РадиоКот :: Расчёт импульсных трансформаторов
РадиоКот >Чердак >
Расчёт импульсных трансформаторов
Хочу рассказать о расчёте импульсных трансформаторов т.к. в сети очень много методик, но все они какие – то отдалённые и примерные с какими то непонятными коэффициентами, числами, откуда они взялись никто не описывает а приводит конечный результат в итоге результат получается с большим отклонением!!
Начнём с того, что мы захотели разработать некое устройство, посчитали необходимую требуемую мощность на выходе, допустим она равна 250 Вт, далее необходимо выбрать магнитопровод обеспечивающий заданую мощность.
Для этого существует реальная формула для оценки входной габаритной мощности магнитного элемента:
- кф – коэффициент формы напряжения или тока: для синуса =1,11 для прямоугольника =1.
- Кзс – коэффициент заполнения геометрического сечения магнитопровода материалом феромагнетика Кзс = 0,6 – 0,95 и даётся в справочной литературе на магнитный элемент.
- Кок — коэффициент заполнения окна магнитопровода сечениями проводников, Кок =0,35.
- n0 – коэффициент показывающий какую часть катушки занимает первичная обмотка, для трансформаторов n0 = 0,5.
- Sc – сечение магнитопровода.
- Sок – сечение окна магнитопровода.
- J – плотность тока, при естественном охлаждении 3500000 А/м2, при принудительном 6000000 А/м2
- В – рабочая индукция магнитопровода.
- F — частота напряжения либо тока Гц.
И так по этой формуле мы оценим реальную габаритную мощность трансформатора и прикиним что можем выжать с этого сердечника!
Например:
Имеем трансформатор от компьютерного блока питания с параметрами.
Сечение магнитопровода Sс = 0,9 см2
Сечение окна Sок = 2,4 см2
Рабочая индукция В = 0,15 (ориентировочное значение)
Частота предпологаемой работы нашего устройства f = 50кГц.
Все величины в единицах СИ!!!!!!!!! Т.е. переводим всё в метры, амперы, герцы, и.т.д.
Получим:
Так сердечник оценили, идём дальше, теперь необходимо разобраться с витками и сечением провода.
Начнём с витков в первичной обмотки, для этого существует замечательная формула:
Все данные мы рассмотрели выше, кроме U1— это непосредственно напряжение на первичной обмотке.
Допустим строим полумостовой преобразователь, Еп = 24В, следовательно U1 = 12В т.к первичная обмотка будет подключена через ёмкостной делитель т.е 24/2.
Далее считаем.
Вторичная обмотка допустим имеет напряжение 50В.
Все значения округляем до целого числа!
Теперь посчитаем сечение проводников обмоток.
P1 – мощность необходимая нам на выходе и принятая ранее 250 Вт.
- Вторичной: (потерями пренебрежём)
При намотке трансформатора не забываем про вытеснение тока на поверхность проводника в зависимости от частоты и производим расщепление проводника (литцендрант) или используем фольгу.
- Формула для расчёта расщепленного проводника:
Теперь не трудно посчитать и диаметр провода и раскладку провода!
В этой статье я хотел коротко и доступно рассказать о расчёте импульсного трансформатора, с разъяснением основных коэффициентов, что откуда берётся.
Также не забываем, что для более качественного расчёта необходимо использовать справочные данные магнитного элемента.
В итоге хотелось сказать, что использую даную методику уже несколько лет для расчёта как низкочастотных так и ВЧ трансформаторов.
Используемая литература:
Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. — Томск: ТУСУР 2006 — 154 с.
Файлы:
22
Все вопросы в
Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Широкополосные трансформаторы | RUQRZ.COM — сайт радиолюбителей.
Известно, что в старых распространенных радиолюбительских конструкциях всегда рекомендовались ферриты с проницаемостью 2000…600. А они ведь очень низкочастотные! Однако же в каком ни будь “Радио-76” они стоят и на входе и во всех смесителях. Что, авторы этих конструкций, известные радиолюбители, совершили ошибку? Отнюдь! Они то помнили и понимали, что энергия в ШПТЛ-ах передается не через перемагничивание сердечника, а непосредственно от элемента линии к элементу. Феррит здесь нужен для того, что бы повысить сопротивление линии для синфазных токов и в качестве “сборщика” полей рассеивания. Т.е. поглотителя энергии, которая паразитно наводится вокруг линии. Я, например, в своих конструкциях на КВ часто использую ферритовые кольца НМ2000. Это не значит, что надо применять только такие ферриты. Я хочу сказать, что и с такими магнитопроводами трансформаторы вполне нормально работают в широкой полосе радиочастот.
Какие же условия должны соблюдаться для того, что бы трансформатор был именно на длинных линиях?
1) Его обмотки должны представлять собой длинные линии с известным волновым сопротивлением. Проще говоря — все “обмотки” трансформатора должны быть сделаны из параллельных или слегка скрученных проводов с одинаковыми расстояниями между ними. Конструкции трансформаторов, которые выполнены “традиционным” способом (первичная обмотка на одной части кольца, вторичная на другой) НЕ РАБОТОСПОСОБНЫ! В этом можно убедиться, сделав простой эксперимент. Намотайте трансформатор на кольце с коэффициентом трансформации 1:1 или 1:2 (эти цифры еще один повод для обсуждения) и нагрузите на соответственный эквивалент нагрузки, сделанный, например, из резистора МЛТ-2. В первом случае — это 50 Ом, а во втором — 200 Ом. Подайте на трансформатор постоянный сигнал небольшой мощности с любого современного трансивера, используя его, как ГСС. Так вот, когда трансформатор намотан “традиционным” способом, то он дает КСВ на входе, равный БЕСКОНЕЧНОСТИ! А когда ваш трансформатор по конструкции — истинный ШПТЛ, то КСВ будет около 1 и в широком диапазоне частот. Опыт можно повторить с различными ферритами. Такой эксперимент очень показателен, его можно проделать не выходя из дома, на своем рабочем столе,
2) ШПТЛ должен быть нагружен по входу и выходу на АКТИВНЫЕ нагрузки равные примерно волновому сопротивлению линий из которых он сделан.
Типовой пример: Наш брат — радиолюбитель применяет для “симметрирования” антенн огромные по величине ферритовые кольца возле полотна. Однако описанный выше эксперимент с активными нагрузками показывает, что колечко диаметром в 10…20 мм выдерживает мощность в 100 Вт и не нагревается! Так где же правда? Правда, в том, что антенна (диполь или рамка) имеет низкое активное сопротивление ТОЛЬКО на одной единственной частоте, частоте первой гармоники антенны. Высокие активные сопротивления, которые имеются на четных гармониках, на практике неприменимы. Низкоомные резонансы на нечетных верхних гармониках попадают уже не в радиолюбительские диапазоны. А на остальных частотах ВСЕГДА будут присутствовать значительные реактивности. Они вызывают сильный нагрев кольца и поэтому оно должно иметь большую поверхность охлаждения т.е. быть БОЛЬШИМ. К примеру, в импортных стоваттных трансиверах на выходе ПА стоят микроскопические ферритовые бинокли. И… НИЧЕГО! Это не из-за того, что они сделаны из диковинного материала. Просто одно из требований к выходной нагрузке для таких трансиверов — что бы она была АКТИВНОЙ. (Другое требование – 50 Ом). Следует опасаться тех публикаций, где рекомендуют мотать строго определенное число витков для ВЧ трансформатора. Это признак еще одной “болезни сознания” — квазирезонансного использования ШПТЛ-а. Вот от туда “ростут ноги” у легенды о необходимости применять ВЧ ферриты. Но… Широкополосности то уже НЕТ!
Теперь про упомянутые 1:1 и 1:2… В школьном курсе физики коэффициент трансформации — это соотношение витков первичной и вторичной обмоток. Т.е. соотношение входных и выходных напряжений. Почему же у радиолюбителей этот параметр превратился “по умолчанию” в коэффициент трансформации сопротивлений? Да потому, что трансформация сопротивлений более важна в нашей среде. Но не следует доходить до апсурда! Вот разговор подслушанный в эфире – два радиолюбителя обсуждают как сделать тансформатор с 50 на 75 Ом. Один предлагает мотать его с соотношением витков 1:1,5. И когда им кто-то робко возражает, в ответ слышны только обвинения в технической неграмотности. И подобное случается на каждом шагу! А всего лишь — ТЕРМИНЫ! Получается, что великий закон сохранения энергии для них не действует и можно при напряжении на входной обмотке, предположим 1 Вольт, подавая на 50-ти омный вход трансформатора мощность 20 мВт, на 75-ти оммном выходе снимать уже 30 мВт. Вот такой “вечный двигатель” получается! Здесь всего то лишь надо помнить, что коэффициент трансформации сопротивлений находится в квадратичной зависимости от коэффициента трансформации напряжений. Другими словами трансформатор 1:2 будет трансформировать сопротивление 50 Ом в 200 Ом, а трансформатор 5:6 сопротивление 50 Ом в 75 Ом. Почему я написал 5:6, а не 1:1,2? Вот здесь – один шаг до конструкции. Как уже говорилось, ШПТЛ должен мотаться линией. А линия – это два или несколько сложенных вместе и слегка скрученных провода. Волновое сопротивление такой линии зависит от диаметра проводов, расстояния между их центрами и шага скрутки. Для трансформации 50 Ом в 75 Ом необходимо использовать линию из ШЕСТИ проводов и, если нет требования к симметрированию, соединить эти провода по схеме
Как вы заметили, схема тоже нарисована по-особому, не как обычный трансформатор. Такое изображение лучше отражает суть конструкции. Привычное схемное изображение, Рис.2, и, соответственно, “традиционная” конструкция автотрансформатора с однослойной обмоткой и отводом от 0,83 общего количества витков при практических испытаниях “на столе” показывает гораздо худшие результаты по широкополосности.
По конструктивным и эксплуатационным соображениям нежелательно так же делать ШПТЛ с укороченным участком одной из линий. Рис.3. Несмотря на то, что это позволяет легко делать любые, даже дробные, коэффициенты трансформации. Такое решение приводит к появлению неоднородности в линии, вследствии чего ухудшается широкополосность.
Интересный вопрос: — “Какие предельные коэффициенты трансформации можно получить в ШПТЛ?” Особенно интересно найти ответ на этот вопрос тем, кто “заболел” идеей сделать широкополосный апериодический ламповый усилитель мощности, где необходимо трансформировать сопротивление порядка 1..2 КОм со стороны лампы в сопротивление 50 Ом. Эксперимент “на столе” дает довольно интересный результат. Опять здесь все зависит от конструкции обмоток. К примеру, если сделать “традиционный” трансформатор или автотрансформатор с коэффициентом трансформации, предположим, 1:10, нагрузить его на положенное активное сопротивление, равное 5 КОм и промерить КСВ на пятидесятиоммной стороне, то от результата волосы могут встать дыбом! А если в добавок снять АЧХ, то будет понятно, что от широкополосности ничего не осталось. Имеется один явный, довольно острый резонанс, обусловленный индуктивностью.
Эту больную тему можно было бы еще развивать до бесконечности, но… Все затмила конструкция широкополосного симметрирующего трансформатора на трансфлюксоре (двухдырочном ферритовом сердечнике) Рис.4, которую мне удалось “подсмотреть” в импортной антенне для телевизора типа “усы”. Изображение на рисунку конечно схематическое — на самом деле обмотки состоят из нескольких (3…5) витков. Долго с недоумением я рассматривал его конструкцию, пытаясь понять систему намотки. Наконец удалось нарисовать расположение “обмоток”. Вот уж – пример использования истинных длинных линий!
Если бы я не знал,что это линии, то подумал бы, что я сумасшедший! Особенно эта красная короткозамкнутая обмотка… Но, почему же мы не удивляемся в случае, когда, например в кабельном U-колене, необходимо соединить в одной точке оплетку с двух концов коаксиального кабеля. Тоже, ведь – ЛИНИЯ! При настольном эксперименте на эквивалент нагрузки этот микротрансформатор, предназначенный для работы на частотах в сотни мегагерц, показал великолепные результаты на значительно более низких частотах, вплоть до диапазона 40 м и при полной мощности трансивера.
Попутно разберемся с легендами о симметричности и симметрировании. Выясним, как очень просто определить является ли тот или иной ШПТЛ симметрирующим, или авторы только заявляют об этом свойстве, а симметрии там и в помине нет. Тут нам снова поможет “Его Величество – Эксперимент” и “Его высочество – теоретический анализ результатов эксперимента”. Сперва разберемся, что такое симметричный выход и чем он отличается от несимметричного. Оказывается тут все зависит от конструкции трансформатора. Вот, например, самый простой случай – ШПТЛ с коэффициентом трансформации 1:1. Любой настоящий или мнимый ШПТЛ (Бывают и такие! И не редко!) можно легко проверить с помощью своего домашнего трансивера. Достаточно присоединить к выходу трансформатора активную нагрузку (эквивалент) с сопротивлением, соответствующим к-ту трансформации, и проверить КСВ на 50-ти омном входе при максимальной мощности передатчика (максимальная точность КСВ метра) в заданном диапазоне частот. Если ШПТЛ настоящий, то КСВ должен быть близок к идеалу т. е. 1,0 и в ШИРОКОЙ полосе частот (на то он и ШИРОКОПОЛОСНЫЙ трансформатор!) Желательно иметь открытый на передачу трансивер с непрерывным перекрытием и не в коем случае не включать внутренний антенный тюнер. Свойство симметрии проверяется при приеме с помощью ПАЛЬЦА (не 21-го! Хотя, можно и им!). Симметрия — суть РАВНОПРАВИЕ обеих выводов нагрузки относительно земли (корпуса трансивера). При приеме какой-либо станции (можно вещательной, это удобнее…) при прикосновении ПАЛЬЦЕМ или отверткой к концам нагрузки, присоединенной к СИММЕТРИЧНОМУ выходу ШПТЛ, по показаниям S-метра и на слух все должно быть одинаково. Но уровень сигнала должен быть на один бал (-6 дБ или два раза по U) меньше на каждом несимметричном выходе. (это в случае к-та трансформации 1:1). В качестве нагрузки кратковременно даже для 100 Вт передачи удобно применять резистор МЛТ-2 на 51 Ом. При этом наблюдается интересный эффект — во время приема синала через симметрирующий транс, при проведении ПАЛЬЦЕМ по корпусу этого резистора с одного края будет слышна радиостанция, в центре резистора — ее слышно не будет, а с другого края — будет слышно так же, как с первого. Только при таких условиях трансформатор можно считать симметрирующим. Попробуйте разные конструкции ШПТЛ-ов, которые публикуются в литературе и в интернете. Результаты Вас могут сильно удивить…
Короче! Делайте свой смеситель на любом кольце с НЧ ферритом. Испытаете — напишите! Экспериментируйте смелее!
Сергей Макаркин, RX3AKT
Что еще почитать по теме:
высоковольтный импульсный трансформатор без сердечника — патент РФ 2482562
Изобретение относится к электротехнике, к высоковольтным импульсным источникам питания высокого напряжения и может быть использовано в импульсной технике, например в системах зажигания, электрошоковых устройствах, системах питания газоразрядных ламп, ионизаторах воздуха, газовых лазеров и т.д. Технический результат состоит в снижении габаритов и массы изделия, упрощении производства, повышении эффективности. Высоковольтный импульсный трансформатор содержит безкаркасную или каркасную вторичную обмотку, помещенную во внешнюю трубчатую электроизоляционную оболочку или имеющую зазор относительно намотанной поверх первичной обмотки. Вся конструкция залита электроизоляционным компаундом или электроизоляционной жидкостью. 9 з.п. ф-лы, 5 ил.
Формула изобретения
1. Высоковольтный импульсный трансформатор без сердечника, содержащий по меньшей мере одну первичную и по меньшей мере одну вторичную обмотки, упомянутая по меньшей мере одна вторичная высоковольтная обмотка намотана бескаркасно или с каркасом при минимальном начальном диаметре намотки, где упомянутый каркас выполнен секционным, стенки которого соединены между собой силовым осевым стержнем, при этом поверх упомянутой вторичной обмотки с минимальным зазором намотана по меньшей мере одна первичная низковольтная обмотка, а вся конструкция выполнена в электроизоляционном материале.
2. Трансформатор по п.1, отличающийся тем, что в упомянутом силовом осевом стержне выполнено сквозное осевое отверстие.
3. Трансформатор по п.1, отличающийся тем, что упомянутый секционный каркас выполняют с продольными разрезами в стенках секций для перехода провода при намотке, где упомянутые продольные разрезы в стенках секций для перехода провода при намотке содержат угловое смещение относительно друг друга.
4. Трансформатор по п.1, отличающийся тем, что содержит трубчатую разделительную электроизоляционную обечайку, установленную в зазор между упомянутыми обмотками.
5. Трансформатор по п.1, отличающийся тем, что содержит стержни из изоляционного материала, установленные в зазор между упомянутыми обмотками.
6. Трансформатор по п.4, отличающийся тем, что выполняют по меньшей мере с двумя раздельными вторичными обмотками, и трубчатая разделительная электроизоляционная обечайка содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие для вывода концов по меньшей мере двух раздельных вторичных обмоток или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток.
7. Трансформатор по п.1, отличающийся тем, что дополнительно содержит электроизоляционый герметичный корпус.
8. Трансформатор по п.1 или 7, отличающийся тем, что упомянутый электроизоляционный материал представляет собой неэластичный или эластичный отверждаемый компаунд.
9. Трансформатор п.7, отличающийся тем, что упомянутый электроизоляционный материал представляет собой трансформаторное масло или иной жидкий изолятор.
10. Трансформатор по п.1 или 6, отличающийся тем, что выводы вторичной обмотки содержат дополнительную трубчатую эластичную изоляцию.
Описание изобретения к патенту
Изобретение относится к технике высоких напряжений, в частности к высоковольтным импульсным источникам питания высокого напряжения, например в системах зажигания, системах питания газоразрядных ламп, ионизаторах воздуха, газовых лазерах, электрошоковых устройствах.
Широко известна конструкция высоковольтного импульсного трансформатора, содержащая первичную и вторичную обмотки, магнитный сердечник стержневой или замкнутой конструкции, межслойную изоляцию либо секционированный каркас с взаимоизолированными секциями.
Примером традиционной конструкции высоковольтного импульсного трансформатора может служить трансформатор по патенту США № 1499931, содержащий незамкнутый стержневой сердечник, первичную и вторичную обмотки, герметичный корпус. Известны и другие конструкции с незначительными отличиями, однако по сути устройство до сегодняшнего дня остается неизменным.
Типовая схема включения высоковольтного импульсного трансформатора, как низкой, так и высокой частоты, содержит источник питания, например батарею или повышающий преобразователь напряжения (инвертер) и формирователь импульсов, подключенный к первичной обмотке трансформатора, в качестве которого может быть использован механический коммутатор, управляемый полупроводниковый ключ, релаксационный генератор на газоразрядных приборах или иная схема. Трансформатор передает мощность источника питания в виде импульсов высокого напряжения в нагрузку. Подобная схема получения высокого напряжения используется, например, в электрошоковых устройствах.
Недостатком подобной конструкции являются значительные габариты — как правило, в портативных устройствах, таких как, например, электрошоковые устройства, высоковольтный импульсный трансформатор является наиболее объемным элементом и может занимать до 1/3 объема всего устройства. Значительно снизить габариты при сохранении основной характеристики «напряжение холостого хода» (а в аспектах применения в электрошоковых устройствах важнейшей характеристикой является «пробивное расстояние по воздуху») по такой конструкции высоковольтного импульсного трансформатора не представляется возможным.
Другим недостатком являются значительные потери энергии на омическом и индуктивном сопротивлении обмоток, что сказывается на КПД устройства в целом. Высокая индуктивность, в частности, препятствует получению коротких мощных импульсов, необходимых в некоторых областях применения.
Кроме того, изготовление высоковольтных трансформаторов по традиционной конструкции требует значительных экономических затрат, связанных с большим расходом обмоточных и изоляционных материалов, а также сложностью технологического процесса.
Известны высокочастотные трансформаторы без сердечников, например трансформаторы Тесла (патент США № 568176).
Трансформаторы Тесла имеют первичную обмотку из очень малого количества витков толстого провода, изогнутого и намотанного в виде растянутой спирали, и вторичную обмотку в виде каркаса — цилиндра из электроизоляционного материала, на котором виток к витку в один слой уложено большое количество витков провода малого диаметра. Между первичной и вторичной обмоткой имеется воздушный зазор (разница диаметров между первичной и вторичной обмотками в трансформаторах Тесла достигает 3-5 раз), достигающий величины нескольких сантиметров даже в малых трансформаторах Тесла и служащий изоляцией между обмотками.
Другой вариант исполнения трансформатора Тесла имеет первичную обмотку, уложенную близко виток к витку, но расположенную только в центре очень длинного по отношению к длине первичной обмотки каркаса-цилиндра с вторичной обмоткой.
Типовая схема включения трансформатора описана выше.
И в том, и другом варианте исполнения трансформатора Тесла индуктивная связь между катушками слабая (не более 0,1), что является следствием необходимости иметь между первичной и вторичной обмоткой электроизоляцию с большой электрической прочностью для исключения возможности пробоя высокого напряжения, снимаемого со вторичной обмотки на первичную обмотку, разного рода утечек, например коронных.
Таким образом, недостатком трансформаторов Тесла являются сверхбольшие габариты, не допускающие использование трансформаторов в современных портативных устройствах, таких как, например, электрошоковое оружие.
Другим недостатком трансформаторов Тесла является индуктивная слабосвязанность (низкая взаимоиндукция) из-за отсутствия сердечника, слабой магнитной проницаемости воздуха, очень больших расстояний между обмотками и их неоптимального для максимальной индуктивной связи пространственного расположения.
Слабая связь ведет к уменьшению напряжения холостого хода или «пробивного расстояния по воздуху» трансформатора типа Тесла, хотя известно, что увеличение коэффициента связи всего в два раза уже дает повышение выходного напряжения на 25%.
Изобретение направлено на решение задачи миниатюризации высоковольтного импульсного трансформатора при сохранении высокого напряжения холостого хода, большого коэффициента трансформации и повышении эффективности за счет снижения активных потерь.
Поставленная задача решается тем, что высоковольтный импульсный трансформатор без сердечника содержит по меньшей мере одну первичную и по меньшей мере одну вторичную обмотки, при этом упомянутую по меньшей мере одну вторичную высоковольтную обмотку наматывают бескаркасно или с каркасом при минимальном начальном диаметре намотки, поверх упомянутой вторичной обмотки с минимальным зазором наматывают по меньшей мере одну первичную низковольтную обмотку, при этом всю конструкцию заливают жидким электроизоляционным материалом.
В частности, упомянутый каркас имеет пространственную звездообразную форму или упомянутый каркас выполнят секционным.
В частности, упомянутый секционный каркас выполняют с продольными разрезами в стенках секций для перехода провода при намотке, где упомянутые продольные разрезы в стенках секций для перехода провода при намотке содержат угловое смещение относительно друг друга.
В частности, упомянутый зазор между упомянутыми обмотками представляет собой трубчатую разделительную электроизоляционную обечайку.
В частности, трансформатор выполняют по меньшей мере с двумя раздельными вторичными обмотками, где трубчатая разделительная электроизоляционная обечайка содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие для вывода концов по меньшей мере двух раздельных вторичных обмоток или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток.
В частности, упомянутый жидкий электроизоляционный материал представляет собой неэластичный или эластичный отверждаемый компаунд, трансформаторное масло или иной жидкий изолятор.
В частности, дополнительно содержит электроизоляционый герметичный корпус.
В частности, упомянутую заливку жидким электроизоляционным материалом осуществляют при вакуумировании.
В частности, выводы вторичной обмотки содержат дополнительную трубчатую эластичную изоляцию.
Краткое описание чертежей
Фиг.1 представляет собой вид звездообразного каркаса трансформатора со вторичной обмоткой.
Фиг.2 представляет собой вид секционного каркаса трансформатора со вторичной обмоткой, продольными разрезами в стенках секций и с осевым отверстием в силовом осевом стержне.
Фиг.3 представляет собой вид трансформатора с первичной обмоткой, вторичной обмоткой, трубчатой разделительной электроизоляционной обечайкой.
Фиг.4 представляет собой вид трансформатора с двумя раздельными первичными и двумя раздельными вторичными обмотками.
Фиг.5 представляет собой вид трансформатора согласно настоящему изобретению.
Осуществление изобретения
На Фиг.1 показан пространственный звездообразный каркас 1 из электроизоляционного материала (например, литой из пластических масс) трансформатора, на котором выполнена вторичная обмотка 2. Упомянутую вторичную обмотку 2 выполняют из тонкой обмоточной проволоки с лаковой или иной изоляцией. Проволока уложена в подобие секций упомянутого звездообразного каркаса 1, образующихся расстояниями между соседними лучами звездообразного каркаса 1. При этом проволоку укладывают как виток к витку, так и в навал.
На Фиг.2 показан секционный каркас 3 трансформатора из электроизоляционного материала, на котором выполнена вторичная обмотка 2. Упомянутую вторичную обмотку 2 выполняют из тонкой обмоточной проволоки с изоляцией.
Проволока может быть уложена в секции упомянутого секционного каркаса 3, как виток к витку, так и в навал. Преимущественно, чтобы укладка была осуществлена виток к витку. Для перехода провода при намотке из секции в секцию в стенках секционного каркаса 3 выполняют продольные разрезы 4. Также возможно, чтобы упомянутые продольные разрезы 4 в стенках секций для перехода провода при намотке содержали угловое смещение относительно друг друга. Секционный каркас 3 трансформатора содержит силовой осевой стержень (не показан) для скрепления упомянутых секций между собой, при этом в упомянутом силовом осевом стержне может быть выполнено сквозное осевое отверстие 5 для возможности отвода обоих выводов вторичной обмотки на одну из сторон трансформатора. Выводы вторичной обмотки 2 изолируют дополнительной трубчатой изоляцией 6 (трубчатую разделительную электроизоляционную обечайку) из эластичного материала с высокой электрической прочностью.
На Фиг.3 показан трансформатор, состоящий из секционного каркаса 3 со вторичной обмоткой 2, помещенного в трубчатую разделительную электроизоляционную обечайку 7. Трубчатую разделительную электроизоляционную обечайку 7 выполняют из материала с большой электрической прочностью при достаточном сродстве к адгезионной способности применяемого для заливки компаунда, например полиэтилена, полипропилена, полиэтилентерефталата и т.п. Поверх обечайки 7 наматывают первичную обмотку 8, которая состоит из малого количества витков толстой проволоки с лаковой или иной изоляцией. Один из выводов вторичной обмотки 2 может быть пропущен через осевое отверстие 5 для выхода высоковольтного вывода на другую сторону трансформатора. То есть упомянутая обечайка 7 содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие 5 для вывода концов по меньшей мере двух раздельных вторичных обмоток 2 или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток 2.
Собранная конструкция трансформатора после сборки заливается электроизоляционным материалом (компаундом) 9 под вакуумом, причем компаунд заполняет и свободные пространства секций каркаса трансформатора со вторичной обмоткой 2. Упомянутый жидкий электроизоляционный материал 9 представляет собой неэластичный или эластичный отверждаемый компаунд, трансформаторное масло или иной жидкий изолятор, а упомянутую заливку жидким электроизоляционным материалом 9 осуществляют при вакуумировании. При заливке упомянутым материалом 9 трансформатор должен дополнительно содержать электроизоляционный герметичный корпус.
В заявляемой конструкции трансформатора коэффициент связи обмоток трансформатора повышен за счет уменьшения потоков рассеяния магнитной индукции, достигаемого максимальным сближением первичной 8 и вторичной 2 обмоток и уменьшением их диаметра и длины, что достигается разделением вторичной 2 обмотки на взаимоизолированные секции и применением разделительной электроизоляционной обечайки с большой электрической прочностью между первичной 8 и вторичной 2 обмотками.
На Фиг.4 показан трансформатор с раздельными первичными (14 и 15) и вторичными обмотками, состоящий из сдвоенного каркаса 10 (описанного выше секционного типа) с разделительной перемычкой 11 без обмотки. Сдвоенный каркас 10 помещен в удлиненную трубчатую разделительную электроизоляционную обечайку 12 с отверстием 13, через которое выводятся наружу концы раздельных вторичных обмоток для формирования общих выводов, либо общий вывод внутреннего соединения концов вторичных обмоток.
Поверх обечайки 12 намотаны первичные обмотки 14 и 15, которые могут соединяться параллельно или последовательно в зависимости от необходимости. Описанная конструкция трансформатора после сборки заливается электроизоляционным компаундом 9 под вакуумом, причем компаунд заполняет и свободные пространства секций сдвоенного каркаса трансформатора со вторичными обмотками.
На Фиг.5 показан трансформатор без каркаса, который имеет вторичную обмотку 16, выполненную как галетная или перекрестная обмотка, или другого типа, применяемого для намотки катушек без сердечника, поверх которой с зазором 17 намотана первичная обмотка 8. Зазор 17 между обмотками выбирается минимальным и он ограничен только электрической прочностью применяемого при заливке компаунда или жидкого изоляционного вещества. Для недопущения контакта вторичной 16 и первичной 8 обмоток при заливке трансформатора компаундом под вакуумом в зазор 17 могут вставляться стержни 18 из изоляционного материала с высокой электрической прочностью при достаточном сродстве к адгезионной способности применяемого для заливки компаунда. Описанная конструкция трансформатора после сборки дополнительно заливается электроизоляционным компаундом 9 под вакуумом.
RFCT – датчики трансформаторного типа, работающие в HF диапазоне частот
Датчики серии «RFCT» (Radio Frequency Current Transformer), предназначенные для регистрации частичных разрядов в изоляции различного высоковольтного оборудования, представляют собой измерительные трансформаторы тока, эффективно работающие в высокочастотном (HF) диапазоне частот.
В отличие от обычных измерительных трансформаторов тока сердечник «RFCT» датчиков изготавливается не из листовой электротехнической стали, а из специализированных высокочастотных материалов – ферритов. В результате датчики этого типа малочувствительны к токам промышленной частоты, но позволяют хорошо регистрировать периодические и импульсные сигналы в диапазоне частот от сотен кГц до десятков МГц, в зависимости от используемого материала сердечника.
Уровень частичных разрядов в высоковольтной изоляции находится примерно в одном диапазоне, составляет от десятков пикокулон до десятков нанокулон, и мало зависит от типа контролируемого высоковольтного оборудования. Поэтому датчики типа «RFCT», в отличие от измерительных трансформаторов тока промышленной частоты, имеют одинаковую чувствительность для всех практических применений, определяемую только особенностями их конструкции.
Датчики регистрации частичных разрядов типа «RFCT», как и все другое диагностическое оборудование, используемое для этих целей, после изготовления не поверяются, а только тестируются на работоспособность и общее соответствие требованиям технических условий на изготовление. Необходимая калибровка чувствительности датчиков типа «RFCT» всегда производится «на месте» проведения измерений, с учетом особенностей созданной измерительной схемы. При этом автоматически учитывается не только реальная чувствительность датчиков, но и степень затухания импульсов частичных разрядов внутри контролируемого оборудования, в соединительных кабелях и во входных цепях измерительных приборов.
По своей конструкции датчики «RFCT» делятся на три типа:
- Неразъемные стационарные датчики кольцевой конструкции, монтируемые на заземляющих проводах и шинах на отключенном оборудовании. Обычно такие датчики поставляются со стационарно подключенным сигнальным кабелем.
- Датчики с разъемным сердечником, легко монтируемые на проводниках и шинах даже работающего контролируемого оборудования, обычно используемые для проведения оперативных измерений частичных разрядов. Подключение сигнального кабеля к таким датчикам производится при помощи коаксиального разъема.
- Модульные датчики частичных разрядов, предназначенные для измерений в слаботочных цепях, включаемые в разрыв соединительного провода (на отключенном оборудовании). Такой тип конструкции применяется и для комплексных датчиков, предназначенных, кроме контроля частичных разрядов, для измерения дополнительных параметров оборудования.
Изоляция корпусов, соединительных кабелей и выходных разъемов датчиков типа «RFCT» конструктивно рассчитана на напряжение до 1000В. По этой причине датчики частичных разрядов трансформаторного типа всегда устанавливаются только на проводниках или шинах заземления (с внешней изоляцией или без изоляции) высоковольтного оборудования (корпусов, баков, обмоток, экранов и т. д.). Установка датчиков частичных разрядов типа «RFCT» на высоковольтных токоведущих проводах высокого напряжения или в точках оборудования, где высокое напряжение может возникнуть даже кратковременно, например, в изолированной нейтрали трехфазной цепи, категорически запрещена.
В настоящее время фирмой «DIMRUS» серийно производятся девять разновидностей высокочастотных трансформаторов тока типа «RFCT». Основная справочная информация о конструкции этих датчиков, их частотные характеристики и особенности практического применения приведены ниже.
Таблица 1. Габаритные и весовые параметры основных семи датчиков серии «RFCT», выпускаемых фирмой «DIMRUS»
Ширина, мм | Высота, мм | Длина, мм | Масса, кг | |
RFCT-1 | 83 | 52 | 21 | 0,10 |
RFCT-2 | 50 | 82 | 51 | 0,12 |
RFCT-3 | 40 | 40 | 13 | 0,04 |
RFCT-4 | 145 | 160 | 24 | 0,72 |
RFCT-5 | 77 | 170 | 23 | 0,18 |
RFCT-6 | 26 | 285 (65 без ручки) | 60 | 0,28 |
RFCT-7 | 122 | 114 | 28 | 0,48 |
Датчик частичных разрядов марки «RFCT-1»
Трансформаторный датчик марки «RFCT-1» предназначен для использования в системах регистрации и анализа частичных разрядов в изоляции высоковольтного оборудования. Основное назначение датчика – проведение измерения частичных разрядов в системах непрерывного или периодического контроля состояния высоковольтного оборудования.
Датчик марки «RFCT-1» может быть использован для регистрации высокочастотных импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ, в подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и в других высоковольтных объектах. Для проведения регистрации частичных разрядов датчик устанавливается на проводниках и шинах заземления контролируемого оборудования. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока в контролируемом проводнике от высокого потенциала «к земле».
Датчик марки «RFCT-1», в соответствии с требуемыми условиями монтажа и заказной спецификацией, может поставляться с соединительным коаксиальным разъемом (марки BNC или TNC) или с «глухо» подключенным коаксиальным кабелем длиной 15 метров. Длина соединительного кабеля может варьироваться в соответствии с утвержденными требованиями заказной спецификации.
Датчик «RFCT-1» не требует периодической поверки. Для него достаточно калибровки на объекте контроля и периодической проверки его работоспособности.
Датчик частичных разрядов марки «RFCT-2»
Основное назначение датчика «RFCT-2» – регистрация импульсов от частичных разрядов в генераторах, трансформаторах, ячейках КРУ и других высоковольтных объектах.
Внутри изолированного корпуса датчика «RFCT-2» расположен залитый компаундом маломощный сигнальный высокочастотный трансформатор. Первичная обмотка трансформатора подключена к входному винтовому соединителю М4 через разделительный высоковольтный конденсатор. Вторичная обмотка трансформатора, к которой подключается измерительный прибор, выведена на стандартный коаксиальный разъем типа BNC.
Датчик «RFCT-2» предназначен для измерения частичных разрядов, которые можно зарегистрировать между двумя прямо не связанными частями высоковольтного оборудования. Особенностью является то, что между этими частями оборудования возможно возникновение потенциала до десятков вольт, при замыкании которого возможно протекание уравнительных токов большой величины.
Это может быть, например, измерение частичных разрядов между корпусом высоковольтного генератора и экраном отходящего от него токопровода. Или же это может быть измерение частичных разрядов между корпусами (баками) двух силовых трансформаторов (или отдельных фаз группового силового трансформатора), потенциал между которыми, в случае протекания значительных уравнительных токов по цепям заземления, может достигать величины нескольких вольт и даже десятка вольт.
Датчик «RFCT-2» поставляется в пластиковом (АВС) корпусе, в котором располагается высокочастотный трансформатор и разделительные конденсаторы. Весь свободный внутренний объем внутри датчика заливается эпоксидной смолой или специализированной силиконовой резиной, в зависимости от условий будущей эксплуатации.
Благодаря использованию в конструкции датчика высокочастотного разделительного трансформатора, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, а присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.
Датчик частичных разрядов марки «RFCT-3»
Датчик частичных разрядов марки «RFCT-3» является вспомогательным, обычно он используется для создания гальванической развязки между контролируемой цепью и измерительным прибором. Это бывает нужным для устранения уравнительных токов промышленной частоты и для организации безопасности проведения работ при измерении частичных разрядов в изоляции.
Внутри изолированного корпуса датчика «RFCT-3», залитого компаундом, располагается только разделительный высокочастотный трансформатор с коэффициентом трансформации, равным единице, подключенный к двум разъемам марки BNC.
Разделительный конденсатор, смонтированный в первичной цепи датчика марки «RFCT-2», здесь отсутствует. Поэтому через входную цепь датчика «RFCT-3» могут протекать токи промышленной частоты (величиной не более 1А). По этой причине датчик марки «RFCT-3», включаемый в разрыв контролируемой цепи, не препятствует протеканию токов промышленной частоты, имеющих место в контролируемой цепи.
По своей амплитудно-частотной характеристике датчик «RFCT-3» соответствует датчику «RFCT-2», так как в них используется одинаковый высокочастотный разделительный трансформатор на ферритовом сердечнике.
Некоторое время датчик «RFCT-3» поставлялся в комплекте со специализированными соединительными проводами под торговой маркой «DBT-1». Этот комплект был предназначен для проведения тестовых испытательных измерений и позволял проводить регистрацию частичных разрядов в силовых трансформаторах. С этой целью через первичную обмотку замыкался на землю измерительный вывод высоковольтных вводов трансформаторов. Практика проведения измерений показала, что в этом случае не удается измерить ток проводимости ввода, что снижало эффективность таких испытаний. В настоящее время для этих целей предлагаются датчики марки «DB-2» различных модификаций.
Датчик частичных разрядов марки «RFCT-4»
Датчик «RFCT-4» предназначен для регистрации частичных разрядов в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования — в высоковольтных выключателях, ячейках КРУ, подходящих к ним и отдельно расположенных кабельных линиях, в цепях нейтрали силовых трансформаторов и в другом оборудовании.
Отличительной конструктивной особенностью датчика марки «RFCT-4» является то, что он выполнен разъемным, состоящим из двух половин. Это позволяет оперативно монтировать датчики на оборудовании, не разрывая контролируемую электрическую цепь. Кроме того, датчик имеет сравнительно большой внутренний диаметр, позволяющий монтировать его на токоведущих элементах большого сечения, которые часто применяются в составе мощного высоковольтного оборудования.
Половинки датчика, при использовании в составе системы постоянного контроля, стационарно соединяются между собой «скрытыми болтами». При использовании датчика в составе переносных измерительных систем применяются другие болты, более удобные для быстрой фиксации половинок датчика между собой без использования инструмента.
Как и все другие датчики этой серии «RFCT-4» предназначен для установки только в цепях заземления высоковольтного оборудования, поэтому его электрическая изоляция рассчитана на напряжение до 1000 Вольт.
Кроме того, датчик марки «RFCT-4» имеет увеличенное сечение ферритового сердечника, поэтому мощные высокочастотные импульсы в контролируемом проводнике приводят к импульсам большой энергии во вторичной цепи, представляющим опасность для персонала и диагностического измерительного оборудования. Этот факт необходимо учитывать при разработке и создании измерительной схемы, всегда предусматривая дополнительные защитные и заземляющие устройства во входных цепях измерительных приборов регистрации частичных разрядов. Для снижения влияния этого фактора в датчик встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В.
Поскольку датчик марки «RFCT-4» чаще всего монтируется на проводниках большого сечения, по которым возможно протекание токов промышленной частоты, то может происходить насыщение сердечника сильными внешними магнитными полями, что приводит к снижению чувствительности датчика. Для снижения уровня насыщения магнитопровода датчика в зазор сердечника между половинами датчика должна вставляться изолирующая прокладка толщиной до 2 мм, в зависимости от величины тока, протекающего по проводнику заземления. При этом уменьшается степень насыщения сердечника токами промышленной частоты.
Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный сердечник большого сечения и диаметра. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. При наружной установке датчика с ним поставляется комплект крепления, дополнительно защищающий пластиковый корпус датчика от солнечной радиации.
Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. В выходном сигнале датчика присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.
Датчик монтируется на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.
Датчик не требует проведения независимой периодической поверки и калибровки. Это производится на объекте, после монтажа.
Для стационарных систем датчик выпускается с разъемом марки TNC (винтовое крепление) или с «глухо подключенным кабелем длиной 15 м, а для систем периодического мониторинга, использующих переносные приборы, с разъемом BNC.
Датчик частичных разрядов марки «RFCT-5»
Датчик «RFCT-5» предназначен для использования в системах периодического мониторинга состояния изоляции высоковольтного оборудования. Назначение датчика «RFCT-5» – регистрация импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ и подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и т. д.
Датчик «RFCT-5» производится в литом пластиковом (АВС пластик) корпусе, в котором располагается высокочастотный сердечник. Конструктивно датчик представляет собой «разъемные» высокочастотные измерительные клещи, позволяющие проводить измерения частичных разрядов в проводниках с максимальным диаметром до 24 мм. Габаритные размеры датчика «RFCT-5» — 200 * 100 * 25 мм. Вес датчика – 0,5 кг.
Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Датчик регистрирует только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства.
Оптимальный рабочий диапазон частот для датчика составляет от 0,1 до 10 МГц. Этого диапазона вполне достаточно для систем регистрации импульсов частичных разрядов в высоковольтном оборудовании в диапазоне HF.
Датчик производит измерения интенсивности частичных разрядов в любых цепях с рабочим напряжением до 1000 В. Направление стрелки на боковом корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике, от высокого потенциала к «земляному».
Калибровка чувствительности датчика «RFCT-5» производится только в составе всей измерительной цепи – объект, емкостная связь, датчик и входные цепи прибора. Датчик не требует проведения периодической поверки и калибровки. Калибровка датчика, в комплексе с переносным измерительным прибором, производится однократно перед измерением, с учетом реального объекта, при помощи калибровочного генератора.
Датчик частичных разрядов марки «RFCT-6»
Датчик «RFCT-6» предназначен для использования в переносных системах периодического контроля состояния изоляции различного высоковольтного оборудования. Основное технологическое назначение датчика «RFCT-6» – проведение оперативных измерений частичных разрядов без вывода контролируемого оборудования из работы.
Для измерения частичных разрядов датчик «RFCT-6» необходимо приблизить к заземляющим проводникам и шинам так, чтобы направление тока в проводнике совпадало с направлением стрелки на корпусе датчика. При этом корпус датчика будет располагаться перпендикулярно проводнику. По принципу своей работы датчик «RFCT-6» представляет собой «одну половину» датчика марки «RFCT-5» — высокочастотных токовых клещей.
Использование датчика марки «RFCT-6» с переносным прибором эффективно тогда, когда необходимо оперативно провести сравнительное измерение частичных разрядов в большом количестве точек. Это датчик «индикаторного» типа.
Датчик «RFCT-6» производится в металлическом корпусе, в котором располагается высокочастотный сердечник в форме полукольца. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. Для удобства практического применения датчик «RFCT-6» комплектуется дополнительной изолированной ручкой.
При помощи датчика марки «RFCT-6» можно производить измерения интенсивности частичных разрядов в изолированных цепях с рабочим напряжением до 1000 В. Датчик имеет металлический корпус, поэтому его приближение к оголенным проводникам и участкам оборудования с любым напряжением категорически запрещено.
Датчик марки «RFCT-6», по условиям своего практического применения, не может быть поверен, и даже не может быть откалиброван. Причиной этого является то, что амплитуда выходного сигнала зависит от способа установки датчики относительно контролируемого проводника. Чем дальше датчик будет удален от контролируемого проводника или смещен вбок от проводника, тем меньше будет амплитуда выходного сигнала.
Датчик частичных разрядов марки «RFCT-7»
Датчик «RFCT-7» предназначен для использования в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования. Наиболее эффективно использовать этот датчик для регистрации частичных разрядов в заземляющих проводниках высоковольтных кабельных линий.
Для удобства монтажа датчик сделан разъемным, состоящим из двух половин, соединяемых при помощи двух болтов. Это позволяет оперативно монтировать его на токоведущих элементах большого сечения, значительно расширяет возможности его практического применения.
Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный прямоугольный сердечник большого сечения. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной.
Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Для исключения насыщения сердечника датчика токами промышленной частоты в нем, в полукольце без обмотки, монтируется немагнитная прокладка. В зависимости от толщины этой изолирующей прокладки, датчик «RFCT-7» без значительной потери точности измерений частичных разрядов допускает протекание токов различной амплитуды.
Для удобства маркировки толщины немагнитной прокладки, на ответной части датчика с прокладкой ставятся цветные метки, определяющие максимально допустимый ток промышленной частоты.
- Зеленая маркировка — Максимальный ток в проводнике 500 А
- Оранжевая маркировка — Максимальный ток в проводнике 1000 А
Учитывая наличие сердечника сравнительно большого сечения, в датчик «RFCT-7» встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В. Это сделано для защиты персонала и защиты входных цепей измерительных приборов.
Корпусная изоляция датчика «RFCT-7» рассчитана на напряжение до 1000 В.
Датчик «RFCT-7», как и все другие датчики серии «RFCT», монтируется только на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.
Датчик марки «RFCT-7» не требует проведения поверки и калибровки после изготовления. Калибровка должна производиться на объекте контроля после завершения монтажа датчика.
Датчик «SCM» для регистрации ЧР в изоляции и емкостных токов в экранах кабельных линий
Датчики марки «SCM» предназначены для регистрации частичных разрядов в изоляции высоковольтных кабельных линиях.
При помощи датчика «SCM» обычно контролируется состояние изоляции кабельной линии, соединительных муфт, а также всех высоковольтных устройств и аппаратов (высоковольтные выключатели, статоры электрических машин и т. д.), подключенных к данной кабельной линии. Максимальная длина контролируемой кабельной линии зависит от степени затухания частичных разрядов в силовом кабеле, но обычно не превышает 2000 м.
Фирмой «DIMRUS» выпускаются две модификации датчика данного типа – «SCM-1» и «SCM-3». По внешнему виду эти датчики не имеют каких-либо отличий, кроме различной маркировки.
В датчике марки «SCM-1» располагается один высокочастотный трансформатор тока марки «RFCT», а в датчике марки «SCM-3» дополнительно смонтирован измерительный трансформатор тока с обычным стальным сердечником, предназначенный для регистрации токов промышленной частоты. Это дает возможность одновременно, при помощи одного датчика, контролировать частичные разряды и емкостные токи утечки изоляции кабельной линии.
Датчик импульсов частичных разрядов марки «SCM» конструктивно выполнен так, чтобы можно было легко осуществлять его монтаж в разрыв цепи заземления экрана кабеля или соединительной муфты. В процессе монтажа датчика заземляющая жила (экран) кабельной линии отключается от «земли». На освободившееся место монтируется датчик, а заземляющая шина кабеля подключается ко второму «посадочному месту» датчика. Конструктивное исполнение датчика таково, что он имеет практически нулевое внутреннее сопротивление и может, без ухудшения своих параметров, пропускать большие токи, возникающие во время коммутационных и переходных процессов в заземляющих жилах кабельных линий.
Датчик ЧР марки «DRTD-3» для измерений в статорах электрических машин
Датчик «DRTD-3» предназначен для регистрации частичных разрядов в обмотках статоров крупных электрических машин, генераторов и высоковольтных электродвигателей.
При использовании для регистрации частичных разрядов в изоляции обмотки статора термометров сопротивления, встроенных в пазы статора между секциями обмотки и предназначенных для контроля температуры обмотки, необходимо использовать датчики марки «DRTD-3».
Датчик состоит из трех малогабаритных высокочастотных трансформаторов серии «RFCT-3», залитых компаундом в отдельные корпуса, и расположенных на одной плате с винтовыми клеммами. Каждый модуль датчика включается в разрыв проводов, идущих от одного термометра сопротивления внутри обмотки к измерительному прибору контроля температуры. Соединительных проводов от каждого датчика внутри обмотки статора может быть три или четыре, в зависимости от используемой схемы включения термометров сопротивления.
Высокочастотные сигналы от частичных разрядов в изоляции обмотки статора наводятся в самом термометре сопротивления и в соединительных проводах, проложенных внутри паза статора между секциями обмотки. Благодаря наличию высокочастотного трансформатора тока измерительные цепи контроля частичных разрядов гальванически не связаны с измерителем температуры. Сигналы от частичных разрядов с выхода трансформатора тока по коаксиальному кабелю передаются в измерительный прибор для регистрации и анализа.
Монтировать датчик «DRTD-3» желательно максимально близко к месту выхода проводников от термометров сопротивления из корпуса статора электрической машины, чтобы максимально избежать затухания сигналов от частичных разрядов в соединительном кабеле. Плату датчика «DRTD-3» необходимо обязательно заземлять, используя для этого специальное крепежное отверстие.
Если термометр сопротивления подключен по трехпроводной схеме, то нужно не задействовать нижние клеммы. Необходимо помнить, что нельзя изменять последовательность жил кабеля на входе и выходе датчика, чтобы не нарушить работу прибора измерения температуры.
Для проведения калибровки датчиков типа «DRTD-3» необходимо использовать отключенный режим работы электрической машины, хотя само подключение датчика можно производить и в процессе работы оборудования.
Скачать документацию по датчикам «RFCT»
Похожие материалы:
высокочастотный трансформатор — с русского на все языки
высокочастотный трансформатор — ВЧ трансформатор — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы ВЧ трансформатор EN high frequency… … Справочник технического переводчика
высокочастотный трансформатор — aukštadažnis transformatorius statusas T sritis fizika atitikmenys: angl. high frequency transformer vok. Hochfrequenztransformator, m rus. высокочастотный трансформатор, m pranc. transformateur à haute fréquence, m … Fizikos terminų žodynas
Трансформатор Теслы — Разряды с провода на терминале Трансформатор Тесла, также катушка Теслы (англ. Tesla coil) единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий выс … Википедия
Тесла, Никола — У этого термина существуют и другие значения, см. Тесла. Никола Тесла серб. Никола Тесла … Википедия
Никола Тесла — сербск. Никола Тесла Дата рождения: 10 июля 1856(18560710) Место рождения: Село Смиляны, Госпич … Википедия
Никола Тэсла — Никола Тесла сербск. Никола Тесла Дата рождения: 10 июля 1856(18560710) Место рождения: Село Смиляны, Госпич … Википедия
Компьютерный блок питания — … Википедия
Импульсный стабилизатор напряжения — Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия
Термоэлектрический прибор — измерительный, прибор для измерения силы переменного тока, реже электрического напряжения, мощности. Представляет собой сочетание магнитоэлектрического измерителя с одним или несколькими термопреобразователями. Термопреобразователь… … Большая советская энциклопедия
Тесла Никола — Тесла (Tesla) Никола (10.7.1856, Смилян, бывшая Австро Венгрия, ныне СФРЮ, 7.1.1943, Нью Йорк), изобретатель в области электротехники и радиотехники. Серб по национальности. Учился в высшем техническом училище в Граце и Пражском университете… … Большая советская энциклопедия
Тесла — I Тесла (Tesla) Никола (10.7.1856, Смилян, бывшая Австро Венгрия, ныне СФРЮ, 7.1.1943, Нью Йорк), изобретатель в области электротехники и радиотехники. Серб по национальности. Учился в высшем техническом училище в Граце и Пражском… … Большая советская энциклопедия
Китай Высокочастотные Трансформаторы, Китай Высокочастотные Трансформаторы список товаров на ru.Made-in-China.com
Цена FOB для Справки:
0,37-0,49 $ / шт.
MOQ:
500 шт.
- Применение: Электрическая Энергия,Электронное,Инструмент,Освещение,Выпрямитель,Аудио,Однофазный трансформатор,Выпрямитель трансформатор,Комбинированный трансформатор,Силовой трансформатор
- Фаза: Однофазный
- ядро: Стержневой Трансформатор
- Метод охлаждения: Сухой Трансформатор
- Обмотка Тип: Многообмоточный трансформатор
- Сертификация: UL,ISO9001
-
Поставщики с проверенными бизнес-лицензиями
Поставщики, проверенные инспекционными службами
DONGGUAN ZHICI ELECTRONICS CO., LTD. -
провинция: Guangdong, China
Лучший высокочастотный силовой трансформатор — Выгодные предложения на высокочастотный силовой трансформатор от мировых продавцов высокочастотных силовых трансформаторов
Отличные новости !!! Вы находитесь в нужном месте для высокочастотного силового трансформатора. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот высокочастотный силовой трансформатор станет одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели высокочастотный силовой трансформатор на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в высокочастотном силовом трансформаторе и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. , а также ожидаемую экономию.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress.Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести high-frequency power transformer по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
| Трансформаторы высокой частоты
Растущий спрос на электронное оборудование вызывает потребность в более высокочастотных трансформаторах.
В Agile Magnetics мы разрабатываем и производим эти продукты с момента основания нашей компании в 1992 году.
Наш опыт охватывает высокочастотные трансформаторы, изготовленные из самых разных материалов, изготовленные по точным спецификациям наших клиентов и поставляемые вовремя.
Позвольте нам оптимизировать вашу высокочастотную конструкцию
Magnetics
Максимальная мощность в компактном корпусе
Сегодняшняя электроника требует мощных трансформаторов, которые подходят для самых компактных приложений.
Любая часть оборудования, работающая на плохо спроектированных трансформаторах, подвержена риску поломки и выхода из строя.
Наши трансформаторы спроектированы и изготовлены по индивидуальному заказу, чтобы безопасно и эффективно обеспечивать самые высокие уровни мощности, снижая риск потерь на скин-эффект и гистерезиса.
По мере того как цифровая электроника становится частью постоянно растущего числа устройств, потребность в высокочастотных трансформаторах продолжает расти. Ниже представлены лишь некоторые приложения, связанные с этими трансформаторами:
- Персональная электроника
- шт
- Промышленное оборудование
- Солнечные преобразователи
- Электроприводы
- Преобразование энергии
Позвольте нам оптимизировать вашу высокочастотную конструкцию
Magnetics
Диапазон доступных трансформаторов
Оборудованная современным производством площадью 40 000 квадратных футов и полным парком современного оборудования, наша команда разрабатывает и производит любые типы высокочастотных трансформаторов, которые требуются нашим клиентам.
Некоторые из них включают:
Смещение обратного хода
Этот трансформатор отличается простой конструкцией. Трансформаторы смещения с обратным ходом, легко управляющие более чем одним выходом, могут подавать положительное и отрицательное напряжение на один трансформатор. В результате он широко используется для схем переключения режимов. Эти трансформаторы обладают рядом преимуществ, включая уменьшение утечки индуктивности и снижение шума в некоторых приложениях.
Трансформаторы прямого преобразователя
Среди наиболее популярных сегодня на рынке трансформаторы прямого преобразователя сложнее, чем модели обратного хода, но обладают исключительным КПД.
Трансформаторы привода затвора (ГДТ)
Хорошо известные сочетанием надежности с исключительной изоляцией, затворные трансформаторы широко используются в таких приложениях, как полумостовые силовые цепи. Они также включают и выключают полупроводники, в том числе IGBT и MOSFET. Важной функцией этих трансформаторов является управление затворами электронных переключающих устройств.
Двухтактные трансформаторы
Напоминающие повышающие понижающие трансформаторы как по конструкции, так и по функциональности, двухтактные трансформаторы позволяют использовать несколько выходных напряжений постоянного тока и подавать питание непосредственно на нагрузку.
Резонансные преобразователи трансформаторов
Резонансные преобразователи
умеют работать с высокими напряжениями и работать на радиочастотах. Разработанные с ферритовыми и воздушными сердечниками, они часто используются в двигателях, радиоприемниках и передатчиках.
Высоковольтные, высокочастотные трансформаторы
Эти трансформаторы предназначены для безопасного и точного управления напряжением до 15 000 вольт, преобразуя уровни высокого напряжения и тока между катушками за счет магнитной индукции.Высоковольтные и высокочастотные трансформаторы используются в самых разных областях, от источников питания до лазерного оборудования и ускорителей частиц.
Трансформаторы с универсальной обмоткой
Универсальные обмоточные трансформаторы, также очень выгодные для высоковольтных устройств, имеют конструкцию с увеличенной катушкой. Это обеспечивает больше пространства между витками, что позволяет диэлектрическому маслу более свободно проникать в катушку. Больше масла не только создает дополнительную изоляцию, но также значительно снижает вероятность возникновения дуги и коронного разряда.
Импульсные трансформаторы
Разработаны для генерации прямоугольных импульсов, импульсные трансформаторы помогают сбалансировать электрические сигналы и разделять компоненты переменного тока в сигнале.
Разделительный трансформатор
Трансформаторы
обладают некоторыми свойствами изоляции, независимо от их первичного применения, но только развязывающие трансформаторы предназначены для изоляции первичной обмотки от вторичной в соответствии с требованиями агентства по безопасности.
ВЫСОКОЧАСТОТНЫЕ ТРАНСФОРМАТОРЫ — L / C Magnetics
Наши возможности кратко описаны ниже. Отправьте нам письмо по адресу [email protected] , и мы ответим в течение часа.
L / C Magnetics предлагает уникальные возможности для высокочастотных трансформаторов. Материал сердечника может быть железным сердечником, ферритовым сердечником или сердечником Metglas.У нас есть подходящие инструменты и намоточное оборудование, чтобы производить эти устройства с быстрым оборотом.
Празднование 30-летия работы
Отправьте нам электронное письмо для получения бесплатного предложения.
Тел .: (714) 624 4740
Наши инженеры ответят в течение часа.
Сильноточный трансформатор с ферритовым сердечником, 1 кВА, 1 PH, частота 10 кГц, P / N 18811
Высокочастотный трансформатор с ферритовым сердечником, 1 кВА, 1 PH, частота от 5 кГц до 25 кГц, P / N 18750
Аудиопреобразователь, 1 кВА, 1 PH, от 20 Гц до 30 кГц, P / N 19149
Празднование 30-летия работы
Отправьте нам электронное письмо для получения бесплатного предложения.
Тел .: (714) 624 4740
Наши инженеры ответят в течение часа.
L / C Magnetics Inc. — производитель, перепродавец и дистрибьютор трансформаторной продукции от 0,1 кВА до 50 МВА, сухого типа или заполненной маслом
Наше подразделение CEHCO (www.cehco.com) производит выпрямители постоянного тока, трансформаторные выпрямительные сборки и индивидуальные источники питания.
(Соответствующие соответствия этой категории показаны ниже)
Высокочастотный трансформатор
Конструкция высокочастотного трансформатора
Цена высокочастотного трансформатора
Лист данных на высокочастотный трансформатор
Распиновка высокочастотного трансформатора
Эквивалентная схема высокочастотного трансформатора
Трансформатор низкочастотный
Высокочастотная индуктивность намагничивания трансформатора
Производитель высокочастотных трансформаторов
Трансформаторы силовые высокочастотные
Основы высокочастотного трансформатора
Высокочастотные OEM-трансформаторы
Высокочастотные однофазные трансформаторы
Трансформаторы с ферритовым сердечником
Трансформаторы с сердечником Metglas
Трансформаторы с железным сердечником
Трансформаторы со стальным кремниевым сердечником
Устаревшие высокочастотные трансформаторы
Специальные высокочастотные трансформаторы
Индивидуальные высокочастотные трансформаторы
Снято с производства Высокочастотные трансформаторы
Трудно найти Высокочастотные трансформаторы
Снят с производства Трансформаторы высокой частоты
Высокочастотные трансформаторы
Высокочастотные трансформаторы | Бесплатные консультации по дизайну
Трансформаторы частоты | Многие размеры и текущие рейтинги.
Производители высокочастотных трансформаторов
Какая польза от высокочастотного трансформатора?
Какой тип сердечника используется для высокочастотного трансформатора?
В чем разница между высокой и низкой частотой?
Почему частота трансформатора уменьшается с увеличением размера?
В чем разница между низкочастотным и высокочастотным трансформатором?
Рекомендации по проектированию для высокой мощности и высокой частоты
Схема высокочастотного трансформатора
Конструкция высокочастотного трансформатора
Высокочастотный трансформатор PPT
Производители высокочастотных трансформаторов
Использование высокочастотного трансформатора
Уравнение частоты трансформатора
Цена высокочастотного трансформатора
Трансформатор низкочастотный
OEM высокочастотные трансформаторы
Изображения для высокочастотных трансформаторов
Трансформатор с ферритовым сердечником
Трансформаторы / индукторы — высокочастотный феррит
Высокочастотные магниты
Проектирование индукторов и высокочастотных трансформаторов
Высокочастотные силовые трансформаторы
Производители высокочастотных трансформаторов
Высокомощные высокочастотные трансформаторы
Прекращено производство высокочастотного и высокочастотного преобразователя частоты
Специальный высокочастотный трансформатор
Специалист по высокочастотному трансформатору
Специальная конструкция высокочастотного трансформатора
Высоковольтный высокочастотный трансформатор
Сильноточный высокочастотный трансформатор
Применение OEM Высокочастотный трансформатор
Сделано в США высокочастотный трансформатор
Недорогой высокочастотный трансформатор
Экономичный высокочастотный трансформатор
Сухой высокочастотный трансформатор
Обратный инженер высокочастотного трансформатора
Высокочастотный трансформатор 30 лет работы
Специалист по высокочастотному трансформатору
Изготовить на заказ Высокочастотный трансформатор
Высокочастотный трансформатор, 400 Гц
Высокочастотный трансформатор
Однофазный высокочастотный трансформатор
Трехфазный высокочастотный трансформатор
Высокочастотный трансформатор среднего напряжения
Запасной эквивалент высокочастотного трансформатора
Многоканальный высокочастотный трансформатор
Высокочастотный трансформатор с 4 сердечником Mil C
Высокочастотный трансформатор на 300 А
Высокочастотный трансформатор печи
Нагревательный элемент высокочастотный трансформатор
Высокочастотный трансформатор на 500 А
Высокочастотный трансформатор на 700 А
Наземный высокочастотный трансформатор
Ремонт высокочастотного трансформатора
Ремонт высокочастотного трансформатора
Высокочастотный трансформатор с внутренним корпусом
Высокочастотный трансформатор, Nema 1
Высокочастотный трансформатор с наружным корпусом
Высокочастотный трансформатор, Nema 3
Высокочастотный трансформатор, корпус TENV
Высокочастотный трансформатор, повышающий
Высокочастотный трансформатор, понижающий
Высокочастотный автоматический трансформатор
Высокочастотный трансформатор, монтаж на шасси
Высокочастотный трансформатор, монтаж на печатную плату
Высокочастотный трансформатор, залитый
Высокочастотный трансформатор 60 Гц
Высокочастотный трансформатор 50/60 Гц
Высокочастотный трансформатор 5 кГц
Высокочастотный трансформатор 10 кГц
Прекращенный высокочастотный трансформатор
Специальный высокочастотный трансформатор
Специалист по высокочастотному трансформатору
Специальная конструкция высокочастотного трансформатора
Высоковольтный высокочастотный трансформатор
Сильноточный высокочастотный трансформатор
Применение OEM Высокочастотный трансформатор
Сделано в США, высокочастотный трансформатор
Недорогой высокочастотный трансформатор
Экономичный высокочастотный трансформатор
Сухой высокочастотный трансформатор
Обратный инженер высокочастотного трансформатора
Высокочастотный трансформатор 30 лет работы
Специалист по высокочастотному трансформатору
Изготовить на заказ Высокочастотный трансформатор
Высокочастотный трансформатор, 400 Гц
Высокочастотный высокочастотный трансформатор
Однофазный высокочастотный трансформатор
Трехфазный высокочастотный трансформатор
Высокочастотный трансформатор среднего напряжения
Запасной эквивалент высокочастотного трансформатора
Многоканальный высокочастотный трансформатор
Высокочастотный трансформатор с 4 сердечником Mil C
Высокочастотные трансформаторы с рейтингом K
Высокочастотные трансформаторы с разъемным сердечником
Высокочастотный трансформатор на 300 А
Высокочастотный трансформатор печи
Нагревательный элемент высокочастотный трансформатор
Высокочастотный трансформатор на 500 А
Высокочастотный трансформатор на 700 А
Наземный высокочастотный трансформатор
Ремонт высокочастотного трансформатора
Ремонт высокочастотного трансформатора
Высокочастотный трансформатор с внутренним корпусом
Высокочастотный трансформатор, Nema 1
Высокочастотный трансформатор с наружным корпусом
Высокочастотный трансформатор, Nema 3
Высокочастотный трансформатор, повышающий
Высокочастотный трансформатор, понижающий
Высокочастотный / автоматический трансформатор
Высокочастотный трансформатор, монтаж на шасси
Высокочастотный трансформатор, монтаж на печатную плату
Высокочастотный трансформатор, залитый
Высокочастотный трансформатор 60 Гц
Высокочастотный трансформатор 50/60 Гц
Высокочастотный трансформатор 5 кГц
Высокочастотный трансформатор 10 кГц
Наши возможности кратко описаны ниже.Отправьте нам письмо на номер
Промышленный трансформатор управления
Однофазные трансформаторы для промышленного управления
Стандартный КПД
от 50 до 5000 ВА
Для использования в промышленных и коммерческих системах управления
Трехфазный инкапсулированный
Общего назначения
Стандартный КПД
от 3 до 75 кВА
Шкафы NEMA 3R
Промышленное применение
Класс 1, Раздел 2
Нелинейный, К-фактор
Нелинейные нагрузки
DOE / C802
Электростатическая защита
Отвечает требованиям нагрузки устройств с твердым телом, включая балласт, компьютеры и коммуникационное оборудование
Бак-Boost
Общего назначения
Стандартный КПД
от 50 ВА до 50 кВА
Повышает или понижает напряжение для экономичного решения проблем с избытком / понижением
Освещение и коммерческое применение
Однофазный вентилируемый
Общего назначения
DOE / C802
от 15 до 667 кВА
Шкафы NEMA 1
Промышленные и коммерческие системы управления
Изоляция привода
Нагрузки привода и двигателя
Стандартная эффективность / C802
от 3 до 990 кВА
Отвечает требованиям частотно-регулируемых приводов переменного и постоянного тока
Однофазный инкапсулированный
Общего назначения
Стандартный КПД
от 50 ВА до 50 кВА
Шкафы NEMA 3R
Освещение, промышленное и коммерческое применение
Класс 1, Раздел 2
Трехфазный вентилируемый
Общего назначения
DOE / C802
от 15 до 2500 кВА
Шкафы NEMA 3R
Промышленные и коммерческие системы управления
Полностью закрытый без вентиляции
TENV, промышленное применение
Стандартный КПД
от 15 до 500 кВА
NEMA 3R, 4, 4X, 12, 12 X
Для использования в неблагоприятных условиях окружающей среды
Празднование 30-летия работы
Отправьте нам электронное письмо для получения бесплатного предложения.
Тел .: (714) 624 4740
Наши инженеры ответят в течение часа.
Высокочастотный трансформатор Тесла
Перейти к основному содержанию
Вселенная Тесла: поиски разгадки загадки Николы Теслы
Основная навигация
- Никола Тесла
Показать / скрыть подссылки
- Хронология Tesla
- Цитаты Тесла
- Документы Tesla
- Книги Тесла
- Патенты Tesla
- Статьи о Tesla
- Изображения Tesla
- Достопримечательности Tesla
- Письма Тесла
- Фильмы и телевидение Tesla
- Tesla People
- Лекции Tesla
- Около
- Построить
Показать / скрыть подссылки
- Галереи
- Планы
- Информационный бюллетень TCBA
- Участвовать
Показать / скрыть подссылки
- Аренда катушки Тесла
- Пистолет Тесла
- Аренда костюма Фарадея
- Ремонт катушки Тесла
.