Воздушное сопротивление. Сопротивление воздуха электрическое


Сопротивление воздуха - это... Что такое Сопротивление воздуха?

 Сопротивление воздуха

Wikimedia Foundation. 2010.

  • Сопротивление аэродинамическое
  • Сопротивление емкостное

Смотреть что такое "Сопротивление воздуха" в других словарях:

  • сопротивление воздуха — orinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. air resistance vok. Luftdurchlasswiderstand, m rus. сопротивление воздуха, n pranc. résistance de… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • сопротивление воздуха — orinė varža statusas T sritis fizika atitikmenys: angl. air resistance vok. Luftdurchlasswiderstand, m rus. сопротивление воздуха, n pranc. résistance de l’air, f …   Fizikos terminų žodynas

  • потери на трение и сопротивление воздуха — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN friction and windage losses …   Справочник технического переводчика

  • СОПРОТИВЛЕНИЕ ПОЕЗДА — одна из сил, действующих на поезд по линии его движения. С. п. направлено против движения поезда, и на преодоление его затрачивается мощность локомотива. С. п. пропорционально весу поезда, вследствие чего принято выражать его в килограммах на 1 m …   Технический железнодорожный словарь

  • сопротивление — сущ., с., употр. сравн. часто Морфология: (нет) чего? сопротивления, чему? сопротивлению, (вижу) что? сопротивление, чем? сопротивлением, о чём? о сопротивлении 1. Сопротивлением называют чей либо решительный отказ подчиняться кому либо, чему… …   Толковый словарь Дмитриева

  • Сопротивление аэродинамическое — проекция главного вектора аэродинамических сил (см. Аэродинамические силы и моменты), приложенных к обтекаемой поверхности тела, на направление его движения. Термин «сопротивление» первоначально (вплоть до начала XX в.) употреблялся для… …   Энциклопедия техники

  • СОПРОТИВЛЕНИЕ ВОДЫ — (Resistance) испытывает всякое твердое тело, погруженное или полупогруженное в воду при своем движении. Для погруженных тел (подводные лодки) С. В. слагается из сопротивления трения и вихревого сопротивления, а для полупогруженных (надводные… …   Морской словарь

  • СОПРОТИВЛЕНИЕ ДЫХАНИЮ — сопротивление СИЗОД потоку воздуха при вдохе (сопротивление вдоху) или выдохе (сопротивление выдоху). Является важнейшей эргономической характеристикой СИЗОД …   Российская энциклопедия по охране труда

  • Сопротивление паропроницанию — пленки герметика  величина, численно равная разности парциального давления водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через площадь изделия, равную 1 м2, за 1 ч проходит 1 мг… …   Википедия

  • СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ — свойство вещества препятствовать распространению электрического тока. Удельное С. э. (ρуд) численно равно сопротивлению 1 м3 (или 1 см3) вещества электрическому току, проходящему через вещество параллельно двум его граням; величина, обратная …   Геологическая энциклопедия

dic.academic.ru

Сопротивление воздуха

При движении твёрдого тела в воздухе на тело действует сила сопротивления воздуха, направленная противоположно движению тела. Такая же сила возникает, если на неподвижное тело набегает пучок воздуха; она направлена, конечно, по движению потока.

Сила сопротивления вызывается, во-первых, трением воздуха о поверхность тела и, во-вторых, изменением движения потока, вызванным телом. В воздушном потоке, изменённом присутствием тела, давление на передней стороне тела растёт, а на задней – понижается по сравнению с давлением в невозмущенном потоке.

Таким образом, создаётся разность давлений, тормозящая движущееся тело или увлекающая тело, погруженное в поток. Движение воздуха позади тела принимает беспорядочный вихревой характер.

Сила сопротивления зависит от скорости потока, от размеров и формы тела.

Рис.35

Для всех тел, изображенных на рисунке, сопротивление движению одинаково, несмотря на весьма разные размеры тел.

«Обтекаемое» тело почти не нарушает правильности потока; поэтому давление на заднюю часть тела лишь немного понижено по сравнению с передней частью и сопротивление не велико.

Различные обтекатели, устанавливаемые на выдающихся частях самолёта, как раз имеют своим назначением устранять завихрения потока выступающими частями конструкции. Вообще же конструкторы стремятся оставлять на поверхности возможно меньшее количество выдающихся частей и неровностей, могущих создавать завихрения.

Влияние сопротивления воздуха сильно сказывается и для наземных средств передвижения: с увеличением скорости автомобилей на преодоление сопротивления воздуха затрачивается всё большая часть мощности мотора. Поэтому современным автомобилям также придают по возможности обтекаемую форму.

Для уменьшения трения при сверхзвуковой скорости нужно заострять переднюю часть движущегося тела, в то время как при меньших скоростях наибольшее значение имеет «обтекаемость».

studlib.info

Слободянюк А.И. Физика 10/11.4 — PhysBook

Содержание книги

Предыдующая страница

§11. Постоянный электрический ток

11.4 Электрическое сопротивление.

Если для участка цепи выполняется закон Ома, то коэффициент пропорциональности между приложенным напряжением и силой тока (U = RI) называется электрическим сопротивлением участка. Электрическое сопротивление зависит от материала проводника, его формы и размеров. Единицей измерения электрического сопротивления в Международной системе единиц СИ является Ом - сопротивление участка проводника, в котором при напряжении в 1 Вольт возникает электрический ток силой 1 Ампер:

[1 Ом] = [1 В]/[1 А] .

Электропроводящие свойства веществ характеризуются их удельным электрически сопротивлением ρ. Из формулы (6) предыдущего раздела следует, что размерностью удельного электрического сопротивления является [ρ] = [R]·[S]/[l] = Ом·м. Величины удельных сопротивлений различных веществ чаще всего определяются экспериментально и приводятся в физических справочниках. Для различных веществ удельное электрическое сопротивление может изменяться в очень широких пределах. Так среди чистых металлов наилучшими проводниками являются серебро (ρ ≈ 1,6·10-8 Ом·м), медь (ρ ≈ 1,7·10-8 Ом·м), алюминий (ρ ≈ 2,8·10-8 Ом·м). В некоторых приборах (например, электронагревательных) используются сплавы, обладающие гораздо большим удельным сопротивлением, например, нихром (ρ ≈ 1,1·10-6 Ом·м). Строго говоря, между проводниками и изоляторами нет резкой грани, все вещества (в том числе и те которые относятся к изоляторам) в той или иной степени проводят электрический ток. Для изоляторов удельной электрическое сопротивление велико, например, для различных типов стекол удельное электрическое сопротивление лежит в пределах ρ ≈ 109 - 1013 Ом·м , для воздуха ρ ≈ 1015 - 1018 Ом·м.

Обратите внимание – в приведенных примерах диапазон изменения удельного сопротивления – 26 порядков!

К настоящему времени теории строения вещества разработаны достаточно глубоко, в рамках этих теорий удается рассчитывать такую важную характеристику, как удельной сопротивление. Так даже в рассмотренных нами элементарных моделях макроскопическая характеристика - удельное электрическое сопротивление - выражается через микроскопические параметры.

Приведенные табличные данные являются приближенными, так как удельное электрическое сопротивление может заметно изменяться при наличии крайне незначительных примесей.

Кроме того, электрическое сопротивление всех веществ зависит от температуры. Так для металлов удельное электрическое сопротивление возрастает с ростом температуры. Механизм этого явления достаточно сложный, мы рассмотрим его в ходе изучения физических теорий строения веществ. Заметим, что имеются вещества (графит, полупроводники, некоторые растворы электролитов) для которых электрическое сопротивление уменьшается при возрастании температуры.

Для большинства металлов удельное электрическое сопротивление в небольшом диапазоне температур (естественно, не включающем точку плавления) зависит от температуры линейно, то есть может быть описано формулой

\(~\rho = \rho_0 (1 + \alpha t^\circ)\) , (1)

где t° - температура вещества, измеренная в градусах Цельсия, ρ0 - удельное электрическое сопротивление, α - температурный коэффициент электрического сопротивления, равный относительному изменению сопротивления при изменении температуры на 1°. Температурный коэффициент электрического сопротивления так же является «индивидуальной» характеристикой веществ, он также определяется экспериментально. Так, например, для серебра, меди, алюминия он приблизительно равен α ≈ 4·10-3 °С-1. В некоторых случаях необходимы вещества, для которых сопротивление слабо зависит от температуры, так, например, для такого сплава как константан [1]α ≈ 5·10-5 °С-1 , что почти в сто раз меньше аналогичного показателя для меди и алюминия.

В 1911 году голландским физиком было открыто явления сверхпроводимости. При очень низких температурах электрическое сопротивление металлов скачком падает до нуля. Температуры перехода в сверхпроводящее состояние различны для различных материалов, так для первого сверхпроводника, открытого Г. Камерлинг-Оннесом, ртути эта температура составляет всего 4°К. Теория этого явления чрезвычайно сложна и была построена только через пятьдесят лет после его открытия.

Электрическое сопротивление проводника зависит не только от материала, но и от его размеров и формы. Широко известна полученная нами формула для расчета сопротивления

\(~R = \rho \frac{l}{S}\) , (2)

где l - длина проводника, S - площадь его поперечного сечения.

Однако ее использование допустимо только при выполнении дополнительных условий:

  1. Ток в проводнике должен быть постоянным (или изменяющимся медленно, в некотором смысле), так как закон Ома описывает только установившейся режим протекания тока.
  2. Плотность тока должна быть постоянна в поперечном сечении проводника, в противном случае связь силой плотностью тока более сложная.
  3. Длина проводника l должна быть измерена в направлении движения тока, а площадь S в плоскости, перпендикулярной вектору плотности тока.

Пренебрежение или незнание этих дополнительных условий может приводить к курьезным ситуациям. Так попробуйте ответить на вопрос: «Чему равно электрическое сопротивление прямоугольного параллелепипеда изготовленного из материала с удельным электрическим сопротивлением ρ, размеры которого равны a x b x c?» Без указания направления распространения тока этот вопрос бессмысленный!

В общем случае для расчета сопротивления необходимо знать распределение токов внутри проводника.

Задание для самостоятельной работы.

  1. Выразите единицу электрического сопротивления Ом через основные единицы системы СИ.
  2. Найдите размерность произведения (RC) электрической емкости и электрического сопротивления (Фарад на Ом).

Примечания

  1. ↑ Само название этого сплава означает постоянный, то есть его сопротивление практически не зависит от температуры.

Следующая страница

www.physbook.ru

Воздушное сопротивление. Физика на каждом шагу

Воздушное сопротивление

Первоклассный бегун, состязающийся на скорость, вовсе не стремится в начале бега быть впереди соперников. Напротив, он старается держаться позади них; только приблизившись к финишу, он проскальзывает мимо других бегунов и приходит к конечному пункту первым. Для чего избирает он такой маневр? Почему ему выгоднее бежать позади других?

Причина та, что при быстром беге приходится затрачивать немало работы для преодоления сопротивления воздуха. Обыкновенно мы не думаем о том, что воздух может служить помехой нашему движению: расхаживая по комнате или прогуливаясь по улице, мы не замечаем, чтобы воздух стеснял наши движения. Но это только потому, что скорость нашей ходьбы невелика. При быстром движении воздух уже заметно мешает нам двигаться. Кто ездит на велосипеде, тот хорошо знает, что воздух мешает быстрой езде. Недаром гонщик пригибается к рулю своей машины: он этим уменьшает величину той поверхности, на которую напирает воздух. Вычислено, что при скорости 10 км в час велосипедист тратит седьмую часть своих усилий на то, чтобы бороться с воздухом; при скорости 20 км на борьбу с воздухом уходит уже четвертая доля усилий ездока. При еще большей скорости приходится расходовать на преодоление воздушного сопротивления третью долю работы и т. д.

Теперь вам станет понятно загадочное поведение искусного бегуна. Помещаясь позади других, менее опытных бегунов, он освобождает себя от работы по преодолению воздушного сопротивления, так как эту работу выполняет за него бегущий впереди. Он сберегает свои силы, пока не приблизится к цели настолько, что станет наконец выгодно обогнать соперников.

Маленький опыт разъяснит вам сказанное. Вырежьте из бумаги кружок величиной с пятикопеечную монету. Уроните монету и кружок порознь с одинаковой высоты. Вы уже знаете, что в пустоте все тела должны падать одинаково быстро. В нашем случае правило не оправдается: бумажный кружок упадет на пол заметно позднее монеты. Причина та, что монета лучше одолевает сопротивление воздуха, чем бумажка. Повторите опыт на иной лад: положите бумажный кружок поверх монеты и тогда уроните их. Вы увидите, что и кружок и монета достигнут пола в одно время. Почему? Потому что на этот раз бумажному кружку не приходится бороться с воздухом: эту работу выполняет за него монета, движущаяся впереди. Точно так же и бегуну, движущемуся позади другого, легче бежать: он освобожден от борьбы с воздухом.

Поделитесь на страничке

Следующая глава >

fis.wikireading.ru

Что такое электрическое сопротивление?

На сегодняшний день одной из важнейших характеристик любого материала является его электрическое сопротивление. Этот факт объясняется беспрецедентным в истории человечества распространением электрических машин, заставившим по-иному взглянуть на свойства окружающих материалов как искусственного, так и естественного происхождения. Понятие «электрическое сопротивление» стало таким же важным, как теплоемкость и пр. Оно применимо абсолютно ко всему, что нас окружает: вода, воздух, металл, даже вакуум.

Каждый современный человек должен иметь представление о данной характеристике материалов. На вопрос «что же такое электрическое сопротивление» можно ответить лишь в том случае, если известен смысл термина «электрический ток». С этого и начнем…

Материальным проявлением энергии является атом. Все состоит из них, соединенных в группы. Существующая в настоящее время физическая модель утверждает, что атом походит на уменьшенную модель звездной системы. В центре находится ядро, включающее в себя частицы двух типов: нейтроны и протоны. Протон несет электрический положительный заряд. На разных расстояниях от ядра по круговым орбитам вращаются другие частицы – электроны, несущие отрицательный заряд. Количество протонов всегда соответствует количеству электронов, поэтому суммарный заряд равен нулю. Чем удаленнее от ядра находится орбита электрона (валентный), тем слабее сила притяжения, удерживающая его в структуре атоме.

В генерирующей ток машине магнитное поле высвобождает из орбит валентные электроны. Так как в ядре атома, утратившего электрон, остается «лишний» протон, то сила притяжения «отрывает» другой валентный электрон из внешней орбиты соседнего атома. В процесс завлекается вся структура материала. В результате появляется движение заряженных частиц (атомов с положительным зарядом и свободных электронов с отрицательным), которое и называется электрическим током.

Материал, в структуре которого электроны внешних орбит могут легко покидать атом, называется проводником. Его электрическое сопротивление мало. Это группа металлов. Например, для производства проводов в основном используют алюминий и медь. По закону Ома электрическое сопротивление проводника представляет собой отношение созданного генератором напряжения к силе проходящего тока. Кстати, сопротивление измеряется в "Омах".

Легко догадаться, что существуют материалы, в которых валентных электронов очень мало или атомы сильно удалены друг от друга (газ), поэтому их внутренняя структура не может обеспечить прохождение тока. Они носят название диэлектриков и используются для изолирования проводящих линий в электротехнике. Электрическое сопротивление в них очень высоко.

Всем известно, что мокрый диэлектрик начинает проводить электрический ток. В свете этого факта особый интерес приобретает вопрос «существует ли электрическое сопротивление воды». Ответ на него противоречивый: и да, и нет. Как уже указывалось ранее, если в материале валентных электронов практически нет, а сама структура состоит больше из пустоты, чем частиц (вспоминаем таблицу Менделеева и водород с единственным электроном на орбите), то в обычных условиях проводимость существовать не может. Под это описание идеально подходит вода: соединение двух газов, называемое нами жидкостью. И действительно, будучи полностью очищенной от растворенных примесей, она является очень хорошим диэлектриком. Но так как в природе в воде всегда присутствуют растворы солей, то электрическая проводимость обеспечивается именно ими. На ее уровень влияет насыщенность раствора и температура (агрегатное состояние). Вот поэтому однозначного ответа на вопрос быть не может, ведь вода бывает разной.

fb.ru

В различных проводниках (приборах) при подключении к одинаковому источнику напряжения устанавливается различная сила тока. Говорят, что они обладают электрическим сопротивлением. Последнее подобно сопротивлению воздуха, которое мешает быстрому бегу.Чем меньше сила тока в цепи, тем выше электрическое сопротивление прибора (при одном и том же источнике напряжения).Сопротивление обозначается буквой R. Единица измерения сопротивления — 1 Ом. Сопротивлением в 1 Ом обладает, например, нихромовый проводник длиной 1 м и диаметром около 1 мм.Сопротивление зависит от материала проводника. У нихрома сопротивление очень высокое, у меди — очень низкое (в 60 раз меньше). Сопротивление растет с увеличением длины проводника (l), но уменьшается при увеличении его диаметра (площади поперечного сечения — S). Это соотношение используется при расчете сопротивления.Сопротивление = Удельное сопротивление материала · Длина проводника / Площадь поперечного сечения

R = р . l / S

Удельное сопротивление (r) — это сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2.

Вещество Удельное сопротивление, Ом*мм2/м
Серебро 0,016
Медь 0,017
Золото 0,024
Алюминий 0,028
Железо 0,10
Олово 0,12
Константан 0,5
Нихром 1,1

 

physica-vsem.narod.ru

Сопротивление воздуха

При движении твёрдого тела в воздухе на тело действует сила сопротивления воздуха, направленная противоположно движению тела. Такая же сила возникает, если на неподвижное тело набегает пучок воздуха; она направлена, конечно, по движению потока.

Сила сопротивления вызывается, во-первых, трением воздуха о поверхность тела и, во-вторых, изменением движения потока, вызванным телом. В воздушном потоке, изменённом присутствием тела, давление на передней стороне тела растёт, а на задней – понижается по сравнению с давлением в невозмущенном потоке.

Таким образом, создаётся разность давлений, тормозящая движущееся тело или увлекающая тело, погруженное в поток. Движение воздуха позади тела принимает беспорядочный вихревой характер.

Сила сопротивления зависит от скорости потока, от размеров и формы тела.

Рис.35

 

Для всех тел, изображенных на рисунке, сопротивление движению одинаково, несмотря на весьма разные размеры тел.

«Обтекаемое» тело почти не нарушает правильности потока; поэтому давление на заднюю часть тела лишь немного понижено по сравнению с передней частью и сопротивление не велико.

Различные обтекатели, устанавливаемые на выдающихся частях самолёта, как раз имеют своим назначением устранять завихрения потока выступающими частями конструкции. Вообще же конструкторы стремятся оставлять на поверхности возможно меньшее количество выдающихся частей и неровностей, могущих создавать завихрения.

Влияние сопротивления воздуха сильно сказывается и для наземных средств передвижения: с увеличением скорости автомобилей на преодоление сопротивления воздуха затрачивается всё большая часть мощности мотора. Поэтому современным автомобилям также придают по возможности обтекаемую форму.

Для уменьшения трения при сверхзвуковой скорости нужно заострять переднюю часть движущегося тела, в то время как при меньших скоростях наибольшее значение имеет «обтекаемость».

 

Сопротивление воды.

При движении тел в воде также возникаю силы сопротивления, направленные противоположно движению тела. Если тело движется под водой, то сопротивление теми же обстоятельствами, что и при движении в воздухе: трение воды о поверхность тела и изменением потока, создающим дополнительное сопротивление. Быстро плавающие рыбы и китообразные имеют «обтекаемую форму тела, уменьшающую сопротивление воды при их движении. Обтекаемую форму придают и подводным лодкам. Вследствие большой плотности воды по сравнению с плотностью воздуха, сопротивление движению данного тела в воде много больше сопротивления в воздухе при той же скорости движения.

Для обычных судов, идущих на поверхности воды, есть ещё дополнительное волновое сопротивление: от идущего судна на поверхности воды расходятся волны, на создание которых непроизводительно затрачивается часть работы судовой машины.

Рис.36

 

Для уменьшения волнового сопротивления, которое для быстроходных судов может составлять 3/4 полного сопротивления, корпусу судна придают специальную форму. Нос судна в подводной части иногда делают «бульбообразной» формы; при этом образование волн на поверхности воды уменьшается, а значит, уменьшается и сопротивление.

 

studopedya.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.