06.10.2024

Устройство защитного заземления электроустановок: Упс. Вы не туда попали!

Содержание

Заземление и зануление электроустановок | Electricdom.ru

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.

Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека
от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.

Защитное заземление — преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности. Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше. Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

Есть два вида заземлителейестественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусcтвенных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения
поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

Обозначения системы заземления

Cистемы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников:
C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.
S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные системы заземления

1. Система заземления TN-C

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.

2. Система заземления TN-C-S

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в
здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке). Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.

3. Система заземления TN-S

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. С подстанции приходит пяти жильный кабель. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.

4. Система заземления TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

Схема контурного заземления

1. Заземлители
2. Заземляющие проводники
3. Заземляемое оборудование
4. Производственное здание.

Пример схемы заземления дома

1. Водонагреватель
2. Заземлитель молниезащиты
3. Металлические трубы
водопровода, канализации, газа
4. Главная заземляющая шина

5. Естественный заземлитель (арматура фундамента здания)

Меры для защиты от поражения электрическим током

Для защиты человека от поражения электрическим током применяют защитные средства — резиновые перчатки, инструмент с изолированными ручками,
резиновые боты , резиновые коврики, предупредительные плакаты.

Контроль изоляции проводов

Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок. Состояние изоляции проводов проверяют в новых установках, после реконструкции, модернизации, длительного перерыва в работе.
Профилактический контроль изоляции проводов проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0,5 Мом.

Устройство защитного заземления электроустановок по требованиям ПУЭ

При эксплуатации жилых и административных зданий устройство заземления имеет большое значение. В совокупности с защитными автоматическими системами отключения, они предотвращают пожары в случаях короткого замыкания в сетях. Молниезащита зданий заводится на общий контур заземления. Исключаются поражения электрическим током обслуживающего персонала, обеспечивается стабильная, безаварийная работа электроустановок. Требования по их монтажу и используемым материалам регулируют Правила устройства электроустановок (ПУЭ).

Правила устройства электроустановок (ПУЭ)

Понятие заземления

Это система из металлоконструкций, обеспечивающая электрический контакт корпуса электроустановок с землей. Основным элементом является заземлитель, который может быть цельный или из соединяющихся между собой отдельных токопроводящих частей, на конечном этапе уходящих в грунт. Правила требуют, чтобы монтаж металлоконструкций выполнялся из стали или меди. На каждый вариант существует свой ГОСТ и требования ПУЭ.

На эффективность работы заземляющего устройства существенно влияет электрическое сопротивление.

Требования ПУЭ в пункте 7.1.101 гласят: на жилых объектах с сетью 220В и 380В заземляющий контур должен иметь сопротивление не более 30 Ом, на трансформаторных подстанциях и генераторах не более 4 Ом.

Чтобы выполнить эти правила, величину сопротивления системы заземления можно регулировать. Для повышения проводимости заземляющего устройства  используют несколько способов:

  • увеличивают площадь соприкосновения металлоконструкций с грунтом, вбивая дополнительные колья;
  • повышают проводимость самого грунта на участке, где размещен контур заземления, поливая его соляными растворами;
  • меняют провод от щита к контуру на медный, который имеет более высокую проводимость.

Проводимость системы заземления зависит от многих факторов:

  • состава грунта;
  • влажности грунта;
  • количества и глубины залегания электродов;
  • материала металлоконструкций.

Практика показывает, что идеальные условия для эффективной работы защитного заземления создают следующие грунты:

  • глина;
  • суглинок;
  • торф.

Особенно если этот грунт имеет высокую влажность.

Правила определяют, что провода и шины защитного заземления для электроустановок до 1 кВ с глухозаземленной нейтралью обозначают маркировкой (РЕ), добавляя штрихованный знак с чередованием желтых и зеленых полос на концах проводов. Проводники рабочего нуля имеют голубой цвет изоляции и маркируются буквой (N). В схемах электроустановок, где рабочие нулевые провода используются как элемент защитного заземления, подключены на заземляющий контур, они имеют голубую окраску, маркировку (РЕN) с желтыми и зелеными штрихами на концах. Этот порядок цветов и маркировки определяет ГОСТ Р 50462. При монтаже конструкций используют правила для разных видов подключения защитного заземления электроустановок.

Виды и правила заземления электроустановок


ТNCтакая конструкция заземления электроустановок была принята в Германии с 1913 года, эти правила остаются действующими на многих старых сооружениях. В этой схеме рабочий нулевой провод сети одновременно используется как РЕ-проводник. Недостатком этой системы оказалось высокое напряжение на корпусах электроустановок в случае обрыва РЕ-провода. Оно в 1,7 раза превышало фазное, что увеличивало угрозу поражения электрическим током обслуживающего персонала. Подобные схемы защитного заземления электроустановок часто встречаются в старых зданиях Европы и государств постсоветского пространства.

TNS новое устройство защиты электроустановок. Эти правила монтажа электропроводки были приняты в 1930 году. Они учитывали недостатки старой системы ТN-C. TN-S отличается тем, что от подстанции до корпуса электрооборудования прокладывался отдельный защитный нулевой провод. Здания оборудовались отдельным контуром заземления, к которому подключались все металлические корпуса бытовых электроприборов.

Схемы подключения TN-S и TN-С

Защитное заземление этого вида способствовало созданию автоматов отключения цепи. В основу работы дифференциальных автоматических устройств заложены законы Киргофа. Его правила определяют: «ток, протекающий по фазному проводу, имеет равную величину току, который протекает по нулевому проводу». При обрыве нуля, даже незначительная разница токов управляет отключением автоматических устройств, исключая возникновения линейного напряжения на корпусах электроустановок.

Комбинированная система ТN — C – S разделяет рабочий нулевой провод и заземляющий не на подстанции, а на участке цепи в зданиях, где эксплуатируются электроустановки. Правила этой системы имеют существенный недостаток. При коротком замыкании или обрыве нуля на корпусе электроустановок возникает линейное напряжение.

В большинстве случаев в жилых, производственных и офисных зданиях, сооружениях используется защитное заземление с глухозаземленной нейтралью. Это означает, что рабочий нулевой провод подключается к заземлению. В пункте 1.7.4 ПУЭ определено: «Нейтральные (нулевые) провода трансформаторов или генераторов подключаются к заземляющему контуру».

Защитное заземление в групповых сетях

В частных, многоквартирных и многоэтажных офисных зданиях потребители имеют дело с электроснабжением от распределительных устройств, с которых электроэнергия поступает на розетки, осветительные приборы и другие приемники тока. В подъездах на каждой лестничной площадке установлено ВРУ (вводное распределительное устройство), от которого сеть разделяется на группы по квартирам и функциональному назначению:

  • группа освещения;
  • розеточная группа;
  • группа для питания нагревательных приборов (бойлера, сплит системы или кухонной плиты).

Пример монтажа в шкафу ВРУ

Распределительное устройство разделяет группы по функциональному назначению или для электроснабжения отдельных помещений. Все они подключаются через защитные автоматические выключатели.

Распределительное устройство – разделение сети на группы

На основании требования ПУЭ (пункт 1.7.36) групповые линии выполняются трехпроводным кабелем с медными проводами:

  • фазный провод с обозначением – L;
  • провод рабочего ноля обозначается буквой – N, при монтаже используется проводник с синей или голубой изоляцией в кабеле;
  • нулевой провод, защитное заземление обозначается – РЕ желто-зеленой окраски.

Для монтажа используются трехпроводные кабели, соответствующие требованиям, определяющим состав полихлорвинилового пластика изоляции на проводах:

  • ГОСТ – 6323-79;
  • ГОСТ – 53768 -2010.

Насыщенность цвета определяют ГОСТ – 20.57.406 и ГОСТ – 25018, но эти параметры не являются критичными, так как не влияют на качество изоляции.

В старых зданиях советской постройки проводка выполнена двухпроводным проводом с алюминиевой проволокой. Для надежной и безопасной эксплуатации современной бытовой техники от корпуса ВРУ до розеток, через распределительные коробки, прокладывается третий заземляющий провод. Рекомендуется при капитальном ремонте заменить всю старую проводку и установить новые розетки с контактом на защитный провод.

Категорически запрещается в качестве защитного заземлителя использовать действующие конструкции трубопроводов канализации или системы отопления.

В щитке все провода, согласно своему назначению, крепятся на отдельные контактно-зажимные планки. Запрещается подключение проводов N на контактные шины РЕ другой группы и наоборот. Также не допускается подключение РЕ и N отдельных групп на общие контакты линий РЕ или N. В сущности, при контактах нулевого провода и провода защитного заземления работа цепи электроснабжения не нарушится. В конечном итоге через подстанцию и заземляющий контур они замыкаются, но может нарушиться расчетный баланс токовых нагрузок на защитные автоматы. Несоблюдение этого баланса приведет к незапланированному отключению на отдельных группах.

Монтаж рабочего нулевого и заземляющего проводов в ВРУ

Пример крепления нулевых и заземляющих проводов в ВРУ

Практически, исходя из пункта 7.1.68 ПУЭ, все корпуса электроприборов в здании подлежат заземлению:

  • токопроводящие металлические элементы светильников;
  • корпуса кондиционеров, стиральных машин;
  • утюги, электрические плиты и многие другие бытовые приборы.

Все современные производители электрооборудования учитывают эти требования. Любое современное устройство, потребляющее электроэнергию от стандартных промышленных сетей, производится со схемой подключения к трехпроводным розеткам. Одним проводом является защитное заземление (провод, который присоединяет корпус электроустановок к контуру заземления).

Контур для частного дома


Устройство металлоконструкций заземляющего контура собирается из различных элементов, это могут быть:

  • стальной уголок;
  • стальные полосы;
  • металлические трубы.
  • медные стержни и провод.

Наиболее подходящим материалом для монтажа считаются стальные оцинкованные полосы, трубы и уголки, соответствующие ГОСТ – 103-76. Производители изготавливают их разных размеров.

Размеры стальных оцинкованных шин

ИзделиеГОСТШиринаТолщина
Стальная оцинкованная шинаГОСТ — 103-7620 мм4 мм
Стальная оцинкованная шинаГОСТ — 103-7625 мм4 мм
Стальная оцинкованная шинаГОСТ — 103-7630 мм4 мм

Стальные трубы и полосы для устройства контура заземления

Такие полосы удобно прокладывать по стенам здания, соединяя контур и корпус распределительного щита. Полоса гибкая, устойчивая к коррозии и имеет хорошую проводимость. Это гарантирует, что устройство защиты будет работать эффективно.

Наиболее распространенная конструкция, когда контур на защитное устройство заземления имеет по периметру форму равнобедренного треугольника, стороны которого 1.2 м. В качестве вертикальных заземлителей применяют стальной уголок 40х40 или 45Х45 мм, толщиной не менее 4-5 мм, металлические трубы диаметром не менее 45 мм с толщиной стенок 4 мм и более. Можно использовать элементы трубопроводов, бывшие в употреблении, если металл еще не проржавел.  Для того чтобы было удобно забивать уголок в грунт, нижний край обрезается болгаркой под конус. Длина вертикального заземлителя составляет от 2 до 3м. Допустимые размеры в зависимости от материала и формы элементов указаны в таблице 1.7.4 ПУЭ.

Схема расположения контура заземления

Забиваются уголки так, чтобы над поверхностью грунта осталось 15-20 см. На глубине 0.5 метра вертикальные заземлители по периметру соединяются стальной полосой 30-40 мм шириной и 5мм толщиной.

Засыпаются горизонтальные полосы однородным грунтом, длительное время сохраняющим влагу. Не рекомендуется отсев или щебень. Все соединения  осуществляются сваркой.

Контур размещается не далее чем на 10 метров от здания. Защитное устройство заземления соединяется с корпусом распределительного щита стальной пластиной 30 мм в ширину и не менее 2 мм толщиной, стальной круглой катанкой 5-8 мм в диаметре или медным проводом, сечение которого не мене 16 мм2. Такой провод крепится клеммой на заранее приваренный к контуру болт, и затягивается гайкой.

Крепление заземляющего провода на контур

Требования ПУЭ (пункт 1.7.111) – защитное заземление может быть выполнено из медных элементов, это надежно. Продаются специальные наборы, «устройство медных заземляющих конструкций», но это дорогое удовольствие. Для большинства потребителей дешевле и проще выполнить требования, используя стальные детали.

Это облегчит труд, в пункте 1.7.109 ПУЭ говорится, что подключая защитное заземление, в процессе монтажа допускается использование естественных заземлителей.

Это могут быть:

  • элементы металлических трубопроводов, проложенных под землей;
  • экраны бронированных кабелей, кроме алюминиевых оболочек;
  • рельсы железнодорожных неэлектрифицированных путей;
  • железные конструкции арматуры фундаментов высотных железобетонных зданий и многие другие подземные металлические сооружения.

Неудобство этого варианта состоит в том, что для использования этих объектов (рельсов или трубопроводов) как защитное заземление, необходимо согласовать возможность подключения с владельцем конструкции. Иногда проще бывает установить собственный контур заземления, соблюдая все требования.

При использовании естественных заземлителей, ПУЭ предусматривает требования по ограничению. В пункте 1.7.110 запрещается использовать конструкции трубопроводов с горючими жидкостями, газопроводы, сети центрального отопления и трубопроводов канализации.

Молниезащита частного дома


ПУЭ и другие руководящие документы не обязывают владельца частного дома, чтобы у него стояла молниезащита. Мудрые владельцы в целях безопасности устанавливают эту конструкцию самостоятельно, руководствуясь требованиями ГОСТ — Р МЭК 62561.2-2014. Молниезащита включает в себя три основных элемента:

  1. Мониеприемник устанавливается на верхней точке крыши здания, принимает на себя электрический разряд молнии. Выполняется из стальной трубы Ø 30-50 мм, высотой до 2м. На верхнюю часть приваривается стальной наконечник круглого проката Ø 8мм.
  2. Заземляющее устройство обеспечивает растекание токов в грунте;
  3. Токопровод выполняется из того же материала, что и наконечник, он направляет ток электрического разряда от молниеприемника к контуру заземления.

Прокладывается токопровод по самому короткому маршруту, максимально удаленному от окон и дверей.

Видео. Проверка заземления.


Исходя из перечисленной информации видно, что грамотно организовать процесс монтажа проводки, подключить защитное устройство заземления, учитывая требования ПУЭ, в частном доме можно самостоятельно. Для измерения сопротивления контура можно использовать мультиметр, предварительно установив его в режим измерения на Омы. Потом это делают специалисты энергоснабжающей организации или контрольно-измерительной лаборатории, они знают все требования и имеют нужное оборудование. При необходимости в предписании специалисты укажут недостатки и меры по их устранению. Порядок сдачи объекта в эксплуатацию однозначно определяет наличие протоколов измерений сопротивления на устройство заземления.

Оцените статью:

Заземление электроустановок: правила и основные требования

Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.

Заземляющее устройство

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом  с контуром заземления здания, выполненного из полосы металла при помощи сварки.

Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2Наименьшее сечение защитных проводников, мм2
S≤16S
16 < S≤3516
S>35S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.

Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

Монтаж защитного заземления для электроустановок до 1кВ в стиле «10 основных правил»

 ПараметрПояснениеПункт НТД
1. Естественное или искусственное заземление  Для заземления электроустановок могут быть   использованы искусственные и естественные заземлители. Если при   использовании естественных заземлителей сопротивление заземляющих   устройств или напряжение прикосновения имеет допустимое значение, а   также обеспечиваются нормированные значения напряжения на заземляющем   устройстве и допустимые плотности токов в естественных заземлителях,   выполнение искусственных заземлителей в электроустановках до 1 кВ не   обязательно. Использование естественных заземлителей в качестве   элементов заземляющих  устройств не должно приводить к их повреждению   при протекании по ним токов короткого замыкания или к нарушению работы   устройств, с которыми они связаны.1.7.54. ПУЭ
2. Общее или независимое заземление  Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими. При   выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к   воздействию помех оборудования должны быть приняты специальные меры   защиты от поражения электрическим током, исключающие одновременное   прикосновение к частям, которые могут оказаться под опасной разностью   потенциалов при повреждении изоляции. Для объединения заземляющих   устройств разных электроустановок в одно общее заземляющее устройство   могут быть использованы естественные и искусственные заземляющие   проводники. Их число должно быть не менее двух.1.7.55. ПУЭ
3. Требования к сопротивлению заземляющего устройства электроустановок  Сопротивление заземляющего устройства, к   которому присоединены нейтрали генератора или трансформатора или выводы   источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В   источника трехфазного тока или 380, 220 и 127 В источника однофазного   тока. Это сопротивление должно быть обеспечено с учетом использования   естественных заземлителей, а также заземлителей повторных заземлений PEN или N PE проводника E ВЛ напряжением до 1 кВ при количестве отходящих   линий не менее двух. Сопротивление заземлителя, расположенного в   непосредственной близости от нейтрали генератора или трансформатора или   вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом   соответственно при линейных напряжениях 660, 380 и 220 В источника   трехфазного тока или 380, 220 и 127 В источника однофазного тока. При   удельном сопротивлении земли  ρ > 100 Ом • м допускается увеличивать   указанные нормы в 0,01ρ раз, но не более десятикратного.1.7.101. ПУЭ
4. Повторное заземление ВЛ   На концах ВЛ или ответвлений от них длиной   более 200 м, а также на вводах ВЛ к электроустановкам, в которых в   качестве защитной меры при косвенном прикосновении применено   автоматическое отключение питания, должны быть выполнены повторные   заземления PEN проводника. При этом в первую N очередь следует   использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых   перенапряжений (см. гл. 2.4). Указанные повторные заземления   выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются. Повторные заземления PEN проводника в   сетях постоянного тока должны быть выполнены при N помощи отдельных   искусственных заземлителей, которые не должны иметь металлических   соединений с подземными трубопроводами. Заземляющие проводники для   повторных заземлений PEN проводника должны иметь размеры не N менее   приведенных в табл. 1.7.41.7.102. ПУЭ
5. Требования к сопротивлению повторного заземления ВЛОбщее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. При удельном сопротивлении земли r > 100 Ом×м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.1.7.103. ПУЭ 
6. Соединение заземлителей между собой  Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено   экзотермической сваркой, опрессовкой, зажимами или другим разрешенным   механическим соединителем. Соединение заземляющего проводника с   заземлителем должно быть надежным и с соответствующими электрическими   характеристиками. Соединение может быть выполнено с помощью сварки,   опрессовки, соединительного зажима или другим механическим соединителем. Механическое соединение должно монтировать в соответствии с инструкцией изготовителя. Установка соединительного зажима не должна приводить к   повреждению электрода или заземляющего проводника.
Паяные соединения или паяные детали, которые зависят исключительно от   припоя, не следует применять самостоятельно, поскольку они не   обеспечивают требуемую механическую прочность.
Примечание — Если применяют вертикальные электроды, должна быть   обеспечена возможность контроля соединения и замены вертикального   стержня.
42.2.8, 542.3.2  ГОСТ Р 50571.5.54-2013
7. Сечение заземляющих проводников  Сечения заземляющих проводников в   электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам. Наименьшие сечения заземляющих   проводников, проложенных в земле, должны соответствовать приведенным в   табл. 1.7.4. Прокладка в земле алюминиевых неизолированных проводников   не допускается.1.7.113. ПУЭ
8. Знак заземления  У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак.1.7.118. ПУЭ
9. Сечение заземляющих проводников при подключении к ГЗЩ  Заземляющий проводник, присоединяющий   заземлитель рабочего (функционального) заземления к главной заземляющей   шине в электроустановках напряжением до 1 кВ, должен иметь сечение не   менее:
медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.
1.7.117. ПУЭ
10. Требования к размерам и сечению заземлителей  Минимальные размеры проложенных в земле   заземляющих электродов из наиболее распространенных материалов с точки   зрения коррозионной и механической стойкости. (Таблица 1 )ГОСТ Р 50571.5.54-2013

Заземление электроустановок и оборудования — правила и требования

Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса. 

Классификация заземляющих устройств

Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю  избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России  классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:

  • Виду нейтрали. По наличию соединения с заземляющим устройством:
    • заземленная;
    • изолированная.
  • Способу прокладывания от понижающей подстанции до электроустановки.
  • Способ подключения нагрузки к нейтрали.

Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:

T – заземление;

N – нейтраль;

I – изолированное;

C – общая;

S – раздельная.

Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.

При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:

  • TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
  • TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
  • TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.

Реже встречаются следующие системы:

  • TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
  • IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.

Технические требования к организации заземления электроустановок

УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым  защитное заземление электроустановки следует выполнять при следующих параметрах:

  • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
  • при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.

Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

Выбор естественных заземлителей

Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

  • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
  • защитные кожухи кабелей, проложенных под землей;
  • металлические трубы, за исключением газо- и нефтепроводов;
  • железнодорожные рельсы.

Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

Нельзя выбирать в качестве естественных заземлителей следующие объекты:

  • трубопроводы горючих и взрывчатых газов и жидкостей;
  • трубы, покрытые антикоррозийной изоляцией;
  • канализационные трубопроводы;
  • трубы централизованного отопления.

Сопротивление стеканию тока

Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

Значения сопротивления заземления для сетей различного назначения:

Назначение сети

Максимальное значение сопротивления, Ом

Частные дома 220, 380 Вольт

30

Промышленное оборудование

4

Источник тока при напряжении 660, 380 и 220 Вольт

2, 4, 8

Частный дом при подключении газопровода

10

Устройства защиты линий связи

2 (реже 4)

Телекоммуникационное оборудование

2 или 4

Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

  • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
  • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
  • Усилить проводимости почвы увлажнением или повышением ее солености.

Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

Работа УЗ при нарушении защитной изоляции электрооборудования

Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

  1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
  2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
  3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
  4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

Заземление цехового оборудования

Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:

  • Для типового станочного оборудования.
  • Для электродвигателей и сварочных аппаратов.
  • Для передвижных установок и эксплуатируемых электроприборов.

Заземление типового станочного оборудования

Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).

Система уравнивания потенциалов  – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.

 Важно уделить внимание  следующим техническим вопросам: 

  • Определить расположение контура СУП в рабочей зоне.
  • Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
  • Определить место наложения стационарного заземления.
  • Выяснить какие устройства используются для защиты опасных частей оборудования.

Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.

Заземление электродвигателей

Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.

Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.

Заземление сварочных аппаратов

Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.

Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.

Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.

Защита передвижных установок

Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок  ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.

Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.

Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.

Защита электроприборов

При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:

  • Защитить открытые токоведущие части.
  • Нарастить защитную изоляцию.
  • Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
  • Если позволяет конструкция, можно как меру использовать понижение напряжения.

 Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:

  • Наличие системы заземления.
  • Система уравнивания потенциалов.
  • Усиление изоляции токоведущих частей.
  • В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.

Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.

Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.

Защита с помощью заземления и зануления

Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.

При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.

При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.

Контроль состояния защитных устройств

Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.

Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.

Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.

Защитное заземление и способы его выполнения

Многие части электроустановок, не находящиеся под напряжением (корпуса электрических машин, кожухи трансформаторов, осветительная арматура, приводы и кожухи электрических аппаратов, вторичные обмотки измерительных трансформаторов, каркасы распределительных шкафов и щитов управления, металлические конструкции подстанций, металлические оболочки кабелей и кабельные муфты, стальные трубы электропроводок и т.п.) могут во время аварии оказаться под напряжением, что обусловливает опасность поражения электрическим током обслуживающего персонала. Обеспечить безопасность прикосновения к таким частям позволяет защитное заземление.

Рис. 1. Устройство заземления в трехфазной установке с изолированной (а) и глухозаземленной (б) нейтралью
Заземление снижает до безопасного значения потенциал по отношению к земле Металлических частей электроустановки, оказавшихся под напряжением при аварии.

Защитное действие заземления состоит в уменьшении тока, протекающего в теле человека при соприкосновении с корпусом машины, оказавшимся под напряжением (рис. 1, а). Человек включается в электрическую цепь параллельно заземлению; чем больше сопротивление человека гч по сравнению с сопротивлением заземления, тем меньше ток в теле человека /ч.
Сопротивление заземляющих устройств для электроустановок при различных напряжениях должно приниматься в соответствии с нормами ПУЭ.

Способы выполнения защитного заземления зависят от системы электроснабжающей сети и напряжения электроустановки. В электроустановках напряжением до 1 000 В с глухозаземленной нейтралью трансформаторов (или генераторов) защитное заземление выполняют присоединением заземляемых частей установки к заземленному нейтральному проводу электросети. В этом случае при повреждении изоляции и переходе напряжения на металлические части установки возникает короткое замыкание одной фазы трансформатора (или генератора) через нейтраль (рис. 1, б). В результате поврежденная часть электроустановки немедленно автоматически отключается (перегорает плавкая вставка предохранителя или отключается автомат).

В электроустановках напряжением до 1000 В с изолированной нейтралью трансформаторов (или генераторов), а также во всех установках напряжением свыше 1000 В, защитное заземление выполняют путем сооружения местного заземляющего устройства с малым сопротивлением, к которому присоединяют заземляемые части установки (см. рис. 1, а). Действие такого заземления состоит в том, что оно снижает до безопасного значения напряжение относительно земли, появляющееся на металлических частях установки при повреждении изоляции.
Значения сопротивления местного заземляющего устройства нормируются ПУЭ.

Для заземляющих устройств следует по возможности использовать естественные заземлители: водопроводные и другие металлические трубы, проложенные в земле без изоляции (кроме трубопроводов с горючими веществами), металлические конструкции зданий и сооружений, а также имеющие соединения с землей шпунты, свинцовые оболочки проложенных в земле кабелей и т.п.
Искусственные заземлители, как правило, выполняют из вертикально забитых в фунт стальных стержней, соединяемых между собой стальными полосами. Полосы прокладывают в земле на глубине не менее 0,5 м и приваривают к верхним концам стержней.

Рис. 2. Правильная (f) и неправильная (б) схемы присоединения заземляемых элементов к заземляющей магистрали:
I — заземляемый элемент; 2 — ответвление;     3 — заземляющая магистраль

Каждый заземляемый элемент 1 установки следует присоединять к заземлителю или заземляющей магистрали 3 при помощи отдельного ответвления 2 (рис. 2, а). Заземляемые элементы нельзя включать последовательно в заземляющую магистраль (рис. 2, б). Присоединение заземляющих проводников к электрооборудованию выполняют при помощи болтов или сварки.
Заземляющие устройства начинают действовать только при повреждениях изоляции электроустановок.

Рис. 3. Схемы заземления однофазных (а) и трехфазных (б, в) понизительных трансформаторов

Передвижные механизмы, электроинструменты, понизительные трансформаторы и сварочные аппараты, работающие при напряжении до 1000 В в сетях с глухозаземленной нейтралью, получают питание от питаюших пунктов (щит или силовой шкаф). Заземление корпусов указанных электроприемников осуществляют заземляющей жилой питающего шлангового кабеля, один конец которой присоединяют к заземляющему болту на корпусе устройства, а другой — к корпусу питающего пункта. Корпуса питающих пунктов через заземляющий зажим соединяют с нейтральным проводом сети и через него — с заземленной нейтралью источника питания (как правило, трансформатора). Все корпуса электроинструментов, работающих при напряжении свыше 40 В, подлежат заземлению (подсоединению к нейтральному проводу сети) с помощью специального проводника или заземляющей жилы шлангового провода (кабеля). Все корпуса и обмотки низшего напряжения понижающих трансформаторов для электроинструмента заземляют таким же образом (рис. 3).
Для выполнения повторных заземлений нейтрального провода на передвижных установках применяют переносные инвентарные заземлители, к которым присоединяют корпуса и металлические конструкции машин и механизмов.

ПУЭ 1.7.49 Общие требования

Общие требования

1.7.49. Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

1.7.50. Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

основная изоляция токоведущих частей;

ограждения и оболочки;

установка барьеров;

размещение вне зоны досягаемости;

применение сверхнизкого (малого) напряжения.

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

защитное заземление;

автоматическое отключение питания;

уравнивание потенциалов;

выравнивание потенциалов;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

1.7.52. Меры защиты от поражения электрическим током должны быть предусмотрены в электроустановке или ее части либо применены к отдельным электроприемникам и могут быть реализованы при изготовлении электрооборудования, либо в процессе монтажа электроустановки, либо в обоих случаях.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока — во всех случаях.

 

Примечание. Здесь и далее в главе напряжение переменного тока означает среднеквадратичное значение напряжения переменного тока; напряжение постоянного тока — напряжение постоянного или выпрямленного тока с содержанием пульсаций не более 10 % от среднеквадратичного значения.

 

1.7.54. Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно. Использование естественных заземлителей в качестве элементов заземляющих устройств не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.

1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.

1.7.56. Требуемые значения напряжений прикосновения и сопротивления заземляющих устройств при стекании с них токов замыкания на землю и токов утечки должны быть обеспечены при наиболее неблагоприятных условиях в любое время года.

При определении сопротивления заземляющих устройств должны быть учтены искусственные и естественные заземлители.

При определении удельного сопротивления земли в качестве расчетного следует принимать его сезонное значение, соответствующее наиболее неблагоприятным условиям.

Заземляющие устройства должны быть механически прочными, термически и динамически стойкими к токам замыкания на землю.

1.7.57. Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.

Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78-1.7.79.

Требования к выбору систем TN-C, TN-S, TN-C-S для конкретных электроустановок приведены в соответствующих главах Правил.

1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.

1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

 

1.7.60. При применении защитного автоматического отключения питания должна быть выполнена основная система уравнивания потенциалов в соответствии с 1.7.82, а при необходимости также дополнительная система уравнивания потенциалов в соответствии с 1.7.83.

1.7.61. При применении системы TN рекомендуется выполнять повторное заземление РЕ- и РEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.

1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

1.7.63. Система IT напряжением до 1 кВ, связанная через трансформатор с сетью напряжением выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низкого напряжения каждого трансформатора.

1.7.64. В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В таких электроустановках должна быть предусмотрена возможность быстрого обнаружения замыканий на землю. Защита от замыканий на землю должна устанавливаться с действием на отключение по всей электрически связанной сети в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т.п.).

1.7.65. В электроустановках напряжением выше 1 кВ с эффективно заземленной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

1.7.66. Защитное зануление в системе TN и защитное заземление в системе IT электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

Сопротивление заземляющего устройства опоры ВЛ, на которой установлено электрооборудование, должно соответствовать требованиям гл. 2.4 и 2.5.

Основы индивидуального защитного заземления

Методы индивидуального защитного заземления (PPGB) обеспечивают защиту от поражения электрическим током работников, работающих с обесточенным оборудованием. Если все сделано правильно, PPGB на сегодняшний день является наиболее эффективным средством защиты рабочих от поражения электрическим током. Однако, если все сделано неправильно, это может вызвать вспышки дуги невообразимой силы.

PPGB особенно важен для электриков, работающих с высоковольтным (HV) напряжением, поскольку оборудование может быть под напряжением вдали от рабочего места из-за ошибок переключения или индукции.Фактически, высоковольтные цепи могут наводить напряжение и ток на проводящие поверхности даже на расстоянии нескольких ярдов от проводников под напряжением.

Основной целью PPGB является быстрое срабатывание устройств защиты от сверхтоков (OCPD) при одновременном ограничении напряжения, которому подвергаются рабочие, до безопасных уровней. Когда цепь была должным образом заземлена для защиты рабочих — и она случайно оказалась под напряжением, — напряжение в системе падает почти до нуля. Однако заземляющие кабели не могут выдерживать такой большой ток более доли секунды.Следовательно, жизни рабочих зависят от OCPD, которые защищают цепь (чтобы обесточить ее) до того, как заземляющие кабели расплавятся, и уровни напряжения вернутся к опасным уровням.

Оборудование PPGB

Этот тип оборудования фактически представляет собой систему соединений, в которой имеется ряд точек, в которых различные компоненты заземляющих кабелей должны подключаться к заземляемой системе и друг к другу. Жизненно важно понимать, что система заземления хороша только при самом слабом соединении.Другими словами, наличие высококачественных заземляющих кабелей, но меньшего размера заземляющих головок сделает систему неэффективной для защиты рабочих. При выборе оборудования PPGB следует помнить ряд ключевых концепций, в том числе:

Заземляющие головки — Заземляющие головки — это единственное соединение между системой заземления и электрической цепью, в которой должны выполняться работы. Как и заземляющие кабели, заземляющие головки должны быть рассчитаны на то, чтобы выдерживать имеющийся ток короткого замыкания в течение всего периода замыкания.Данные в таблице Table определяют номинальные характеристики устойчивости заземляющих устройств одного производителя.

Заземляющие электроды — Заземляющие электроды являются другим концом системы заземления, поскольку электрод обеспечивает физический контакт с землей. Есть много разных способов подключения к земле. В распределительном устройстве питания в металлическом корпусе (MEPS) соединение с землей обычно осуществляется через шину заземления, которая представляет собой металлическую шину, которая, в свою очередь, подключена к другому заземляющему электроду.Необходимо позаботиться о том, чтобы заземляющая шина была надежно подключена к земле через эффективный заземляющий электрод.

Измерители напряжения — Перед установкой защитного заземления необходимо выполнить трехточечный тест любой цепи, подлежащей заземлению. Для этой задачи можно использовать несколько различных типов детекторов напряжения. Независимо от типа используемого тестера, главное помнить, что счетчик должен быть правильно рассчитан на напряжение системы, в которой он будет использоваться.

Заземляющие маты — Заземляющие маты используются в PPGB, чтобы подавать рабочим такой же потенциал (т. Е. Напряжение), что и оборудование, на котором они работают. Заземляющий коврик представляет собой брезент с вплетенными в него алюминиевыми нитями в виде перекрестной штриховки. Алюминий присоединяется к «узлу» на краю мата, что позволяет установить соединение, которое затем подключается к заземляющим проводам системы, в которой должны выполняться работы. Алюминий устанавливается только на одной стороне мата, поэтому очевидно, что эта сторона должна быть обращена вверх, чтобы рабочий стоял на алюминиевой решетке.

Заземляющие кабели — Заземляющие кабели обеспечивают путь с низким сопротивлением для прохождения тока короткого замыкания по правильно заземленной цепи. Жилы должны быть из многопроволочной меди и иметь диаметр не менее 2 AWG. При выборе заземляющих кабелей в первую очередь следует учитывать их номинальную стойкость к току короткого замыкания и их длину. В таблице перечислены номинальные характеристики заземляющих кабелей типичных размеров.

Важно отметить в таблице, что номинальные характеристики устойчивости являются функцией продолжительности неисправности.Обратите внимание, что самая длинная указанная продолжительность составляет ½ секунды. Как обсуждалось ранее, энергия, выделяемая при электрическом повреждении, настолько велика, что электрическая система может выдержать ее только в течение доли секунды. Следовательно, следует по возможности избегать всего, что делается с OCPD, что может привести к задержке устранения неисправности. Например, некоторые рабочие устанавливают плавкие предохранители немного большего размера при устранении неисправностей в цепи, когда они подозревают, что причиной прерывания обслуживания была перегрузка.Однако, увеличив размер предохранителя, они фактически увеличили величину тока, который будет протекать в случае повторного повреждения цепи — и продолжительность неисправности также увеличится. Комбинация увеличенных потоков тока с увеличенной продолжительностью может значительно превысить номинальные характеристики заземляющих кабелей, которые будут плавиться, в результате чего рабочие подвергаются опасности поражения электрическим током в цепи.

Последнее, о чем следует помнить при выборе заземляющих кабелей, — это делать кабели как можно короче.Когда в какой-либо цепи проходят сильноточные потоки, возникают сильные магнитные поля, которые заставляют кабели сильно вздрагивать в ответ на притягивающие или отталкивающие магнитные поля между фазовыми проводниками. Это колебательное движение может привести к тому, что заземляющие кабели будут перемещаться вперед и назад несколько раз за 1 секунду, что может привести к серьезным физическим травмам для любого, кто находится поблизости от кабелей.

Порядок установки и снятия

Основные этапы установки и снятия оборудования PPGB следующие:

  1. Обесточьте электрооборудование, отключив все возможных источников электричества от оборудования.

  2. Для высоковольтных систем необходимо обеспечить «визуальный разрыв» в цепи, чтобы рабочий мог визуализировать воздушный зазор в переключателях, используемых для изоляции цепи. Это может быть достигнуто либо путем размыкания переключателя со сплошными лезвиями, который можно визуализировать, «выкатывания» автоматического выключателя, отключив его от контакта с электрической шиной, либо любым другим способом, который надежно разделяет электрические контакты в устройстве изоляции энергии.

  3. Следуйте обычным процедурам блокировки / маркировки (LOTO) в соответствии с 29 CFR 1910.147 и 29 CFR 1910.269 (D&N).

  4. Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Трехточечный тест состоит из тестирования тестера напряжения на известном источнике питания, чтобы убедиться, что он работает правильно (Тест № 1). Затем протестируйте цепь, на которой будут проводиться работы (Тест № 2). Наконец, протестируйте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно (тест №3). Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием показаний.

  5. Одним из наиболее важных шагов в процессе заземления является правильная очистка проводов перед подключением к ним. Эта задача выполняется с помощью проволочной щетки, соединенной с изолированной палкой. Проволочные щетки бывают разных стилей, чтобы соответствовать разным типам оборудования, которое необходимо заземлить.Главное помнить, что перед подключением к ним заземляющих кабелей необходимо удалить все окисления как с фазных проводов, так и с заземляющих электродов.

  6. Как и при большинстве электромонтажных работ, заземляющие кабели необходимо устанавливать и снимать в определенном порядке. Всегда сначала подключайте заземленный конец заземляющего кабеля. Далее производим подключения к фазным проводам. По окончании работы снимите перемычки заземления в обратном порядке. Осторожно : Были случаи со смертельным исходом, когда рабочие пытались переместить или удалить заземляющие соединения, в то время как перемычки все еще были подключены к фазным проводам.

Кроме того, кабели следует прокладывать только в соответствующих точках электрической системы, чтобы обеспечить их надлежащую работу в случае подачи питания на оборудование. Многие несчастные случаи, связанные с вспышкой дуги, происходили, когда рабочие неправильно применяли заземляющие кабели и системы находились под напряжением.

Методы заземления также различаются в зависимости от типа систем, на которых выполняются работы. Например, процедура установки заземления на подстанции с открытыми воздушными проводниками сильно отличается от установки заземления в линейке MEPS на промышленном объекте.

Методы MEPS

Для установок MEPS необходимо использовать заземляющий мат, чтобы создать плоскость уравнивания потенциалов. Коврик заземления сконструирован так, чтобы быть проводящим, а не изолятором, таким как резиновый коврик.Хотя заземляющий коврик защищает стоящего на нем работника, он представляет потенциальную опасность для любого, кто наступит на коврик или выйдет с него. Если система, к которой подключен заземляющий мат, окажется под напряжением, вероятно, будет существовать разность потенциалов (напряжений) между ковриком и землей в непосредственной близости от мата. Хотя вероятность того, что система включится, когда рабочий будет стоять одной ногой на коврике, а другая — на земле, весьма мала, ее следует упомянуть здесь, поскольку это законная опасность.Достаточно сказать, что следует проявлять осторожность, чтобы не работать с заземленным оборудованием, если только рабочий не стоит полностью на заземляющем коврике.

Положение тела рабочего также важно, поэтому следует позаботиться о том, чтобы принять положение, в котором дверь ограждения защищает рабочего от дугового разряда (в случае его возникновения при установке площадки). Например, если дверь открывается влево, рабочий должен сначала установить заземление на крайний левый провод, затем заземлить центральный провод и, наконец, самый правый провод.Очевидно, процесс обратный, если дверь шкафа открывается вправо. На фотографии Фото выше показан рабочий, принимающий безопасное положение тела при установке защитного заземления на оборудование MEPS. На этом этапе необходимо понять несколько важных практических моментов.

  1. К системе небезопасно прикасаться, пока все трехфазные проводники не будут надежно соединены и заземлены.

  2. Заземляющие кабели должны быть проложены на полу так, чтобы рабочий мог поднимать их петлей, не касаясь проводов (по возможности).

  3. Соединение с нейтралью или заземляющим проводом никогда не должно удаляться до тех пор, пока заземляющие перемычки не будут удалены со всех трех фазных проводов / узлов.

Дополнительные рекомендации

Вот еще несколько рекомендаций, которые помогут повысить шансы безопасного выполнения PPGB в большинстве учреждений.

Убедитесь, что заземления устанавливают только квалифицированные электротехники. — Обычно электротехники должны пройти специальную подготовку под квалифицированным наблюдением, прежде чем им будет разрешено устанавливать заземление.Рабочие должны продемонстрировать профессиональное владение как техническими знаниями, так и надлежащими методами заземления, прежде чем им будет разрешено выступать в качестве ведущего человека на этом типе работы.

Проконсультируйтесь с исследованиями по анализу опасности вспышки дуги перед заземлением оборудования. — Исследования по анализу опасности вспышки дуги и на этикетках оборудования указаны значения SCC и уровни падающей энергии (тепла) в предполагаемом рабочем месте. Эта информация позволяет рабочему правильно выбрать размер заземляющих кабелей для выполняемой работы и носить огнестойкую одежду надлежащего уровня.

Используйте письменные контрольные списки для переключения / заземления высокого напряжения — Использование пошагового контрольного листа поможет обеспечить соблюдение правильной последовательности переключения и вести журнал установленных заземляющих кабелей, что в значительной степени препятствует рабочим случайное повторное включение ранее заземленных цепей.

Отключить реле повторного включения в цепях, которые необходимо заземлить. — В любой цепи, которая включает реле повторного включения, это реле должно быть отключено до того, как на соответствующем оборудовании произойдет переключение или заземление.Реле повторного включения могут быть физически отключены на самом переключателе (в основном в воздушных установках или на подстанции), или реле может находиться внутри релейного дома подстанции вместе с другими реле.

При необходимости превышайте минимальные стандарты безопасности — Иногда целесообразно надевать резиновые перчатки высокого напряжения или принимать дополнительные меры безопасности даже после установки защитных покрытий.

Принять методологию «подумай дважды, действуй один раз» Опасности, связанные с заземлением показывает, как пропуск одного шага (т.е., невыполнение измерения напряжения) при заземлении может привести к летальному исходу. Очевидно, что высоковольтные работы сурово наказываются тем, кто не полностью соблюдает безопасные рабочие процедуры.

Используйте «систему напарника» при заземлении оборудования. — Возможно, целесообразно назначить бригаду из двух квалифицированных электриков для выполнения PPGB. Вторая пара глаз может уловить пропущенный шаг в процессе. Кроме того, второй человек может выступить в роли спасателя, если произойдет что-то непредвиденное.Второй человек также должен занять положение за пределами защиты от дугового разряда, чтобы не получить травму в случае вспышки дуги.

Использование методов PPGB для высоковольтных работ на сегодняшний день является наиболее эффективным средством защиты электромонтажников от поражения электрическим током. При правильной установке электромонтажники могут быть уверены, что они будут защищены, даже если схемы, на которых они работают, по какой-либо причине будут находиться под напряжением. Однако реальная опасность возникновения дугового разряда также связана с PPGB, поэтому только высококвалифицированные электротехники должны иметь право устанавливать временные заземления.

Колак — президент Praxis Corp., фирмы, специализирующейся на электротехнике и обучении по электробезопасности, расположенной в Грэнбери, штат Техас. С ним можно связаться по телефону [email protected].

Боковая панель: Опасности, связанные с временным заземлением

Наиболее серьезная опасность, связанная с временным заземлением, — это возможность возникновения дугового разряда при попытке установить заземляющие кабели. Обычно это происходит в сочетании с ошибкой человека, потому что при соблюдении надлежащих процедур проверки цепей вероятность того, что цепь будет под напряжением во время установки заземления, мала.Тем не менее, многие рабочие по ошибке установили заземление в цепях под напряжением, как показывает следующий пример из реальной аварии.

Электрику, работающему с высоковольтным оборудованием (ВН), было поручено выполнить техническое обслуживание цепи 7200 В / 12 470 В на промышленном предприятии, которая питалась от распределительного устройства в металлическом корпусе с шестью отдельными переключателями (конфигурация показана на фото A ). и B ). Электрик должен был выключить и заземлить выключатель №2 для выполнения текущих работ.Он правильно определил переключатель № 2, открыл его и вытащил. Затем он установил свой личный замок и бирку и закрыл переднюю дверь переключателем. Его следующей задачей было обойти заднюю часть распределительного устройства, чтобы установить заземление, потому что проводники, подключенные к высоковольтным переключателям, были расположены на задней стороне распределительного устройства.

Его роковая ошибка заключалась в том, что, когда он обошел правую часть линейки распределительного устройства и насчитал два отсека, он на самом деле считал с неправильного конца линейки распределительных устройств (щелкните здесь, чтобы увидеть рисунок ).Он открыл редуктор и, не выполнив требуемого трехточечного испытания напряжения, попытался установить перемычки заземления на проводники переключателя №5 под напряжением. Возникшая дуга была настолько сильной, что выделяющееся тепло фактически расплавило его каску. Его ожоги усугубились тем, что распределительное устройство высокого напряжения питалось от устройства повторного включения, которое предназначено для автоматического перезапуска (т.е. «повторного включения»). Фактически реклоузер сработал всего три раза. Таким образом, рабочий фактически пострадал от трех дуговых разрядов, поскольку цепь неоднократно возобновляла подачу питания.

Место происшествия было ужасающим. Вспышка, связанная с неисправностью, была настолько сильной, что очертания тела электрика были выжжены в стене примерно в шести футах позади того места, где он стоял. Он получил ожоги большей части тела третьей и четвертой степени и через три недели скончался в больнице.

Аварии подобного рода на удивление обычны. Это иллюстрирует одну из довольно уникальных проблем, связанных с работой высокого напряжения, а именно то, что выключатели высокого напряжения иногда имеют исполнительный механизм, расположенный на некотором расстоянии от места, где устанавливаются временные заземления.Это увеличивает вероятность неправильной идентификации цепи. Эта конфигурация обычно используется на подстанциях или в местах, где переключателями можно управлять с помощью систем диспетчерского управления и сбора данных (SCADA).

Другая распространенная авария, связанная с временным заземлением, заключается в том, что рабочие иногда забывают отсоединить заземляющие кабели, которые они установили лично. Хотя это может показаться невероятно небрежной ошибкой, это происходит гораздо чаще, чем вы могли ожидать.

Применение средств индивидуальной защиты — охрана труда и безопасность

Применение средств индивидуальной защиты

Перед установкой средств индивидуальной защиты всегда проверяйте цепи на отсутствие напряжения. То, что вы знаете, что он обесточен, не означает, что это действительно так.

  • Джеймс Р. Уайт
  • 1 июня 2013 г.

Основания индивидуальной защиты в отрасли имеют несколько наименований: «временные защитные площадки», «заземляющие множества», «наземные кластеры» или просто грунтовые площадки.«Средства индивидуальной защиты используются всякий раз, когда рабочие выполняют работы в электроэнергетических системах, которые по какой-либо причине могут быть повторно задействованы, например, повторным включением выключателей или автоматических выключателей, статическим напряжением, индуцированным напряжением на внешних подстанциях или линиях, а также емкостными разрядами. В то время как большинство технических специалистов подумайте об использовании средств индивидуальной защиты при работе с системами высокого напряжения, они также необходимы при работе с системами низкого напряжения, особенно когда в цепь могут быть подключены конденсаторы (системы ИБП и частотно-регулируемые приводы) или когда цепь может быть повреждена. с учетом одной из проблем, упомянутых ранее.Использование индивидуального защитного заземления регулируется OSHA 1910.269 (n), «Заземление для защиты сотрудников» и NFPA 70E, раздел 120.3, «Временное защитное заземление». Оба источника содержат очень похожие требования.

NFPA 70E Раздел 120.3 (A) Размещение гласит, «Временные защитные площадки (средства индивидуальной защиты) должны быть размещены таким образом, чтобы они не подвергали сотрудников опасным перепадам потенциалов.Земля не может быть размещена слишком близко к месту работы и должна быть размещена или закреплена так, чтобы она не могла контактировать с людьми ». Земля должна быть расположена достаточно близко, чтобы защитить рабочих, но не настолько близко, чтобы они могли ударить по ним, если земля станет возобновляется подача энергии, особенно из-за токов аварийного уровня. Ток, протекающий через заземляющий кабель, может создать магнитное поле, достаточно сильное, чтобы заставить кабель ломаться, как хлыст, что может привести к поломке костей или сбиванию рабочих с строений.

Линейщики должны быть осторожны с местами размещения средств индивидуальной защиты, потому что они должны создавать эквипотенциальную зону и работать в пределах этой зоны.А.Б. Chance является одним из источников информации о средствах индивидуальной защиты, и у него есть несколько хороших буклетов и видео, в которых подробно рассказывается об эффективном размещении территорий. На рис. 1 показан правильно спроектированный и правильно установленный комплект заземления на распределительном трансформаторе, установленном на площадках. Сравните это с рисунком 2, который очень похож на акт самоубийства.

Эта статья впервые появилась в июньском выпуске журнала «Охрана труда и безопасность» за 2013 год.

Заземление оборудования в целях безопасности — журнал IAEI

Время чтения: 8 минут

Электрические системы и оборудование заземлены, чтобы обеспечить более высокий уровень безопасности от поражения электрическим током людей и имущества. Статья 250 NEC устанавливает минимальные требования к заземлению и соединению электрических систем и оборудования. В NEC -2008 внесены изменения, относящиеся к терминологии электрического заземления и подключения, что приводит к повышению ясности и удобства использования правил, содержащих такие термины.В этой статье дается обзор некоторых изменений и более конкретный обзор того, для чего предназначено заземление оборудования.

Фото 1. Земля

Рисунок 1. Соединение обеспечивает целостность и проводимость

Общий язык общения

Для адекватного понимания требований необходимо всегда знать определенные термины, относящиеся к предмету изучения. То, как определенные термины используются в коде Code , дает пользователям лучшее понимание того, как правила применяются к установкам и системам.Все дело в развитии и поддержании общего языка общения; Другими словами, использование условий заземления и соединения, определенных в NEC , для повышения точности их применения.

Упрощенные термины, определенные NEC

Подключается для обеспечения непрерывности и электропроводности (см. Рисунок 1).

Земля. Земля (см. Фото 1).

Заземлен (заземление). Подключен (подключается) к земле или к какому-либо проводящему телу, расширяющему заземление (см. Рисунок 2).

Заземляющий провод, оборудование (EGC). Токопроводящая дорожка, устанавливаемая для соединения обычно нетоковедущих металлических частей оборудования вместе и с заземленным проводом системы или с проводом заземляющего электрода, или с обоими (см. Рисунок 3).

Рис. 2. Заземление означает «соединение с землей или проводящим телом, которое расширяет заземление».

Рис. 3. Заземляющий провод оборудования выполняет заземление, соединение и служит в качестве эффективного пути тока замыкания на землю.

Эффективный путь тока замыкания на землю.

Специально сконструированный токопроводящий путь с низким импедансом, спроектированный и предназначенный для передачи тока в условиях замыкания на землю от точки замыкания на землю в системе электропроводки к источнику электропитания, и который облегчает работу устройства защиты от сверхтоков или заземления. -детекторы неисправностей в системах с высокоомным заземлением (см. рисунок 4).

Рис. 4. Эффективный путь тока замыкания на землю важен для работы устройства максимального тока

Заземление и соединение оборудования

Раздел 250.4 (A) (2) дает четкое объяснение того, почему электрическое оборудование заземлено. Этот язык характеристик означает, что, когда оборудование заземлено (подключено к земле), оно ограничивает напряжение относительно земли на этих проводящих материалах. Процесс заземления электрического оборудования приводит к тому, что проводящие части подключаются к земле таким образом, чтобы поддерживать проводящий объект на уровне или близком к потенциалу земли при нормальной работе и во время аномальных событий, таких как замыкания на землю. Раздел 250.4 (A) (3) объясняет, почему электропроводящие материалы и другое оборудование соединяются или соединяются для обеспечения непрерывности и электропроводности между ними.С точки зрения производительности, соединение не только устанавливает электрическую непрерывность и проводимость для путей тока замыкания на землю, что облегчает работу устройства максимального тока, но также минимизирует разницу потенциалов между проводящими частями, например, что требуется для сетей уравнивания потенциалов для водных сред, охватываемых статьей 680

Какое оборудование выполняют заземляющие провода

Заземлители оборудования по существу выполняют три основные функции. Этот компонент схемы заземления и соединения в электрической системе является многозадачным проводником.Давайте рассмотрим три аспекта характеристик заземляющих проводов оборудования.

Первой задачей, выполняемой заземляющим проводом оборудования, является установление проводящего соединения с землей (землей) для электропроводящих частей оборудования. Процесс заземления оборудования с использованием заземляющего проводника оборудования электрически соединяет токопроводящие части оборудования с землей и пытается удерживать эти токопроводящие части на уровне потенциала земли или как можно более близком к нему во время нормальной работы.Это помогает свести к минимуму возможность поражения электрическим током людей, контактирующих с этим оборудованием.

Рисунок 5. Функции заземляющего провода оборудования

Вторая задача, выполняемая заземляющим проводом оборудования, — это соединение. В определении заземляющий провод , оборудование (EGC) ясно, что соединение является характеристикой этой цепи безопасности. Текст определения включает слова «соединять» и «вместе», поясняющие в рамках определения, что соединение осуществляется заземляющим проводом оборудования.Новое примечание мелким шрифтом после определения заземляющего проводника, оборудования (EGC) указывает, что EGC выполняет соединение. Пример соединения, выполняемого EGC, — это соединение двух светильников друг с другом с помощью секции металлических электрических трубок. Несмотря на то, что электрическая металлическая трубка является подходящим заземляющим проводом оборудования в соответствии с 250.118 (4), она также выполняет функцию соединения этих двух частей оборудования вместе.

Третья задача, выполняемая заземляющим проводом оборудования, заключается в том, что он служит в качестве эффективного пути тока замыкания на землю для облегчения работы устройства максимального тока в случае замыкания на землю в системе (см. Рисунок 5).

Фото 2. Заземляющий провод заземления оборудования с каналом качения Металлические электрические трубки

Таким образом, при таком понимании требований к характеристикам заземляющего проводника оборудования можно четко понять его важность при установке цепи электрической безопасности. Цепи электробезопасности — это цепи заземления и соединения, которые создаются для электрических систем, включая те, которые требуются для обслуживания, фидеров и ответвлений, а также отдельно производных электрических систем.Эти требования к рабочим характеристикам одинаковы для систем, рассчитанных на напряжение 600 вольт или меньше, и для систем и установок, рассчитанных на более 600 вольт.

Типы заземляющих проводов оборудования

Фото 3. Сечение заземляющего жилы проводного оборудования

Рисунок 6. Расчет заземляющих проводов оборудования на основе номинальных характеристик устройства защиты от сверхтоков по таблице 250.122.

Подбор размеров заземляющих проводов оборудования

Важно понимать, что критерии калибровки приведены в Таблице 250.122 является минимальным, и фактический размер заземляющего проводника оборудования может быть больше, чем указанные в таблице значения, чтобы гарантировать эффективную работу заземляющего проводника оборудования во время замыканий на землю. Примечание внизу таблицы является обязательным, а не мелким шрифтом, и оно ссылается на критерии эффективности в 250.4, которые должны соблюдаться в целях безопасности. Обычное условие установки, которое часто требует увеличения минимального размера заземляющего проводника оборудования, — это когда незаземленные фазные проводники фидера или ответвленной цепи должны быть отрегулированы по размеру для управления эффектами падения напряжения в конструкции.Другое условие, которое может потребовать увеличения размеров заземляющих проводов оборудования, — это наличие большого количества доступного тока короткого замыкания, питающего объект. Проблема здесь в том, что заземляющие провода оборудования имеют достаточную пропускную способность для безопасного проведения любого тока короткого замыкания, который может быть наложен на них.

Фото 4. Хорошее качество изготовления обеспечивает эффективные пути тока замыкания на землю

Хорошее качество изготовления

Все эти элементы влияют на эффективность пути тока замыкания на землю во время замыкания на землю.Национальная ассоциация подрядчиков по электротехнике (NECA) публикует серию стандартов, аккредитованных ANSI, которые предоставляют электрикам дополнительную информацию и информацию о том, что составляет хорошее мастерство при заключении контрактов на электромонтажные работы. Эти публикации доступны для всей электротехнической промышленности в качестве концентрированного усилия по продвижению более единообразного и последовательного подхода к качеству и целостности электрических установок. Это семейство стандартов называется Национальными стандартами электроустановок (NEIS).

Фото 5. Для фидеров среднего напряжения требуется заземляющий провод

Эффективный путь тока замыкания на землю

  1. Путь должен быть электрически непрерывным.
  2. Путь должен иметь достаточную пропускную способность.
  3. Путь должен иметь низкое сопротивление.

Эти три задачи требуются для любого эффективного пути тока замыкания на землю, который установлен с фидерами или ответвленными цепями. Код Код требует, чтобы эффективная цепь тока замыкания на землю была электрически непрерывной.Чтобы заземляющие проводники оборудования проводного типа были электрически непрерывными, они должны быть подключены к корпусам одним из методов, указанных в 250.8. Если заземляющий провод оборудования является кабелепроводом, трубкой или другим кабельным каналом, фитинги (контргайки, муфты, соединители и т. Д.) Являются ключом к соблюдению требований к непрерывности электрического тока.

Чтобы эффективные пути тока замыкания на землю имели достаточную пропускную способность, их размер должен соответствовать минимальным требованиям NEC .Заземляющие проводники оборудования проводного типа должны иметь размер в соответствии с минимальными значениями, указанными в 250.122, но может потребоваться, чтобы их размер был больше, чтобы обеспечить адекватную пропускную способность.

Рис. 7. Заземляющие провода оборудования должны проходить с проводниками цепи

Эффективный путь тока замыкания на землю также должен иметь минимально возможное полное сопротивление. Код Код включает требования к заземляющим проводам оборудования, которые должны быть проложены с проводниками цепи для поддержания низких значений импеданса при нормальной работе и при работе в условиях замыкания на землю.Разделы 300.3 (B) и 250.134 (B) обычно требуют, чтобы заземляющие провода оборудования проходили вместе с проводниками цепи (см. Рисунок 7).

Заземление оборудования свыше 600 В

Требования к заземлению и соединению для систем и цепей с напряжением более 600 В предусмотрены в Части X Статьи 250. Раздел 250.180 четко указывает, что для заземленных высоковольтных систем требования всех частей Статьи 250 применяются в дополнение к любым положениям. которые могут изменять или дополнять эти общие требования, предусмотренные в 250.182–250.190. По сути, это означает, что если требуются заземляющие провода оборудования для фидеров или ответвленных цепей с напряжением более 600 В, требования к размерам заземляющих проводов такого оборудования одинаковы. Если фидер на 200 ампер и 12 470 вольт установлен в ПВХ-кабелепроводе от точки A до точки B, он должен включать заземляющий проводник оборудования, размер которого соответствует правилам 250.122. Минимальный требуемый размер не меньше меди 6 AWG для данной конкретной установки.

Фото 6. Экраны кабелей должны быть заземлены в соответствии с 310.6

.

Помните, что заземление оборудования требуется для всего стационарного, переносного и мобильного оборудования и связанных с ними ограждающих конструкций, корпусов, электрических шкафов и поддерживающих конструкций. Раздел 250.190 требует наличия заземляющего проводника оборудования с минимальным сечением не менее меди 6 AWG или алюминия 4 AWG. Важно отметить, что экранирование кабелей среднего и высокого напряжения обычно не подходит для использования в качестве заземляющего проводника оборудования для этих цепей.Это экранирование требуется для отвода избыточной емкости и электростатических полей, присутствующих на концах этих кабелей. Это достигается за счет использования надлежащим образом установленного экранирующего проводника (ленточная лента или концентрическая скрутка), который соединяет экраны кабелей с заземляющим электродом, заземляющей шиной в оборудовании или с проводником заземляющего электрода [см. NEC 310.6 для дополнительная информация о подключении экранов кабелей] (см. фото 5 и 6).

Рисунок 7

Сводка

Заземление оборудования необходимо для безопасности в электрических системах, работающих при напряжении 600 вольт или меньше, и в системах, работающих при напряжении более 600 вольт.Хотя требования для обеих систем незначительно различаются, требования к характеристикам заземления оборудования одинаковы. В этой статье представлен базовый обзор требований к заземлению оборудования в NEC и рассмотрено, какое оборудование заземления предназначено для выполнения с точки зрения производительности. Заземляющий провод оборудования — это цепь безопасности, которая преднамеренно создается при установке фидеров или ответвлений. Провода заземления оборудования и процесс заземления оборудования приводят к созданию цепи безопасности, которая выполняет три важные задачи, обеспечивая безопасность электроустановки.Процесс обеспечивает путь к заземлению для электрического оборудования, которое необходимо заземлить. Процесс заземления через ответвительные цепи и фидеры включает установку заземляющего проводника оборудования, который также выполняет функции соединения, как указано в пересмотренном определении этого термина, а третья важная функция заземляющего проводника оборудования и процесс заземления оборудования заключается в том, что он служит как эффективный путь тока замыкания на землю, который является электрически непрерывным, с достаточной емкостью и с минимально возможным практическим импедансом.Для получения более подробной информации об электрическом заземлении и соединении см. 10-е издание книги IAEI Soares по заземлению и соединению , доступной весной 2008 года.

Предотвращение поражения электрическим током с помощью надлежащих методов заземления

Время чтения: 9 минут

Удар электрическим током

Примерно 58 человек каждую неделю гибнут в результате поражения электрическим током.

Фото 1. Правильное заземление

В электрической системе система заземления и соединения является основной защитой от поражения электрическим током.Он обеспечивает путь к земле с низким сопротивлением для защиты от электрических повреждений. Эффективный путь тока замыкания на землю обеспечивает облегчение работы устройства максимального тока в условиях замыкания на землю. Заземление не должно рассматриваться как эффективный путь тока замыкания на землю [см. 250.4 (A) (5)]. Использование надлежащих методов заземления и соединения, проверка и поддержание хорошего электрического заземления и установка защитных устройств — лучшие способы защитить людей и оборудование от поражения электрическим током.

Методы правильного заземления

Поддержание качественной системы заземления оборудования начинается с правильного подключения цепей. В соответствии с 250.148 (B) NEC требует, чтобы удаление любого устройства не могло прервать путь заземления. Производители розеток отреагировали, поставив розетки только с одним заземляющим контактом. Это запретило бы электрикам подключать устройство последовательно с цепью заземления.

Соединения косичками

Распространенным методом обеспечения целостности заземляющего соединения оборудования является использование гибкого кабеля.Кодовый термин для этого «гибкого провода» — это перемычка для подключения оборудования, которая определена в Статье 100. Чтобы выполнить гибкое соединение, возьмите оба заземляющих провода и соедините их 6-дюймовым проводом того же цвета, который был зачищен на любом из них. конец. Крепко возьмите все три и свяжите их вместе проволочным соединителем. Убедитесь, что вы используете разъем правильного размера, соответствующий размеру и количеству проводов.

Рисунок 1. Розетки с одинарным заземлением

Доступны специальные соединители, облегчающие эту работу.В одном из них через отверстие в верхней части разъема вставляется неизолированный медный провод. Затем все провода связывают вместе, скручивая соединитель до упора.

Готовые косички становятся популярными из-за экономии времени. Например, в некоторых разъемах теперь совмещен скручивающийся провод с предварительно обжатым жгутом. Сверхгибкий шестидюймовый кабель обеспечивает беспроблемное размещение в распределительной коробке, а заземляющие кабели поставляются с предварительно обжатым вилочным соединением для быстрой и простой установки устройства.

Присоединение распределительной коробки к заземляющему проводнику

Во многих электрических цепях более одного заземляющего провода оборудования входит в розетку. Согласно NEC 250.148, если в коробку входит более одного заземляющего проводника оборудования, все такие проводники должны быть сращены или присоединены внутри коробки или к коробке.

Фото 2. Коннектор косички

Единственное исключение — изолированные розетки, указанные в Разделе 250.146 (D), где изолированные розетки требуются для уменьшения электрических шумов (электромагнитных помех).

Для металлических распределительных коробок заземляющие проводники от каждого устройства также должны быть подключены к коробке с помощью указанного заземляющего устройства или заземляющего винта, которые не используются ни для каких других целей.

Присоединение клеммы заземления розетки к распределительной коробке

Устройство может быть подключено к распределительной коробке с помощью перемычки. Согласно NEC 250.146, перемычка заземления оборудования должна использоваться для подключения клеммы заземления розетки заземляющего типа к заземленной коробке, если не заземлено как в 250.146 (A) — (D).

(A) Если коробка установлена ​​на поверхности, должен быть разрешен прямой контакт металла с металлом между вилкой устройства и коробкой или контактным устройством, которое соответствует требованиям 250.146 (B), для заземления розетки на коробку. По крайней мере, одна из изолирующих шайб должна быть снята с емкостей, не имеющих контактной вилки или устройства, соответствующего 250.146 (B), для обеспечения прямого контакта металла с металлом. Это положение не применяется к розеткам, установленным на крышке, если комбинация коробки и крышки не указана как обеспечивающая приемлемое заземление между коробкой и розеткой.

(B) Контактные устройства или хомуты спроектированы и внесены в список как самозаземляющиеся. допускается в сочетании с поддерживающими винтами для создания цепи заземления между ярмом устройства и коробками скрытого типа.

(C) Напольные коробки предназначены и перечислены как обеспечивающие удовлетворительное заземление между коробкой и устройством.

(D) Там, где это требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, должна быть разрешена розетка, в которой вывод заземления специально изолирован от средств крепления розетки.Клемма заземления розетки должна быть заземлена изолированным заземляющим проводом оборудования, проложенным с проводниками цепи. Этому заземляющему проводнику должно быть разрешено проходить через один или несколько щитовых щитов без подключения к заземляющему зажиму щитового щита, как разрешено в пункте 408.40, Исключение, так, чтобы он заканчивался в том же здании или структуре непосредственно на зажиме заземления оборудования соответствующей производной системы или услуги. .

Клемма заземления розетки соединяется с изолированным заземляющим проводом оборудования, который проходит вместе с проводниками цепи и может проходить через одну или несколько субпанелей без подключения к клеммной колодке заземления щита, как разрешено в Разделе 408.40 Исключение.

Обратите внимание, что использование изолированного заземляющего проводника оборудования не снимает требования к заземлению системы кабельных каналов и распределительной коробки.

Обеспечение эффективного пути заземления

Фото 3. Разъем «косичка» (на фото вывод к прибору укорачивается).

Хорошая система электрического заземления требует большего, чем выполнение нескольких требований NEC; это также должна быть эффективная система заземления. Путь к земле — это заземленный провод системы и соединение оборудования с землей, а также путь для паразитного тока.Если электричество следует по пути наименьшего сопротивления, то цепь (путь) заземления должна иметь меньшее сопротивление, чем индивидуальное, чтобы защитить их. Практическое правило защиты людей — поддерживать полное сопротивление заземления менее одного Ом. Обратите внимание, что в Кодексе нет установленных значений для этого сопротивления, кроме максимальных значений сопротивления, указанных для стержневых, трубных или пластинчатых электродов, которые составляют 25 Ом.

Ложные основания

Заземленный (часто нейтральный) провод, как правило, может быть подключен к земле только на нейтральной шине средства отключения [см. 250.24 (А) (5) и 250.142 (В)]. Основная перемычка на сервисе соединяет заземленный провод и заземляющий провод оборудования в этой точке. Перемычка основного заземления служит важным звеном на пути тока замыкания на землю от рабочего разъединителя до обмоток источника (обычно трансформатора электросети). . Иногда из-за ошибки или незнания заземленный (нейтральный) провод и заземляющий провод оборудования соединяются вместе на стороне нагрузки средства отключения обслуживания, что нарушает общие требования 250.24 (А) (5). Это часто называется ложным или незаконным заземлением и может создавать нежелательный или нежелательный ток в цепи заземления. Если заземленный провод и заземляющие проводники оборудования подключены в любом другом месте здания, весь заземленный металл может стать частью цепи возврата заземленного (нейтрального) проводника для несбалансированного тока нейтрали, который может создавать различные потенциалы напряжения на электронном оборудовании. При использовании обычных тестеров розеток это состояние обычно отображается как нормально подключенное.

Земля Земля

Путь к земле простирается за пределы главной панели к системе заземления, известной как система заземляющих электродов, как описано в Разделе 250.50. Заземление может быть одним заземляющим стержнем, несколькими заземляющими стержнями, матом или сеткой или различными другими проводящими элементами, которые устанавливают соединение с землей. Кодекс требует, чтобы все элементы, перечисленные в пунктах 250.52 (A) (1) — (6), при их наличии, были соединены вместе для образования системы заземляющих электродов. Есть одно исключение для электродов в бетонном корпусе, но это касается только фундаментов существующих зданий или сооружений.В разделе 250.56 рассматривается сопротивление заземления, указывая, что, если заземляющий электрод (стержневой, трубный или пластинчатый) не имеет сопротивления заземления 25 Ом или менее, дополнительный электрод любого из типов, перечисленных в 250,52 (A) (2 ) через (7) должны быть добавлены и установлены на расстоянии не менее 1,8 м (6 футов) от первого электрода. Систему заземляющих электродов можно проверить с помощью тестера сопротивления заземления или токоизмерительных клещей.

При испытании сопротивления заземляющего электрода стержневого, трубного или пластинчатого типа после установки будет соответствовать требованиям NEC в 250.56, не всегда достаточно обеспечить защиту персонала или электронного оборудования.

Фото 4. Токоизмерительные клещи сопротивления заземления

Сопротивление заземляющего электрода сильно зависит от удельного сопротивления почвы. Поскольку удельное сопротивление почвы зависит от влажности и температуры, сопротивление системы заземления будет варьироваться в разные сезоны года. Чтобы обеспечить эффективную систему заземляющих электродов, включите заземляющий электрод или заземление как часть стандартных процедур тестирования на вашем предприятии.Токоизмерительные клещи для измерения сопротивления заземления позволяют электрикам измерять сопротивление заземляющего электрода за долю времени, необходимого с помощью традиционного трехточечного испытания на падение потенциала.

Прерыватели цепи при замыкании на землю

Кодекс требует установки прерывателей цепи замыкания на землю (GFCI) в жилых домах для защиты от поражения электрическим током. Сосуды в ванных комнатах, гаражах, на открытом воздухе, в подвальных помещениях, недостроенных подвалах, кухнях, возле раковин в барах, хозяйственных раковинах и раковинах для стирки требуют защиты.Все 125-вольтовые 15- и 20-амперные розетки в лодочных домах должны иметь GFCI, так же как и любые ответвленные розетки для лодочного подъемника для жилых единиц (дополнительную информацию см. 210.8 (A)). Кодекс также требует защиты GFCI для многих объектов, не относящихся к жилым домам. [См. 210.8 (B) для более полного списка тех областей, где требуется эта прерыватель цепи защиты от замыкания на землю].

Розетка GFCI — это устройство со встроенной схемой для обнаружения тока утечки на землю на стороне нагрузки устройства.Когда GFCI обнаруживает ток утечки в диапазоне 4–6 миллиампер, он прерывает подачу питания на сторону нагрузки устройства, предотвращая опасное замыкание на землю. [См. Определение устройства GFCI класса A прерывателя цепи замыкания на землю (GFCI) в статье 100 для получения дополнительной информации].

Эти устройства следует регулярно проверять, поскольку они зависят от механических соединений, которые со временем могут выйти из строя. Согласно недавнему исследованию, проведенному Институтом Левитона, в среднем 15 процентов GFCI не работали во время тестирования.«Скачки напряжения от молнии, коммутации сети и других источников — все это сказывается на устройствах, поэтому Underwriters Laboratories (UL) требует, чтобы GFCI проверялись ежемесячно».

Отказ оборудования

Когда чувствительное электронное оборудование выходит из строя, первая реакция — поднимать руки вверх и винить в этом низкое качество электроэнергии. Из-за этого проблема кажется неуправляемой и неподвластной нам. Большинство из этих проблем находятся под нашим контролем, потому что 80 процентов всех проблем с качеством электроэнергии обнаруживаются в системе распределения, заземления и соединения.

Помимо предотвращения возможности возгорания, хорошее электрическое заземление с низким сопротивлением и система соединения будут служить для защиты электронного оборудования. Соединение с высоким сопротивлением, такое как свободный провод, вызовет колебания или падение напряжения при приложении большой нагрузки. Если напряжение упадет достаточно низко, это может привести к блокировке, сбросу или полному отключению электронного оборудования. Заземление — еще одна проблема для электронного оборудования. Хотя сопротивление заземления в 1 Ом или менее может защитить людей от поражения электрическим током, оно может быть недостаточной защитой для электронного оборудования.IEEE рекомендует, чтобы полное сопротивление заземления составляло менее 0,25 Ом для надлежащей защиты.

Изолированное заземление и выделенные цепи

В некоторых случаях легче изолировать чувствительное электронное оборудование, чем повторно подключить всю цепь. Это можно сделать, запустив изолированное заземление для рассматриваемого оборудования или запустив новую выделенную цепь. Кодекс в настоящее время не включает термин «выделенная цепь»; тем не менее, термин «отдельная ответвленная цепь» определен; и такая схема часто устанавливается для чувствительного электронного оборудования.Отдельные ответвленные цепи могут также включать изолированные заземляющие проводники, установленные в соответствии с положениями 250.146 (D).

Изолированное заземление защищает оборудование от другого оборудования в той же цепи заземления. Электронное оборудование может создавать электрические помехи в цепи заземления, которые могут мешать работе другого оборудования в цепи. Важно отметить, что изолированное заземление не защитит оборудование от гармонических искажений, проходящих через общий нейтральный проводник типичных многопроволочных ответвленных цепей.

В некоторых случаях запуск выделенной цепи (индивидуальной ответвленной цепи) необходим для полной изоляции части оборудования и обеспечения защиты.

Статья 285 устанавливает правила и охватывает использование ограничителей импульсных перенапряжений. Эти устройства защищают силовые, телефонные и кабельные линии от скачков напряжения. Переходные процессы — это короткие импульсы большой амплитуды, вызванные выделением энергии в электрической системе. Эти импульсы энергии могут быть вызваны внутренними источниками, такими как конденсатор, выделяющий энергию в систему, или внешними источниками, такими как освещение.

Заключение

Скрытые опасности, связанные с разветвленной проводкой, очень серьезны, но, к счастью, меры предосторожности просты. Мы можем защитить себя и оборудование, используя сертифицированные устройства и испытательное оборудование от известных производителей, а также применяя политику тестирования ответвлений. Эти политики должны включать проверку правильности проводки, тестирование устройств, проверку целостности ответвленной цепи и измерение целостности системы заземления.

Установщики

должны всегда проверять все устройства сразу после установки, чтобы проверить правильность подключения и проверить устройства. Инспектор по электрике, как правило, не несет ответственности за проверку установки после ее завершения. Подрядчик по установке, как правило, несет ответственность за этот тип испытаний. Розетки следует проверять, чтобы избежать распространенных ошибок подключения, таких как неправильная полярность или обрыв нейтрали. Проверка уровня напряжения с помощью тестера напряжения быстро подтверждает, что розетка правильно подключена на 120 или 220 В переменного тока.Проверка целостности коммутатора подтверждает его правильную работу. На рынке доступны различные тестеры для быстрого и точного тестирования этих устройств.

Проверить электрические цепи под нагрузкой, чтобы проверить целостность параллельной цепи. Испытание на падение напряжения может выявить соединения с высоким сопротивлением, что может привести к возгоранию, пробою изоляции и снижению эффективности электрической системы, что может способствовать неустойчивой работе оборудования.

Проверить целостность системы заземления, которая включает не только заземляющие провода оборудования, но также стержень заземления или систему заземляющих электродов.Путь с низким сопротивлением в обеих этих системах важен для защиты от поражения электрическим током. Эффективный путь тока замыкания на землю гарантирует, что устройства максимального тока будут работать в условиях замыкания на землю. См. 250.4 (A) (5).

Таким образом, тестирование ответвленной цепи является важной частью подключения любой цепи. Он проверяет правильность подключения устройств и позволяет защитить себя от скрытых дефектов в электрической системе.

Требования к защитному заземлению для линий передачи и распределения

Введение в защитное заземление

В этой технической статье рассматриваются требования к защитному заземлению для линий передачи и распределения с опорой на стальные опоры и деревянные опоры, а также изолированных силовых кабелей.Защитные заземления должны быть установлены так, чтобы все фазы линий или кабеля были заметно и эффективно соединены вместе в многофазном «коротком замыкании» и подключены к земле (земле) на рабочем месте.

Требования к защитному заземлению для линий передачи и распределения

Однофазное заземление многофазных цепей запрещено. Электропроводящие объекты в пределах досягаемости любого рабочего, будь то воздушные или наземные, должны быть подключены к этой системе заземления. Следовательно, на рабочем месте должно быть установлено достаточное количество защитных заземлений таким образом, чтобы они находились непосредственно в шунте со всеми точками соприкосновения рабочих.

Заземление НЕ ДОЛЖНО использоваться в качестве проводника защитного заземления или как часть цепи между защитными заземлениями в этом отношении.

Устройство защитных заземлений на сооружениях ЛЭП создает на сооружении эквипотенциальную безопасную рабочую зону . Однако без использования установленных заземляющих матов опасные ступеньки, прикосновения и передаваемые потенциалы прикосновения могут существовать на земле рядом с основанием конструкции и объектами, подключенными к системе заземления на рабочем месте во время случайного включения линии.

Взгляните на рисунок 1 ниже.

Рисунок 1 — График, изображающий ступенчатое и контактное напряжение экспонирования, создаваемое на поверхности земли током, протекающим в землю от заземленных объектов.

Имейте в виду, что при протекании тока замыкания на землю будет повышаться напряжение при каждом подключении к земле. Никто не должен приближаться к в пределах 10 футов от защитной заземленной конструкции или любого другого проводящего объекта, который был подключен к системе заземления на рабочем месте, если не приняты защитные меры для снижения опасности ступенчатого напряжения и напряжения прикосновения.

В противном случае, только когда необходимо получить доступ к сооружению с земли, линейные монтеры должны быстро подойти и сесть / слезть у основания сооружения.

Содержание:

    1. Заземление на металлических трансмиссионных конструкциях
      1. Решетчатые стальные конструкции
      2. Стальные опорные конструкции с контактным шарниром
      3. Стальные опорные конструкции, устойчивые к атмосферным воздействиям
      4. Окрашенная сталь
      5. Воздушные провода заземления
      6. Основание основания
    2. Заземление на деревянных опорных конструкциях электропередачи
    3. Концевые выключатели заземления линии электропередачи
    4. Заземление на распределительных линиях
    5. Наземное оборудование и заземление транспортных средств
      1. Воздушные устройства
      2. Контакт с заземленными транспортными средствами на рабочем месте
    6. Заземление изолированный силовой кабель

1.Заземление на металлических конструкциях электропередачи

1.1 Стальные конструкции с решетчатой ​​конструкцией

Предпочтительный метод установки заземления на конструкции одинарных решетчатых стальных линий электропередачи с более высоким напряжением, где проводники находятся на большем расстоянии от конструкции, чем проводники на конструкциях с более низким напряжением, составляет установить их с перемычки над проводниками (см. рисунок 2).

Эта конфигурация сводит к минимуму индукционный контур заземления, образованный линейным рабочим органом, контактирующим со сталью башенного моста и линейным проводником (вдоль боковой гирлянды изоляторов).Это также снижает напряжение воздействия линейного монтера.

В двухцепных решетчатых стальных передающих конструкциях фазные проводники должны быть заземлены на их верхних плечах конструкции, аналогично тому, как показано на рисунке 2. Защитные заземления должны присоединяться от нижней фазы вверх и удаляться от верхней фазы вниз.

Обратите внимание, что OGW означает Воздушная линия заземления .

Рисунок 2 — Предпочтительный метод заземления проводов на стальных конструкциях одноконтурных высоковольтных линий

Пунктирные линии показывают альтернативную ориентацию защитных заземлений на меньших (более низкое напряжение) конструкциях.OGW обозначает провод заземления. OGW должны быть подключены к системе заземления на рабочем месте, если они находятся в пределах досягаемости линейных монтажников.

Вернуться к таблице содержания ↑

1.2 Конструкции стальных опор скользящего соединения

Конструкции скользящего соединения либо имеют соединительные кабели, постоянно прикрепленные к каждому стыку, либо сопротивление стыка должно измеряться на выбранных конструкциях после установки и периодически, по мнению обслуживающего персонала.

Поверхности, на которые должно быть нанесено защитное заземление, должны быть очищены перед подключением кабеля для обеспечения надлежащего электрического контакта.

Рисунок 3 — Конструкция стальной опоры скользящего соединения 110 кВ

Вернуться к таблице содержания ↑

1.3 Атмосферные стальные опоры

Нельзя удалять высокорезистивный защитный оксид на стали, подверженной атмосферным воздействиям. Защитное заземление лучше всего выполнить путем приваривания медного или стального стержня или гайки из нержавеющей стали, в которую можно вставить медную шпильку с резьбой в каждом месте заземления.

Стальные опоры, устойчивые к атмосферным воздействиям, должны быть сконструированы с соединениями между поперечинами и полюсами, а также между соединениями скольжения для обеспечения непрерывности электрического тока.Если соединительные ленты не являются частью конструкции, защитное заземление должно быть продлено до заземляющего стержня и воздушного провода заземления.

Рисунок 4 — Выветривания стальных опор, расположенных в линию где-то в Тусоне, США,

Вернуться к таблице содержания ↑

1.4 Окрашенная сталь

Заземление лучше всего выполнить путем создания точки крепления к земле , как описано в разделе 1.3 выше. Соскабливание краски редко обеспечивает надлежащее электрическое соединение, и впоследствии потребуется перекраска.

Вернуться к таблице содержания ↑

1.5 Воздушные провода заземления

Воздушные заземляющие провода должны быть прикреплены к системе заземления рабочего места (конструкционная сталь) с помощью защитного заземления, если рабочие размещают линейных рабочих в пределах досягаемости.

С точки зрения безопасности нельзя полагаться на надежные подвесы для подвесных заземляющих проводов.

Преднамеренное соединение воздушных заземляющих проводов с конструкцией рабочего места также помогает отвести ток замыкания на землю от фундамента конструкции к соседним конструкциям, если линия случайно повторно подана, что снижает ступенчатое и контактное напряжение на земле на рабочем месте.

Однако следует соблюдать меры предосторожности, чтобы избежать воздействия возможных опасных ступенек и потенциалов прикосновения на соседних конструкциях.

При выполнении работ в непосредственной близости от изолированных воздушных проводов заземления необходимо соблюдать указанный рабочий зазор для цепи 15 кВ (таблица 1) или применять защитное заземление.

Таблица 1 — Минимальное расстояние доступа переменного тока для электромонтажников

Примечание: Все расстояния в футах-дюймах, экспозиция между фазой и землей.Информацию о межфазном воздействии см. В OSHA CFR 29 1910.269, Таблица R-6 .

Невозможно переоценить важность подключения воздушных заземляющих проводов к конструкции рабочего места для обеспечения электробезопасности. В противном случае смертельное переданное напряжение прикосновения может появиться между конструкционной сталью и проводом во время случайного включения заземленной линии или, в некоторых случаях, из-за связи с близлежащей линией, находящейся под напряжением.

Вернуться к таблице содержания ↑

1.6 Заземление опоры конструкции

Перед установкой защитного заземления необходимо проверить постоянное заземление опор конструкции на предмет повреждений, пропусков или других признаков плохой непрерывности между конструкцией и заземляющим электродом фундамента.

В случае сомнений следует установить временный стержень заземления рядом с основанием и прикрепить его к системе заземления рабочего места (стальной).

Вернуться к таблице содержания ↑

2. Заземление на деревянных опорных передающих конструкциях

Предпочтительные применения трехфазного заземления на деревянных опорных конструкциях с использованием заземляющих кластерных стержней показаны на рисунках 6 и 7. Заземляющие кластерные стержни должны располагаться ровно ниже самой низкой отметки ступней линейного монтера для рабочей зоны (приблизительно на высоте фазных проводов) и должны быть подключены к заземляющим проводам опорной конструкции, если они предусмотрены.

Рисунок 5 — Шина заземления, прикрепленная к деревянной опоре

Шина обеспечивает удобную точку крепления для защитного заземления и соединения с заземляющим проводом опорной конструкции, если таковой имеется.

Положение полосы кластера определяет нижнюю границу эквипотенциальной рабочей зоны на опоре. На рисунке 5 показан пример установленной заземляющей кластерной шины.

Рисунок 6 — Установка перемычки защитного заземления для двухполюсных и трехполюсных конструкций (заземленных конструкций)

OGW обозначает контактный заземляющий провод.OGW должны быть подключены к системе заземления рабочего места, если они находятся в пределах досягаемости линейных монтажников. OGW могут быть подключены к кластерным шинам или к заземленным фазным проводам с защитным заземлением.

Перед установкой защитного заземления необходимо проверить постоянное заземление опор полюсов на предмет повреждений, пропусков или других признаков нарушения целостности цепи между конструктивным оборудованием и заземляющим электродом полюса.

Если есть сомнения, необходимо установить временный заземляющий стержень рядом с опорой и присоединить к системе заземления на рабочей площадке (см. Рисунок 5).

Рисунок 7 — Пример установки перемычки защитного заземления, показывающий использование заземляющего стержня для незаземленных конструкций или сооружений с сомнительной целостностью заземления

Вернуться к таблице содержания ↑

3. Выключатели заземления оконечных устройств линии передачи

Выключатели заземления оконечных устройств линии передачи могут быть замкнуты параллельно с защитными сооружениями на рабочем месте. Выключатели заземления на клеммах замкнутой линии могут помочь гарантировать, что защитные устройства (реле, предохранители) сработают в заданном соотношении время / ток, чтобы быстро изолировать источник случайного электрического напряжения.

Кроме того, во многих случаях замкнутые клеммные выключатели заземления уменьшают ток короткого замыкания в защитных заземлениях на рабочем месте, что снижает рабочее напряжение.

Однако, в зависимости от конфигурации системы и условий нагрузки, замкнутые клеммные выключатели заземления могут увеличивать индуцированный циркулирующий ток в линии и множественные заземления из-за связи с близлежащими линиями, находящимися под напряжением. Этот циркулирующий ток может быть нежелательным при установке или удалении защитного заземления или создавать постоянные опасные уровни ступенчатого напряжения и напряжения прикосновения на заземленной рабочей площадке.

Таким образом, использование выключателей заземления оконечных устройств линии остается на усмотрение экипажа и региональной политики. Выключатели заземления линейных клемм не могут заменить защитное заземление на рабочем месте.

Вернуться к таблице содержания ↑

4. Заземление распределительных линий

Защитное заземление распределительных линий и окончаний воздушных кабелей должно выполняться, как показано на рисунке 6.

Рисунок 6 — Предпочтительный метод защитного заземления при более низком напряжении распределительные линии

Заземляющая шина кластера (см. фото, рисунок 3) должна располагаться чуть ниже самого низкого уровня ступней линейного монтера для рабочей зоны и должна быть соединена с нейтральным проводом и проводом заземления полюса (не показан), если он предусмотрен .

Положение кластерного стержня определяет нижнюю границу эквипотенциальной рабочей зоны на опоре.

Подключение индивидуальных защитных заземлений от кластерного стержня к каждому фазному проводу является допустимой альтернативой, но может привести к немного более высокому напряжению воздействия.

Полюсные заземляющие провода, используемые для защитного заземления , должны быть проверены перед использованием, чтобы убедиться, что они не были разрезаны, повреждены или удалены . Если полюса заземления нет, временный заземляющий стержень следует вбить или вкрутить в землю рядом с полюсом и прикрепить к шине кластера с помощью защитного заземления.

Любые растяжки в пределах досягаемости линейного мастера должны быть прикреплены к системе заземления рабочего места (групповой стержень). Наземная бригада должна оставаться на расстоянии (не менее 10 футов) от полюсов, заземляющих стержней и растяжек.

Вернуться к таблице содержания ↑

5. Заземление наземного оборудования и транспортных средств

Этот параграф применяется к заземлению и подключению оборудования и транспортных средств, задействованных в работах по техническому обслуживанию на линиях электропередач или вблизи них. Транспортные средства включают, помимо прочего, воздушные устройства, легковые грузовики, копатели столбов и краны.

Целью подключения оборудования и транспортных средств к системе заземления на рабочем месте (во время работы без напряжения) является контроль и минимизация передаваемых потенциалов прикосновения между конструкцией, оборудованием и транспортным средством во время случайного включения линии.

Площадки для транспортных средств и оборудования должны использоваться вместе с правильно установленными средствами индивидуальной защиты. Ни в коем случае нельзя использовать заземления для транспортных средств и оборудования вместо средств индивидуальной защиты.

Вернуться к таблице содержания ↑

5.1 Воздушные устройства

Воздушные устройства с изолированной или неизолированной стрелой, а также другие транспортные средства или оборудование для технического обслуживания, которые могут контактировать с заземленной рабочей площадкой или позволять рабочему контактировать с площадкой, должен быть подключен к системе заземления на рабочем месте.

Они должны быть прикреплены (заземлены) к конструкции в качестве первого шага в установке системы заземления.

Вернуться к таблице содержимого ↑

5.2 Контакт с заземленными транспортными средствами на рабочем месте

Транспортные средства и оборудование, подключенные к системе заземления рабочего места, могут представлять опасное переданное напряжение прикосновения к окружающей поверхности заземления.

Следовательно, любое транспортное средство или оборудование, подключенное к системе заземления рабочего места (включая токопроводящие стропы лебедки) и требующее устойчивого контакта при стоянии на земле, должно быть оборудовано изолированной платформой или проводящим ковриком , прикрепленным к транспортному средству или оборудованию оператор стоять на.

См. Рисунок 7 ниже.

Рис. 7 — Применение токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото предоставлено idube.net)

Коврик и автомобиль прикреплены к системе заземления рабочего места, создавая эквипотенциальную зону между руками оператора (рама автомобиля) и ноги.

Рисунок 8 — Пример использования токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото: idube.net)

Вернуться к таблице содержания ↑

6.Заземление Изолированный силовой кабель

Защитное заземление на рабочей площадке для изолированных концевых частей силового кабеля должно выполняться аналогично заземлению конструкций линий электропередач. Фазовые клеммы кабеля (терминаторы, наконечники и т. Д.) И проводники экрана должны быть подключены к системе заземления на рабочем месте.

Удаленный (незаземленный) конец кабеля ДОЛЖЕН рассматриваться как находящийся под напряжением . Хотя фазовые жилы кабеля незаземлены (изолированы) на удаленном (нерабочем) конце кабеля, экраны кабеля заземлены там.

Следовательно, рабочие должны принять необходимые меры предосторожности против опасных скачков или прикосновений, которые могут возникнуть на рабочем месте из-за замыкания на землю системы на удаленном конце .

Вернуться к таблице содержания ↑

Источники:

  1. Личное защитное заземление для объектов электроэнергетики и линий электропередач Департаментом внутренних дел США Бюро мелиорации
  2. Работа и методы работы под высоким напряжением руководство Western Power Network

Все о системах электрического заземления

В этом блоге мы рассмотрим необходимость системы электрического заземления, ее важность, типы заземленной системы, общие методы и факторы, влияющие на установку системы с заземлением, советы по безопасности и т. Д.Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока. Система заземления — это резервный путь, который имеет альтернативный путь для электрического тока, протекающего на землю из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

Проще говоря, «заземление» означает, что для прохождения электричества в землю был проложен путь с низким сопротивлением. «Заземленное» соединение включает соединение между электрическим оборудованием и землей через провод.После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока. Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Мы только что запустили нашу серию видеоблогов Power Systems Engineering Vlog , и в этой серии мы поговорим о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX.Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Заземление электрической системы — это разумный и самый простой способ сделать всю систему более безопасной и обеспечить защиту от колебаний в электропитании. Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Необходимость заземленной системы в электрической сети:

Некоторые люди, особенно в крупных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание.Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA, «большинство несчастных случаев и смертельных случаев в связи с контактом с линией являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного прикрытия линии или надлежащего заземления. »

Общие риски незаземленной электрической системы — поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением.Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество. В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были обычным явлением в 40-х и 50-х годах, они все еще используются в наши дни.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током. При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор. Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением: Ограничьте ток замыкания на землю до <10 ампер.

Заземление с низким сопротивлением: Ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электропитания напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса.Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах. Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы заземляющие пластины имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Трубки и стержни заземления:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Расположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии значительно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы — это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Система с заземлением обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт и время простоя оборудования, снижает уровень электрического шума (колебания электрического сигнала).

В электрической системе поддержание заземления должно быть приоритетом для безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • При удалении заземления заземляющее соединение должно устанавливаться первым и удаляться последним (OSHA 29CFR 1910.269 (n) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения, чтобы отключить подачу питания на рабочем месте при возникновении неисправности, устройства защиты напольного кабеля для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и увеличивает безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.

Почему заземление оборудования так важно?

Автор Ли Маршессо — Опубликовано 6 февраля 2020 г., 19:54

EPG — Отсутствует заземление

EPG Технические специалисты обучены определять и понимать, что является активным, а что нет.Мы часто думаем о незаземленных «горячих» проводах как о частях, находящихся под напряжением, которых следует избегать. Мы также знаем, что нам необходимо подключить заземленный провод «нейтраль», чтобы замкнуть цепь и чтобы подключенные нагрузки работали, как задумано. Нейтраль заземляется заземляющим проводом («заземление»), который служит опорой для защитных устройств. Это важная причина для установки системных оснований. Все защитные устройства имеют кривую время-ток, которую важно понимать для защиты электрической инфраструктуры и координации системы.Однако иногда существует неправильное представление о том, что заземление оборудования или корпуса необязательно. Заземляющие провода являются неотъемлемой частью электробезопасности и всегда требуют серьезного рассмотрения.
Вот несколько причин, по которым заземляющее оборудование так важно.

  1. Защита от электрической перегрузки
    Одной из наиболее важных причин заземления электрических токов является то, что оно защищает оборудование от замыканий на землю, скачков напряжения в энергосистеме или близлежащих ударов молнии.Эти аномалии вызывают опасно высокое напряжение в электрической системе. Если установлено надлежащее заземление, все избыточное электричество уйдет в землю, а не разрушит все, что связано с электрической системой.
  2. Обеспечивает альтернативный путь прохождения тока
    Эффективное заземление вашего электрического оборудования означает, что будет путь с низким сопротивлением, позволяющий электрическим токам безопасно и эффективно проходить через вашу электрическую систему на землю.
  3. Помогает стабилизировать уровни напряжения
    Заземление электрического оборудования облегчает распределение нужного количества энергии во всех нужных местах, что может сыграть огромную роль в обеспечении того, чтобы цепи не были перегружены и не взорвались. Земля является общей точкой отсчета для многих источников напряжения в электрической системе.
  4. Земля — ​​лучший проводник
    Одна из причин, почему заземление помогает обезопасить вас, заключается в том, что земля является таким отличным проводником, и поскольку ток обратно пропорционален сопротивлению, большая часть тока проходит по пути с наименьшим сопротивлением.Заземлив ваше электрическое оборудование, альтернативный путь прохождения тока вызывает гораздо меньшее сопротивление, чем если бы вы, — возможно, спасая вашу жизнь.
  5. Предотвращает повреждение, травмы и смерть
    Без должным образом заземленного электрического оборудования существует более высокий риск повреждения в результате короткого замыкания или замыкания на землю. В худшем случае перегрузка электросети может вызвать пожар, что может привести не только к значительному материальному ущербу, но и к человеческим жизням.
  6. Заземление и соединение создают равный потенциал
    Соединение всего оборудования в пределах досягаемости на временных установках (6 футов.) создает равнопотенциальную зону. Если происходит замыкание на землю и мгновенно возбуждается питание корпуса, другие близлежащие проводящие объекты могут поддерживать потенциал земли, если они не подключены к корпусу генератора. Это может быть смертельная разница в потенциале, вызывающая тяжелый или фатальный шок. Кроме того, склеивание металлических частей, таких как барабаны, корпуса батарей или другого оборудования в легковоспламеняющихся атмосферных условиях, важно для предотвращения статических разрядов.

Таким образом, существует три основных части электрической системы, которые имеют решающее значение для функциональности и безопасности.Незаземленные провода от источника питания (обычно называемые «горячими» проводами, заземленный провод «нейтралью», который является обычным токопроводящим проводом, и заземляющий провод, который соединяет нейтраль с землей и используется для заземления и соединения оборудования. Надлежащее заземление и соединение является важной частью электрической инфраструктуры, которую нельзя упускать из виду.

Перегретый выключатель

Категория: Электричество

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *