21.01.2025

Световой поток определение: в каких единицах измеряется, плотность и интенсивность светового потока

Содержание

в каких единицах измеряется, плотность и интенсивность светового потока

Многие люди, изучая электродинамику и прочие подразделы физики, сталкиваются с таким понятием, как световой поток. Что это такое, как его можно измерить, какая существует плотность с интенсивностью этого элемента, в каких единицах измеряется световой поток, что такое мощность света? Об этом и другом далее.

Суть явления

Световым потоком считается физическая величина, характеризующая солнечную силу или энергию в момент излучения, которая переносится по поверхности в определенное время. То есть это величина, пропорциональная моменту излучения согласно спектральной чувствительности глаза человека. Это мощность, переносимая при помощи излучения на любое тело.

Обратите внимание! Также есть определение, где он выступает величиной, что оценивает излучение на селективном солнечном приемнике согласно его работе.

Определение из учебного пособия

Формула для измерения

Согласно международной системе представлена величина в люменах. Обозначается буквой фv. При расчетах систем освещения используется эта мера и обозначение. В отличие от освещенности, которая измеряется в люксах и обознается буквой Е, светопоток это только часть освещенности, то есть 1 люкс равен 1 люмену на 1 квадратный метр освещаемого объекта.

Стоит отметить, что яркость это также не одно и то же со светом. Яркость является соотношением силы свечения источника с величиной данной силы, которая приходится на 1 квадратный метр площади. Обозначается L и представлена всегда в килоньютонах на квадратный метр.

В соответствии с этим есть соответствующие формулы.

Основные формулы для измерения

Плотность, интенсивность и мощность

Плотностью светопотока называется распределение луча по спектру, которое равно отношению света малого участка к его ширине. Измеряется в ваттах на нанометр.

Интенсивность светоисточника это модуль со средним по временному показателю значения энергоплотности в данном пространстве. Вычисляется из квадрата амплитуды волны света к преломленному показателю. Она характеризует численность средней энергии, которая переносится при помощи солнечной волны на временную единицу через площадь, которая поставлена перпендикулярным к волне образом. Линии энергии это лучи.

Мощность — энергия, переносимая через излучение на объект за определенное время.

Дополнение: Оптический раздел, где изучается интенсивность и все излучение — это лучевая или геометрическая оптика.

Расчет плотности, интенсивности и мощности светопотока

Таблица светопотока разных видов ламп

Световой поток и освещенность у разных лампочек неодинаковые из-за разной степени плотности и прочих параметров. Сегодня существуют целые таблицы, которые позволяют оценить работоспособность каждой разновидности светильников и увидеть степень их яркости. Существует три типа лампочек: накаливания, люминесцентная и светодиодная. Стоит отметить, что у светодиодных моделей показатели выше и лучше, чем у других светоисточников, представленных на современном рынке. Посмотреть всю таблицу можно ниже на приведенном рисунке, в том числе и узнать ответ на вопрос, в чем измеряется световой поток светодиодных ламп.

Таблица светового потока разных видов ламп

Светопоток — величина, характеризующая силу солнечного излучения источника, представленная в люменах. У этого показателя есть соответственная плотность с интенсивностью и мощностью. Он измеряется по разным формулам, основной из которых является Фu = Km*V*Фe. Также он измеряется с помощью люменометра и других приборов.

Световой поток — это что такое?

Мощность видимого светового излучения, которое оценивается по ощущению человеческого глаза и измеряется в люменах, — световой поток. Это та энергия, которую даёт любой источник света.

световой поток это

Длина волны

Энергию источник света передаёт посредством излучаемых электромагнитных волн. Световой поток — это скорость их, которая и даёт информацию о силе свечения того или иного источника. Энергию световых волн человеческий глаз воспринимает по-разному. Длина волны 0,55 мкм в зелёном цвете воспринимается гораздо сильнее, чем в красном с длиной 0,63 мкм. В диапазоне ультрафиолетового и инфракрасного излучения наши глаза бессильны.

Именно поэтому для характеристики светового потока так важна длина волны. Учитывая восприимчивость для глаз, суммируя длины волн, получаем нормированную величину. Световой поток — это норма мощности той лучистой энергии, которая оценивается за счёт светового ощущения. Выбирая для себя источник световой энергии, человек сообразуется с его эквивалентной мощностью. Например, если нужно заменить лампы накаливания светодиодными. В этом случае надо пересчитать мощность светового потока.

Как это сделать

Световой поток — это главный показатель на данном пути. При прежней двадцативольтной лампе накаливания он равнялся 250 лм. Точно такой же световой поток светодиодных ламп можно обеспечить двумя-тремя ваттами, а люминесцентных — пятью-семью. Значит, выгода светодиодных ламп более чем очевидна.

Допустим, нам необходимы источники светового потока мощностью в 400 лм. Лампа накаливания должна быть сорокаваттной, люминисцентная лампа может иметь от десяти до тринадцати ватт, а светодиодная — всего четыре или пять. Или, например, нам необходим мощный световой поток ламп — в 2500 лм. Лампа накаливания не может быть в этом случае менее, чем двухсотваттной, люминесцентная — только в шестьдесят-восемьдесят ватт, а светодиодная и того меньше — только в двадцать пять или тридцать.

световой поток ламп

Какие бывают лампы

Величина потребляемой мощности любой лампы измеряется в ваттах (Вт). В быту используются, например, светодиодные лампы от одного до десяти ватт, а для наружного освещения они нужны гораздо более мощные — бывают и свыше ста ватт. Но необходимо знать, что мощность лампы характеризует лишь скорость потребления энергии, понятию силы света она не отвечает.

Здесь может охарактеризовать тот или иной источник только единица светового потока, что является абсолютно другим параметром. Измеряется она не в ваттах, а в люменах. Даже не у каждого производителя ламп правильно указаны эти параметры. Например, пометка на упаковке: световой поток в 280 лм для светодиодной лампы мощностью в четыре ватта, что эквивалентно пятидесятиваттной лампе накаливания. Смотрим таблицу: у последней световой поток вовсе не 280, а все 560 лм должен быть. Как же так?

световой поток светодиодных

Расчёты

Единица светового потока люмен равна потоку, который излучает абсолютно чёрное тело площадью 0,5305 мм2 при очень высокой температуре — 1773 °С, при ней затвердевает платина, например. Сила света — плотность светового потока в пространственном смысле, здесь важно учитывать, как соотносится световой поток с величиной телесного угла (а телесный угол — это часть пространства, где сходятся все лучи). Так вот: единица силы света — не люмен, а кандела.

Что такое освещённость? Это можно назвать поверхностной плотностью светового потока, который падает на поверхность, равную отношению самого светового потока к размерам освещаемой поверхности, где он равномерно распределяется. У освещённости тоже есть собственная единица измерения, и это опять не люмен. И даже не кандела. Это люкс (лк). Чему будет равен один люкс, если световой поток равен одному люмену, распределённому равномерно по площади в один квадратный метр? А вот: 1 Лк= 1 Лм/1м2.

Яркость и светимость

Световые потоки могут быть разной яркости и светности (светимости). Яркость — это равенство поверхностной плотности силы света и отношения его к площади, проецирующейся светящейся поверхностью на перпендикулярную этому направлению плоскость. Единицей яркости принято считать одну канделу на квадратный метр (1 кд/м2).

Светность (или светимость) является плотностью светового потока, который испускает освещённая поверхность. Она всегда равна световому потоку относительно площади этой поверхности. Светимость тоже имеет собственную единицу, это 1 лм/м2.

источники светового потока

Равномерность освещения

Коэффициент использования светового потока является методом, позволяющим рассчитать равномерность освещения всех поверхностей по горизонтали, независимо от типа светильников. Суть его в том, что коэффициент вычисляется для каждого помещения, учитывая его основные параметры и свойства светоотражения отделочных материалов. Это довольно трудоёмкие расчёты, не отличающиеся достаточно высокой точностью, однако данным методом широко пользуются при планировании внутреннего освещения.

Объём помещения всегда имеет какие-то ограждающие поверхности, которые будут отражать световой поток, идущий от источников. Это стены, потолок, пол, мебель или оборудование, находящееся в помещении. Все поверхности имеют разные коэффициенты отражения, с более высоким значением или менее. Вычислить количество осветительных приборов, не учитывая отражённых потоков, возможно только с большими погрешностями.

единица светового потока

Расчётная часть

Сначала выбирают систему освещения и источники света, подбирают типы светильников для того или иного помещения — жилого или рабочего, после чего и производится расчёт. Целью его является определение количества светильников. Последовательность расчёта можно выполнить по данной схеме:

1. Выбор системы освещения.

2. Обоснование нормированности в освещении данного объекта.

3. Выбор самого экономичного источника света.

4. Выбор рационального типа светильника.

5. Оценка коэффициента запаса освещённости и коэффициента неравномерности его.

6. Оценка коэффициента отражения поверхностей в помещении.

7. Расчёт индекса помещения.

8. Определение коэффициента в использовании светового потока.

9. Расчёт количества светильников, которые обеспечат требуемую освещённость объекта.

10. Выполнение эскиза по расположению светильников с использованием плана помещения (указать размеры).

коэффициент использования светового потока

Система освещения

Особенно сложно рассчитать рабочее освещение, поскольку оно чаще всего бывает комбинированным. Например, в производственных цехах одно только местное освещение запрещено законом. Выбирают систему освещения по наименьшему размеру объекта различения, то есть гарантируя точность всех зрительных работ, которые будут в помещении выполняться.

Здесь действуют нормы: работы от первого до шестого разрядов выполняются только при системе комбинированного освещения. Это цеха механические, инструментальные, сборочные и тому подобные. Только на производствах типа гальванических или литейных может быть применена система общего освещения. Поэтому выбирают систему и нормы освещённости одновременно.

Нормированная освещённость

Искусственное освещение по количественным и качественным показателям определяется в строгом соответствии с установленными и постоянно действующими нормами для данного производства и вида работ.

Количественная характеристика освещённости принимается по наименьшей для каждой рабочей поверхности в зависимости от разряда зрительных работ, контраста и фона объекта в данной системе освещения. Разряд же определяют по размеру предмета (детали), его части или минимального дефекта на нём, которые работающему придётся обнаруживать и различать в своей деятельности. Качественные показатели освещения — это показатель ослепления и коэффициент пульсации.

характеристики светового потока

Источники света: плюсы и минусы

Как определить параметры для выбора экономичного и в то же самое время экологичного источника света? На решение могут повлиять очень многие факторы, как то: планировочное решение, архитектурное, строительные параметры, воздушная среда и её состояние, экономические соображения и, конечно, дизайн. Конструктор, проектирующий освещение, всегда идёт на компромисс, учитывая многие параметры при расчётах.

Например, лампы накаливания не слишком экономичны, у них не очень высокая светоотдача, спектр излучения искажённый, при работе они очень сильно нагреваются и быстро выходят из строя. Однако себестоимость их весьма низкая, в эксплуатации они проще всех, а потому для помещений, где пребывание людей временно, бытовых и тому подобных, лампы накаливания вполне можно рекомендовать. Люминесцентные же имеют светоотдачу просто превосходную, долгий срок службы, прекрасную цветопередачу, отсутствие нагревания. Но такие лампы дороги и требуют для обслуживания специалистов. Пусковая аппаратура люминесцентных ламп очень сложна, они иногда мигают и шумят, а утилизация их проблемна.

измерение, коэффициент использования и мощность

Содержание статьи:

Для определения количества света на квадратный метр площади используется понятие световой поток. Величина измеряется в люменах и позволяет уточнить, сколько света выдает отдельная лампа или система освещения.

Что такое световой поток

Соотношение мощности лампы со светоотдачей

Под потоком света понимается мощность излучения, которое может увидеть человек или световая энергия, поступающая от поверхности (свечение или отражение луча). Полный поток без учета сосредоточенной эффективности приборов, но с учетом бесполезного света, замеряется в люмен-секундах.

Световая величина не является аналогом энергетической, характеризующей свет без зрительных ощущений. Световая, или лучистая энергия может измеряться в джоулях. Единица измерения светового потока – люмен, что значит свечение от одного источника с силой 1 кандела. Телесный угол в данном случае составляет 1 стерадиан.

Количество люменов излучения зависит от яркости источника.

Как освещенность связана со световым потоком

Освещенность и световой поток – разные, хотя и сходные понятия. Измерение освещенности производится в люксах, а не люменах. 1 люкс означает попадание 1 люмена на 1 м2 участка.

Для наглядности можно сравнить силу и давление. Используя небольшую иголку и прилагая минимум силы, создается высокий коэффициент удельного давления для конкретной точки. Аналогичным образом световой слабый поток может освещать отдельную зону.

Взаимодействие потока света и освещенности легко понять на примере настольной лампы со световым потоком 1000 Лм. Чтобы освещение было полноценным, ориентируются на нормативы СНиП 52.13330. Для рабочего места применяется значение 350 Люкс, для произведения манипуляций с мелкими деталями – 500 Люкс. На освещенность также влияет отдаления источника света, расцветка посторонних предметов, наличие зеркала или окна. То есть, стол рядом с белой стеной получит больше люксов, чем стол, стоящий у темной.

Для замера освещенности используйте прибор-люксметр или приложение-измеритель на смартфоне.

Отличие освещенности от светового потока

Спектральная эффективность светового потока

Освещенность – это поверхностная плотность при попадании светового потока на участок. В условиях горизонтальной плоскости поверхность освещается при горизонтали. Для обозначения величины используется литера Е. Рассчитать параметры освещенности (Люксы) можно по формуле Е = Ф/S, где:

  • Ф – светопоток в Люменах;
  • S – площадь поверхности в мм2.

Разница между физическими величинами – 1 люкс равняется 1 люмену на м2 площади освещения.

Для определения освещенности понадобится соотнести световую силу с расстоянием до конкретного участка. Когда свет падает под прямым углом на поверхность, площадь светового потока меньше. При увеличении угла процент освещенности уменьшается.

Меньше света попадет на объект, расположенный вдали от источников излучения.

Нормы освещения помещений по использованию (СНиП)

Норма освещенности обязательно учитывается при обустройстве административных, образовательных, досуговых учреждений, бытовых предприятий, торговых объектов, жилых домов, придомовых территорий, гостиниц, предприятий, а также пешеходно-автомобильных зон в городах и селах.

При подборе осветительной системы руководствуются документами СНиП 23-05-95 от 1995 г. и его обновленной версией СП 52.13330 от 2011 г. для естественных и искусственных источников света.

Освещение в офисе

От уровня освещения будут зависеть стрессоустойчивость, концентрация внимания, умственная деятельность персонала. Ознакомиться с нормативными требованиями можно в таблице.

Тип помещенияОсвещенность, лк
Большой офис с компьютерной техникой200-300
Большой офис с планировкой свободного типа400
Офис для работы с чертежами500
Конференц-зал200
Лестница50-100
Холлы, коридоры50-75
Архивные помещения75
Подсобки50

Интенсивность освещенности на производстве

Для определения показателя принимается во внимание зрительная нагрузка.

Зрительная работа, разрядНапряжение органов зренияКомбинированное освещениеОбщее освещение
1Наивысшая точность1500-5000400-1250
2Очень высокая точность1000-4000300-750
3Высокоточная400-2000200-500
4Средняя точность400-700200-300
5Минимальная точность400200-300
6Грубая200
7Контроль производства (системы наблюдения)400200-300

Освещение на складах

Интенсивность источников света зависит от типа хранения и разновидности ламп.

ХранениеЛампы
ГазоразрядныеНакаливания
На полу7550
На полках200100

Параметры освещения в жилых домах и досуговых центрах

Для кабинета, бильярдной, библиотеки стандартная высота стола – 0,8 м от линии пола.

Тип помещенияОсвещение, лк
Лифтовые шахты5
Ходы по этажам, чердакам, коридорам20
Помещения для коммуникационного оборудования20
Помещения для колясок и велосипедов30
Лестницы20
Пункты консьержа150
Санузлы, душевые, ванны50
Бильярдные300
Тренажерные залы150
Раздевалки, бассейны, сауны100
Гардеробные помещения75
Подсобки300
Коридоры и холлы в квартирах50
Библиотеки, кабинеты300
Детская комната200
Кухня150
Жилые помещения150
Вестибюль30

Указанные нормы принимаются во внимание при обустройстве электропроводки и установке осветительных приборов.

Расчет светового потока

Лампа LED D60х108мм Матовая колба 320º 1600Лм A60 23229, Gauss

Для вычисления светового потока можно применить специальный измерительный прибор или ориентироваться на показатель светоотдачи в зависимости от потока:

  • светодиодная лампочка в матовой колбе – мощность прибора, умноженная на 80 лм/Вт, будет величиной светового потока;
  • филаментные источники – мощность лампы умножается на 100 лм/Вт;
  • энергосберегающие устройства КЛЛ – умножается на 60 лм/Вт;
  • ДРЛ – мощность требуется умножить на 58 лм/Вт.

Эффективность метода зависит от интенсивности светового потока в лампе, норм освещенности, коэффициентов запаса (чистота объекта и тип источника), использования светопотока, поправочного, количества светильников, площади комнаты. При расчетах также ориентируются на конструкцию устройства, наличие защитного покрытия.

Погрешность теоретических вычислений составляет около 30%.

Сила света

Под силой света понимают величину светового потока, разделенную на телесный угол, в пределах которого он находится. Если световой луч установить в качестве объема, сила будет пространственной плотностью. Показатель измеряется в канделах (Кд).

Канделой называется единица измерения силы света, которую имеет пульсация восковой свечи. Она равна 1/683 Вт при частоте от 540 до 1012 Гц, что соответствует зеленому оттенку. 1 кандела совпадает с 1 люменом только при условии распространения светового луча под конусным углом 65 градусов. Милликанделы применяют для обозначения прибора направленного действия – индикаторных светодиодов, небольших фонариков.

Ватты и люмены

До недавнего времени при выборе лампочек ориентировались на мощность, или количество ватт. Чем оно больше, тем выше лучше было освещение. Сейчас обозначение качества освещения производится в люменах.

Но Ватт нельзя просто перевести в Люмен, поскольку первое обозначение – мощность, а второй – объем световых лучей источников. Для трансформации требуется знать светоотдачу (лм/Вт), а также тип лампы, эффективность светоотражателя, потери при наличии рассеивателя, процент утечки светового потока.

Вместо длительных расчетов стоит ориентироваться на сводную таблицу.

Мощность, ВтСветовой поток, Лм
Лампы накаливания
20250
40400
60700
75900
1001200
1501800
Люминесцентные светильники
5-7250
10-12400
15-16700
18-20900
25-301200
40-501800
Светодиодные источники
3-4250-300
4-6300-450
6-8450-600
8-10600-900
10-12900-1100
12-141100-1250
14-161250-1400

Если хотите сэкономить, замените лампочку накаливания 1000 Вт на люминесцентный (25-30 Вт) или светодиодный (12-15 Вт) прибор.

Как и в чем измеряется световой поток

Световая величина – СП измеряется в люменах. Один люмен аналогичен СП изотропного источника света с силой 1 канделу и углом 1 стерадиан.

На производстве для замеров используют специальные приборы. Этот метод позволяет точно определить СП:

  • Фотометр – устройство со сферой-камерой. Коэффициент отражения внутренней части равен 1. Измерение проводится по принципу размещения лампочки в центре камеры и установления рассеянного светового луча.
  • Гониометр – фотометрический прибор со встроенным люксметром, способным перемещаться по сфере. В процессе интеграции освещенностей выводится величина в люменах.
Фотометр
Гониометр

Калибровка люксметра осуществляется в абсолютных показателях: 1 лм/м2 равняется 1 лк.

Обычному человеку, выбирая светильник или лампу, не обязательно углубляться в точную систему измерений. Заменяя прибор накаливания на галогенный, стоит помнить, что ватты – это не люмены. Первые используются для определения мощности, вторые – от освещенности, а при эксплуатации стандартная лампа теряет 15 % яркости, люминесцентная – 30 %, светодиодная – от 5 до 10 %.

Световой поток — Википедия. Что такое Световой поток

Световой поток — физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения, где под световой мощностью понимается световая энергия, переносимая излучением через некоторую поверхность за единицу времени. Иными словами, «световой поток является величиной, пропорциональной потоку излучения, оценённому в соответствии с относительной спектральной чувствительностью среднего человеческого глаза»[1]. В свою очередь величина «поток излучения» определяется как мощность, переносимая излучением через какую-либо поверхность[2].

Более формально световой поток можно определить, как световую величину, оценивающую поток излучения по его действию на селективный приёмник света, спектральная чувствительность которого определяется функцией относительной спектральной световой эффективности излучения[3].

Определяющие формулы

Если имеется монохроматическое излучение с длиной волны λ{\displaystyle \lambda }, поток излучения которого равен Φe(λ){\displaystyle \Phi _{e}(\lambda )}, то в соответствии с определением световой поток такого излучения Φv(λ){\displaystyle \Phi _{v}(\lambda )} выражается равенством[1]:

Φv(λ)=Km⋅V(λ)⋅Φe(λ).{\displaystyle \Phi _{v}(\lambda )=K_{m}\cdot V(\lambda )\cdot \Phi _{e}(\lambda ).}

где V(λ){\displaystyle V(\lambda )} — относительная спектральная световая эффективность монохроматического излучения, имеющая смысл нормированной в максимуме на единицу чувствительности среднего человеческого глаза при дневном зрении, а Km{\displaystyle K_{m}} — коэффициент, величина которого определяется используемой системой единиц. В системе СИ этот коэффициент равен 683 лм/Вт[Комм 1].

Световой поток излучения с дискретным (линейчатым) спектром получается суммированием вкладов всех линий, составляющих спектр излучения:

Φv(λ)=Km∑i=1NV(λi)⋅Φe(λi),{\displaystyle \Phi _{v}(\lambda )=K_{m}\sum _{i=1}^{N}V(\lambda _{i})\cdot \Phi _{e}(\lambda _{i}),}

где λi{\displaystyle \lambda _{i}} — длина волны линии с номером «i», а N — общее количество линий.

В случае немонохроматического излучения с непрерывным (сплошным) спектром малую часть всего излучения, занимающую узкий спектральный диапазон d(λ){\displaystyle d(\lambda )}, можно рассматривать как монохроматическое с потоком излучения dΦe(λ){\displaystyle d\Phi _{e}(\lambda )} и световым потоком dΦv(λ){\displaystyle d\Phi _{v}(\lambda )}. Тогда для связи между ними будет выполняться

dΦv(λ)=Km⋅V(λ)⋅dΦe(λ).{\displaystyle d\Phi _{v}(\lambda )=K_{m}\cdot V(\lambda )\cdot d\Phi _{e}(\lambda ).}

Интегрируя данное равенство в пределах видимого диапазона длин волн (то есть от 380 до 780 нм), получаем выражение для светового потока всего рассматриваемого излучения:

Φv=Km⋅∫380 nm780 nmV(λ)⋅dΦe(λ).{\displaystyle \Phi _{v}=K_{m}\cdot \int \limits _{380~nm}^{780~nm}V(\lambda )\cdot d\Phi _{e}(\lambda ).}

Если использовать спектральную плотность потока излучения Φe,λ{\displaystyle \Phi _{e,\lambda }}, характеризующую распределение энергии излучения по спектру и определяемую как dΦe(λ)dλ{\displaystyle {\frac {d\Phi _{e}(\lambda )}{d\lambda }}}, то выражение для светового потока приобретает вид[1]:

Φv=Km⋅∫380 nm780 nmV(λ)⋅Φe,λ⋅dλ.{\displaystyle \Phi _{v}=K_{m}\cdot \int \limits _{380~nm}^{780~nm}V(\lambda )\cdot \Phi _{e,\lambda }\cdot d\lambda .}

Измерение

Измерение светового потока от источника света производится при помощи специальных приборов — сферических фотометров, либо фотометрических гониометров[4]. Трудность измерения заключается в том, что необходимо измерить поток, который испускается во всех направлениях — в телесный угол 4π.

Для этого можно использовать сферический фотометр — прибор, представляющий собой сферу с внутренним покрытием, имеющим коэффициент отражения, близкий к 1. Исследуемый источник света помещается в центр сферы и при помощи фотоэлемента, вмонтированного в стенку сферы и покрытого фильтром с кривой пропускания, равной кривой спектральной чувствительности глаза, измеряется сигнал, пропорциональный освещенности фотоэлемента, которая, в свою очередь, в данном устройстве пропорциональна световому потоку от источника света (фотоэлемент измеряет только рассеянный свет, так как заслонён от прямого излучения источника специальным экраном). Путём сравнения полученного сигнала с сигналом от эталонного источника света можно измерить абсолютный световой поток источника света.

Другая возможность состоит в применении фотометрических гониометров. В этом случае производится измерение освещённости, создаваемой исследуемым источником, на воображаемой сферической поверхности. Для этого люксметр проходит последовательно при помощи гониометра все позиции на сфере. Интегрируя измеренные освещённости (измеряются в люксах: 1 люкс = 1 люмен/м²) по площади сферы (м²), получим абсолютный световой поток источника света (в люменах). Условием получения абсолютных значений является калиброванный в абсолютных величинах люксметр. .

Пояснения

Спектральные зависимости относительной чувствительности среднего человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения

Значение фотометрического эквивалента излучения Km однозначно задаётся определением единицы силы света канделы, являющейся одной из семи основных единиц системы СИ. По определению одна кандела — это «сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683  Вт/ср»[5]. Частоте 540·1012 Гц соответствует в воздухе длина волны 555 нм[Комм 2], на которой располагается максимум спектральной чувствительности человеческого глаза для дневного зрения. Поэтому коэффициент Km находится из равенства

1 кд = Km·Vλ(555)·1/683 Вт/ср, откуда следует Km = 683 (кд·ср)/Вт = 683 лм/Вт.

Для случая ночного зрения значение фотометрического эквивалента излучения изменяется.

Человеческий глаз считается светлоадаптированным при яркостях более 100 кд/м². Ночное зрение наступает при яркостях менее 10−3 кд/м². В промежутке между этими величинами человеческий глаз функционирует в режиме сумеречного зрения.

Примеры

Примечания

Комментарии

  1. ↑ Иногда коэффициент Km{\displaystyle K_{m}} называют фотометрическим эквивалентом излучения.
  2. ↑ Более точное значение — 555,016 нм. Учёт отличия этого значения от величины 555 нм приводит лишь к незначительным для практики поправкам и поэтому здесь не производится. Подробности имеются в статье «Кандела».

Источники

Ссылки

См. также

Что такое освещенность, цветовая температура и яркость света

Трудно встретить человека, который не разбирался бы в мерах длины, площади, объема, веса. Не вызывает сложностей исчисление времени, определение температуры. Но вот если спросить кого-нибудь о фотометрических величинах, то в большинстве случаев внятного ответа ожидать не приходится. А между тем, с освещением, естественным или искусственным, мы живём в постоянном контакте. Значит, надо научиться и его оценивать каким-то образом.

Освещенность это…Освещенность это…

Безусловно, такая оценка производится всегда и всеми, но чаще всего – чисто на уровне субъективного восприятия: достаточно света или нет. Однако, подобная «градация» именно что субъективная, и может давать существенные ошибки. Последствия таких некорректных оценок нельзя недооценивать — и недостаточность освещения, и его избыточность негативно влияют и на органы зрения человека, и на его психоэмоциональное состояние.

А между тем, существует специальная величина – освещенность, значение которой регламентируется законодательными актами в области строительства и санитарии. То есть освещенность это как раз тот критерий качества, позволяющий правильно оценить организацию системы освещения помещений. В этой статье мы как раз и поговорим об этом параметре и связанными с ним другими фотометрическими величинами, посмотрим, как это можно использовать в практическом приложении.

Какие фотометрические величины используются при расчетах освещения

По укоренившейся привычке многие продолжают считать, что оценку освещенности помещения можно производить в единицах измерения энергии – ваттах. Такое заблуждение легко объяснимо – в наследство от времен полного господства ламп накаливания нам остался этот устойчивый стереотип.

Лампы накаливания выпускались различной потребляемой мощности – 15, 25, 40, 60, 75, 100, 150 и более ватт. И каждый хозяин дома или квартиры на собственном опыте знал, что для нормального освещения в гостиной, например, он должен ввернуть в люстру три лампочки по 60 ватт, для настольной лампы достаточно будет «сороковки», в кухню нужно приобрести стоваттную и т.д.

Кстати, явным наследием этого до сих пор остаётся практика, применяемая производителями ламп – указывать на их упаковке, кроме потребляемой мощности, светоотдачу, выраженную в эквиваленте мощности старых ламп накаливания.

Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.

Так что запомним первое – в ваттах ни световой поток, излучаемый лампой, ни получающаяся от нее освещенность поверхности не измеряются. Указанные на корпусе прибора ватты – это количество потребленной лампой электроэнергии, которая путем тех или иных физических преобразований превращается в видимый свет.

Некоторые люди старшего поколения вообще уверены, что световая отдача осветительного прибора измеряется в свечах. Кстати, это не столь далеко от истины, а почему – станет понятно ниже. Но это опять же – никак не освещенность.

Так что имеет смысл рассмотреть основные фотометрические величины по порядку, от источника света к освещаемой поверхности. Сразу оговоримся – тема эта довольно сложная для восприятия неподготовленным человеком. Поэтому постараемся максимально упростить изложение, не будем его перегружать громоздкими формулами. Так, чтобы просто сложилось общее понимание вопроса.

Световой поток

Свет, как известно, имеет волновую природу. В определённом диапазоне длин волн электромагнитное излучение воспринимается органами зрения человека, то есть становится видимым. Примерные границы этого диапазона – от 400÷450 нм (красная часть спектра) до 630÷650 (фиолетовая область).

Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.

Электромагнитные волны являются переносчиком энергии – именно энергия Солнца обеспечивает жизнь на Земле. Но отвлечёмся от астрономических категорий, вернемся к обычным источникам света.

Итак, раз источник излучает свет, то это означает излучение и перенос определённой энергии. Количество этой лучистой энергии (We), перенесенной в единицу времени, носит название лучистого потока (Фе). И измеряется он в ваттах.

Однако, речь идет об освещении, то есть восприятии цвета человеческим зрением. И оценить количество энергии «на глаз» — это сразу заложить большую погрешность. Например, два источника, обладающих равной мощностью излучения, но с разным цветом свечения, будут восприниматься глазом тоже по-разному.

Чтобы унифицировать этот параметр, введена специальная физическая величина – световой поток (Ф). Это тоже показатель мощности лучистого потока, но только той его части, что воспринимается среднестатистическим здоровым человеческим глазом.

Измеряться световой поток  также может в ваттах (это, скорее, энергетический показатель), или в люменах (световой показатель). На практике обычно применяются люмены.

Для точного значения одного люмена в качества эталона взято излучение из центральной, зеленой части видимого спектра, длиной 555 нм.

Итак, принято, что лучистый поток с длиной волны 555 нм величиной 1 ватт соответствует 683 люменам. Почему такой странный коэффициент? Просто окончательное утверждение этой единицы в системе СИ состоялось в 1979 году, а первые опыты по фотометрии с введением показателя светового потока начали производиться задолго до этого. В ту пору, когда электрического освещения еще не существовало, и более-менее стабильным, «эталонным» источником света служила обычная свеча. И сложившееся соотношение энергетического ватта и светового люмена было со временем пересчитано  и перешло до наших дней.

Еще раз напомним — упомянутые выше ватты, которыми также может измеряться световой поток, не имеют никакого отношения к тем, что указаны на упаковке лампы. Там показывается потребление светильника, то есть то количество энергии, которое он «заберет» из сети. Нас же должна больше волновать его энергетическая световая отдача – какое количество видимой лучистой энергии он «выдаст». Так что гораздо правильнее будет при выборе лампы обращать внимание не на эфемерные сравнительные аналогии в ваттах, а на четко указанное значение светового потока в люменах.

Ищите на упаковке лампы значение ее светового потока в люменах.Ищите на упаковке лампы значение ее светового потока в люменах.

Световая отдача

Это – очень интересная в практическом плане величина, так как она, по сути, характеризует эффективность источника света. Важно выбирать лампу не исходя из ее потребляемой электрической мощности, а из того, как эта мощность расходуется при преобразовании в световую энергию.

Итак, величина светоотдачи показывает, какой световой поток вырабатывается лампой при преобразовании одного ватта затраченной энергии. Понятно, что и измеряется она в люменах на ватт (лм/Вт).

Преобразование одного вида энергии в другой производится по-разному. Например, в привычных лампах накаливания применен резистивный принцип – свечение вызывает раскаленная спираль с большим электрическим сопротивлением. Понятно, что это сопровождается огромными тепловыми потерями. Более эффективными являются современные осветительные приборы, основанные на принципах свечения полупроводниковых матриц при пропускании тока или специально подобранных газовых смесей при их ионизации. Здесь на ненужный нагрев расходуется значительно меньше затраченной энергии.

Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.

Выше уже говорилось, что пик нормального восприятия света человеческим глазом приходится на длину волны в 555 нм. И в идеальных условиях, при полном преобразовании электрической энергии в монохроматический световой поток указанной длины волны, то есть при совершенном отсутствии потерь, теоретически возможно добиться светоотдачи в 683 лм/Вт. Это называется идеальным источником света, которого в природе, увы, не существует.

В таблице ниже приведены сравнительные характеристики для наиболее применяемых в быту ламп – накаливания, люминесцентных и светодиодных. Хорошо видно, насколько экономичнее становится использование современных источников света, то есть как возрастает показатель светоотдачи.

(Значения в таблице указаны примерные. В любой из категории ламп могут быть отклонения в ту или иную сторону – это зависит от качества конкретной модели. Но общую картину таблица представляет довольно наглядно).

Световой поток, ЛмЛампы накаливанияЛюминесцентные лампыСветодиодные лампы
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
2502012.55÷741.72÷3100
400401010÷1336.44÷588.9
7006011.715÷1645.26÷1087.5
900751218÷2047.410÷1281.8
12001001225÷3043.612÷1588.9
18001501240÷504018÷2094.7
250020012.560÷8038.525÷3090.9

Конкретное значение светоотдачи не всегда, но все же указывается некоторыми производителями ламп на их упаковке. Это может быть надпись «светоотдача» или же «Lighting effect». Если нет, то его несложно определить и самому, разделив паспортный световой поток на указанную потребляемую мощность.

На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.

Совершенно очевидно, что из всех ламп, применяемых в бытовых условиях, наилучшими показателями светоотдачи обладают светодиодные приборы – у них этот показатель доходит до 100 лм/Вт, и даже может быть несколько выше. Но прогресс не стоит на месте, и разработчики заявляют о скором выходе в серийное производства ламп со светоотдачей порядка 200 лм/Вт. Но до идеального источника еще ой как далеко…

Кстати, ученым удалось оценить световую отдачу Солнца, и она – не столь высока: примерно 93 лм/Вт.

Про световую отдачу источников света различного типа рассказывается и в предлагаемом видеосюжете:

Видео: Что такое световая отдача, и каково практическое применение этого параметра?

Сила света

В физике есть понятие точечного источника света – он распространяет излучение совершенно одинаково во всех направлениях. На практике такое если и бывает, то крайне редко, да и то – с некоторым упрощением понятий. На деле световой поток в разные стороны бывает неравномерен. И чтобы оценить, скажем так, его пространственную плотность, оперируют величиной силы света. А чтобы разобраться, что это такое, придется вспомнить еще и понятие телесного угла.

Начнем именно с геометрии. Итак, телесный угол – это часть пространства, объединяющая все лучи, исходящие из одной точки и пересекающую определенную поверхность (ее называют стягивающей поверхностью). В фотометрии, понятно, это освещаемая поверхность. Измеряется этот угол в особых величинах – стерадианах (ср), и обычно в формулах обозначается символом Ω.

Схема, помогающая понять, что же такое телесный угол.Схема, помогающая понять, что же такое телесный угол.

Величина телесного угла – это отношение площади стягивающей поверхности к радиусу сферы.

Ω = S/R²

То есть если взять, к примеру, сферу с радиусом один метр, то телесный угол в один стерадиан «вырежет» на ее поверхности пятно площадью один квадратный метр.

Для чего это знать? Дело в том, что понятие силы света напрямую связано с телесным углом. А конкретно – световой поток в один люмен, распространяющийся в пространстве, ограниченном телесным углом в один стерадиан, обладает силой света в одну канделу. Математически эта зависимость выглядит так:

I = Ф/ Ω

А если говорить об энергетической силе света, равной одной канделе, то это 1/683 Вт/ср.

Кстати, кандела – это одна из семи основных величин системы СИ.

Кандела в буквальном переводе с латинского означает свечу. Это как раз тот «пережиток прошлого», о котором уже говорилось выше, но зато он очень наглядно показывает всю взаимосвязь величин.

Поясним на рисунке:

Рисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величинРисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величин

Итак, имеется точечный источник света – свеча. Ее горящий фитиль излучает свет силой в одну канделу (поз. 1).

В пространстве, ограниченном телесным углом, равным одному стерадиану (поз. 2), будет при этом распространяться световой поток (поз. 3), равным одному люмену. На некотором расстоянии от источника (радиусе сферы – поз. 4) этот поток освещает поверхность определённой площади (поз. 5). Забегая вперёд сразу скажем, если площадь равна одному квадратному метру, то что при таких условиях в этом «световом пятне» обеспечивается освещенность, равная одному люксу (лк).

Если вернуться к свече, как к эталонному источнику света, то несложно рассчитать и ее общий световой поток. Полная сфера имеет телесный угол, равный 4π, то есть, с небольшим округлением, он равен 12.56 стерадиан. А это значит, что свеча, излучающая во все стороны свет силой в одну канделу, дает общий световой поток, равный 12.56 люмен.

Интересно, что еще не столь давно излучающую способность источников света и оценивали «в свечах». Например, говорили – нужна «лампочка на шестьдесят свечей». Продавцы и покупатели прекрасно понимали друг друга – приобреталась лампочка накаливания на 60 Вт, хотя, по сути, эти величины никак между собой в данном случае, с точки зрения физики, не связаны. И что забавно – это было близко к истине.

Давайте посмотрим – 60 свечей по 12,56 люмен дадут в сумме 753,6 люмена. Заглянем в таблицу выше – лампа накаливания с потреблением 60 ватт обладает световым потоком в примерно в 700 люмен. Совсем рядышком!

Но, повторимся, правильна оценка источников света все же должна осуществляться в люменах.

Яркость света

Стоит рассмотреть еще один параметр – это яркость источника света. Дело в том, что с точечными источниками дело иметь практически не приходится. То есть большинство источников обладает какой-то определенной излучающей поверхностью. И при равном световом потоке, но отличающейся площади излучения света, зрением это будет восприниматься по-разному.

 

Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.

То есть, по сути, яркость – эта сила света, излучаемого с определенной единицы площади видимой поверхности источника света.

L = I/S

Понятно, что единицей яркости будет кандела на квадратный метр.

Это важная величина, так как органы зрения, если смотреть на источник света, реагируют, скорее, не на силу света как таковую, а именно на яркость. При большой ее величине (свыше 160 тыс. кандел на квадратный метр) свет может вызвать раздражение глаз, болезненные ощущения, слезливость. Поэтому производители осветительных приборов и выпускают лампы с матовыми колбами. Практически без потери светового потока, излучение идет не конкретно от волоска накаливания или светодиода с их небольшими площадями, а с куда большей по площади поверхности колбы. Такое свечение значительно безопаснее для сетчатки глаза, воспринимается зрением намного комфортнее.

Освещенность поверхности

Вот, наконец, добрались мы и до освещенности. Эту величину можно считать самой прикладной, так как именно освещенностью того или иного участка оценивается общая работа осветительных приборов.

Образно выражаясь, освещенность (Е) – это поверхностная плотность светового потока (Ф), распределенного на той или иной площади (S). Если подходить с некоторым упрощением, то это можно выразить такой формулой:

Е = Ф/ S

Как мы видели выше, один люмен светового потока на площади в один квадратный метр создает освещенность, равную одному люксу (лк).

Зависит освещенность от целого ряда факторов, если даже не принимать во внимание собственные характеристики источника света.

  • Во-первых, чем дальше расположен источник от освещаемой поверхности, тем больше площадь «светового пятна» (вспоминаем конус телесного угла). То есть световой поток распределяется по большему участку. Причём, как мы помним, эта зависимость – квадратичная. То есть при изменении расстояния вдвое, освещённость снизится в четыре раза, втрое – в девять раз, и т.п.

Если рассматривать точечный источник, то можно применить формулу Кеплера:

Е = I / r²

О значении входящих в формулу величин повторяться не будем – они приведены выше.

  • Во-вторых, показанная выше формула Кеплера справедлива лишь для поверхности, перпендикулярной направлению светового потока. На деле, безусловно, так бывает нечасто. То есть в том случае, когда освещаемая плоскость расположена под каким-то углом α к направлению потока, приходится делать поправку и на это:

Е = (I / r²) × cos α.

Вспомните – когда вам необходимо максимально ярко осветить поверхность, вы направляете фонарь перпендикулярно к ней. Но если его расположить под углом – освещенность резко упадет, так как свет как будто «размазывается» по поверхности.

  • В-третьих, освещенность конкретного участка зависит еще и от его, так сказать, окружения. Дело в том, что большинство поверхностей не поглощают весь попадающий на них свет, а в значительной степени отражают его. И тем самым сами становятся своеобразными источниками света.

Подсвеченные поверхности потолка или стен сами начинают выступать в роли источников светаПодсвеченные поверхности потолка или стен сами начинают выступать в роли источников света

Вспомним что говорилось в разделе про яркость свечения. Да, действительно, яркость таких подсвеченных участков бывает не особо высока. Но зато излучение идет с приличной площади, и в итоге создается весьма значимый световой поток.

А яркость такой подсвеченной поверхности зависит и от ее освещенности, и от диффузно-отражающей способности, которая имеет отдельное название – альбедо. Чем выше это альбедо, тем ярче свечение. А раз ярче – то и больше изучаемый «вторичный» цветовой поток.

Несколько наглядных примеров отраженного света. Лист белой бумаги при освещённости всего в 50 люкс будет иметь яркость в 15 кд/м². Свечение полной луны (а это, как мы знаем – отраженный от ее поверхности солнечный свет) характеризуется яркостью в 2500 кд/м². А поверхность чистого белого снега в солнечный день достигает яркости до 3000 кд/м². Немало!

Это явление очень широко используется при организации освещения и в дизайнерском оформлении комнат. Выпускаются целые модельные линейки светильников, специально рассчитанных на направленность в сторону стен или потолка, то есть «в работу» по общему освещению помещения включаются именно подсвеченные участки. Этот же эффект применяется при создании многоярусных потолочных конструкций со светодиодной ленточной подсветкой.

Несложно догадаться, что освещенность помещения будет зависеть и от выбранного стиля его отделки. Одна и та же лампочка, скажем, в белой комнате даст куда большую освещенность, чем в выкрашенной в темных тонах.

Так как конечным ожидаемым результатом работы осветительных приборов является создание комфортных и безопасных для здоровья показателей освещения в помещении, именно значение освещенности поверхностей и подлежит регламентации. В законодательных актах (СНиП и СанПиН) указывается, какая освещенность должна достигаться в различных помещениях, в зависимости от их предназначения.

Так, действующим СНиП 23-05-95 в его актуализированной редакции (Свод Правил СП 52.13330.2011 ) указанные следующие нормативные показатели освещенности для жилых домов:

Тип (предназначение) помещенияНормы освещенности в соответствии с действующими СНиП, люкс
Жилые комнаты150
Детские комнаты200
Кабинет, мастерская или библиотека300
Кабинет для выполнения точных чертежных работ500
Кухня150
Душевая, санузел раздельный или совмещенный, ванная комната50
Сауна, раздевалка, бассейн100
Прихожая, коридор, холл50
Вестибюль проходной30
Лестницы и лестничные площадки20
Гардеробная75
Спортивный (тренажерный) зал150
Биллиардная300
Кладовая для колясок или велосипедов30
Технические помещения – котельная, насосная, электрощитовая и т.п.20
Вспомогательные проходы, в том числе на чердаках и в подвалах20
Площадка у основного входа в дом (крыльцо)6
Площадка у запасного или технического входа4
Пешеходная дорожка у входа в дом на протяжении 4 метров4

При этом оценка освещенности должна вестись на горизонтальной плоскости на высоте пола. Для лестниц – как на высоте пола, так и на переходных площадках и ступенях.

Для оценки уровня освещенности применяются специальные приборы – люксметры. Они состоят из фотоприемника со сферической поверхностью датчика, и блока-преобразователя с аналоговой (стрелочной) или цифровой индикацией показаний.

Компактный люксметр – прибор для измерения освещенностиКомпактный люксметр – прибор для измерения освещенности

Понятно, что люксметр – это узкопрофессиональный дорогостоящий прибор, которым пользуются специалисты, и иметь который дома совершенно не требуется. Но разбираться в вопросах основных фотометрических величин – не помешает любому хозяину дома или квартиры.

Зачем? — могут спросить многие. Да хотя бы для того, чтобы суметь самостоятельно спланировать использование тех или иных источников света, чтобы добиться нужной освещённости. Ведь от нее напрямую зависит здоровье и общее настроение всех членов семьи.

О практическом положении этих знаний как раз пойдет речь в следующем разделе публикации.

Цветовая температура

Чтобы закончить разговор об основных характеристиках источников света, необходимо остановиться и на их цветовой температуре.

При совершенно равных показателях излучаемого светового потока одна лампочка может давать тёплый желтоватый цвет, другая – белый нейтральный, а третья, например – светиться холодным оттенком синевы. Как их различить по этому параметру? Для этого разработана специальная шкала цветовой температуры.

Сразу оговоримся – здесь нет никакой связи между температурой воздуха в помещении или температурой нагрева самого источника света. Просто в качестве эталона взято свечение физического тела, разогретого до больших температур.

Любое тело, если его температура выше абсолютного нуля, само по себе является источником инфракрасного излучения. По мере роста температуры, длина волны этого излучения меняется, и в определенный момент доходит до видимого участка спектра.

Это, наблюдал, наверное, каждый – металлический пруток при нагревании сначала краснеет, затем начинает светиться ярко-красным светом, можно его раскалить, как говорят, и «добела». А при выполнении электросварочных работ, когда температура дуги достигает очень высоких показателей, плавящийся метал может приобрести и голубой оттенок.

Именно эта градация и положена в основу шкалы цветовой температуры. Она указывается в Кельвинах – а по шкале можно увидеть, какое свечение будет излучать лампа.

Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.

Эта цветовая температура обычно указывается в маркировке ламп. Иногда она сопровождается и текстовым пояснением, или даже миниатюрной шкалой, показывающей, в какой области видимого спектра будет светиться лампа.

На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.

Выбор ламп по их цветовой температуре зависит от того, какую обстановку планируется поддерживать в помещении. Безусловно, здесь будет играть немалую роль и субъективный фактор – то есть предпочтения хозяев. И готовых «рецептов» на этот счет нет. Но в таблице ниже приведен рекомендательный обзор ламп по их свечению. Возможно, это кому-то поможет при выборе.

Цветовая температураЗрительное восприятиеВозможные определения создаваемой атмосферыХарактерные области применения
2700 КТеплый светОткрытая, теплая, дружеская, уютная, расслабляющаяЖилые комнаты, вестибюли гостиниц, небольшие бутики, рестораны, кафе
3000 КБелый светИнтимнаая, дружеская, располагающая к общениюЖилые комнаты, библиотеки, магазины, офисы
3700 КНейтральный светДружеская, располагающая к общению, дающая ощущение безопасности, повышающая внимательностьМузеи и выставочные залы, книжные магазины, офисы
4100 КХолодный светСпособствующая концентрации вниимания, чистая, ясная, продуктивнаяУчебные помещения, конструкторские бюро, офисы, больгицы, крупные магазины, вокзалы
5000 — 6500 КХолодный дневной светТревожная, излишне яркая, подчеркивающае цвета, стерильная, со временем — утомляющаяМузеи, ювелирные магазины, некоторые кабинеты в медицинских учреждениях

Проведение самостоятельных расчетов.

Как и было обещано, в этом разделе публикации будет рассмотрен алгоритм проведения расчета освещенности. Точнее, если быть более корректным, расчет имеет как раз обратную направленность. То есть нормальное значение освещенности нам уже известно. И вычисления должны нас привести к результату, сколько ламп и с каким световым потоком потребуется для его обеспечения.

Общая формула для проведения расчетов

Итак, начнем с той формулы, которая будет у нас служить основой расчетов.

Fл = (Ен × Sп × k × q) / (Nc × n × η)

— это световой поток лампы, которую требуется установить в светильник. То есть эта та самая величина, которая поставлена целью проведения вычислений.

Ен — нормативная освещённость поверхностей, в зависимости от типа помещения. Она соответствует параметрам, установленным СНиП и приведенным выше в таблице.то есть отталкиваемся именно от нормативного значения.

Sп — площадь освещаемой поверхности. Обычно здесь фигурирует площадь комнаты, если рассчитывается общее освещение. Но если целью ставится расчет освещенности локального участка (например, рабочей зоны), то подставляется именно площадь этой зоны.

k — корректирующий коэффициент, который часто называют коэффициентом запаса. Его введением учитывается сразу несколько обстоятельств, влияющих на световую отдачу ламп. Во-первых, многие лампы со временем начинают растрачивать свой излучающий потенциал, попросту говоря – тускнеть. Во-вторых, на излучающую способность могут влиять и некоторые внешнее факторы – это запыленность помещения или, скажем, высокая концентрация пара, препятствующая свободному распространению световых лучей.

Коль речь у нас идет о жилых помещениях, где плотный пар стоять не должен, а пыль удаляется регулярными уборками, то вторую группу факторов можно сбросить со счетов. А по постепенной потере излучающей способности коэффициент для разных типов ламп можно принять следующим:

— лампы люминесцентные (газоразрядные): 1.2;

— обычные лампы накаливания и «галогенки»: 1.1;

— лампы светодиодные: 1.0.

q — коэффициент, учитывающий неравномерность свечения некоторых типов ламп. Он принимается равным:

— для ламп накаливания и газоразрядных ртутных ламп: 1.2;

— для компактных люминесцентных ламп накаливания и светодиодных источников света: 1.1.

Переходим к знаменателю дроби.

Nc — количество осветительных приборов, планируемых к установке в помещении или в отдельной зоне, для которой проводится расчет.

n — количество рожков в планируемом к установке светильнике.

Наверное, понятно, что произведение последних двух величин показывает, какое же количество ламп планируется к установке. Например, устанавливается одна пятирожковая люстра. Тогда Nc =1, а n =5. Или планируется осветить помещение двумя приборами, каждый по три лампочки: Nc =2, а n =3, Но если освещение будет осуществляться одним прибором с одной лампой, что обе эти величины будут равны единице.

η — коэффициент использования светового потока. Эта поправочная величина учитывает множество факторов, касающихся как особенностей помещения, так и специфики планируемых к установке осветительных приборов.

Так как именно этот коэффициент пока что остается неизвестной величиной, с него и следует начать проведение расчётов.

Находим коэффициент использования светового потока

Эту величину можно назвать табличной эмпирической. Она зависит и от площади помещения, и от расположения светильника, и от основного направления светового потока, и от отделки поверхностей потока, стен и пола.

Прежде всего для входа в таблицу придется определить так называемый индекс помещений. Он учитывает размеры помещения, причём, именно в соотношении длины и ширины, так как в квадратной комнате и в вытянутой прямоугольной световой поток все же будет распространяться по-разному. И второе – он учитывает высоту расположения светильника над освещаемой поверхностью. Как мы помним – по требования СНиП оценка освещенности ведется по горизонтальной плоскости на уровне пола.

Важно – иногда путают высоту потолка в комнате с высотой установки светильника. А это все же не одно и то же! Например, осветительный прибор может быть закреплён на стене (бра), установлен на стойке или размещен на столе или тумбочке (торшер или настольная лампа), подвешен к потоку на определенном расстоянии от потолочной поверхности (люстра).

Формула, наверное, ни о чем не скажет. Лучше предложим воспользоваться для определения этого индекса помещения онлайн-калькулятором.

Калькулятор для определения индекса помещения.

Перейти к расчётам

Итогом расчетов станет какая-то дробная величина. Ее приводят в ближайшую сторону к следующим значениям: 0,5;  0,6;  0,7;  0,8;  0,9;  1,0;  1,1,  1,25;  1,5;  1,75;  2,0;  2,25;  2,5;  3,0;  3,5;  4,0;  5,0. Почему именно к ним? Да, четно говоря, просто потому, что именно такая градация принята в таблицах, расположенных ниже.

Таблицы для определения коэффициента использования светового потока

Для входа в таблицу необходимо будет еще оценить отражающую способность поверхностей в помещении (помните, говорилось о некотором альбедо, способствующим освещенности или, наоборот, приглушающим ее).

Отражающую способность поверхностей, в зависимости от цвета их отделки, можно принять следующую:

Оттенки интерьерной отделкиКоэффициент отражающей способности
Белый цвет70%
Светлые тона50%
Средние тона30%
Темные тона10%
Черный цвет0%

Для пользования таблицей следует сразу оценить отделку комнаты в порядке: потолок – стена – пол в процентах отражающей способности. Понятно, что здесь придётся проявить определённую сообразительность – с белым и черным цветов ясность есть, а вот с остальным необходимо подумать, отнести их больше к светлым, средним или темным тонам. Но для человека с нормальным восприятием цвета это не должно стать проблемой.

Следующим шагом следует определить тип светильника, планируемого к установке – предложено пять различных вариантов. Именно этот критерий поможет выбрать нужную таблицу. (все таблицы размещены в правом столбце. Изображения «кликабельны», то есть увеличатся до нормального размера при клике мышкой).

Ну и уже по этой выбранной  таблице, на основании всех собранных данных, находится коэффициент.

Просто для примера. Планируется к установке на потолочный поверхности подвесной светильник с плафоном, дающим преимущественное распространение света вниз. Находим устраивающую нас таблицу. Вот она:

Пример определения коэффициента использования светового потока по таблицеПример определения коэффициента использования светового потока по таблице

Проведённым ранее расчётом определили индекс помещения. Допустим, он равен 1.0.

По оценке отделки получаем следующее соотношение – 70% (белый потолок), 30% (темно-бежевые стены, которые можно отнести к средним тонам), 10% (темный, близкий к черному пол).

По этим значениям находим пересечение столбцов и строки (пример показан на иллюстрации), и получаем искомое значение коэффициента использования светового потока, равное 0,30.

Всё, теперь у нас есть уже все данные для проведения окончательного расчета. И для него можно, опять же, воспользоваться встроенным онлайн-калькулятором.

Калькулятор расчёта необходимого светового потока источников света

Перейти к расчётам

Полученное значение показывает, какой должен быть световой поток у ламп, которые обеспечат необходимую норму освещенности в помещении.

*  *  *  *  *  *  *

Что можно добавить напоследок?

  • Если расчет ведётся для какой-то ограниченной зоны, например, для подсветки рабочей области в мастерской или гараже, то и значения площади берутся только для нее. И расположение и тип светильников также – только те, которые будут освещать именно этот участок. То есть исходим из принципа автономности – рабочая зона должна быть нормально освещена даже при полностью выключенном общем освещении. Это же касается и других локальных участков – письменного стола, выделенного места для рукоделия в кресле под торшером и т.п.
  • Нормальная освещенность довольно часто в повседневной жизни выглядит избыточной. Например, человеку просто хочется побыть одному в полумраке, или просто для просмотра телепередач яркий свет не требуется. Значит, можно и нужно предусмотреть зональную дополнительную подсветку (на которую уже не будут распространяться санитарные нормы), или установить диммер, с помощью которого можно изменять излучаемый световой поток осветительных приборов.
  • В публикации уже не раз подчеркивалось, и проведение расчета – тому лишнее подтверждение, что определяющим критерием при выборе ламп для обеспечения требуемой освещенности должен являться именно световой поток. Но про потребляемую мощность тоже забывать не следует.

Дело в том, что многие светильники имеют ограничения по этому параметру. Например, в паспорте изделия указано, что максимальная суммарная мощность не должна превышать 60 ватт. Это может быть вызвано ограниченной термостойкостью пластиковых деталей светильника или малым сечением проводов, проложенных в нем. То есть и потребляемую мощность ламп также следует учитывать. Если же она получается выше допустимого значения, значит, придется подыскивать другой светильник.
Может случиться и так, что расчетный световой поток получился столь высоким, что таких ламп в ассортименте магазинов попросту нет. Значит, планируемое количество источников света — недостаточное. Придется рассматривать варианты с увеличением количества светильников, или же со светильниками с большим количеством рожков.

Световой поток — Википедия. Что такое Световой поток

Световой поток — физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения, где под световой мощностью понимается световая энергия, переносимая излучением через некоторую поверхность за единицу времени. Иными словами, «световой поток является величиной, пропорциональной потоку излучения, оценённому в соответствии с относительной спектральной чувствительностью среднего человеческого глаза»[1]. В свою очередь величина «поток излучения» определяется как мощность, переносимая излучением через какую-либо поверхность[2].

Более формально световой поток можно определить, как световую величину, оценивающую поток излучения по его действию на селективный приёмник света, спектральная чувствительность которого определяется функцией относительной спектральной световой эффективности излучения[3].

Определяющие формулы

Если имеется монохроматическое излучение с длиной волны λ{\displaystyle \lambda }, поток излучения которого равен Φe(λ){\displaystyle \Phi _{e}(\lambda )}, то в соответствии с определением световой поток такого излучения Φv(λ){\displaystyle \Phi _{v}(\lambda )} выражается равенством[1]:

Φv(λ)=Km⋅V(λ)⋅Φe(λ).{\displaystyle \Phi _{v}(\lambda )=K_{m}\cdot V(\lambda )\cdot \Phi _{e}(\lambda ).}

где V(λ){\displaystyle V(\lambda )} — относительная спектральная световая эффективность монохроматического излучения, имеющая смысл нормированной в максимуме на единицу чувствительности среднего человеческого глаза при дневном зрении, а Km{\displaystyle K_{m}} — коэффициент, величина которого определяется используемой системой единиц. В системе СИ этот коэффициент равен 683 лм/Вт[Комм 1].

Световой поток излучения с дискретным (линейчатым) спектром получается суммированием вкладов всех линий, составляющих спектр излучения:

Φv(λ)=Km∑i=1NV(λi)⋅Φe(λi),{\displaystyle \Phi _{v}(\lambda )=K_{m}\sum _{i=1}^{N}V(\lambda _{i})\cdot \Phi _{e}(\lambda _{i}),}

где λi{\displaystyle \lambda _{i}} — длина волны линии с номером «i», а N — общее количество линий.

В случае немонохроматического излучения с непрерывным (сплошным) спектром малую часть всего излучения, занимающую узкий спектральный диапазон d(λ){\displaystyle d(\lambda )}, можно рассматривать как монохроматическое с потоком излучения dΦe(λ){\displaystyle d\Phi _{e}(\lambda )} и световым потоком dΦv(λ){\displaystyle d\Phi _{v}(\lambda )}. Тогда для связи между ними будет выполняться

dΦv(λ)=Km⋅V(λ)⋅dΦe(λ).{\displaystyle d\Phi _{v}(\lambda )=K_{m}\cdot V(\lambda )\cdot d\Phi _{e}(\lambda ).}

Интегрируя данное равенство в пределах видимого диапазона длин волн (то есть от 380 до 780 нм), получаем выражение для светового потока всего рассматриваемого излучения:

Φv=Km⋅∫380 nm780 nmV(λ)⋅dΦe(λ).{\displaystyle \Phi _{v}=K_{m}\cdot \int \limits _{380~nm}^{780~nm}V(\lambda )\cdot d\Phi _{e}(\lambda ).}

Если использовать спектральную плотность потока излучения Φe,λ{\displaystyle \Phi _{e,\lambda }}, характеризующую распределение энергии излучения по спектру и определяемую как dΦe(λ)dλ{\displaystyle {\frac {d\Phi _{e}(\lambda )}{d\lambda }}}, то выражение для светового потока приобретает вид[1]:

Φv=Km⋅∫380 nm780 nmV(λ)⋅Φe,λ⋅dλ.{\displaystyle \Phi _{v}=K_{m}\cdot \int \limits _{380~nm}^{780~nm}V(\lambda )\cdot \Phi _{e,\lambda }\cdot d\lambda .}

Измерение

Измерение светового потока от источника света производится при помощи специальных приборов — сферических фотометров, либо фотометрических гониометров[4]. Трудность измерения заключается в том, что необходимо измерить поток, который испускается во всех направлениях — в телесный угол 4π.

Для этого можно использовать сферический фотометр — прибор, представляющий собой сферу с внутренним покрытием, имеющим коэффициент отражения, близкий к 1. Исследуемый источник света помещается в центр сферы и при помощи фотоэлемента, вмонтированного в стенку сферы и покрытого фильтром с кривой пропускания, равной кривой спектральной чувствительности глаза, измеряется сигнал, пропорциональный освещенности фотоэлемента, которая, в свою очередь, в данном устройстве пропорциональна световому потоку от источника света (фотоэлемент измеряет только рассеянный свет, так как заслонён от прямого излучения источника специальным экраном). Путём сравнения полученного сигнала с сигналом от эталонного источника света можно измерить абсолютный световой поток источника света.

Другая возможность состоит в применении фотометрических гониометров. В этом случае производится измерение освещённости, создаваемой исследуемым источником, на воображаемой сферической поверхности. Для этого люксметр проходит последовательно при помощи гониометра все позиции на сфере. Интегрируя измеренные освещённости (измеряются в люксах: 1 люкс = 1 люмен/м²) по площади сферы (м²), получим абсолютный световой поток источника света (в люменах). Условием получения абсолютных значений является калиброванный в абсолютных величинах люксметр. .

Пояснения

Спектральные зависимости относительной чувствительности среднего человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения

Значение фотометрического эквивалента излучения Km однозначно задаётся определением единицы силы света канделы, являющейся одной из семи основных единиц системы СИ. По определению одна кандела — это «сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683  Вт/ср»[5]. Частоте 540·1012 Гц соответствует в воздухе длина волны 555 нм[Комм 2], на которой располагается максимум спектральной чувствительности человеческого глаза для дневного зрения. Поэтому коэффициент Km находится из равенства

1 кд = Km·Vλ(555)·1/683 Вт/ср, откуда следует Km = 683 (кд·ср)/Вт = 683 лм/Вт.

Для случая ночного зрения значение фотометрического эквивалента излучения изменяется.

Человеческий глаз считается светлоадаптированным при яркостях более 100 кд/м². Ночное зрение наступает при яркостях менее 10−3 кд/м². В промежутке между этими величинами человеческий глаз функционирует в режиме сумеречного зрения.

Примеры

Примечания

Комментарии

  1. ↑ Иногда коэффициент Km{\displaystyle K_{m}} называют фотометрическим эквивалентом излучения.
  2. ↑ Более точное значение — 555,016 нм. Учёт отличия этого значения от величины 555 нм приводит лишь к незначительным для практики поправкам и поэтому здесь не производится. Подробности имеются в статье «Кандела».

Источники

Ссылки

См. также

Освещенность — это… Что такое Освещенность?

Освещённость — физическая величина, численно равная световому потоку, падающему на единицу поверхности:

E=\frac{d\Phi}{d\sigma}

Единицей измерения освещенности в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется яркостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Освещенность E\! от точечного источника находят по формуле:

E={I \over r^2}\cos i

где I\! — сила света в канделах; r\! — расстояние до источника света; i\! — угол падения лучей света относительно нормали к поверхности.

Освещённость в фототехнике определяют с помощью экспонометров и экспозиметров, в фотометрии — с помощью люксметров.

Примеры

ОписаниеОсвещённость, лк
Солнечными лучами в полдень100 000
При киносъёмке в студии10 000
На открытом месте в пасмурный день1000
В светлой комнате вблизи окна100
На рабочем столе для тонких работ400–500
На экране кинотеатра85–120
Необходимое для чтения30–50
От полной луны0,2
От ночного неба в безлунную ночь0,0003

Литература

Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Wikimedia Foundation.
2010.

Определение светового потока

| Словарь английских определений

световой
прил

1 излучающий или отражающий свет; сияющий; светящиеся
светящиеся цвета

2 технически не используется светится
светящаяся краска

3 полны света; хорошо освещенный

4 (физической величины в фотометрии) оценивается на основе визуального ощущения, производимого наблюдателем, а не на основе измерений абсолютной энергии
Световой поток, сила света Сравнить
сияющий

5 легко понять; ясный; прозрачный

6 просветление или мудрость
(C15: от латинского luminosus, полный света, от lumen light)

светится adv

яркость n

Световая отдача
n

1 отношение светового потока излучения к соответствующему ему лучистому потоку., (Символ)
К

2 — отношение светового потока, испускаемого источником излучения, к потребляемой мощности. Он измеряется в люменах на ватт., (Символ)
ηv, Φv

светоотдача
n эффективность полихроматического излучения в создании визуального ощущения. Это лучистый поток, взвешенный в соответствии со спектральной световой эффективностью составляющих его длин волн, деленный на соответствующий лучистый поток., (Символ)
В

световая энергия
n энергия, излучаемая или распространяемая в форме света; произведение светового потока на его продолжительность, измеряемую в люмен-секундах. (символ)
Qv

световая отдача
n способность поверхности излучать свет, выраженная как световой поток на единицу площади в определенной точке на поверхности., (Символ)
мв

световой поток
n мера скорости потока световой энергии, оцениваемая в соответствии с ее способностью вызывать визуальное ощущение. Для монохроматического света это лучистый поток, умноженный на спектральную светоотдачу света. Он измеряется в люменах., (Символ)
Φv

сила света
n мера количества света, излучаемого точечным источником в заданном направлении.Он выражается световым потоком, покидающим источник в этом направлении на единицу телесного угла. (Символ)
IV

спектральная световая отдача
n мера эффективности излучения данной длины волны в создании визуального ощущения. Он равен отношению потока излучения на стандартной длине волны к потоку на данной длине волны, когда стандартная длина волны выбрана так, что максимальное значение этого отношения равно единице., (Символ)
В (λ) для фотопического зрения
В (λ) для скотопического зрения

.

Единица светового потока | определение единицы светового потока по Медицинскому словарю

люмен

[люмен] ( L. )

1. полость или канал внутри трубки или трубчатого органа, например, кровеносный сосуд или кишечник.

2. единица измерения скорости потока лучистой энергии в системе СИ, в частности, видимого спектра. прил., прил. люмен.

Энциклопедия и словарь Миллера-Кина по медицине, сестринскому делу и смежному здоровью, седьмое издание.© 2003 Saunders, принадлежность Elsevier, Inc. Все права защищены.

лю · мэн

, пл.

lu · mi · na

,

lu · mens

(lū’men, -min-ă, -menz),

1. Пространство внутри полой трубчатой ​​структуры (например, артерии или кишечника) .

2. Единица светового потока; световой поток, излучаемый в единице телесного угла в 1 стерадиан однородным точечным источником света, имеющим силу света 1 кандела.

3. Объем, заключенный внутри мембран митохондрии или эндоплазматического ретикулума.

4. Отверстие катетера или полой иглы.

[Л. свет, окно]

Farlex Partner Медицинский словарь © Farlex 2012

люмен

(loo′mən) n. пл. люмэнс или люмина (-mə-nə)

1. Анатомия Внутреннее открытое пространство или полость трубчатого органа, например, кровеносного сосуда или кишечника.

2. Биология Внутренняя часть мембраносвязанного компартмента или органеллы в клетке.

3. Сокр. лм Физика Единица измерения светового потока в системе СИ, равная количеству света в единицу времени, проходящего через телесный угол в один стерадиан от источника света силой в одну канделу, излучающего одинаково во всех направлениях. См. Таблицу при измерении.


люмен · al , люмен · al прил.

Медицинский словарь American Heritage® Авторские права © 2007, 2004, компания Houghton Mifflin. Опубликовано компанией Houghton Mifflin. Все права защищены.

лю · мен

(лм) , пл. просвет (lū’mĕn, -mi-nă)

1. Пространство внутри трубчатой ​​структуры, например артерии или кишечника.

2. Единица светового потока; световой поток, излучаемый в единице телесного угла в 1 стерадиан однородным точечным источником света, имеющим силу света 1 кандела.

[Л. свет, окно]

Медицинский словарь для профессий здравоохранения и медсестер © Farlex 2012

люмен

Внутренняя часть любой трубки, например кровеносный сосуд, дыхательный канал (бронх) или кишечник.

Медицинский словарь Коллинза © Роберт М. Янгсон 2004, 2005

люмен

любая полость, заключенная в клетке или структуре, например, просвет кишечника.

Биологический словарь Коллинза, 3-е изд. © В. Г. Хейл, В. А. Сондерс, Дж. П. Маргам 2005

Люмен

Внутренняя полость или канал трубчатого органа, например кишечника.

Медицинская энциклопедия Гейла. Copyright 2008 The Gale Group, Inc. Все права защищены.

люмен

1. Единица светового потока в СИ. Он равен потоку, излучаемому в пределах единичного телесного угла в один стерадиан точечным источником с силой света в одну канделу. Символ : лм. 2 . Пространство внутри трубчатого органа, например артерии. См. световой поток; количество света ; люкс; Единица СИ.

8

свет

Таблица L4 Приблизительная яркость (в кд / м 2 ) некоторых объектов
солнце 10 9
фара автомобиля 1013 лампа накаливания (вольфрам) 10 6 -10 7
люминесцентная лампа 10 4 -10 5
ясное небо в полдень пасмурное небо в полдень 10 3
тенистая улица днем ​​ 10 3 -10 4
полнолуние 10 3

> 10 2
фотопическое зрение> 10
уличное освещение 1-10 −1 9013 7
мезопическое зрение 10-10 −3
безоблачное ночное небо с полной луной 10 −2
скотопическое зрение 9013 32 −3 9013 −3

безлунное и безоблачное ночное небо 10 −3 -10 −6

Миллодот: Словарь оптометрии и визуальной науки, 7-е издание.© 2009 Butterworth-Heinemann

люмен

, пл. просвет (lūmĕn, -mi-nă)

1. Пространство внутри полой трубчатой ​​структуры (например, артерии или кишечника).

2. Отверстие катетера или полой иглы.

[Л. свет, окно]

Медицинский словарь для стоматологов © Farlex 2012

.

определение светящегося по The Free Dictionary

— Безоблачно улыбаться светящимися глазами и за много миль от нас, когда под нами стеснение, целеустремленность и чувство вины падают, как дождь.

Скорее сяду в кадке под закрытым небом, лучше сижу в бездне без неба, чем увижу тебя, светящееся небо, испорченное проплывающими облаками!

Вода, помещенная в стакан и взбалтываемая, дала искры, но небольшая часть в часовом стекле почти никогда не светилась.Эренберг утверждает, что все эти частицы сохраняют определенную степень раздражительности. С помощью мадемуазель Буриенн принцесса очень хорошо поддерживала разговор, но в самый последний момент, когда он встал, она так устала говорить о том, что ее не интересовало. , и ее ум был так занят вопросом, почему только ей одной даровано так мало счастья в жизни, что в припадке рассеянности она сидела неподвижно, ее светящиеся глаза пристально смотрели перед собой, не замечая, что он встал.Представьте себе огромный лист бумаги, на котором прямые линии, треугольники, квадраты, пятиугольники, шестиугольники и другие фигуры вместо того, чтобы оставаться на своих местах, свободно перемещаются по поверхности или на поверхности, но без возможности подниматься над или опускаться. под ним очень похоже на тени — только жесткие и со светящимися краями — и тогда вы получите довольно правильное представление о моей стране и соотечественниках. С другой стороны я увидел сквозь голубоватую дымку клубок деревьев и лиан, и над ними снова сияющая голубизна неба.Она видела, что слезы не высыхают на Этих щеках, где червь никогда не умирает, И прошел мимо звезд Льва, Чтобы указать нам путь к небу — К Летейскому миру небес — Поднимитесь Несмотря на Льва, Чтобы сиять на нас своими яркими глазами — Поднимитесь, через логово Льва, С любовью в ее сияющих глазах. Эти чувства побудили меня сделать предложение невыразительному доктору, который ухаживает за ней мои обширные познания в химии и мой яркий опыт изучения более тонких ресурсов, которые медицина и магнетика предоставили в распоряжение человечества.Светящаяся часть очерчивала на море огромный овал, сильно вытянутый, в центре которого конденсировалось пламенеющее тепло, чье непреодолимое сияние угасало с последовательными градациями. Это было зрелище, не имеющее себе равных, эти длинные светящиеся поезда, столь ослепляющие в полной мере. Луна, которая, минуя пограничную цепь на севере, простирается до «Моря дождей». В час земного утра снаряд, похожий на воздушный шар, унесенный в космос, упал на вершину этой великолепной горы. Полнебо было усыпано черными грозовыми головами, но весь запад был ясен и ясен: в вспышках молний он был похож на темно-синюю воду с отблеском лунного света; и пятнистая часть неба была подобна мраморной мостовой, как набережная какого-то великолепного приморского города, обреченного на гибель.«Лекции по драматической литературе» Шлегеля попали ко мне в руки вскоре после того, как я закончил изучение истории испанского театра, и они сразу же осветили всю тему. Я не могу дать должного представления о том утешении, которое доставляла мне эта книга тем светом, который она проливала на дороги, по которым я смутно шел раньше, но по которым я шел теперь весь день.
.

определение светового потока и синонимов светового потока (английский)

Фотопическая (черная) и скотопическая [1] (зеленая) функции светимости. Фотоснимок включает в себя стандарт CIE 1931 [2] (сплошной), модифицированные данные Джадда-Вос 1978 [3] (пунктир) и данные Sharpe, Stockman, Jagla & Jägle 2005 [4] (пунктир). По горизонтальной оси отложена длина волны в нм.

В фотометрии световой поток или световая мощность — это мера воспринимаемой силы света. Он отличается от лучистого потока, меры общей мощности излучаемого света, тем, что световой поток регулируется так, чтобы отражать изменяющуюся чувствительность человеческого глаза к разным длинам волн света.

Квартир

Единица светового потока в системе СИ — люмен (лм). Один люмен определяется как световой поток света, создаваемый источником света, который излучает одну канделу силы света на телесный угол в один стерадиан. В других системах единиц световой поток может иметь единицы мощности.

Вес

Световой поток учитывает чувствительность глаза путем взвешивания мощности на каждой длине волны с функцией светимости, которая представляет реакцию глаза на разные длины волн.Световой поток — это взвешенная сумма мощности на всех длинах волн в видимом диапазоне. Свет вне видимой полосы не влияет. Отношение полного светового потока к лучистому потоку называется световой отдачей.

Контексты

Световой поток часто используется в качестве объективной меры полезной мощности, излучаемой источником света, и обычно указывается на упаковке лампочек, хотя он не всегда заметен. Потребители, заботящиеся об энергопотреблении, обычно сравнивают световой поток различных лампочек, поскольку он дает оценку видимого количества света, которое будет производить лампа, и полезен при сравнении световой отдачи ламп накаливания и компактных люминесцентных ламп. «J» — рекомендуемый символ для измерения силы света в Международной системе единиц.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *