Атмосферное излучение — Карта знаний
- Атмосферное излучение — это инфракрасное излучение, порождаемое атмосферой и облаками в частности, с длинами волн от 4 до 120 мкм.
По направлению атмосферное излучение делится:
* в сторону космического пространства (уходящая длинноволновая радиация)
в сторону земной поверхности (встречное излучение).Атмосферное излучение осуществляется через отражение и поглощение.
Отражение — это процесс, который предотвращает поступление энергии в атмосферу в случае солнечного излучения. По отношении к излучению с земной поверхности отражение сохраняет энергию в атмосфере, не давая излучению уйти в космическое пространство.
Имеется два вида отражения. Это зеркальное отражение и диффузное отражение. Зеркальное отражение показывает гладкую поверхность, где свет отражается под равными углами от равнины перпендикулярно поверхности на точке пересечения. При диффузном отражении продолжает действовать правило равных углов, но изменена поверхность отражения. Поглощение — это процесс, благодаря которому «энергия падающего излучения удерживается веществом». В этом случае веществом выступает наша атмосфера. Когда атмосфера поглощает энергию, результатом является необратимое изменение излучения в другую форму энергии. Эта энергия перевоплощается согласно характеру средства, с помощью которого происходит поглощение.
Поглощающее средство может также сделать гораздо больше. Оно может не только поглотить всю, но и часть всей энергии. Другая энергия будет или отражена, или преломлена, или рассеяна. Поглощённая энергия может быть передана обратно в другие части атмосферы.
Атмосфера, благодаря содержащемуся в ней большому количеству газов или частиц, поглощает и передаёт различные длины волн электромагнитной радиации. Длины волн, которые проходят через атмосферу и не поглощаются, составляют «атмосферные окна».
Атмосферное поглощение электромагнитного излучения помогает Земле несколькими способами. Прежде всего, поглощение помогает людям предотвратить достижение поверхности Земли высокоэнергетическим излучением, а это ограничивает воздействие на нас вредного излучения. Атмосфера поглощает большинство радиации из ультрафиолетового региона до региона рентгеновских лучей.
Второй способ, которым нам помогает поглощение, это как источник тепла для нас. Если кто-то возьмет и сделает вертикальный поперечный разрез всей атмосферы, то можно заметить, что температура увеличивается с высотой. Это увеличение температуры объясняется увеличение поглощения электромагнитной радиации с высотой благодаря более высокой концентрации поглощающих газов с высокоэнергетической длиной волн, которые присутствуют в более высоких слоях атмосферы.
Источник: Википедия
Связанные понятия
Межзвёздная среда (МЗС) — вещество и поля, заполняющие межзвёздное пространство внутри галактик. Состав: межзвёздный газ, пыль (1 % от массы газа), межзвёздные электромагнитные поля, космические лучи, а также гипотетическая тёмная материя. Химический состав межзвёздной среды — продукт первичного нуклеосинтеза и ядерного синтеза в звёздах. На протяжении своей жизни звёзды испускают звёздный ветер, который возвращает в среду элементы из атмосферы звезды. А в конце жизни звезды с неё сбрасывается оболочка…
Лес Лайман-альфа (Lyα-лес) — многократное повторение абсорбционной линии Лайман-альфа в спектрах далеких астрономических объектов. Для очень далёких объектов это явление может быть настолько сильным, что вызывает значительный спад интенсивности в некотором интервале частот; это называется эффектом Гана — Петерсона (Gunn — Peterson).
Теплово́й бала́нс Земли́ — баланс энергии процессов теплопередачи и излучения в атмосфере и на поверхности Земли. Основной приток энергии в систему атмосфера—Земля обеспечивается излучением Солнца в спектральном диапазоне от 0,1 до 4 мкм. Плотность потока энергии от Солнца на расстоянии 1 астрономической единицы равен около 1367 Вт/м² (солнечная постоянная). По данным за 2000—2004 годы усреднённый по времени и по поверхности Земли этот поток составляет 341 Вт/м², или 1,74·1017 Вт в расчёте на полную…
Диссипа́ция атмосфер планет (Планетарный ветер) — потеря газов атмосферой планет вследствие их рассеяния в космическом пространстве. Основным механизмом потери атмосферы является термальный — тепловое движение молекул, из-за которого молекулы газов, находящиеся в сильно разреженных внешних слоях атмосферы, приобретают скорость, превышающую критическую скорость ускользания, и поэтому могут уйти за пределы поля тяготения планеты. Устойчивой считается атмосфера, средняя скорость молекул которой не превышает…
Упоминания в литературе
А излучение атмосферных разрядов показало, что возникающие при этом электромагнитные излучения охватывают широкий диапазон длин волн – от сверхдлинных до ультракоротких; и наконец, были открыты радиоизлучения Солнца и Галактик в диапазоне от метровых до миллиметровых волн.
Связанные понятия (продолжение)
Естественные источники света — это природные материальные объекты и явления, основным или вторичным свойством которых является способность испускать видимый свет. В отличие от естественных источников света, искусственные источники света являются продуктом производства человека или других разумных существ.
Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.
Поверхность последнего рассеивания — удалённая область космоса, на которой сегодняшние фотоны реликтового излучения последний раз рассеялись ионизированной материей, сейчас с Земли представляется как сферическая оболочка. Ближе, чем эта поверхность, Вселенная являлась, по существу, уже прозрачной для излучения благодаря рекомбинации атомов. Далее, чем эта поверхность, фотоны быстро рассеивались на ионах и электронах. Поэтому, хотя поверхность имеет конечную толщину, она является относительно резкой…
Корональный выброс массы — выброс вещества из солнечной короны. Наблюдение корональных выбросов массы с поверхности Земли затруднено. По-видимому, первое наблюдение корональных выбросов в видимом диапазоне длин волн было выполнено в начале 1970-х годов с помощью коронографа, установленного на седьмой орбитальной солнечной обсерватории. Станция SMM продолжила изучение этого явления в 1980 году.
Абсолютно чёрное тело — физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах.
Стоксов сдвиг — разница длин волн максимумов спектров поглощения и флуоресценции. Измеряется в обратных сантиметрах, реже в нанометрах, в силу нелинейной зависимости энергии фотона от длины волны. Назван в честь физика Джорджа Стокса.
Межпланетная среда — вещество и поля, заполняющие пространство внутри Солнечной системы (звёздной системы) от солнечной короны (короны звезды) до границ гелиосферы за исключением планет и тел Солнечной системы. Межпланетная среда в основном включает солнечный ветер (ветер центральной звезды в звёздной системе (starwind)), межпланетное магнитное поле, космические лучи (заряженные частицы высокой энергии), нейтральный газ, межпланетную пыль и электромагнитное излучение. Межпланетная среда играет ключевую…
Термосфе́ра (от греч. θερμός — «тёплый» и σφαῖρα — «шар», «сфера») — слой атмосферы, следующий за мезосферой. Начинается на высоте 80—90 км и простирается до 800 км.
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).
Косми́ческие лучи́ — элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве.
Сверхизлучение — в атомной физике — кооперативное излучение, возникающее вследствие самопроизвольного зарождения и усиления корреляций первоначально независимых атомов c инверсной заселённостью верхнего энергетического уровня. В астрофизике — явление усиления отраженной от вращающейся чёрной дыры волны.
Рентгеновская астрономия — раздел астрономии, исследующий космические объекты по их рентгеновскому излучению. Под рентгеновским излучением обычно понимают электромагнитные волны в диапазоне энергии от 0,1 до 100 кэВ (от 100 до 0,1 Å). Энергия рентгеновских фотонов гораздо больше, нежели оптических, поэтому в рентгеновском диапазоне излучает вещество, нагретое до чрезвычайно высоких температур. Источниками рентгеновского излучения являются чёрные дыры, нейтронные звезды, квазары и другие экзотические…
Рели́ктовое излуче́ние (лат. relictum — остаток), космическое сверхвысокочастотное фоновое излучение — равномерно заполняющее Вселенную тепловое излучение, возникшее в эпоху первичной рекомбинации водорода. Обладает высокой степенью изотропности и спектром, свойственным для абсолютно чёрного тела с температурой 2,72548 ± 0,00057 К.
Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).
Атмосферная оптика — раздел физики атмосферы, в котором изучаются физические процессы взаимодействия оптического излучения распространяющегося в атмосфере. Атмосферная оптика занимается исследованием: физических и химических процессов, определяющих оптическое состояние атмосферы, технологии исследования окружающей среды, механизмов формирования и изменения климата, в том числе оптически значимые составляющие атмосферы и процессы, определяющие радиационный режим и климат Земли.
Люминесце́нция (от лат. lumen, род. падеж luminis — свет и -escent — суффикс, означающий слабое действие) — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.
Теплово́е излуче́ние — электромагнитное излучение, возникающее за счёт внутренней энергии тела. Имеет сплошной спектр, расположение и интенсивность максимума которого зависят от температуры тела. При остывании последний смещается в длинноволновую часть спектра.
Зона лучистого переноса — средняя зона Солнца. Располагается непосредственно над солнечным ядром, на расстояниях примерно от 0,2—0,25 до 0,7 радиуса Солнца от его центра. Выше зоны лучистого переноса находится конвективная зона.
Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).
Сверхпузырь — это область межзвёздного пространства, наполненная раскалённым газом, имеющая пониженную плотность по сравнению с окружающей средой и достигающая в поперечнике нескольких сотен световых лет. В отличие от пузырей звёздного ветра, создаваемых одиночными звёздами, сверхпузыри образуются вокруг OB-ассоциаций, располагающихся внутри молекулярных облаков. Звёздный ветер от OB-звёзд и энергия от взрывов сверхновых разогревают вещество сверхпузырей до температур порядка 106 K. Старые сверхпузыри…
Активные ядра галактик — ядра, в которых происходят процессы, сопровождающиеся выделением большого количества энергии, не объясняющиеся активностью находящихся в них отдельных звёзд и газово-пылевых комплексов.
Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2⋅10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится к ионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков.
Столкновительное возбуждение — один из процессов, в результате которого в спектре эмиссионных туманностей — планетарных туманностей или областей H II — возникают линии испускания.
Со́лнечный ве́тер — поток ионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300—1200 км/с в окружающее космическое пространство. Является одним из основных компонентов межпланетной среды.
Собственное свече́ние атмосфе́ры — очень слабое излучение света атмосферой планеты. В случае с атмосферой Земли этот оптический феномен приводит к тому, что ночное небо никогда не является полностью тёмным, даже если исключить свет звёзд и рассеянный свет Солнца с дневной стороны.
Со́лнечная вспы́шка — взрывной процесс выделения энергии (кинетической, световой и тепловой) в атмосфере Солнца. Вспышки так или иначе охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца. Необходимо отметить, что солнечные вспышки и корональные выбросы массы являются различными и независимыми явлениями солнечной активности. Энерговыделение мощной солнечной вспышки может достигать 6×1025 джоулей, что составляет около 1⁄6 энергии, выделяемой Солнцем за секунду, или 160 млрд…
Фурье-спектрометр — оптический прибор, используемый для количественного и качественного анализа содержания веществ в газовой пробе.
При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30— 50 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности.
Подробнее: Поражающие факторы ядерного взрыва
Фотосинтетически активная радиация, или, сокращённо, ФАР — часть доходящей до биоценозов солнечной радиации в диапазоне от 400 до 700 нм, используемая растениями для фотосинтеза. Этот участок спектра более или менее соответствует области видимого излучения. Фотоны с более короткой длиной волны несут слишком много энергии, поэтому могут повредить клетки, но они по большей части отфильтровываются озоновым слоем в стратосфере. Кванты с большими длинами волн несут недостаточно энергии и поэтому не используются…
Равновесная температура планеты (англ. Planetary equilibrium temperature) — теоретическая температура, которую имела бы планета, если бы являлась абсолютно чёрным телом, нагреваемым только звездой, вокруг которой планета обращается. В данной модели наличие или отсутствие атмосферы (и, следовательно, парниковый эффект) не рассматривается, а теоретическая температура чёрного тела считается излучаемой с поверхности планеты.
Рэле́евское рассе́ивание — когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно выше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеяние света на объектах, размеры которых меньше его длины волны. Названо в честь британского физика лорда Рэлея, установившего зависимость интенсивности рассеянного света от длины волны в 1871 году…
Радиационный баланс земной поверхности — алгебраическая сумма потоков радиации в определенном объёме или на определенной поверхности, то есть разница между поглощенной радиацией и эффективным излучением этой поверхности. Годовые его величины в целом для Земли положительные. Один из климатообразующих факторов, важнейшая характеристика микроклимата посевов и условий их фотосинтеза.
Звёздное магнитное поле — магнитное поле, создаваемое движением проводящей плазмы внутри звёзд главной последовательности. Это движение создаётся путём конвекции, которая является одной из форм переноса энергии из центра звезды к её поверхности с помощью физического перемещения материала. Локальные магнитные поля воздействуют на плазму, в результате чего намагниченные области поднимаются по отношению к остальной части поверхности, и могут достичь даже фотосферы звезды. Этот процесс создаёт звёздные…
Источник света — любой объект, излучающий электромагнитную энергию в видимой области спектра. По своей природе подразделяются на искусственные и естественные.
Межзвёздная экстинкция, или галактическая экстинкция (от лат. exstinctio — гашение), — поглощение и рассеяние электромагнитного излучения веществом (пылью и газом), находящимся в межзвёздном пространстве между излучающим астрономическим объектом и наблюдателем. Её, как таковую, впервые описал Роберт Джулиус Трюмплер в 1930 году. Однако её проявления были отмечены ещё в 1847 году Фридрихом Георгом Вильгельмом Струве, и её влияние на цвет звёзд (межзвёздное покраснение) наблюдалось многими людьми…
Звёздный ветер — процесс истечения вещества из звёзд в межзвёздное пространство.
Атмосфера Венеры — газовая оболочка, окружающая Венеру. Состоит в основном из углекислого газа и азота; другие соединения присутствуют только в следовых количествах. Содержит облака из серной кислоты, которые делают невозможным наблюдение поверхности в видимом свете, и прозрачна лишь в радио- и микроволновом диапазонах, а также в отдельных участках ближней инфракрасной области. Атмосфера Венеры намного плотнее и горячее атмосферы Земли: её температура на среднем уровне поверхности составляет около…
Сверхновая II типа (англ. Type II supernova) — тип сверхновой звезды с коллапсирующим ядром, в которой в результате быстрого сжатия и последующего мощного взрыва массивной звезды происходит резкий (в 108 — 1010 раз) рост светимости звезды. Чтобы такой взрыв стал возможен, масса звезды должна превышать массу Солнца (Mʘ) по крайней мере в 8 раз, но не более чем в 40-50 раз. Классификация сверхновых основана на различии в их спектрах, и сверхновые типа II можно определить по характерной спектральной…
Сфера Стрёмгрена (англ. Strömgren sphere) — сферическая оболочка ионизованного водорода вокруг молодой звезды спектрального класса O или B. Теоретическое обоснование такой структуры было дано Бенгтом Стрёмгреном в 1937 году. Туманность Розетка является одним из самых известных примеров эмиссионных туманностей такого типа в областях H II.
Озо́новый слой — часть стратосферы на высоте от 20 до 25 км (в тропических широтах 25—30 км, в умеренных 20—25, в полярных 15—20), с наибольшим содержанием озона (вещества, молекула которого состоит из трёх атомов кислорода, O3), образующегося в результате воздействия ультрафиолетового излучения Солнца на молекулярный кислород (O2). При этом с наибольшей интенсивностью, именно благодаря процессам диссоциации кислорода, атомы которого затем образуют озон, происходит поглощение ближней (к видимому…
Антипарниковый эффект — атмосферный эффект, производящий противоположное парниковому эффекту действие, а именно охлаждающий поверхность небесного тела. В отличие от парникового эффекта, в данном случае атмосфера хорошо поглощает солнечное излучение, однако пропускает инфракрасное от поверхности. В совокупности это приводит к охлаждению поверхности.
Ионосфе́ра, в общем значении — это слой атмосферы планеты, сильно ионизированный вследствие облучения космическими лучами. У планеты Земля — это верхняя часть атмосферы, состоящая из мезосферы, мезопаузы и термосферы, главным образом ионизированная облучением Солнца.
Диапазоны излучения и вещество
Хотя в вакууме электромагнитные волны всех частот распространяются одинаково — со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта). По характеру взаимодействия с веществом излучение делят на диапазоны: гамма-излучение, рентген, ультрафиолет, видимый свет, инфракрасное излучение и радиоволны, которые вместе образуют электромагнитный спектр. Сами эти диапазоны в свою очередь разделяют на поддиапазоны, причем в науке нет единой устоявшейся традиции такого деления. Тут многое зависит от применяемых технических средств для генерации и регистрации излучения. Поэтому в каждой сфере науки и техники поддиапазоны определяют по-своему, а нередко даже сдвигают границы основных диапазонов.
Видимое излучение
Из всего спектра человеческий глаз способен улавливать излучение только в очень узком диапазоне видимого света. От одного его края до другого частота излучения (а равно длина волны и энергия квантов) меняется менее чем в два раза. Для сравнения самые длинные радиоволны в 1014 раз длиннее видимого излучения, а самые энергичные гамма-кванты — в 1020 энергичнее. Тем не менее, на протяжении многих тысяч лет большую часть информации об окружающем мире люди черпали из диапазона видимого излучения, границы которого определяются свойствами светочувствительных клеток человеческой сетчатки.
Разные длины волн видимого света воспринимаются человеком как разные цвета — от красного до фиолетового. Традиционное деление видимого диапазона спектра на семь цветов радуги является культурной условностью. Никаких четких физических границ между цветами нет. Англичане, например, обычно делят радугу на шесть цветов. Известны и другие варианты. За восприятие всего разнообразия цветов и оттенков видимого света отвечают всего три различных типа рецепторов, которые чувствительны к красному, зеленому и синему цвету. Это позволяет воспроизводить практически любой цвет, смешивая на экране эти три основных цвета.
Для приема видимого света от далеких космических источников используют вогнутые зеркала, которые собирают излучение с большой площади практически в одну точку. Чем крупнее зеркала, тем мощнее телескоп. Зеркала должны изготавливаться с чрезвычайно высокой точностью — отклонения формы поверхности от идеальной не должны превышать десятой доли длины волны — 40 нанометров, то есть 0,04 микрона. И такая точность должна сохраняться при любых поворотах зеркала. Это определяет высокую стоимость больших телескопов. Диаметр зеркал самых крупных оптических инструментов — телескопов Кека на Гавайях — 10 метров.
Хотя атмосфера прозрачна для видимого света (отмечено голубыми стрелками на плакате), она всё же создает серьезные помехи для наблюдений. Даже если забыть про облака, атмосфера немного искривляет лучи света, что снижает четкость изображения. Кроме того, сам воздух рассеивает падающий свет. Днем это голубое свечение, вызванное рассеянным светом Солнца, не позволяет вести астрономические наблюдения, а ночью — рассеянный свет звезд (и в последние десятилетия искусственная засветка неба наружным освещением городов, автомобилями и т. п.) ограничивает видимость самых бледных объектов. Справиться с этими трудностями позволяет вынос телескопов в космос. Телескоп «Хаббл» по земным меркам имеет очень скромные размеры — диаметр 2,24 метра, однако благодаря заатмосферному размещению он позволил сделать множество первоклассных астрономических открытий.
Ультрафиолетовое излучение
С коротковолновой стороны от видимого света располагается ультрафиолетовый диапазон, который делят на ближний и вакуумный. Как и видимый свет, ближний ультрафиолет проходит через атмосферу. Органами чувств человек его не воспринимает, но на коже ближний ультрафиолет вызывает появление загара. Это защитная реакция кожи на определенные химические нарушения под действием ультрафиолета. Чем короче длина волны, тем большие нарушения может вызывать ультрафиолетовое излучение в биологических молекулах. Если бы весь ультрафиолет проходил через атмосферу, жизнь на поверхности Земли была бы невозможна. Однако выше некоторой частоты атмосфера перестает пропускать ультрафиолетовое излучение, поскольку энергии его квантов становится достаточно для разрушения (диссоциации) молекул воздуха. Одним из первых ультрафиолетовый удар принимает на себя озон, за ним следует кислород. Вместе атмосферные газы предохраняют поверхность Земли от жесткого ультрафиолетового излучения Солнца, которое называют вакуумным, поскольку оно может распространяться только в пустоте (вакууме). Верхний предел вакуумного ультрафиолета — 200 нм. С этой длины волны начинает поглощать ультрафиолет молекулярный кислород (O2).
Телескопы для ближнего ультрафиолетового излучения строятся по тем же принципам, что и для видимого диапазона. В них тоже используются зеркала, покрытые тонким отражающим металлическим слоем, но изготавливать их надо с еще большей точностью. Ближний ультрафиолет можно наблюдать с Земли, вакуумный — только из космоса.
Рентгеновское излучение
Формальной границы между жестким ультрафиолетовым и рентгеновским излучением нет. К ее определению есть два основных подхода: с одной стороны, к рентгену принято относить излучение, способное вызывать возбуждение атомных ядер — подобно тому, как видимое и инфракрасное излучение возбуждает электронные оболочки атомов и молекул. В этом случае даже жесткий вакуумный ультрафиолет в некоторых случаях может быть отнесен к рентгену. В другом подходе рентгеном считают излучение с длиной волны меньше характерного размера атомов (0,1 нм). Тогда получается, что большую часть мягкого рентгеновского диапазона следует считать сверхжестким ультрафиолетом.
Мягкое рентгеновское излучение еще может отражаться от полированного металла, но только при скользящем падении — под углом менее 1 градуса. Более жесткое излучение приходится концентрировать иными способами. Для задания направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором рентгеновские кванты ионизируют атомы, а те, вновь объединяясь с электронами, испускают видимое или ультрафиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в телескопах жесткого рентгеновского диапазона ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение.
От рентгена к гамма
Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов — это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов — например, ядра массивных красных гигантов — практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд.
Гамма-излучение
Деление гамма-излучения на поддиапазоны носит еще более условный характер. К сверхвысоким энергиям относят гамма-кванты, генерация которых выходит за пределы возможностей современных технологий. Все источники такого излучения связаны исключительно с космосом. Но поскольку технологиям свойственно развиваться, это определение нельзя назвать четким.
Атмосфера защищает нас и от гамма-излучения. В мягком и жестком поддиапазонах она полностью его поглощает. Кванты диапазона сверхвысоких энергий, сталкиваясь с ядрами атомов в атмосфере, порождают каскады частиц, энергия которых постепенно снижается и рассеивается. Однако первые эшелоны частиц в них движутся быстрее скорости света в воздухе. В таких условиях заряженные частицы порождают так называемое тормозное (черенковское) излучение, в чем-то подобное звуковой ударной волне от сверхзвукового самолета. Ультрафиолетовые и видимые кванты тормозного излучения достигают поверхности Земли, где улавливаются специальными телескопами. Можно сказать, что сама атмосфера становится частью телескопа, и это позволяет наблюдать с Земли гамма-излучение сверхвысоких энергий. Это отмечено на плакате красными стрелками.
Еще более энергичные кванты — ультравысоких энергий — порождают настолько мощные каскады частиц, что они пробивают атмосферу насквозь и достигают поверхности Земли. Их называют широкими атмосферными ливнями (ШАЛ) и регистрируют сцинтилляционными датчиками. Частицы ШАЛ наряду с естественной радиоактивностью земных пород могут повреждать биологические молекулы, в частности ДНК, и вызывать мутации в живых организмах. Тем самым они вносят свой вклад в эволюцию жизни на Земле. Но если бы их интенсивность была заметно выше, это могло бы стать серьезным препятствием для жизни. К счастью, чем выше энергия гамма-квантов, тем реже они встречаются. Самые энергичные кванты с энергией около 1020 эВ приходят примерно раз в сто лет на квадратный километр земной поверхности. Происхождение столь энергичных гамма-квантов пока не вполне ясно. Значительно большей энергией кванты обладать не могут, так как выше некоторого порога они начинают взаимодействовать с реликтовым микроволновым излучением, приводя к рождению заряженных частиц. Иначе говоря, Вселенная непрозрачна для излучения заметно более энергичного, чем 1021–1024 эВ.
Инфракрасное излучение
Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет. Человек также ощущает инфракрасное излучение кожей — как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля.
С ростом длины волны атмосфера теряет прозрачность для инфракрасного излучения. Это связано с так называемыми колебательно-вращательными полосами поглощения молекул атмосферных газов. Будучи квантовыми объектами, молекулы не могут вращаться или колебаться произвольным образом, как грузы на пружинке. У каждой молекулы есть свой набор энергий (и, соответственно, частот излучения), которые они могут запасать в форме колебательных и вращательных движений. Однако даже у не самых сложных молекул воздуха набор этих частот столь обширен, что фактически атмосфера поглощает всё излучение в некоторых участках инфракрасного спектра — это так называемые инфракрасные полосы поглощения. Они перемежаются небольшими участками, в которых космическое ИК-излучение достигает поверхности Земли — это так называемые окна прозрачности, которых насчитывается около десятка. Их существование представлено на плакате разрозненными голубыми стрелками в инфракрасном диапазоне. Интересно отметить, что поглощение ИК-излучения почти полностью происходит в нижних слоях атмосферы из-за повышения плотности воздуха у поверхности Земли. Это позволяет вести наблюдения почти во всем инфракрасном диапазоне с аэростатов и высотных самолетов, которые поднимаются в стратосферу.
Деление инфракрасного излучения на поддиапазоны также весьма условно. Граница между ближним и средним инфракрасным излучением проводится примерно в районе абсолютной температуры 300 К, которая характерна для предметов на земной поверхности. Поэтому все они, включая приборы, являются мощными источниками инфракрасного излучения. Чтобы в таких условиях выделить излучение космического источника, аппаратуру приходится охлаждать до температур, близких к абсолютному нулю, и выносить за пределы атмосферы, которая сама интенсивно светит в среднем ИК-диапазоне — именно за счет этого излучения Земля рассеивает в космос энергию, постоянно поступающую от Солнца. Основной тип приемника излучения в этом диапазоне — болометр, то есть, попросту говоря, маленькое черное тело, поглощающее излучение, соединенное со сверхточным термометром.
Дальний инфракрасный диапазон — один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать. В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах.
В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы. Поэтому в горах Чили и Мексики на высоте около 5 тысяч метров над уровнем моря сейчас строятся крупные субмиллиметровые телескопы — в Мексике 50-метровый, а в Чили массив из 64 телескопов диаметром 12 метров.
Микроволны и радиоволны
К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды. Энергии радиоволн также достаточно для того, чтобы воздействовать на свободные электроны, например, в проводниках. Колебания электромагнитного поля радиоволны вызывают синхронные колебания электронов в антенне, то есть переменный электрический ток.
При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением. Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см. СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле. В микроволновом диапазоне также работают все системы сотовых телефонов и локальной радиосвязи, например, протоколы Bluetooth и WiFi, используемые беспроводными электронными устройствами.
Чем больше длина радиоволны, тем меньшую энергию она несет и тем труднее ее зарегистрировать. Для приема антенну, в которой под действием радиоволны возникают электрические колебания, подключают к электрическому контуру. При попадании в резонанс с его собственной частотой колебания усиливаются и их можно зарегистрировать. Чтобы поймать радиоволны, идущие из космоса, применяют зеркала-антенны параболической формы, которые собирают радиоизлучение всей своей площадью и концентрируют его на небольшой антенне. Тем самым повышается чувствительность инструмента.
Большая часть микроволнового излучения (начиная с длины волны 3–5 мм) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь. Излучение их передатчиков регистрируется только в пределах прямой видимости антенн. Окно прозрачности атмосферы в радиодиапазоне (голубые стрелки на плакате) заканчивается примерно на длине волны 10–30 метров.
Более длинные радиоволны отражаются от ионосферы Земли. Это не позволяет наблюдать космические радиоисточники на более длинных волнах, но зато обеспечивает возможность глобальной коротковолновой радиосвязи. Радиоволны в диапазоне от 10 до 100 метров могут огибать всю Землю, многократно отражаясь от ионосферы и поверхности Земли. Правда, их распространение зависит от состояния ионосферы, на которую сильно влияет солнечная активность. Поэтому коротковолновая связь не отличается высоким качеством и надежностью.
Средние и длинные волны также отражаются от ионосферы, но сильнее затухают с расстоянием. Для того чтобы сигнал можно было поймать на расстоянии более тысячи километров, требуются очень мощные передатчики. Сверхдлинные радиоволны, с длиной в сотни и тысячи километров, огибают Землю уже не благодаря ионосфере, а за счет волновых эффектов, которые также позволяют им проникать на некоторую глубину под поверхность океана. Это свойство используется для экстренной связи с боевыми подводными лодками в погруженном состоянии. Другие радиоволны не проходят через морскую воду, которая из-за растворенных в ней солей представляет из себя хороший проводник и поглощает или отражает радиоизлучение.
Никакого теоретического предела для длины радиоволн неизвестно. На практике экспериментально удалось создать и зарегистрировать радиоволну с длиной волны 38 тыс. км (частота 8 Гц).
Далее: Что изображено на плакате
Источники радиации
Навигация по статье
Источники радиации и их влияние на живые и не живые объекты. Искусственные источники радиации, естественные источники радиоактивных излучений, природный радиационный фон, космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.
Источники радиоактивных излучений по природе своего происхождения, можно разделить на две основных группы:
- естественные источники радиации
- техногенные источники, созданные человеком или спровоцированные его деятельностью
Естественные источники радиации
Естественные источники радиации — это объекты окружающий среды и среды обитания человека, которые содержат природные радиоактивные изотопы и излучают радиацию.
К естественным источникам радиации относятся:
- космическое излучение и солнечная радиация
- излучение от радиоактивных изотопов, находящихся в Земной коре и в окружающих нас объектах
Космическое излучение
Космическое излучение — это поток элементарных частиц, излучаемых космическими объектами в результате их жизни или при взрывах звезд.
Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.
Космическое излучение состоит:
- на 87% из протонов (протонное излучение)
- на 12% из ядер атомов гелия (альфа излучение)
- Оставшийся 1 % — это различные ядра атомов более тяжелых элементов, которые образовались при взрыве звезд, в ее недрах, за мгновение до взрыва
- Так же в космическом излучении присутствуют в очень небольшом объеме — электроны, позитроны, фотоны и нейтрино
Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.
Свой вклад в космическое излучение вносит ближайшая к нам звезда — Солнце. Энергия излучения от Солнца на несколько порядков ниже, чем энергия космического излучения, приходящего к нам из глубин космоса. Но плотность солнечной радиации выше плотности космического излучения, приходящего к нам из глубин космоса.
Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:
- на 99% из протонов (протонное излучение)
- на 1 % из ядер атомов гелия (альфа излучение)
Все это продукты термоядерного синтеза проходящего в недрах Солнца.
Как мы видим, космическое излучение состоит из наиболее опасных видов радиоактивного излучения — это протонное и альфа излучение.
Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было
Но благодаря магнитному полю Земли, большая часть космического излучения отклоняется магнитным полем и просто огибает Земную атмосферу проходя мимо. Оставшаяся часть космического излучения, проходя сквозь атмосферу Земли, взаимодействуя с атомами газов атмосферы, теряет свою энергию. В результате множественных атомных взаимодействий и превращений до поверхности Земли вместо космического излучения, состоящего из протонного и альфа излучения, доходят потоки менее опасных и обладающими на порядки меньшими энергиями — это потоки электронов, фотонов и мюонов.
Что получаем в итоге?
В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.
В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это
0,4 мЗв/год или
400 мкЗв/год или
0,046 мкЗв/час
Излучение от радиоактивных природных изотопов
На нашей планете можно выделить 23 радиоактивных изотопа, которые обладают большим периодом полураспада и которые наиболее часто встречаются в земной коре. Большая часть радиоактивных изотопов содержится в породе в очень малых количествах и концентрациях, и доля создаваемого ими облучения пренебрежимо мала. Но есть несколько природных радиоактивных элементов, которые оказывают влияние на человека.
Рассмотрим эти элементы и степень их влияния на человека.
Радиоактивные изотопы, облучения от которых нельзя избежать:
- Калий 40К (β и γ излучение).
Усваивается вместе с продуктами питания и питьевой водой. Содержится в нашем организме.
Годовая нормативная доза — 0,17 мЗв/год — пункт 7.6 МУ 2.6.1.1088-02. - Углерод 14С.
Усваивается вместе с продуктами питания. Содержится в нашем организме.
Годовая нормативная доза — 0,012 мЗв/год — приложение №1 таблица 1.5 СанПиН 2.6.1.2800-10
Радиоактивные изотопы, облучения от которых можно избежать организационными мероприятиями:
- Газ радон 222Rn (α излучение) и Торон 220Rn (α излучение) и их продукты радиоактивного распада.
Содержится в газах, поднимающихся из недр земли. Может содержаться в водопроводной воде, если она берется из источников, расположенных глубоко под землей (артезианские источники).
Годовая нормативная допустимая доза 0,2 мЗв/час = 1,752 мЗв/год — пункты 5.3.2 и 5.3.3 НРБ 99/2009 (СанПиН 2.6.1.2523-09)
Все остальные природные радиоизотопы, содержащиеся как в Земной коре, так и в атмосфере, оказывают пренебрежительно малое влияния на человека.
Если человек, добыл, переработал и выделил природные изотопы из руды или других источников, а затем их применил в строительных конструкция, минеральных удобрениях, машинах и механизмах и так далее, то действие этих изотопов уже будет техногенным, а не естественным и на них должны распространяться нормы для техногенных источников.
Общий фон радиации от естественных источников облучения
Если просуммировать действие всех рассмотренных природных источников излучения, и взять за основу допустимые нормативные дозы радиации от каждого из них, то получим допустимое нормативное значение общего радиационного фона от природных источников радиации.
Получили, что в соответствии с нормативными документами, общий радиационный фон от природных источников радиации составляет — 2,346 мЗв/год или 0,268 мкЗв/час.
Мы уже рассмотрели, что есть источники природной радиации, действия которых нельзя исключить в нормальной повседневной жизни, но есть источники, действия которых можно избежать, и к ним относится — радон 222Rn и торон 220Rn. Действие радона рассмотрим ниже отдельно, а пока посчитаем, что у нас получится с нормальным радиационным фоном с исключенным действием радона и торона.
Если действие радона исключаем, как оно и должно быть, то получаем, что нормальный радиационный фон от природных источников радиации не должен превышать
0,594 мЗв/год или
0,07 мкЗв/час
Это значение и есть безопасный естественный радиационный фон, который должен действовать и действовал до начала освоения человеком атома и загрязнения им окружающей среды нашего обитания радиоактивными отходами, которые рассредоточены по всему миру в результате испытания атомных бомб, внедрением атомной энергетики и других техногенных действий человека.
А теперь можете сравнить полученное значение (нормативного, а не выдуманного) нормального радиационного фона в 0,07 мкЗв/час с приемлемым (допустимым) естественным радиационным фоном по нормативной документации в 0,57 мкЗв/час — эта норма подробно описана в разделе «Единицы измерения и дозы» на данном сайте.
Почему такая большая разница, аж в 8 раз, и к тому же в одних и тех же нормативных документах. Да все очень просто! Техногенное действия человека, привели к тому, что радиоактивные элементы стали массово применяться от техники, строительства, минеральных удобрений до атомных взрывов и АЭС с их авариями и сбросами. В результате, мы сами себе создали среду, в которой нас окружают радиоактивные изотопы с периодом полураспада до нескольких тысяч лет, то есть уже хватит не только нам, но и сотням поколений людей после нас.
То есть, уже трудно найти территории на Земле с действительно нормальным естественным радиационным фоном (но пока еще есть такие). Вот поэтому, нормативные документы и допускают проживание человека в обстановке с приемлемым уровнем радиации. Он не безопасный, он именно приемлемый.
И с каждым годом этот приемлемый уровень, в результате техногенного действия человека, будет только увеличиваться. Тенденций к его уменьшению нет, а вот статистика по онкологическому действию даже малых доз радиации, становится с каждым годом подробней и устрашающей, и поэтому менее доступной для широких масс.
На данный момент уже звучат, пока еще не официальные заявления, но от официальных источников, предложения по увеличению допустимого уровня радиации.
Можно к примеру, ознакомиться с «трудом» Акатова А. А., Коряковского Ю. С., сотрудников информационного центра «Росатома», в котором они выдвигают «свои теории» о безопасности доз в 500 мЗв/год, то есть 57 мкЗв/час, что выше максимального предельно допустимого нормативного уровня радиации на данный момент в 100 раз.
Информация с «трудом» «авторов» взята с ресурса: http://www.myatom.ru
А на фоне подобных заявлений, в России каждый год регистрируется до 500 000 новых случаев заболевания человека раком. И на основании статистики ВОЗ, в ближайшие годы ожидается увеличение случаев первичных заболеваний раком на 70%. Без всяких сомнений, среди причин, вызывающих рак, облучение радиацией и заражение радиоактивными изотопами, занимает лидирующее место.
По данным ВОЗ, только в 2014 году на нашей планете умерли более 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших. Это 19 человек, умирающих в мире от рака каждую минуту.
И это только официальная статистика по зарегистрированным случаям, с поставленным диагнозом. Можно только с ужасом гадать, каковы реальные цифры.
Радон
Радон тяжелый газ, редко встречающийся в природе, не имеет запаха, вкуса и цвета.
Радон относится к числу наименее распространенных химических элементов на нашей планете.
Плотность радона в 8 раз выше плотности воздуха. Радон растворим в воде, крови и других биологических жидкостях нашего организма. На холодных поверхностях радон легко конденсируется в бесцветную фосфоресцирующую жидкость. Твердый радон светится бриллиантово-голубым светом. Период полураспада 3,82 дня.
Основным источником радона, являются горные и осадочные породы, содержащие уран 238U. В процессе цепочки распадов радиоактивных изотопов уранового ряда, образуется радиоактивный элемент радий 226Ra, распадаясь который и выделяет газ радон 222Rn. Радон накапливается в тектонических нарушениях, куда он поступает по системам микротрещин из горных пород. Радон не распространен по Земной коре равномерно, а скапливается наподобие всем известного природного газа, только в несравнимо меньших объемах и концентрациях.
Сразу отметим, что радон не содержится повсюду вокруг нас, он скапливается в пустотах пород, или в незначительных количествах в порах этой породы, а далее способен выделяться наружу, при нарушении герметичности этих пустот (геологические разломы, трещины). Так же нужно обратить внимание, что радон образовывается только в грунтах и почвах, содержащих радиоактивные элементы — уран 238U и радий 226Ra. То есть, если в Вашем регионе содержание 226Ra и урана 238U в грунтах, почве и скальных породах в очень малых количествах, либо не содержится вовсе, то угрозы облечения радиацией от радона — нет, а соответственно для таких регионов норма естественного радиационного фона это 0,07 мкЗв/час.
Облучение радоном происходит в замкнутых пространствах, где способен накапливаться газ радон, поднимающийся из трещин и разломов в земной коре. К таким замкнутым пространствам можно отнести: шахты, пещеры, подземные сооружения (бункеры, землянки, погреба и т.п.), жилые и не жилые помещения с нарушенной гидроизоляцией фундамента и плохо работающей вентиляцией.
Как попадает радон в помещение?
Если к примеру жилой дом расположен в районе скопления радона и под фундаментом дома в земной коре имеется трещина, то радон может проникать, сначала в подвальные помещения, а далее через систему вентиляции в выше расположенные помещения (квартиры).
Попадание радона в жилое помещение возможно, если будут нарушены сразу несколько строительных норм при строительстве жилого здания:
- Перед строительством любого жилого объекта должно проводится обследование земельного участка и выдаваться официальное заключение об соответствии нормам радонового излучения. Если выделения радона выше нормы, то должны быть приняты дополнительные строительные решения по защите. Либо вообще строительство жилых помещений запрещается на данном земельном участке. Без данного заключения, нельзя получить заключение государственной экспертизы на строительный объект и получить разрешение на строительство.
- При проектировании и строительстве здания обязательно предусматривается гидроизоляция фундамента, которая предотвращает попадание не только влаги, но и радона в подвальные помещения, а затем внутрь квартиры. Эта норма часто нарушается при строительстве и является одной из основных причин попадания радона в жилые помещения.
- В жилых помещениях должна хорошо работать система естественной приточно-вытяжной вентиляции. Часто, из-за нарушения при строительстве или при проведении ремонтных работ, система вентиляции оказывается не работоспособной. В результате, в квартиру из вытяжного канала вентиляции поступает поток воздуха, который захватывается из подвального помещения дома вместе с радоном.
Если все строительные нормы соблюдены, то даже наличие залежей радона под жилым домом не приведет к дополнительному облучению радиацией, радон просто не будет попадать в жилые помещения. То есть облучение радоном происходит только при нарушении норм проектирования и строительства зданий и сооружений, из-за халатности ответственных лиц или жажды сэкономить на строительстве.
При нормальных условиях человек не должен подвергаться действию радона.
Если человек подвергается действию радона, то в 99% случаев это вызвано нарушением действующих норм и правил.
Не стоит пренебрегать опасностью радона. Он опасен! Если есть основания и сомнения, лучше провести замеры радона у себя в жилом помещении, особенно если это коттедж или частный дом.
Влияние радона на живые организмы.
Радон опасен для живых организмов. Попадая внутрь организма через дыхательные пути, радон растворяется в крови, а продукты его распада быстро разносятся по всему телу и приводят к внутреннему массированному облучению. Сам радон распадается на другие радиоактивные элементы в течении 4 суток. А радиоактивные продукты распада радона впоследствии облучают организм в течении 44 лет. Наиболее опасными продуктами распада радона являются радиоактивные изотопы полония 218Po и 210Po.
Радон занимает первое место среди причин вызывающих рак легких. Так же установлено что радон накапливается в мозговых тканях человека, что так же приводит к развитию рака головного мозга. И это далеко не все примеры губительного действия радона на организм человека.
применение в медицине и в жизни, источники, свойства, кем и когда открыто :: SYL.ru
Вы окружены электромагнитными волнами. Они везде! От света, который вы можете видеть, до ультрафиолета, проходящего через ваше окно от солнца. Даже если бы вы попробовали, вы не смогли бы избежать волн. Но опять же, зачем вам это нужно? Зачем чего-то избегать, если это можно применять? Что такое видимое излучение, кем и когда открыто? Как оно воздействует и где применяется?
Световые волны
Термин «световые волны» может использоваться по-разному разными людьми. Физики склонны небрежно использовать его на одном уровне с электромагнитными. Итак, в чем разница? Электромагнитные волны (или электромагнитное излучение) представляют собой волны, создаваемые колебательными магнитными и электрическими полями, и включают радиоволны, микроволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-лучи. Как и все волны, они несут энергию, и эта энергия может быть очень высокой интенсивности (например, электромагнитные волны, которые мы получаем от солнца).
При взгляде на спектр видимого света синим концом электромагнитного спектра является высокая частота, высокая энергия и короткая длина волны. Красный конец электромагнитного спектра представляет собой низкочастотную, малую энергию и большую длину волны. Свет — это лишь часть электромагнитного спектра, часть, которую могут видеть наши глаза. Каковы сферы применения видимого излучения, кроме той, которая позволяет человеку видеть все вокруг?
Различные типы световых волн
Радиоволны находятся на красном конце электромагнитного спектра. Красный конец также является наименьшей энергией, самой низкой частотой и самой большой длиной волны. Радиоволны в основном используются в коммуникациях, для передачи сигналов от одного места к другому. Радиостанции используют радиоволны, как и сотовые телефоны, телевизоры и беспроводные сети. Из-за большой длины волны радиоволн они могут отскочить от ионосферы Земли, позволяя радиостанциям передавать свои радиопередачи на большие расстояния, не находясь в прямой видимости всех своих слушателей.
Микроволны являются ближайшими к красному концу спектра. Вероятно, вы можете догадаться, что микроволны используются в наших кухонных микроволновках для приготовления пищи. Они имеют достаточно высокую энергию, чтобы увеличить движение молекул в вашей пище, не ионизируя атомы. Это важно, потому что это означает, что пища будет только нагреваться, – ее химический состав останется прежним.
Инфракрасный имеет длину волны немного больше, чем наши глаза могут обнаружить. Тело человека имеет температуру, которая производит излучение в этой части спектра, и поэтому инфракрасные детекторы могут использоваться как камеры ночного видения. ИК-порт также используется пультом дистанционного управления для отправки сигналов на телевизоры и другое аудио- или видеооборудование.
Видимый свет – это часть электромагнитного спектра, который наши глаза могут обнаружить, и та часть, с которой мы больше всего знакомы в нашей повседневной жизни. Он считается находящимся в «середине» электромагнитного спектра, хотя это довольно произвольно.
Ультрафиолет (часто сокращается до УФ) направляется в синюю сторону электромагнитного спектра, который является высокоэнергетической и более короткой волновой стороной. Ультрафиолетовое излучение слишком короткое в длине волны, чтобы наши глаза могли его обнаружить. УФ-волны являются достаточно высокой энергией, поэтому они способны ионизировать атомы, разрушая молекулярные связи и даже молекулы ДНК. По этой причине УФ вызывает солнечный ожог и даже рак кожи. Большинство вредных ультрафиолетовых волн Солнца поглощается атмосферой (особенно азотом) и озоновым слоем, но достаточно большая его часть попадает на землю. Поэтому стоит быть осторожными и использовать солнцезащитный крем и солнечные очки.
Рентгеновское излучение имеет очень высокую энергию и подобно УФ может ионизировать атомы в теле и наносить урон. Однако на правильных длинах волн и в правильных количествах их можно использовать безопасно, не повреждая ткани тела, чтобы создать, например, снимки грудной клетки. Также рентгеновские телескопы полезны при исследовании астрофизики.
Что такое видимый свет и как его можно использовать?
Каково применение видимого излучения? Чтобы ответить на этот вопрос, нужно сначала дать определение этому термину. Видимый свет – это электромагнитное излучение, вызванное фотонами, поражающими поверхность и поглощаемыми электронами материала, при этом излучается цвет, который имеет наименьшую скорость поглощения. Например, огнетушители красные, потому что частицы краски поглощают зеленую частоту лучше, чем красную.
340-750 нм – длина волны видимого спектра. Благодаря этим знаниям можно создавать диоды, которые излучают свет на определенных частотах. Одним из применений видимого света является светофор. Видимый свет – любая электромагнитная волна (или фотон как квантовый эквивалент), которая лежит в области синего и красного цветов спектра. Он имеет множество применений. Видимый свет используется как источник света, который можно увидеть человеческим глазом. Это лазеры, свободная космическая связь, оружие, сигнализация, освещение.
Он также используется в качестве сигнатурной эмиссии некоторых атомных и химических реакций, позволяя идентифицировать присутствие различных материалов, поэтому используется в судебной экспертизе и медицине. Видимый свет – это электромагнитное излучение в диапазоне частот от 430 до 770 ТГц, соответствующее длинам волн от 390 до 700 нм. Это диапазон электромагнитного излучения, который может быть получен глазами животных и человека. Эволюция, вероятно, оборудовала животных органом для получения этого диапазона излучения. Видимый свет представляет собой максимальную интенсивность солнечного излучения, и он довольно коротковолновой. Также он не повреждает живые клетки, в отличие от, например, УФ, рентгеновских или гамма-лучей.
Видимый свет – это электромагнитная волна
Обычно наблюдаемый свет представляет собой комбинацию различных цветных световых волн. Эти разные цвета света обусловлены разными частотами света. Видимый свет имеет много применений в оптике, материаловедении, конденсированном веществе, лазерных науках, разных отраслях промышленности, которые используют этот свет для экспериментов и каждый день. Примерами являются экраны проекторов, лазерный луч, используемый в шоу, или указатель, камера и так далее.
Свет – это часть электромагнитного спектра, к которому чувствительны наши глаза. Главное применение видимого света – это способность видеть вещи своими глазами. Излучение спектра передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Этот спектр классически разделен на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Наши глаза могут обнаружить только крошечную часть электромагнитного спектра, называемую видимым светом.
Так работают лампочки: электрический ток нагревает ламповую нить примерно до 3000 градусов, и она светится горячим светом. Поверхность Солнца составляет около 5600 градусов и выделяет много света. Белый свет фактически состоит из целого ряда цветов, смешанных друг с другом. Это можно увидеть, если пропустить белый свет через стеклянную призму. Компакт-диски считываются лазерным излучением. Лазеры используются в компакт-дисках и DVD-плеерах, где свет отражается от крошечных ямок на диске, при этом происходит преобразование в звук или данные. Лазеры также используются в лазерных принтерах и в системах прицеливания самолетов.
Опасности видимого света
Видимые световые волны – единственные электромагнитные волны, которые может увидеть человеческий глаз. Люди видят их как цвета радуги, каждый из которых имеет свою длину волны. Красный имеет самую длинную, а фиолетовый – самую короткую. Когда все волны видны вместе, они создают белый свет. Конусы в глазах являются приемниками для этих крошечных волн видимого света. Солнце является естественным источником видимых световых волн, и глаза видят отражение этого солнечного света от окружающих объектов. Цвет объекта, который видит человек, это цвет отраженного света. Все остальные цвета поглощаются.
Слишком большое излучение может повредить сетчатку глаза. Это может произойти, если вы посмотрите на что-то очень яркое, например на Солнце. Хотя повреждение можно вылечить, но если воздействие видимого излучения является сильным и постоянным, это может иметь необратимые последствия.
Видимое излучение: источники, свойства, применение
Лампочки – еще один источник видимых световых волн. А еще лазеры. Кто их открыл? Альберт Эйнштейн (1917) предложил механизм стимулированного излучения – принцип действия лазера. Открытие спонтанного излучения Эйнштейна (процесс, происходящий в атомах) побудило его развить идею стимуляции светодиодов. В 1950-х годах исследователи предложили конструкции для устройства, которое стимулировало бы излучение для усиления света. Первый лазер был построен Теодором М. Майманом В 1960 году.
Как производится лазер?
Искусственный процесс включает в себя следующее:
- Источник энергии.
- Активная среда.
- Оптическая полость.
Активная среда поглощает энергию из источника, сохраняет ее и высвобождает ее как свет. Что-то из этого света запускает другие атомы, чтобы высвободить их энергию, поэтому к запущенному добавляется еще больше света. Зеркала в конце оптической полости отражают свет обратно в активную среду, и процесс начинается снова, заставляя свет усиливаться и вызывая его часть в виде узкого луча – лазера. Для увеличения светового излучения в возбужденном состоянии должно быть больше атомов, чем было изначально. Это называется инверсией данных. Это состояние не происходит при нормальных условиях. Поэтому этому процессу должны помочь искусственные технологии, а не природа.
Лекарственное средство
Применение видимого излучения в медицине – это обычное дело. Лазеры используются в микрохирургических процедурах, таких как выполнение небольших точных разрезов, операций на печени и капиллярной хирургии, что приводит к небольшой потере крови. Лазеры также используются в офтальмологии (удаление катаракты и коррекция зрения), дерматологии (удаление татуировок и шрамов), стоматологии (очищение полости), онкологии (лечение рака кожи).
Какой можно привести пример применения видимого излучения в медицине? Светотерапия также используется для облегчения сезонного аффективного расстройства, регулирует ваши внутренние биологические часы (суточные ритмы) и влияет на настроение. Терапевтическое применение света и цвета также исследуется во многих больницах и исследовательских центрах по всему миру. Результаты пока показывают, что полный спектр, ультрафиолетовый, цветной и лазерный свет могут иметь терапевтическое значение для ряда условий – от хронической боли и депрессии до иммунных расстройств.
Видимое излучение: кем и когда открыто?
Первым объяснил возникновение спектра (этот термин был употреблен впервые в 1671 году) видимого излучения Исаак Ньютон в своем труде «Оптика» и Иоганн Гете в своей работе «Теория цветов». Что такое видимое излучение? Кем и когда открыто? Также похожими исследованиями занимался Роджер Бэкон, который наблюдал за спектром в стакане воды задолго до Ньютона и Гете.
Применение в жизни видимого излучения дает возможность видеть что-либо вообще. Свет движется, как волна, отскакивая от объектов, чтобы люди могли их видеть. Без этого все были бы в полной темноте. Но в физике свет может относиться к любой электромагнитной волне: радиоволнам, микроволнам, инфракрасному, видимому, ультрафиолетовому, рентгеновскому излучению или гамма-лучам.
Спектр электромагнитного излучения ≪ ∀ x, y, z
Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн.
После появления уравнений Максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления — поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного поля. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой в отличие от всех прочих скоростей, которые принято обозначать буквой .
Электромагнитные волны образуют сплошной спектр длин волн и энергий (частот), подразделяемый на условные диапазоны — от радиоволн до гамма-лучей. |
Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра — от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр — единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10–9 м.) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.
Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны — сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857–1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.
Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года — всего через пять с небольшим лет после открытия радиоволн — итальянский инженер-физик Гульельмо Маркони (Guglielmo Marconi, 1874–1937) сконструировал первый работающий беспроволочный телеграф — прообраз современного радио, — за что в 1909 году был удостоен Нобелевской премии.
После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. Постоянная Планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):
Радиоволны
Как уже отмечалось, радиоволны могут значительно различаться по длине — от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике — дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.
Микроволны
Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.
Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.
Инфракрасные лучи
Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей — как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.
Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.
Видимый свет
Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800–400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.
Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.
Ультрафиолетовые лучи
К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400–10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных — тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.
Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. Озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.
Рентгеновские лучи
Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)
Гамма-лучи
Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре — это γ-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.
В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.
Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил — профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.
Спектральные характеристики света
Уторова Лилия
Старший инженер-светотехник
Работает в светотехнической отрасли с 2015 года. Выпускница Санкт-Петербургского научно-исследовательского университета информационных технологий, механики и оптики.
Любимая цитата: «Нет никаких причин чувствовать себя одиноким, когда в мире есть любовь и свет.»
1. Введение
Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.
С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света
Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.
Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.
Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).
Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:
Таблица 1. Длины волн различных цветов
Длина волны | Цвет |
от 380 нм до 450 нм | фиолетовый |
от 450 нм до 480 нм | синий |
от 480 до 510 | голубой |
от 510 до 550 | зеленый |
от 550 до 575 | жёлто-зеленый |
от 575 до 590 | жёлтый |
от 590 до 610 | оранжевый |
более 610 | красный |
Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.
Полный видимый спектр на шкале излучений различных длин волн выглядит так:
Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).
Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.
Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:
На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.
Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.
Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.
Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.
На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.
Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.
В случае цветовой температуры света можно провести аналогию с цветом звёзд.
Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.
2. Влияние цветовой температуры источников света на человека
В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.
С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.
Циркадные ритмы – это внутренние фундаментальные биологические циклы организма с периодом 24 часа, такие как сон, температура тела, пищеварение. Циркадные ритмы влияют на выработку гормона «сна» — мелатонина, производят и выравнивают определенные физиологические реакции в зависимости от уровня освещенности и цветовой температуры.
Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.
Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.
Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.
3. Практическое применение различной цветовой температуры в искусственном освещении
В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.
Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:
- Первый способ – это эффективное распределение освещения с различной цветовой температурой по времени и зонам:
Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.
Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.
Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.
- Второй способ – это обеспечение повторения суточного солнечного цикла с помощью источников света.
В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:
Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.
Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.
Таблица 2. Зависимость организма от цветовой температуры источников света
Цветовая температура | Что происходит | Эффект |
2700 – 3000 К, тёплая | Выработка гормона мелатонина, снижение выработки гормона кортизола | Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну |
4000 – 5000 К, нейтральная | Выработка гормона кортизола, снижение выработки гормона мелатонина | Основное рабочее время – увеличение концентрации |
5000 – 6500 К, холодная | Выработка гормона кортизола | Пик активности мозга, концентрации, внимания и продуктивности |
Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.
4. Торговое освещение
Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.
В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.
В чём состоит взаимосвязь презентации товара и спектральных характеристик света?
Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.
Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.
К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.
Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.
Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.
Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.
В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:
Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра
Товарный ассортимент | Цветовая температура, К; Смещение спектра в цвет |
Бытовые товары | 3000 – 4000 К |
Одежда и обувь | 3000 – 4000 К |
Автомобили | 3000 – 4000 К |
Охлажденное мясо | 3700 К, красный |
Охлажденная рыба | 5000 – 6500 К, синий |
Фрукты и овощи | 2700 – 3000 К, жёлтый |
Хлебобулочные изделия | 2700 К, жёлтый |
Молоко | 3000 – 4000 К |
Колбаса и копчености | 3700 К, красный |
Важно помнить, что обеспечение комфортной среды для покупок – это сложная и точная настройка различных параметров источников света, на которой не следует экономить при проектировании, ведь человек охотней совершит покупки в магазине, который для себя воспринимает как комфортный и с качественным товаром.
5. Заключение
В статье рассмотрены важнейшие спектральные характеристики источников света, умело используя которые, можно создать комфортную среду для нашей жизни и работы.
Оптимизация искусственного освещения в рабочем пространстве способствует поддержанию циркадного ритма человека, что напрямую влияет на самочувствие, настроение и продуктивность.
Грамотное проектирование искусственного освещения в магазинах с учетом требований различных товаров помогает создавать в магазине комфортную среду и представлять товары в самом выгодном свете для покупателей, что положительно сказывается на уровне продаж.
Источники:
- «Справочная книга по светотехнике», под ред. Ю.Б. Айзенберга, 3-е издание, 2006
- «Элементарная светотехника», Л.П. Варфоломеев, 2013
- Журнал «Современная светотехника», №4, 2018
- Буклет по решениям «Биологически и эмоционально эффективное освещение (Human Centric Lighting), Световые технологии, 2019
- Интернет-ресурс: v-kosmose.com
- Рисунки 4 и 6 — нарисованы и принадлежат bigpro.ru; остальные — взяты с интернет-ресурса: pinterest.ru.
Что такое радиация?
Радиация — это энергия, которая исходит от источника, перемещается в космосе и может проникать через различные материалы. Свет, радио и микроволны — это типы излучения, которые называются неионизирующими. Вид излучения, обсуждаемый в этом документе, называется ионизирующим излучением , потому что он может производить заряженные частицы (ионы) в веществе.
Ионизирующее излучение создается нестабильными атомами. Нестабильные атомы отличаются от стабильных атомов, потому что нестабильные атомы имеют избыток энергии или массы или и того, и другого.Излучение также может производиться высоковольтными устройствами (например, рентгеновскими аппаратами).
Атомы с нестабильными ядрами считаются радиоактивными . Чтобы достичь стабильности, эти атомы испускают избыточную энергию или массу. Эти выбросы называются излучением . Виды излучения — электромагнитное (например, свет) и дисперсное (т. Е. Масса, выделяемая вместе с энергией движения). Гамма-излучение и рентгеновские лучи являются примерами электромагнитного излучения.Гамма-излучение исходит из ядра, а рентгеновское излучение исходит из электронной части атома. Бета- и альфа-излучение являются примерами излучения твердых частиц.
Интересно, что везде (повсеместно) в нашей окружающей среде существует « фон » естественной радиации. Повсеместное фоновое излучение исходит из космоса (то есть космических лучей) и из естественных радиоактивных материалов, содержащихся в Земле и в живых существах.
Облучение от различных источников
Источник | Экспозиция (U.S. Среднее) |
---|---|
Внешнее фоновое излучение | 0,54 мЗв y -1 |
Естественный K-40 и другие радиоактивные вещества в организме | 0,29 мЗв y -1 |
Авиаперелет туда и обратно (Нью-Йорк — Лос-Анджелес) | 0,05 мЗв |
Эффективная доза при рентгенографии грудной клетки | 0,10 мЗв на пленку |
Радон в доме | 2.28 мЗв y -1 |
Искусственные (медицинские рентгеновские снимки и т. Д.) | 3,14 мЗв y -1 |
Информация, размещенная на этой веб-странице, предназначена только в качестве общей справочной информации. Конкретные факты и обстоятельства могут повлиять на применимость описанных здесь концепций, материалов и информации. Предоставленная информация не заменяет профессиональный совет, и на нее нельзя полагаться в отсутствие такой профессиональной консультации.Насколько нам известно, ответы верны на момент публикации. Имейте в виду, что со временем требования могут измениться, могут появиться новые данные, а ссылки в Интернете могут измениться, что повлияет на правильность ответов. Ответы — это профессиональное мнение эксперта, отвечающего на каждый вопрос; они не обязательно отражают позицию Общества физиков здоровья.
Что такое радиация?
- Английский
- Пункт по этике
- youtube
Насчет нас
Обзор
Политика ОАЭ в области ядерной энергии
Видение, миссия и ценности
Обращение генерального директора
Стратегическая дорожная карта
Устойчивость
Награды и достижения
О компании Nawah Energy
Лидерство и управление
совет директоров
Управление
Совместное предприятие
Моральный кодекс
Составление отчетов
Деловое совершенство
Управление рисками
Гарантия качества
Международные стандарты и сертификаты
Соглашения
Регулирование
Регулирование и обзор
Ядерное регулирование
Нормативные лицензии
Международные стандарты
Международный Консультативный Совет
Национальный совет по безопасности
Безопасность согласно ENEC
Культура безопасности
Безопасность при эксплуатации
Здоровье, безопасность, окружающая среда и устойчивое развитие
Обращение с отработавшим топливом и отходами
Готовность к чрезвычайным ситуациям
Завод Бараках
Виртуальный тур
Промышленная безопасность
Программа строительства
Заводские операции
Воздействие радиации на здоровье | Радиационная защита
Ионизирующее излучение Ионизирующее излучение Излучение с такой большой энергией, что оно может выбивать электроны из атомов.Ионизирующее излучение может воздействовать на атомы в живых существах, поэтому оно представляет опасность для здоровья, повреждая ткани и ДНК в генах. обладает достаточной энергией, чтобы воздействовать на атомы в живых клетках и тем самым повредить их генетический материал (ДНК). К счастью, клетки нашего тела чрезвычайно эффективно восстанавливают эти повреждения. Однако, если повреждение не устранить должным образом, клетка может умереть или в конечном итоге стать злокачественной. Дополнительная информация на испанском языке (Información relacionada en español).
Воздействие очень высоких уровней радиации, например, близость к атомному взрыву, может вызвать серьезные последствия для здоровья, такие как ожоги кожи и острый лучевой синдром («лучевая болезнь»).Это также может привести к долгосрочным последствиям для здоровья, таким как рак и сердечно-сосудистые заболевания. Воздействие низких уровней радиации, встречающихся в окружающей среде, не вызывает немедленных последствий для здоровья, но вносит незначительный вклад в общий риск рака.
Посетите Центры США по контролю и профилактике заболеваний (CDC) для получения дополнительной информации о возможных последствиях для здоровья облучения и заражения.
На этой странице:
Острый лучевой синдром от сильного облучения
Очень высокий уровень радиационного облучения в течение короткого периода времени может вызвать такие симптомы, как тошнота и рвота, в течение нескольких часов, а иногда может привести к смерти в течение следующих дней или недель.Это известно как острый лучевой синдром, широко известный как «лучевая болезнь».
Для возникновения острого лучевого синдрома требуется очень высокое радиационное воздействие — более 0,75 серый серый Серый — международная единица измерения поглощенной дозы (количества радиации, поглощенной объектом или человеком). Единица измерения поглощенной дозы в США — рад. Один серый равен 100 рад. (75 рад) рад Единица измерения в США, используемая для измерения поглощенной дозы излучения (количества излучения, поглощенного объектом или человеком).Международный эквивалент — Грей (Гр). Сто рад равняется 1 грей. за короткий промежуток времени (от минут до часов). Такой уровень радиации был бы подобен получению радиации от 18 000 рентгеновских лучей грудной клетки, распределенных по всему вашему телу за этот короткий период. Острый радиационный синдром встречается редко и возникает в результате экстремальных событий, таких как ядерный взрыв, случайное обращение с высокорадиоактивным источником или его разрыв.
См. Информационный бюллетень CDC: острый лучевой синдром (ОЛБ).
Узнайте, как защитить себя от радиации.
Узнайте об источниках и дозах излучения.
Начало страницы
Радиационное воздействие и риск рака
Воздействие низкого уровня радиации не вызывает немедленных последствий для здоровья, но может вызвать небольшое увеличение риска. риск Вероятность травмы, болезни или смерти в результате воздействия опасности. Радиационный риск может относиться ко всем избыточным раковым заболеваниям, вызванным радиационным воздействием (риск заболеваемости), или только избыточным смертельным раком (риск смертности). Риск может быть выражен в процентах, дробях или десятичных числах.Например, превышение риска заболеваемости раком на 1% равняется риску 1 из ста (1/100) или риску 0,01. рака на протяжении всей жизни. Существуют исследования, в которых отслеживаются группы людей, подвергшихся воздействию радиации, включая выживших после атомной бомбардировки и работников радиационной промышленности. Эти исследования показывают, что радиационное облучение увеличивает шанс заболеть раком, и риск увеличивается с увеличением дозы: чем выше доза, тем выше риск. И наоборот, риск рака от радиационного облучения снижается с уменьшением дозы: чем ниже доза, тем ниже риск.
Дозы облучения обычно выражаются в миллизивертах зивертах Международная единица измерения эффективной дозы. Единица измерения США — rem. (международные единицы) или бэр бэр Единица измерения эффективной дозы в США. Международная единица — зиверты (Зв). (Единицы США) зиверт Международная единица измерения эффективной дозы. Единица измерения США — бэр. Доза может быть определена на основе однократного облучения или накопленных доз облучения с течением времени.Около 99 процентов людей не заболеют раком в результате одноразового равномерного воздействия на все тело в 100 миллизивертов (10 бэр) или ниже. 1 При такой дозе будет чрезвычайно сложно выявить избыток рака, вызванного радиацией, когда около 40 процентов мужчин и женщин в США будут диагностированы с раком в какой-то момент в течение их жизни.
Низкие риски для человека могут со временем привести к неприемлемому количеству дополнительных раковых заболеваний в большой популяции.Например, в популяции в один миллион человек увеличение риска рака в течение жизни для отдельных людей в среднем на один процент может привести к 10 000 дополнительных раковых заболеваний. EPA устанавливает нормативные пределы и рекомендует руководящие принципы реагирования на чрезвычайные ситуации ниже 100 миллизивертов (10 бэр) для защиты населения США, включая уязвимые группы, такие как дети, от повышенного риска рака из-за накопленной дозы радиации в течение жизни.
Рассчитайте дозу облучения.
Узнайте об источниках и дозах излучения.
Узнайте больше о риске рака в США в Национальном институте рака.
Узнайте больше о том, как EPA оценивает риск рака, в EPA «Модели и прогнозы радиогенного рака для населения США », также известном как Синяя книга.
Ограничение риска рака из-за излучения в окружающей среде
EPA основывает свои нормативные пределы и ненормативные рекомендации для воздействия ионизирующего излучения низкого уровня на население на линейной беспороговой модели (LNT).Модель LNT предполагает, что риск рака из-за воздействия низкой дозы пропорционален дозе, без порога. Другими словами, сокращение дозы вдвое снижает риск вдвое.
Использование модели LNT для целей радиационной защиты неоднократно рекомендовалось авторитетными научными консультативными органами, включая Национальную академию наук и Национальный совет по радиационной защите и измерениям. В поддержку LNT имеются данные лабораторных исследований и исследований рака у людей, подвергшихся воздействию радиации. 2,3,4,5
Начало страницы
Пути воздействия
Понимание типа полученного излучения, способа облучения человека (внешнее или внутреннее) и продолжительности облучения — все это важно для оценки воздействия на здоровье.
Риск от воздействия определенного радионуклида радионуклид Радиоактивные формы элементов называются радионуклидами. Радий-226, цезий-137 и стронций-90 являются примерами радионуклидов.зависит от:
- Энергия испускаемого излучения.
- Тип излучения (альфа, бета, гамма, рентгеновские лучи).
- Его активность (как часто он излучает радиацию).
- Независимо от того, является ли воздействие внешним или внутренним:
- Внешнее облучение — это когда радиоактивный источник находится вне вашего тела. Рентгеновские лучи и гамма-лучи могут проходить через ваше тело, выделяя при этом энергию.
- Внутреннее облучение — это когда радиоактивный материал попадает внутрь тела в результате еды, питья, дыхания или инъекции (в результате определенных медицинских процедур).Радионуклиды могут представлять серьезную угрозу для здоровья при вдыхании или проглатывании значительных количеств.
- Скорость, с которой организм метаболизирует и выводит радионуклиды после проглатывания или вдыхания.
- Где концентрируется радионуклид в организме и как долго он там остается.
Узнайте больше об альфа-частицах, бета-частицах, гамма-лучах и рентгеновских лучах.
Начало страницы
Чувствительные группы населения
Дети и плод особенно чувствительны к радиационному облучению.Клетки у детей и плода быстро делятся, что дает больше возможностей для радиации, чтобы нарушить процесс и вызвать повреждение клеток. EPA учитывает различия в чувствительности в зависимости от возраста и пола при пересмотре стандартов радиационной защиты.
1 Национальный исследовательский совет, 2006 г. . Риски для здоровья от воздействия низких уровней ионизирующего излучения: BEIR VII Phase 2 . Вашингтон, округ Колумбия: The National Academies Press (стр. 7).
2 Бреннер, Дэвид Дж.и др., 2003 «Риск рака, связанный с низкими дозами ионизирующего излучения: оценка того, что мы действительно знаем». Труды Национальной академии наук 100, вып. 24, (стр. 13761-13766).
3 Национальный совет по радиационной защите и измерениям, 2018. Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты, Комментарий NCRP 27. Бетесда, Мэриленд: Национальный совет по радиационной защите и измерениям.
4 Шор, Р.Е. et al., 2018. «Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты». Журнал радиологической защиты, № 38, (стр. 1217-1233)
5 Агентство по охране окружающей среды США, 2011 г. «Модели и прогнозы риска радиогенного рака EPA для населения США». Отчет EPA 402-R-11-001.
Начало страницы
ACHRE Введение Атомный век До атомной эры: «теневые картинки», радиоизотопы и зарождение Эксперименты по облучению человека Манхэттенский проект: новый и секретный мир человеческих экспериментов Комиссия по атомной энергии и послевоенные биомедицинские радиационные исследования Преобразование в правительстве — спонсируемые исследования Последствия Хиросимы и Нагасаки: появление радиации времен холодной войны Исследовательская бюрократия Новые этические вопросы для медицинских исследователей Заключение Основы радиационной науки Что такое ионизирующее излучение? Что такое радиоактивность? Что такое атомный номер и атомный вес? Радиоизотопы: что это такое и как они производятся? Как радиация влияет на людей? Как мы измеряем биологическое действие внешнего излучения? Как мы измеряем биологическое воздействие внутренних излучателей? Как ученые определяют долгосрочные риски радиации? | Как радиация влияет на людей?Излучение может исходить от внешнего источника, такого как рентгеновский аппарат, или внутренний источник, такой как введенный радиоизотоп.Влияние облучение живых тканей осложняется типом излучения и разнообразие тканей. К тому же воздействие радиации не всегда бывает легким. отделить от других факторов, что порой затрудняет задачу для ученых изолировать их. Обзор может помочь объяснить не только эффекты радиации, но также и мотивация к их изучению, что привело к большей части исследование рассмотрено Консультативным комитетом. Как ионизирующее излучение влияет на химические связи?Функции живой ткани выполняют молекулы, то есть сочетания различных типов атомов, объединенных химическими связями . Некоторые из этих молекул могут быть довольно большими. Правильное функционирование этих молекул зависит от их состава , а также от их структуры (форма). Изменение химических связей может изменить состав или структуру.Ионизирующий радиация достаточно сильна, чтобы сделать это. Например, типичная ионизация высвобождает в шесть-семь раз больше энергии, необходимой для разрыва химической связи между двумя атомами углерода. [91] Этот способность разрушать химические связи означает, что ионизирующее излучение фокусирует его воздействие в очень маленькой, но важной области, немного похоже на фокусировку мастера карате энергия сломать кирпич. То же количество сырой энергии, распределено больше в целом в неионизирующей форме будет иметь гораздо меньший эффект.Например, количество энергии в смертельной дозе ионизирующего излучения примерно равно количество тепловой энергии в одном глотке горячего кофе. [92] Принципиальная разница в том, что энергия кофе широко распределяется в виде неионизирующего тепла, в то время как энергия излучения сконцентрирована в форме, способной ионизировать. Что такое ДНК?Из всех молекул в организме наиболее важной является ДНК (дезоксирибоза нуклеиновая кислота), фундаментальный план для всех структур организма.В Схема ДНК кодируется в каждой клетке как длинная последовательность малых молекулы, соединенные в цепочку, очень похожую на буквы в телеграмме. Молекулы ДНК представляют собой чрезвычайно длинные цепочки атомов, намотанные вокруг белков и упакованы в структуры под названием хромосом в ядре клетки. когда В разложенном виде ДНК в одной человеческой клетке будет более 2 метров в длину. Это обычно существует как двадцать три пары хромосом, упакованных внутри клетки ядро, которое имеет диаметр всего 10 микрометров (0.00001 метр). [93] Только небольшая часть этой ДНК нуждается в быть прочитанным в любой момент, чтобы построить определенную молекулу. Каждая ячейка постоянно считывает различные части своей собственной ДНК, поскольку она конструирует свежие молекулы для выполнять самые разные задачи. Стоит помнить, что структура ДНК не была решена до 1953 г., через девять лет после начала периода исследования. Консультативным комитетом. Теперь у нас есть более четкая картина того, что происходит внутри клетки, чем это сделали ученые 1944 года. Как ионизирующее излучение может влиять на ДНК?Ионизирующее излучение по определению «ионизирует», то есть толкает электрон с орбиты вокруг атомного ядра, вызывая образование электрического заряды на атомах или молекулах. Если этот электрон исходит от самой ДНК или от соседней молекулы и непосредственно поражает и разрушает молекулу ДНК, эффект называется прямого действия . Эта первоначальная ионизация происходит очень быстро, примерно за 0.000000000000001 секунды. Однако сегодня это по оценкам, около двух третей ущерба, причиненного рентгеновскими лучами, вызваны непрямого действия . Это происходит, когда освобожденный электрон не непосредственно поражает ДНК, но вместо этого поражает обычную молекулу воды. Этот ионизирует молекулу воды, в конечном итоге образуя то, что известно как свободных корень . Свободный радикал очень сильно реагирует с другими молекулами, поскольку стремится восстановить стабильную конфигурацию электронов.Свободный радикал может дрейфовать примерно в 10 000 000 000 раз дольше, чем время, необходимое для начального ионизация (это еще очень короткое время, около 0,00001 секунды), увеличивает шанс разрушения важной молекулы ДНК. Это также увеличивает вероятность того, что могут быть введены другие вещества, которые нейтрализует свободные радикалы до того, как они нанесут ущерб. [94] Совершенно иначе действуют нейтроны. Быстрый нейтрон минует орбиту электроны и иногда врезаются прямо в ядро атома, выбивая крупные частицы, такие как альфа-частицы, протоны или более крупные фрагменты ядро.Чаще всего встречаются столкновения с ядрами углерода или кислорода. В Созданные частицы затем сами приступят к ионизации ближайших электронов. А медленный нейтрон не будет иметь энергии, чтобы выбивать крупные частицы, когда он поражает ядро. Вместо этого нейтрон и ядро будут отскакивать от каждого другие, например, бильярдные шары. При этом нейтрон замедлится, и ядро наберет скорость. Наиболее частое столкновение — с ядром водорода, протон, который может возбуждать или ионизировать электроны в соседних атомах.[95] Какое непосредственное воздействие ионизирующее излучение может оказать на живые клетки?Все эти столкновения и ионизации происходят очень быстро, менее чем за Второй. Биологические эффекты проявляются гораздо дольше. Если повреждения достаточно, чтобы убить клетку, эффект может стать заметным. в часах или днях. Клеточная «смерть» бывает двух типов. Во-первых, клетка не может дольше выполнять свою функцию за счет внутренней ионизации; это требует дозы в ячейке около 100 грей (10 000 рад).(Для определения серого и радужного, см. раздел ниже под названием «Как мы измеряем биологическое воздействие Радиация? «) Во-вторых,» репродуктивная смерть «(митотическое торможение) может произойти, когда клетка больше не может воспроизводить, но по-прежнему выполняет другие свои функции. Этот требуется доза 2 грей (200 рад), что вызовет репродуктивную смерть у половина облученных клеток (поэтому такое количество называется «средним летальным дозы «) [96] Сегодня нам все еще не хватает информация для выбора среди различных моделей, предложенных для объяснения гибели клеток с точки зрения того, что происходит на уровне атомов и молекул внутри ячейка.[97] Если достаточно важных клеток внутри тела полностью перестают функционировать, эффект фатален. Смерть также может результат, если воспроизводство клеток прекращается в тех частях тела, где клетки постоянно заменяются с высокой скоростью (например, образующие клетки крови ткани и слизистая оболочка кишечного тракта). Очень высокая доза 100 грей (10000 рад) на все тело вызывает смерть в период от двадцати четырех до сорока восьми часы; доза для всего тела 2.От 5 до 5 серых (от 250 до 500 рад) могут привести к смерти в течение нескольких недель. [98] На более низком или более локализованных доз, эффект будет не смертью, а специфическими симптомами из-за потери большого количества ячеек. Эти эффекты когда-то назывались нестохастический; теперь они называются детерминированными . [99] Бета-сжигание — это пример детерминированного эффекта. Какие долгосрочные эффекты может иметь радиация?Эффект излучения может заключаться не в уничтожении клетки, а в изменении ее ДНК. код таким образом, чтобы клетка оставалась живой, но с ошибкой в ДНК план.Эффект этой мутации будет зависеть от природы ошибка и когда ее читают. Поскольку это случайный процесс, такие эффекты сейчас называется стохастиком . [100] Два важные стохастические эффекты излучения являются раком, который возникает в результате мутаций в негермальных клетках (называемых соматических клетки ), а также наследственные изменения, которые возникают в результате мутаций в половых клетках. (яйца и сперма). Как ионизирующее излучение может вызывать рак?Рак возникает, если радиация не убивает клетку, а создает ошибку в план ДНК, который в конечном итоге приводит к потере контроля над клеткой деление, и клетка начинает бесконтрольно делиться.Этот эффект может не появляются на долгие годы. Рак, вызванный радиацией, не отличается от рака по другим причинам, поэтому нет простого способа измерить уровень заболеваемости раком из-за радиации. За период, изученный Консультативным комитетом, большое усилия были направлены на изучение облученных животных и облученных групп люди, чтобы лучше оценить риск рака из-за радиации. Этот тип исследования осложняется множеством видов рака, которые различаются по радиочувствительность.Например, костный мозг более чувствителен, чем клетки кожи. к радиационно-индуцированному раку. [101] Большие дозы радиации необходимы большому количеству людей, чтобы вызывают измеримое увеличение числа раковых заболеваний и, таким образом, определяют различия в чувствительности разных органов к радиации. Поскольку рак может возникнуть в любое время в жизни человека, подвергшегося воздействию, эти исследования могут на выполнение потребуется семьдесят или более лет.Например, самые большие и Наиболее ценным с научной точки зрения эпидемиологическим исследованием радиационных эффектов было продолжающееся исследование японских выживших после атомной бомбы. Другое важное исследования включают исследования больших групп, подвергшихся воздействию радиации в результате своей профессии (например, добытчики урана) или вследствие медицинских лечение. Эти типы исследований более подробно обсуждаются в раздел под названием «Как ученые определяют долгосрочные риски от Радиация? » Как ионизирующее излучение может вызывать генетические мутации?Радиация может изменить ДНК в любой клетке.Повреждение клеток и смерть что в результате мутаций в соматических клетках происходят только в организме, в котором произошла мутация, поэтому они обозначены как соматический или ненаследуемых эффектов. Рак — наиболее заметный долгосрочный соматический эффект. Напротив, мутации, которые происходят в половых клетках (сперматозоидах и яйцеклетках), могут быть передаются будущим поколениям и поэтому называются генетическими или наследуемых эффектов.Генетические эффекты могут не проявиться, пока многие поколения спустя. Генетические эффекты радиации были впервые продемонстрированы в плодовые мушки в 1920-х годах. Генетическая мутация из-за радиации не вызывает видимые чудовища научной фантастики; он просто производит большее частота одних и тех же мутаций, которые происходят непрерывно и спонтанно в природа. Как и в случае рака, генетические эффекты радиации невозможно различить. от мутаций по другим причинам.Сегодня известно не менее 1300 болезней быть вызвано мутацией. [102] Некоторые мутации могут быть полезными; случайная мутация — движущая сила эволюции. За период, изученный Консультативным комитетом, было дискуссии среди научного сообщества по поводу масштабов и последствий радиационно-индуцированных мутаций. В отличие от оценок риска рака, которые частично основаны на исследованиях человеческих популяций, оценках наследственного риска основаны по большей части на исследованиях на животных и японских выжившие после атомной бомбардировки. Риск генетической мутации выражается в удвоении доза: количество радиации, которое вызовет дополнительные мутации, равные число к тем, которые уже возникают естественным образом по всем причинам, тем самым удваивая естественная скорость мутации. Обычно считается, что частота мутаций линейно зависит от дозы и что не существует порога, ниже которого частота мутаций не увеличивалась бы.Спонтанная мутация (не связанная с радиацией) естественным образом происходит со скоростью приблизительно от 1/10 000 до 1/1 000 000 клеточных делений на ген, с широким вариации от одного гена к другому. Были предприняты попытки оценить вклад ионизирующего излучения к уровню мутаций человека путем изучения потомства как подвергшихся, так и не подвергавшихся воздействию Японские выжившие после атомной бомбы. Эти оценки основаны на сравнении частота различных врожденных дефектов и рака между экспонированными и необлученных выживших, а также при прямом подсчете мутаций при небольшом количество генов.Для всех этих конечных точек не наблюдалось превышения среди потомки обнаженных выживших. Учитывая отсутствие прямых доказательств какого-либо увеличения наследственности человека, (генетические) последствия радиационного воздействия, оценки генетических риски для людей сравнивались с экспериментальными данными, полученными с лабораторные животные. Однако оценки генетических рисков для человека сильно различаются. из данных о животных. Например, у плодовых мушек очень большие хромосомы, которые кажутся уникально чувствительными к радиации.Люди могут быть менее уязвимы чем считалось ранее. Статистические нижние пределы удвоенной дозы имеют были рассчитаны, которые совместимы с наблюдаемыми человеческими данными. На основе наших невозможность продемонстрировать эффект на людях, нижний предел генетических Удваивающая доза считается менее 100 бэр [104] |
Что радиация делает с живыми клетками? (с иллюстрациями)
Воздействие радиации на живые клетки различается в зависимости от типа, интенсивности воздействия и клетки.Для наших целей «излучение» относится к испусканию ионизирующей энергии, такой как нейтроны, фотоны и заряженные частицы высокой энергии, такие как гамма-лучи. Существует ряд различных типов, в том числе космическое излучение из космоса, земное излучение, которое испускается радиоактивными элементами в земле, и то, что создано человеком, например, выпущенное при взрыве атомной бомбы.
Радиолог исследует рентген грудной клетки — процедуру, при которой клетки пациента подвергаются воздействию радиации.
Живые клетки фактически справляются с изрядным количеством радиации; например, около 360 миллибэр в год в США. Между прочим, миллиремы — это единицы дозировки; они используются для расчета результатов облучения от таких вещей, как рентгеновские лучи в больницах. Уровень летального воздействия варьируется от человека к человеку и зависит от типа воздействия; например, однократное воздействие является летальным при дозе около 300 000 миллибэр, в то время как более высокие дозы могут быть допустимы, если они являются результатом длительного воздействия с течением времени.
Технология цифровой рентгенографии позволяет стоматологам делать несколько рентгеновских снимков зубов пациентов, не подвергая их опасному воздействию радиации.
При низких уровнях радиационные повреждения могут быть устранены живыми клетками без каких-либо побочных эффектов.Более высокие дозы могут привести к тому, что клетка станет стерильной, или они могут повлиять на способность клетки правильно воспроизводить себя, вызывая мутации. Например, многие виды рака связаны с облучением, которое сбивает клетки с толку, заставляя их мутировать и быстро воспроизводиться. В чрезвычайно высоких дозах радиация вызывает гибель клеток в результате процесса, называемого термализацией, который в основном готовит клетку изнутри.
Излучение, используемое при сканировании медицинских изображений, обычно имеет очень короткий период полураспада, что гарантирует минимальное воздействие на пациента.
Воздействие может вызвать повреждение клеток двумя разными способами. В первом смысле, прямое радиационное воздействие, оно наносит прямой вред молекуле; например, когда излучение взаимодействует с молекулой ДНК, вызывая повреждение клеток. Он также может вызывать косвенный ущерб, ионизируя молекулы, превращая их в потенциально токсичные соединения, которые взаимодействуют со здоровыми молекулами и вызывают повреждение.Кислород, водород, азот и углерод очень уязвимы для ионизации; К несчастью для живых клеток, эти элементы составляют значительную часть живого организма.
Лучевая болезнь может возникнуть у людей, которые не соблюдают надлежащие протоколы в местах, где возможно облучение.
В очень высоких дозах радиация вызовет массивное повреждение органов и тканей, которое невозможно восстановить организмом. Это вызывает острый лучевой синдром, также известный как лучевая болезнь. Это состояние часто бывает чрезвычайно болезненным и неприятным, и оно приводит к смерти. При более низких дозах нанесенный ущерб может быть на более тонком уровне и проявляться в виде рака или врожденных дефектов, вызванных повреждением репродуктивных тканей в более позднем возрасте. Некоторые клетки особенно уязвимы для повреждения, особенно клетки, которые быстро размножаются; Вот почему беременным женщинам нужно быть осторожными с источниками излучения, так как это может повредить развивающийся плод.
Нет никаких доказательств того, что пациент получит повреждения от воздействия вторичного излучения, например, от рентгеновских лучей.
Одна из наиболее опасных причин радиации — это радиоактивные изотопы, потому что эти изотопы будут накапливаться в организме и испускать радиацию, в отличие от одноразового воздействия радиоактивных частиц, подобных тем, которые испускаются в рентгеновских лучах.По этой причине люди, которые работают с радиоактивными изотопами, должны быть очень осторожны, а те, которые используются в таких процедурах, как медицинская визуализация, имеют очень короткий период полураспада, что означает, что они быстро распадаются и выражаются в организме.
Повреждения, нанесенные радиацией, могут проявляться в виде врожденных дефектов.Воздействие радиации во время беременности может вызвать повреждение развивающегося плода.
Насколько безопасна радиация? — Всемирная ядерная ассоциация
Радиация возникает естественным образом и исходит от источников, окружающих нас, включая наше собственное тело. Радиацию часто понимают неправильно, но она помогает спасти жизни и вылечить болезни.
Радиация естественна и встречается повсюду — она исходит из космоса, воздуха, которым мы дышим, и земли, по которой мы ступаем.Это даже в наших телах; естественные радиоактивные элементы в наших костях облучают нас в среднем 5000 раз в секунду. Сон рядом с кем-то дает нам гораздо более высокую дозу радиации, чем жизнь рядом с атомной электростанцией — оба эти фактора безвредны.
Сама жизнь возникла в то время, когда планета была намного более радиоактивной, чем сегодня, и все живые организмы эволюционировали таким образом, чтобы иметь возможность сосуществовать с радиацией. Многие считают радиацию пугающей, особенно когда она связана с атомной электростанцией, несмотря на то, что нет никакой разницы между естественной радиацией и радиацией, созданной человеком.После инцидента, связанного с радиацией, многие начинают беспокоиться, потому что не могут увидеть, потрогать или почувствовать запах. Поскольку мы не можем ощущать радиацию, мы полагаемся на разные интерпретации и изображения, чтобы попытаться понять ее — популярная культура сыграла значительную роль в формировании нашего отношения к радиации.
Радиация вокруг нас
В среднем, все мы получаем от 2 до 3 миллизивертов (мЗв) излучения каждый год, но эта цифра значительно варьируется по всему миру из-за таких факторов, как высота над уровнем моря и состав грунта.
Например, доза радиации в Шанхае, расположенном на уровне моря, ниже, чем в Денвере, расположенном на высоте 1610 метров над уровнем моря. Это связано с тем, что атмосфера снижает количество излучения из космоса, которому мы подвергаемся. Денвер, расположенный на большей высоте, получает больше радиации из-за более тонкой атмосферы. Точно так же полет подвергает вас более высоким дозам радиации, поскольку на высоте 12000 метров над уровнем моря атмосфера значительно тоньше.
Геология коренных пород также может играть важную роль в уровнях радиационного фона.Во многих регионах мира, таких как Керала (Индия), Янцзян (Китай) и Гуарапари (Бразилия), уровень радиационного фона в 10-20 раз выше, чем в среднем в мире. В Рамсарской области (Иран) жители могут получать дозы до 260 мЗв в год, что примерно в 100 раз выше среднемировых, из-за встречающихся в природе радиоактивных элементов. Однако нет никаких доказательств каких-либо неблагоприятных последствий для здоровья в этих областях. Во многих из этих областей уровень радиации выше, чем во многих частях зон эвакуации вокруг Чернобыля и Фукусимы.Фактически, в большинстве районов зоны эвакуации из Чернобыля и Фукусимы уровни радиации не превышают естественный фон.
По оценкам, летные экипажи получают годовую дозу профессионального облучения более 3 мЗв, что намного выше, чем годовая доза, полученная работниками атомной отрасли (Источники: Национальный совет по радиационной защите и измерениям; Управление по охране здоровья и безопасности)
Фоновая доза человека также зависит от его образа жизни (например,грамм. количество рейсов или медицинских процедур). Больные раком часто получают чрезвычайно высокие дозы облучения — в некоторых случаях 40-60 зивертов в течение нескольких недель — для лечения своего заболевания. Лечение рака сосредоточено на определенной части тела, с которой организм может справиться, тогда как идентичная доза для всего тела была бы фатальной.
Строительные материалы также могут излучать излучение. Многие здания из гранита радиоактивны из-за того, что гранит содержит уран.
Если бы здание Капитолия США в Вашингтоне, округ Колумбия, было ядерным объектом, оно не было бы лицензировано из-за уровня радиации, испускаемого зданиями.
Радиация и здоровье человека
Основным негативным эффектом для здоровья, который люди часто связывают с облучением, является рак. Хотя многие считают, что для развития рака достаточно однократного облучения, это не так. Поскольку мы постоянно окружены радиацией, наши тела разработали сложные механизмы защиты от ее воздействия.Воздействие радиации на здоровье хорошо изучено. Взаимосвязь между воздействием радиации и раком широко изучалась более 100 лет, и было доказано, что радиация является лишь слабым канцерогеном — другими словами, требуется очень большое количество радиации, чтобы лишь незначительно повысить риск рака.
Воздействие радиации — основная проблема общества в случае ядерной аварии. Самая страшная ядерная авария в истории, произошедшая в Чернобыле, привела к гибели 28 сотрудников АЭС и аварийных работников, подвергшихся смертельному воздействию радиации.Многие из них получили дозы выше 10 зивертов (10 000 мЗв) в течение нескольких минут или часов.
После аварии 1986 года в Чернобыле также было зарегистрировано около 6500 случаев заболевания щитовидной железой, которые можно было бы предотвратить, если бы власти не допускали попадания загрязненных пищевых продуктов в пищевую цепь. На сегодняшний день в этих случаях погибло 15 человек. Для сравнения, только в Китае от загрязнения воздуха из-за использования угля каждый час умирает около 80 человек.
Ни аварии на Три-Майл-Айленде, ни на Фукусима-дайити — единственных других гражданских атомных электростанциях, на которых произошли аварии, приведшие к заметному выбросу радиоактивного материала в окружающую среду — не привели к каким-либо радиационным последствиям для здоровья.
Радиация спасает жизни
Каждый год ядерная медицина помогает врачам диагностировать и лечить десятки миллионов людей. Используя радиацию, например рентгеновские лучи, врачи могут быстро, ненавязчиво и точно диагностировать органы пациента. Радиоизотопы, которые могут производиться в промышленных энергетических реакторах, используются в качестве «индикаторов» при сканировании с помощью ПЭТ, которое оказалось наиболее точным средством обнаружения и оценки большинства видов рака. Радиация также может использоваться как неинвазивная альтернатива операции на головном мозге.
Радиация также может вылечить рак и другие опасные для жизни состояния. Существует множество различных вариантов лечения с использованием внешнего или внутреннего облучения с целью контроля или устранения рака путем облучения области, в которой он находится. Одним из примеров является брахитерапия, когда небольшие источники излучения размещаются внутри тела, внутри или поблизости от области, требующей лечения. Он используется для лечения многих различных типов рака, включая рак груди, простаты и легких.
Поделиться
Связанная информация
Естественные радиоактивные материалы НОРМА
Ядерная радиация и последствия для здоровья
Вас также может заинтересовать
.