходу при одном и другом способе организации питания контроллера.
NCP1013LEDGEVB Драйвер светодиодов мощностью 5 Вт на основе NCP1013Плата демонстрирует преимущества использования контроллеров NCP101x/102x в качестве стабилизатора постоянного тока, которые находят широкое применение в светодиодной светотехнике. К числу преимуществ относятся: широкий входной диапазон, малые размеры и себестоимость, высокий КПД, нечувствительность к колебаниям сетевого напряжения и высокая надежность.
NCP1014LEDGTGEVB Драйвер светодиодов мощностью 8 Вт с входом 90…305 В и коэффициентом мощности 0,8Демонстрируется, как добиться соответствия требованию Energy Star к коэффициенту мощности светодиодных осветительных устройств (>0,7). Выходная мощность драйвера 8 Вт делает его идеальным для совместной работы с такими светодиодами как Cree XLAMP(R) MC-E, которые в одном корпусе интегрируют 4 светодиода. Величина выходного тока установлена на уровне 630 мА, но ее можно легко изменить заменой токоизмерительного резистора на другой подходящего номинала.
NCP1014LEDR2GEVB Драйвер светодиодов мощностью 8 Вт с входом 90…265 ВЕще одна демонстрация драйвера светодиодов мощностью 8 Вт с другими выходными параметрами: ток стабилизируется на уровне 360 мА, а в случае обрыва нагрузки напряжение ограничивается на уровне 24 В.
NCP1014STBUCGEVB Понижающий неизолированный AC/DC-преобразователь с универсальным сетевым входом и выходом 12/200 В/мАПоказывается возможность реализации простого неизолированного AC/DC-преобразователя по понижающей топологии (BUCK).
NCP1027ATXGEVB Вспомогательный блок питания мощностью 10 Вт на основе NCP1027Данная плата демонстрирует еще один из возможных вариантов применения контроллеров NCP101x/102x: канал вспомогательного питания в составе более мощного источника питания (например, компьютера). Плату также можно рассматривать в качестве примера применения NCP1027 в стабилизаторе напряжения с выходом 5/2 В/А.
NCP1028LEDGEVB Драйвер светодиодов с током управления 720 мА и ограничением напряжением на уровне 18 ВСамая мощная версия драйвера светодиодов среди представленных здесь, выполненная на основе NCP1028.

Убедиться в преимуществах рассмотренных контроллеров и в простоте схемной реализации поможет рис. 4, где представлена схема импульсного ИП (соответствует схеме NCP1012GEVB) с универсальным сетевым входом и выходной мощностью 6,5 Вт.

 

Схема импульсного ИП мощностью 6,5 Вт

 

Рис. 4. Схема импульсного ИП мощностью 6,5 Вт

 

Оценочная плата импульсного ИП на основе NCP1012

 

Рис. 5. Оценочная плата импульсного ИП на основе NCP1012 

 

Драйвер светодиодов с током управления 720 мА и ограничением напряжением на уровне 18 В

 

Рис. 6. Драйвер светодиодов с током управления 720 мА и ограничением напряжением на уровне 18 В

 

 

Заключение

Микросхемы NCP101X/102X — идеальный выбор для тех, кто в кратчайшие сроки нуждается в разработке импульсного сетевого источника питания средней мощности (до 25 Вт), сочетающего такие особенности как простота реализации, высокая эффективность и надежность, малое занимаемое пространство и отличные характеристики электромагнитной совместимости. Микросхемы доступны в исполнениях с разными частотами преобразования, максимальными токами выходного коммутатора и особенностями защитных функций, но при этом остаются совместимыми по расположению выводов, что дает дополнительную гибкость в оптимизации себестоимости и размеров источника питания в зависимости от его выходной мощности и рабочих условий.

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

 

Драйвер светодиодов с током управления 720 мА и ограничением напряжением на уровне 18 В

 

•••

Наши информационные каналы

ШИМ, DC-DC аналоги и замена с переделкой и без. — Page 3 — Систематизированная полезная информация

TD1410  

Hidden Content



    Reply to this topic to see the hidden content.

DC/DC 2A 380KHZ 20V SOIC-8

Аналоги :

BM1410A, AP1512, AP1513, RM1410, GT1510, EC9410, EC9410C, SD46520, ACT4060, и.т.д

 

 

OB2358AP  

Hidden Content



    Reply to this topic to see the hidden content.

Шим  — 650V  20W  4A

Аналоги :

RM6222D,SW2658 A,CR5228,CR5224,Viper12,Viper22,LY9606 и.т.д

 

Hidden Content



    Reply to this topic to see the hidden content.

  на 

Hidden Content



    Reply to this topic to see the hidden content.

Hidden Content



    Reply to this topic to see the hidden content.

Hidden Content



    Reply to this topic to see the hidden content.

Hidden Content



    Reply to this topic to see the hidden content.

 

TNY268PN  

Hidden Content



    Reply to this topic to see the hidden content.

Часто применяемая шим микросхема.

Аналоги — TNY267,NCP1014AP10 , TNY266,MIP0255,MIP0254,SDH0265RN FSDH0270RNB FSDM0265RNB. FSQ0265RN. FSQ0270RNA .VIPer22ADIP, VIPer20ADIP

У NCP1014AP10 частота ниже 100 кгц

 

XL1513E1

DC/DC 380kHZ 2A 18V SO-8

Аналоги :

BM1410A, AP1512, AP1513, RM1410, GT1510, EC9410, EC9410C, SD46520, ACT4060

Hidden Content



    Reply to this topic to see the hidden content.

Блоки питания, маленькие и очень маленькие

Блоки питания бывают не только на большую мощность, а и совсем маленькие, но от этого не менее полезные.
Сегодня у меня на «операционном столе» четыре представителя этого класса блоков питания, но испытания у них будут такие же как всегда.

Иногда возникает ситуация, когда необходим совсем маломощный блок питания. Например питания совсем маломощного устройства, датчика, ардуино подобного устройства или тому подобного.
Можно конечно поставить большой блок питания, но тогда устройство заметно вырастает в габаритах, потому применяют малогабаритные и соответственно маломощные блоки питания.

Впрочем тесты будут стандартные, как и сам стиль обзора.

Но начну я сегодня не с упаковки, а с того, как эти БП (как минимум пара из них) путешествовали ко мне.

Так получилось, что я изначально отобрал для обзора несколько наиболее интересных на мой взгляд блоков питания, сразу пришли не все, но первая пара была отправлена DHLем за компанию с другим товаром.
Я был несколько удивлен маршрутом их «странствования», хотя пришли они как было заявлено.
Вообще я думал что DHL это фирма с более развитой логистикой, а в итоге они даже мою фамилию написали неправильно, хотя во всех документах она была указана корректно.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие

Совсем немного об упаковке, чтобы не отвлекать от остального, спрячу под спойлер.
Все платы были упакованы в герметичные антистатические пакетики, три одноразовых, а один с защелкой.
Что странно, дата отправки стоит почти на всех одна и та же, но пришли они с разницей в полтора месяца О_оБлоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие

Блоки питания действительно очень маленькие. Размеры я приведу по ходу обзора для каждой платы индивидуально, а пока общее фото в сравнении с известным спичечным коробком 🙂Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Для начала самый маломощный представитель.
Ссылка на товар в магазине, цена $3.89.
Сразу сделаю общий комментарий. В магазине предоставлена не вся информация, указанная ниже найдена на других сайтах, но вполне реальна.

Заявлены следующие характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 12V
Выходной ток — 83mA
Мощность нагрузки — 1W
КПД — 80%
Точность поддержания выходного напряжения ±10%
Уровень пульсаций — не более 100мВ
Защита от КЗ и перегрузки выхода с автовосстановлением.
Размеры платы — 26 х 24 х 12мм без выводов, с выводами 26 х 33 х 12мм
расстояние между выводами 220В — 5мм, 12В — 2.5мм, но между входом и выходом расстояние не кратно 2.5мм и составляет 14.3мм

На плате отсутствует предохранитель и входной и выходной фильтры, конструкция предельно простая.
Входной конденсатор 2.2 мкФ (реально 1.9), выходной — 220мкФ (реально 183). Емкость достаточна для нормальной работы.
ШИМ контроллер OB2535, максимальная мощность 5 Ватт.

Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Практически все резисторы установлены точные, качество пайки нормальное, замечаний внешне не возникло, параллельно выходному конденсатору установлен керамический.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Схема данного блока питания.
Как я выше писал, это самый простой блок питания из четырех, он не имеет большинства узлов, свойственных большим БП, сделано это в угоду уменьшения размеров.
В данном блоке питания нет привычной цепи обратной связи с оптроном, на таких маленьких мощностях это вполне оправдано. Но на самом деле измерение выходного напряжения есть, хоть и косвенное. Измерение происходит на обмотке питания микросхемы.
Микросхема может работать в двух режимах — стабилизатора напряжения и стабилизатора тока.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Под вторым номером идет немного более мощный блок питания.
Ссылка на товар в магазине, цена $2.72.
Если первый был на одно из самых распространенных напряжений, то этот имеет на выходе гораздо более редкое напряжение в 24 Вольта. Хотя судя по маркировке, есть версия и на 12 Вольт.
Заявленные характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 24V (существует версия 12 В 400мА и 3.3В 500мА)
Выходной ток — 200mA
Мощность нагрузки — 4,8W
КПД — 85%
Уровень пульсаций — не более 100мВ
Размеры платы — 41 х 15 х 17ммБлоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Что интересно, трансформатор на этой плате стоит меньше по габаритам чем на предыдущей, но мощность заявлена заметно больше.
ШИМ контроллер со встроенным высоковольтным транзистором, наименование — THX208, заявленная в даташите мощность 4 Ватта при входном диапазоне 85 ~ 264V. Негусто, так как заявленная мощность БП — 4.8 Ватта.
Входной фильтр и предохранитель отсутствуют, вместо предохранителя стоит перемычка размера 0805. Выходной фильтр также не наблюдается.
Входной конденсатор 4.7мкФ (реально 4.2), выходной 220мкФ (реально 242). Входной совсем впритык, выходной соответствует выходному току.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Все резисторы применены точные, по крайней мере имеют соответствующую маркировку. Это радует, так как применение обычных резисторов обычно чревато уходом выходного напряжения по мере прогрева платы.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
В данном варианте уже присутствует обратная связь с применением оптрона и нормальная цепь измерения выходного напряжения с применением стабилитрона TL431.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Третий товарищ смог меня удивить уже на этапе внешнего осмотра, но об этом чуть позже.
Ссылка на товар в магазине, цена $3.05.
Этот БП имеет довольно распространенное напряжение в 5 Вольт. в принципе я 5 Вольт БП и выбирал для обзора именно потому, что они могут быть довольно востребованными, так как сейчас это напряжение используется во многих местах.

Заявленные характеристики.
Входное напряжение — AC 85V — 265V
Выходное напряжение — 5V
Выходной ток — 1000mA
Мощность нагрузки — 5W
КПД — 85%
Точность поддержания выходного напряжения ±0.1V
Уровень пульсаций — не более 150мВ
Размеры платы — 52 х 24 х 18мм

Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
У этого блока питания отсутствует предохранитель (вместо него перемычка 0 Ом), но уже есть входной и выходной фильтр и резистор ограничивающий пусковой ток.
В блоке питания применен ШИМ контроллер AP8012, который имеет встроенный высоковольтный транзистор. мощность данного ШИМ контроллера составляет 5 Ватт (для данного размера микросхемы и диапазона входного напряжения). Также впритык, но тесты покажут кто есть кто.
На этой плате уже присутствует помехоподавляющий конденсатор, причем Y1 класса, как и положено.
БП пришел с небольшим повреждением, на дросселе отломился кусочек пластмассы, так как он был в пакете, то скорее всего «постаралась» почта.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Но удивило меня другое. Я обозревал кучу разных блоков питания, но варистор по входу вижу в них впервые (может во второй раз, не уверен), да еще в таком мелком БП. В мощных и более дорогих БП нет, а здесь поставили, предохранитель бы ему еще 🙁
Входной конденсатор емкостью 4.7мкФ (реально 4.2), выходные 2шт 1000мкФ 10В (реально 2х 1095). Присутствует выходной помехоподавляющий дроссель.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Печатная плата. Как и в прошлых блоках питания, здесь производитель также применил точные резисторы, радует 🙂
Пайка в целом нормальная, плата чистая.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
В схеме нет ничего нового, классика как она есть, фильтр, ШИМ контролер, TL431 на выходе.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Ну и четвертый БП.
Ссылка на товар в магазине, цена $4.17.
Этот блок питания немного выбивается из общей картины, так как имеет мощность и габариты заметно больше чем у предыдущих, но меня неоднократно спрашивали про БП с такими характеристиками, поэтому я решил добавить к обзору и его.

Для начала характеристики:
Входное напряжение — AC 85V — 265V
Выходное напряжение — 5V
Выходной ток — 2000mA (кратковременный 2500мА)
Мощность нагрузки — 10W (макс 11 Ватт)
КПД — 85%
Точность поддержания выходного напряжения ±0,1V
Размеры платы — 60 х 31 х 20мм

Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Первая плата из обозреваемых, на которой присутствует полноценный предохранитель.
Также установлен входной и выходной помехоподавляющие дроссели и термистор для ограничения пускового тока.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
На этой плате установлен уже более мощный диод, также присутствует помехоподавляющий конденсатор Y1 класса (маркировка на фото не попала).
Входной конденсатор емкостью 15мкФ (реально 15.2) и выходные суммарной емкостью 2000мкФ (реально 2110). Емкость соответствует требуемой.
В этом БП уже применили маломощный ШИМ контроллер с внешним полевым транзистором, это обусловлено отчасти тем, что мощность Бп все таки больше чем у предыдущих.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Как и в предыдущих БП, резисторы применены точные, но почему то в районе выходного разъема присутствуют следы пайки, хотя в целом плата чистая и аккуратная.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Что интересно, в выходной цепи есть место под дополнительный резистор, включенный параллельно нижнему резистору делителя обратной связи. Устанавливая резистор на это место можно поднять выходное напряжение.
ШИМ контроллер я не опознал, но скорее всего это 63D12, ближайший аналог FAN6862Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Схема очень похожа на один из блоков питания, который я обозревал ранее, почти 1 в 1, отличие только в номиналах некоторых элементов.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Так, внешне осмотрели, теперь пора бы перейти и к тестам.
В этот раз я буду использовать простенькую электронную нагрузку, так как не вижу смысла в применении мощной, тем более что она довольно сильно шумит, а тесты предполагали быть долгими.
Тестировать БП я буду в том же порядке, что и описывал выше, но методика тестирования будет немного отличаться от то, что я использовал в предыдущих обзорах.
Так как БП маленькие, то методика была такая:
Проверка в режиме ХХ (а точнее при токе в 20мА), после этого 15 минут тест с нагрузкой в 50%, измерение температур, тест с нагрузкой 100%, измерение температур.
Дальше повышение нагрузки пока не наступит одно из ограничений (перегрузка, перегрев или выход БП из строя).
Все результаты потом будут сведены в одну таблицу.Итак первый БП, 12 Вольт 1 Ватт.
1. Ток нагрузки 20мА (для БП такой мощности тяжело назвать это режимом холостого хода).
2. Ток нагрузки 50мА, напряжение чуть поднялось, но в целом все нормальноБлоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
1. Ток нагрузки 100мА, пульсации выросли до 80мВ, но в остальном изменений нет.
2. Ток нагрузки 150мА, пульсации 90мВ (заявлено макс 100), напряжение неизменно.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
1. Ток нагрузки 200мА, пульсации 100мВ, напряжение 12.1.
2. Ток нагрузки 250мА, пульсации 100мВ, напряжение 12.1Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Если честно, то этот БП меня не просто удивил. при такой простоте схемотехники и таких выходных параметрах он меня поразил.
БП сдался только при токе более 250мА, это в 3 раза больше заявленного тока, при этом БП был холодным и пульсации не превышали заявленные.
При превышении тока в 250мА напряжение на выходе падает резко, срабатывает защита от перегрузки, при уменьшении тока напряжение восстанавливается.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Второй БП, 24 Вольт 200мА, 4.8 Ватта
1. Ток нагрузки 20мА. напряжение немного занижено и составило 23.6 Вольта
2. Ток нагрузки 100мА, пульсации 70мВ. напряжение неизменноБлоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
1. Ток нагрузки 200мА, это 100% мощности, пульсации 80-90мВ, но вполне в пределах допустимого, особенно с учетом того, что фильтра по выходу БП нет.
2. Ток нагрузки 260мА. это предельный ток для этого БП.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Выше я написал что предельный ток 260мА. Если повышать ток нагрузки, то этот БП не уходит в защиту с отключением выхода, а просто начинает снижать выходное напряжение. 260мА это порог когда напряжение на выходе неизменно.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Третий БП. 5 Вольт, 1 Ампер, 5 Ватт.
Этот БП имеет на выходе помехоподавляющий дроссель, что должно положительно сказаться на уровне пульсаций.
1. Ток нагрузки 20мА, напряжение 4.98 Вольта, пульсации минимальны.
2. Ток нагрузки 500мА, напряжение немного снизилось. Часть напряжения упала на проводах (в этот раз я измерял уже после проводов), в таблице напряжение будет скорректировано с учетом этой погрешности измерения.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
1. Ток нагрузки 1 Ампер, 100% мощности, все параметры в норме.
2. Ток нагрузки 1.5 Ампера. Выходное напряжение опустилось чуть ниже заявленного значения, но БП работает с полуторакратной перегрузкой, так что все нормально.
Пульсации немного выросли, но в данном случае начала сказываться низкая емкость входного электролита. Это видно по осциллограмме, пульсации не ВЧ, а НЧ. Если немного увеличить емкость входного конденсатора, то даже при таком токе будет нормально.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Четвертый БП, 5 Вольт, 2 Ампера, 10 Ватт.
1. Ток нагрузки 20мА (вот для этого БП это точно режим холостого хода).
2. Ток нагрузки 1 Ампер, напряжение предсказуемо «просело», В этом БП почему то поставили слишком маленький выходной дроссель, поэтому пульсации по выходу имеют вполне заметный уровень, в отличии от предыдущего «подопытного», но пока не превышают 100мВ.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
1. Ток нагрузки 2 Ампера, 100% мощности. Интересно, но уровень пульсаций уменьшился.
2. Ток нагрузки 2.5 Ампера, выходное напряжение и уровень пульсаций в пределах нормы.
Но к этому БП есть небольшой замечание, в работе он издает небольшой «писк» в диапазоне токов от 100мА до 250мА.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие

Тесты закончены. Теперь табличка с результатами тестирования, но для начала список причин прекращения теста соответственно номеру БП
1. БП ушел в защиту при токе 250мА с отключением выхода.
2. БП снизил выходное напряжение ниже предела допуска
3. Тест прекращен из-за высокой температуры ШИМ контроллера.
4. Тест прекращен из-за высокой температуры выходного диода.Блоки питания, маленькие и очень маленькиеБлоки питания, маленькие и очень маленькие
Теперь можно делать какие то выводы.
Первый БП.
Конструкция совсем простая, отсутствует предохранитель и фильтры, но БП который имеет трехкратную перегрузочную и такую высокую стабильность выходного напряжения уже достоин уважения. Предохранитель можно добавить, хотя с тем что БП явно разрабатывался для работы в составе какого нибудь устройства, то чаще он уже присутствует на основной плате.

Второй БП,
БП вписался в заявленные параметры, но не имеет запаса по мощности, при нагрузке в 1.3 раза больше заявленной БП уходит в защиту, хотя запас по нагреву есть и большой. Также плохо что нет предохранителя 🙁

Третий БП.
В штатном режиме работает отлично, уровень пульсаций самый низкий из протестированных БП, но не рекомендую использовать при токе более 1 Ампера (собственно больше никто и не обещал). из минусов — отсутствие предохранителя и хуже стабилизация выходного напряжения.

Четвертый БП.
Неплохая стабильность выходного напряжения, пульсации есть, но в пределах допустимого. Есть выходной и выходной фильтр, но выходной дроссель слабоват для БП такой мощности. Если в плане нагрева дроссель работает нормально, то из-за небольшой индуктивности Бп имеет заметный уровень пульсаций на выходе.

Общее по всем БП.
Все БП прошли тесты, одни лучше, другие хуже, но заявленным характеристикам соответствуют.
Удивили характеристики самого первого БП, при заявленной мощности в 1 Ватт выдать без проблем 3 Ватта. Этот БП точно в Китае делали?
Также удивило наличие правильных помехоподавляющих конденсаторов в 5 Вольт БП и наличие варистора в БП 5 Вольт 1 Ампер, их и на более мощные Бп то не ставят, а здесь…

На этом вроде все, как всегда жду вопросов, уточнений и дополнений в комментариях, надеюсь что обзор были полезен.

Товар предоставлен для написания обзора магазином.

Схема контроллера литий-ионного аккумулятора.

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Плата защитного контроллера от аккумулятора сотового телефона

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Типовая схема включения микросхемы DW01-P

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Цоколёвка, внешний вид и назначение выводов DW01-P

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Цоколёвка и состав микросхемы S8205A

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысит 2,9 – 3,1V  (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Li-Po аккумулятор и схема защиты

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

Отключение ячейки Li-polymer аккумулятора при глубоком разряде

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Напряжение на глубоко разряженной ячейке Li-polymer аккумулятора

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.

Восстановление завершено

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

P1014AP10 Datasheet — Высоковольтный импульсный стабилизатор

Номер детали: P1014AP10, Полный номер: NCP1014AP100G

Функция: высоковольтный импульсный регулятор для автономных SMPS

Производство: ON Semiconductor (http://www.onsemi.com/)

Изображение

Описание

Серия NCP101X объединяет контроллер с фиксированной частотой в режиме тока и полевой МОП-транзистор с напряжением 700 В. Размещенный в корпусе PDIP7, NCP101X предлагает все необходимое для создания надежного и недорогого источника питания, включая плавный пуск, дрожание частоты, защиту от короткого замыкания, пропуск цикла, уставку максимального пикового тока и динамическое автономное питание. (нет необходимости во вспомогательной обмотке).
В отличие от других монолитных решений, NCP101X по своей природе тихий: при номинальной нагрузке деталь переключается на одной из доступных частот (65–100–130 кГц). Когда текущая уставка падает ниже заданного значения, например, потребность в выходной мощности уменьшается, ИС автоматически переходит в так называемый режим пропуска цикла и обеспечивает отличную эффективность при малых нагрузках. Поскольку это обычно происходит при 1/4 максимального пикового значения, акустический шум отсутствует. В результате мощность в режиме ожидания снижается до минимума без создания акустического шума.

Распиновка

Характеристики

1. Встроенный полевой МОП-транзистор на 700 В с типичным сопротивлением RdsON 11 или 22 Ом

2. Большой путь утечки между выводами высокого напряжения

3. Работа в режиме тока с фиксированной частотой: 65 кГц — 100 кГц — 130 кГц

4. Работа с пропуском цикла только при низких пиковых токах: отсутствие акустического шума!

5. Динамическое автономное питание, отсутствие необходимости во вспомогательной обмотке

6. Внутренний плавный пуск за 1 мс

7. Автоматическое восстановление защиты внутреннего выхода от короткого замыкания

8.Фиксируемая защита от перенапряжения с функцией вспомогательной обмотки

9. Джиттер частоты для улучшения сигнатуры электромагнитных помех

10. Мощность в режиме ожидания ниже 100 мВт при использовании вспомогательной обмотки

11. Отключение внутренней температуры

12. Прямое подключение оптопары

13 моделей SPICE, доступных для анализа переходных процессов переменного тока

14. Доступны пакеты без свинца

Официальная домашняя страница

: http://www.onsemi.com/PowerSolutions/product.сделать? id = NCP1014

P1014AP10 Лист данных

Статьи по теме в Интернете

  • Re: Обзор преобразователя постоянного тока SEPIC 30 Вт (вход 5-35 В, выход 0,8-35 В)

.

10 шт. / Лот NCP1014AP10 NCP1014AP06 P1014AP10 P1014AP06 P1014 DIP 7 | интегральная схема | интегральная схема

О нас

Мы обещаем:

1: Производить только лучшие потребительские товары и обеспечивать максимально возможное качество.

2: Доставляйте товары нашим клиентам по всему миру быстро и точно

Политика обслуживания клиентов

Мы более чем рады ответить на любые ваши вопросы, пожалуйста, свяжитесь с

1: Заказы обрабатываются своевременно после подтверждения оплаты.

2: Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.

3: Если вы не получили посылку в течение 30 дней с момента оплаты, свяжитесь с нами. Мы отследим доставку и свяжемся с вами в кратчайшие сроки. Нашей целью является удовлетворение клиента!

4: Из-за наличия на складе и разницы во времени мы выберем для быстрой доставки ваш товар с нашего первого доступного склада.

Наши преимущества

1: У нас все собственные складские запасы, с достаточным запасом

2: Качество продукта достигло серии сертификатов

3: Мы поддерживаем различные перевозки Гонконгские и китайские почтовые пакеты, EMS.DHL, федеральные .UPS и TNT, могут полностью удовлетворить различные потребности покупателя.

Я твердо верю

Мы будем вашим лучшим партнером

Отзыв

Ваше удовлетворение и положительные отзывы очень важны для нас, пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены с нашими товарами и услугами.

Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставлять отзыв. Мы сделаем все возможное, чтобы решить любую проблему и предоставить вам лучшее обслуживание клиентов.

.

10 шт. / Лот P1014AP10 NCP1014AP10 NCP1014AP06 P1014AP06 P1014 DIP 7 | интегральная схема | интегральная схема

О нас

Мы обещаем:

1: производить только самые качественные потребительские товары.

2: Доставляйте товары нашим клиентам по всему миру быстро и точно

Политика обслуживания клиентов

Мы более чем рады ответить на любые ваши вопросы, пожалуйста, свяжитесь с

1: Заказы обрабатываются своевременно после подтверждения оплаты.

2: Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.

3: Если вы не получили посылку в течение 30 дней с момента оплаты, свяжитесь с нами. Мы отследим доставку и свяжемся с вами в кратчайшие сроки. Нашей целью является удовлетворение клиента!

4: Из-за наличия на складе и разницы во времени мы выберем для быстрой доставки ваш товар с нашего первого доступного склада.

Наши преимущества

1: У нас все собственные складские запасы, с достаточным запасом

2: Качество продукта достигло серии сертификатов

3: Мы поддерживаем различные перевозки Гонконгские и китайские почтовые пакеты, EMS.DHL, федеральные .UPS и TNT, могут полностью удовлетворить различные потребности покупателя.

Я твердо верю

Мы будем вашим лучшим партнером

Отзыв

Ваше удовлетворение и положительные отзывы очень важны для нас, пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены с нашими товарами и услугами.

Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставлять отзыв. Мы сделаем все возможное, чтобы решить любую проблему и предоставить вам лучшее обслуживание клиентов.

.

1 шт. / Лот NCP1014AP10 NCP1014AP06 P1014AP10 P1014AP06 P1014 DIP 7 | |

О нас

Мы обещаем:

1: Производство только лучших потребительских товаров и обеспечение наивысшего качества.

2: Доставляйте товары нашим клиентам по всему миру быстро и точно

Политика обслуживания клиентов

Мы будем более чем рады ответить на любые ваши вопросы, пожалуйста, свяжитесь с

1: Заказы обрабатываются своевременно после подтверждения оплаты.

2: Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.

3: Если вы не получили посылку в течение 30 дней с момента оплаты, свяжитесь с нами. Мы отследим доставку и свяжемся с вами в кратчайшие сроки. Нашей целью является удовлетворение клиента!

4: Из-за наличия на складе и разницы во времени мы отправим ваш товар с нашего первого доступного склада для быстрой доставки.

Наши преимущества

1: У всех нас есть собственный склад с достаточным запасом

2: Качество продукта достигло серии сертификатов

3: Мы поддерживаем различные перевозки, почтовые пакеты Гонконга и Китая, федеральные EMS.DHL .UPS и TNT могут полностью удовлетворить различные потребности покупателя.

Я твердо верю

Мы будем вашим лучшим партнером

Обратная связь

Ваше удовлетворение и положительные отзывы очень важны для нас. Оставьте положительный отзыв и поставьте 5 звезд, если вы удовлетворены нашими товарами и услугами.

Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставлять отзыв. Мы сделаем все возможное, чтобы решить любую проблему и предоставить вам лучшее обслуживание клиентов.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *