06.10.2024

Вл опоры железобетонные: Железобетонные опоры ЛЭП

Содержание

Опоры ЛЭП

  • Симферополь: (3652)67-13-82
  • Хабаровск-2: (4212)45-56-06
  • Чита: (3022)27-03-02
  • Комсомольск-на-Амуре: (4217)20-15-21
  • Севастополь: (988)471-99-28
  • Хабаровск: (4212)40-08-47
  • Калининград: (401)272-03-10
  • Екатеринбург: (343)301-33-99
  • Санкт-Петербург: (812)309-22-09
  • Москва: (495)145-24-55
  • Краснодар: (861)279-36-00
  • Иркутск: (3952)79-94-18

Опоры ЛЭП

  • Главная
  • Контроль
  • Объекты
  • ЖБИ
    • ЭНЕРГЕТИЧЕСКОЕ СТРОИТЕЛЬСТВО
      • Опоры ЛЭП
      • Фундаменты опор
      • Приставки железобетонные
      • Анкерные плиты
      • Ригели опор
      • Элементы подстанций
      • Сваи железобетонные
    • НЕФТЕГАЗОВОЕ СТРОИТЕЛЬСТВО
      • Столбики сигнальные
      • Плиты дорожные
      • Лотки волнистые
      • Утяжелители
      • Камни бортовые
      • Сваи железобетонные
    • ПРОМЫШЛЕННОЕ СТРОИТЕЛЬСТВО
      • Плиты перекрытий
      • Плиты дорожные
      • Колонны железобетонные
      • Диафрагмы жесткости
      • Ригели железобетонные
      • Бомбоубежища
      • Фундаментные блоки
      • Прогоны железобетонные
      • Столбы шпалерные (садовые)
      • Сваи железобетонные
    • ЖИЛИЩНОЕ СТРОИТЕЛЬСТВО
      • Плиты перекрытий
      • Шахты лифтов
      • Вентиляционные блоки
      • Лестницы железобетонные
      • Перемычки
      • Заборы железобетонные
      • Плиты балконов
      • Тоннели сборные
      • Колодцы футерованные
      • Сваи железобетонные
    • ИНЖЕНЕРНОЕ СТРОИТЕЛЬСТВО
      • Колодцы железобетонные
      • Трубы железобетонные
      • Колодцы кабельные
      • Каналы сборные
      • Камеры тепловые
      • Колодцы футерованные
      • Щитовые опоры
      • Камеры футерованные
      • Каналы непроходные
      • Лотки железобетонные
      • Лотки ЛК
    • МОСТЫ, ТОННЕЛИ И ПУТЕПРОВОДЫ
      • Фермы железобетонные
      • Контурные блоки
      • Коллекторы железобетонные
      • Балки мостовые
      • Своды железобетонные
      • Тоннели сборные
      • Лотки железобетонные
      • Сваи железобетонные
    • ДОРОЖНОЕ СТРОИТЕЛЬСТВО
      • Колодцы железобетонные
      • Плиты дорожные
      • Блоки укреплений
      • Камни бортовые
      • Водопропускные трубы
      • Лотки железобетонные
    • ЖЕЛЕЗНОДОРОЖНОЕ СТРОИТЕЛЬСТВО
      • Лотки дренажные
      • Шпалы железобетонные
      • Опоры контактной сети

1. 2. СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ЭЛЕМЕНТЫ ПОД ОПОРЫ ВЛ

1.2.1. Фундаменты

Конструкция фундаментов выбирается в соответствии с типом опоры, действующей на фундамент нагрузкой, а также характеристикой грунта, в который будет заделан фундамент.

В качестве фундаментов опор применяются монолитный бетон, сборный железобетон, сваи и в некоторых случаях – металлические фундаменты. У железобетонных опор, нижний конец стойки которых заделывается в грунт, фундаментом служит низ стойки, иногда усиленный ригелями.

Деревянные опоры всех типов устанавливаются без фундаментов.

Для стальных и некоторых видов железобетонных опор на оттяжках наибольшее распространение получили железобетонные сборные фундаменты, устанавливаемые в котлованы. При изготовлении на заводе фундаменты поступают на линию или в виде готовых к установке конструкций (подножников, свай, плит, ригелей, ростверков), или в виде отдельных деталей (рис. 1.1).

Широкое применение железобетонных подножников заводского изготовления возможно в грунтах почти всех категорий, что резко снижает трудоемкость устройства фундаментов, а также объемы земляных работ, расход бетона и в конечном счете стоимость сооружения. Применение железобетонных подножников заводского изготовления позволяет выполнять сооружение фундаментов под опоры ВЛ практически в любое время года.

Рис. 1.1. Детали сборных железобетонных фундаментов опор ВЛ: а – прямой подножник; б – наклонный подножник; в – пригрузочная плита; г – ригель; д – свая; е – ростверк; ж – анкерная плита для крепления оттяжек

С целью ограничения числа типов железобетонных подножников и свай, предназначенных для массового изготовления на заводе, они унифицированы. Шифровка фундаментов основной номенклатуры определяется буквой Ф – фундамент и цифрой, которая указывает типоразмер фундамента. Специальные фундаменты имеют после первой буквы в шифре дополнительную букву С, укороченные – К, повышенные – П. После цифры, обозначающей типоразмер фундамента, через дефис проставляется буква или цифра, указывающая на его применение:


А – под анкерно-угловые опоры; О – под стойки опор с оттяжками; 2 – под опоры с башмаками, имеющими два отверстия; 4 – под опоры с опорными башмаками, имеющими четыре отверстия. В случае установки на фундаментах неосновных вариантов наголовников (с болтами диаметром 48 мм или болтами длиной 350 мм) после буквы А основного шифра через дефис проставляются цифры соответственно 48 или 350.

Примеры шифровки:

Ф4-А – фундамент 4-го типоразмера под анкерно-угловую опору;

ФС 2–4 – фундамент специальный 2-го типоразмера под опору с башмаками, имеющими четыре отверстия, т. е. фундамент с четырьмя болтами;

ФК 1–0 – фундамент укороченный 1-го типоразмера под стойку опоры на оттяжках.

Для шифровки фундаментов дополнительной номенклатуры к шифру основного фундамента добавляют букву:

в шифре вариантов фундаментов с модернизированным оголовком после буквы А добавляется буква М – модернизированный, например Ф3-АМ, Ф5-АМ;

в шифре вариантов фундаментов со сварным или болтовым соединением стойки с нижней частью после букв ФП и ФС добавляется буква С, обозначающая сварной, или буква Б – болтовой вариант.

Например, ФПС5-А – вариант повышенного фундамента ФП5-А со сварным соединением стойки и нижней части; ФСБ2-4 – вариант специального фундамента ФС-4 с болтовым соединением стойки и нижней части.

Для изготовления железобетонных фундаментов применяется бетон марок 200, 300 и 400 (по прочности на сжатие), приготовленный на портландцементе. При наличии на трассе агрессивных к бетону грунтовых вод для приготовления бетона применяется цемент, стойкий к конкретному виду агрессии.

Для армирования железобетонных фундаментов применяется арматура из горячекатаной углеродистой или низколегированной стали. Для линий электропередачи, строящихся в районах с расчетной наружной температурой воздуха до —30 °C, разрешается применять арматуру из кипящих сталей; для линий, строящихся в районах с расчетной температурой воздуха от —30 до —40 °C, разрешается применение арматуры из полуспокойной стали, а для районов с температурой ниже —40 °C – только из стали спокойной плавки.

Для промежуточных и анкерно-угловых стальных опор основным конструктивным элементом фундаментов принят подножник грибовидной формы, а для анкерно-угловых опор и опор с оттяжками применяются подножники с наклонными стойками, ось которых является продолжением пояса опоры и оси оттяжки. Это резко снижает горизонтальные нагрузки на фундамент. Для крепления оттяжек вантовых опор применяются также составные фундаменты с навесными плитами прямоугольного сечения. Эти фундаменты получаются сочетанием грибообразного подножника и навесных плит.

Выбор типов фундаментов производится на основании установочных чертежей, разработанных для каждого типа опоры. На установочных чертежах приводятся: план расположения фундаментов; привязка ригелей, пригрузочных плит; район по гололеду и скоростной напор ветра, а для анкерно-угловых опор – угол поворота на линии. На чертежах фундаментов указывается степень уплотнения грунта засыпки.

Под анкерно-угловые опоры разработано семь типов фундаментов: Ф1-А; Ф2-А; Ф3-А; Ф4-А; Ф5-А; Ф6-А и ФС. Под промежуточные и промежуточно-угловые опоры разработаны шесть типов фундаментов: Ф1; Ф2; Ф3; Ф4; Ф5; Ф6 и фундамент типа ФС.

При прохождении трассы ВЛ в районах рек, болот, по косогорам применяются повышенные составные подножники типа ФП со сварным – С или болтовым – Б соединениями стойки с нижней частью. Основные типы, характеристики сборных железобетонных фундаментов и подножников для ВЛ 35—500 кВ приведены в табл. 1.18—1.21.

Таблица 1.18

Фундаменты под промежуточные опоры ВЛ 35—500 кВ

Таблица 1.19

Фундаменты под анкерно-угловые опоры ВЛ 35—500 кВ

Таблица 1.20

Фундаменты малозаглубленные высотой 0,7 м

Таблица 1.21

Подножники

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Железобетонные опоры ЛЭП: классификация и установка

Современный мир уже не представляет своего существования без использования электричества. Железобетонные столбы повсеместно используются для освещения. Широкое применение опор лэп из железобетона обуславливается сравнительной дешевизной таких конструкций. Даже высокие затраты на транспортировку столбов не способствуют снижению высокого спроса на бетонные опоры лэп. Они применяются для монтажных работ линий электропередач любого напряжения. При этом опора, изготовленная из высококачественных строительных материалов, может использоваться в течение длительного периода (около пятидесяти лет).

Назначение

Без применения железобетонных столбов не обходится строительство линий электропередач. Они устанавливаются в регионах, где температура снижается максимум до -55 градусов Цельсия. Главным элементом, используемым в таких опорах, является центрифугированные бетонные стойки.

Вернуться к оглавлению

Достоинства и недостатки

К достоинствам, свойственным бетонной опоре линий электропередач, относят дешевизну изделий, высокую степень их унификации, высокую стойкость к образованию коррозии при воздействии негативных факторов окружающей среды. Кроме того, железобетонный столб имеет высокие эксплуатационные характеристики.

Говоря о недостатках изделий из железобетона, специалисты указывают на трудности, которые возникают при перевозке, строительстве, демонтаже либо замене железобетонных стоек. При этом утилизация столбов линий электропередач требует немалых финансовых затрат. Кроме того, работники электросетевых организаций с опаской занимаются монтажом на линиях электропередач, поскольку возможен срыв электромонтеров с опорных конструкций.

Вернуться к оглавлению

Особенности установки

Специалисты начинают установку столбов линий электропередач с выкладывания деталей изделий вдоль дорожных покрытий, а затем собирают их. Собранные бетонные конструкции поднимают краном и переходят к установке в котлован цилиндрической формы.

Работники заполняют пустоты в котловане при помощи смеси из песка и гравия. Все размеры должны быть указаны в проекте. Чтобы дополнительно закрепить опору в почве, стойки необходимо зафиксировать ригелями, а также поместить их на поверхность специальных плит. Оттяжки крепятся в грунте на определенном расстоянии от столбов, которое измеряется заранее. Также следует установить плиты либо другие конструкции согласно проекту.

Вернуться к оглавлению

Классификация

По назначению

  1. Анкерная опоры – слева и анкерная опора с линейным разъединителем – справа.

    Анкерные. Такие опоры линий электропередач помогают сбалансировать вес электропроводов, закрепленных в смежных специальных пролетах и т. д.

  2. Угловые. Позволяют компенсировать нагрузки проводов. Столбы устанавливают на поворотах трасс воздушных линий.
  3. Концевые. Используются для компенсации одностороннего веса проводов в самом конце трасс и линий электропередач.
  4. Переходные. Применяются для выполнения перехода воздушных линий через различные конструкции и преграды.
  5. Транспозиционные. Помогают сменить положения тросов и электропроводов на железобетонных стойках.
  6. Ответвительные. Такие столбы необходимы для создания ответвлений.
  7. Перекрестные. Используются при пересечении воздушных линий.

Вернуться к оглавлению

По конструкции

  • свободностоящие портальные со связями;
  • портальные со специальными оттяжками;
  • свободностоящие;
  • конструкции со специальными оттяжками и стойками.

Вернуться к оглавлению

По закреплению

  • железобетонные конструкции с оттяжками;
  • опоры свободностоящие.

По количеству цепей опоры бывают одно-, двух- и многоцепными.

Вернуться к оглавлению

Маркировка и примеры

Опоры из железобетона маркируются таким образом:

  1. По первым буквам можно определить предназначение опоры: «П» означает «промежуточная». Буквы «У» и «П» используются для обозначения угловых и промежуточных конструкций, «У» и «А» – угловых и анкерных, «УОА» – угловых ответвительных анкерных, «А» – концевых анкерных. Символы «О» и «А» указывают на то, что перед вами ответвительная опора.
  2. Цифры, отмеченные на конструкциях, показывают, для какой именно линии электропередач, они предназначены. Например, цифрой «10» обозначают десять кВ ЛЭП.
  3. Еще одна цифра используется для определения типоразмера железобетонного изделия. Так, «1» указывает на то, что размеры столба составляют десять с половиной метров. Отметка «2» означает, что конструкция создана на основании столба из железобетона СВ-110.

Вернуться к оглавлению

Заключение

Системы передачи и распределения электрической энергии охватывают города, села и другие объекты, которые расположены на отдельных территориях. Кроме транспортировки электрической энергии на разные расстояния, опоры из железобетона эффективно применяются при передаче электричества с подстанций непосредственно к потребителям в городах и селах, а также для организации освещения улиц и дорожных покрытий.

Непрерывно армированное бетонное покрытие

Автор
Проф. Б. Э. Гите, г-н Йогеш С. Нагаре
Инженерный колледж Амрутвахини, Сангамнер

Реферат
«Непрерывно армированное бетонное покрытие», как следует из названия, этот тип покрытия армирован по всей длине в продольном направлении. Этот тип покрытия не имеет поперечных стыков, пока не будет конца покрытия или пока оно не войдет в контакт с каким-либо другим покрытием или мостом.Продольный стык существует только в том случае, если ширина дороги превышает 14 футов. За счет уменьшения шарниров возможна плавная и продолжительная езда, что приводит к экономии топлива. Кроме того, дороги CRCP не требуют технического обслуживания, если они правильно построены и при укладке стали необходимо соблюдать осторожность. После того, как дороги CRCP будут построены, о них не нужно будет заботиться в течение следующих 50-60 лет. Принцип, лежащий в основе этих дорог, заключается в том, что «пусть дорога трескается», как раз наоборот, как в случае с другими типами дорог, где мы избегаем образования трещин любой ценой. Допускается растрескивание CRCP, из-за чего снимаются напряжения в дорожном покрытии. Образовавшиеся трещины плотно удерживаются арматурой, за счет чего ограничивается расширение и углубление трещин. Отсюда можно сделать вывод, что в CRCP контролируемое растрескивание разрешено. Первоначальная стоимость CRCP высока, но, поскольку она не требует обслуживания и длится десятилетия, общая стоимость CRCP меньше по сравнению с другими типами железобетонных покрытий. Исследования и наблюдения показали, что этот тип дорог чрезвычайно успешен, поэтому CRCP широко используется в США, ГЕРМАНИИ, БРИТАНЕ и некоторых других развитых и развивающихся странах.Использование CRCP улучшит цементную и сталелитейную промышленность; это снизит расход топлива транспортными средствами и сэкономит много денег, необходимых для частого строительства и ремонта других типов покрытий.

1. ВВЕДЕНИЕ
Транспорт — жизненно важная инфраструктура для быстрого экономического роста страны. Быстрая транспортировка природных ресурсов (таких как сырье), готовой продукции и скоропортящихся материалов во все части страны, включая пункты экспортных поставок, является основным фактором экономического роста.В последнее время произошел значительный сдвиг в способах транспортировки с железных дорог на автомобильный сектор. В настоящее время около 60% грузовых и 80% пассажирских перевозок в день в Индии выполняется автомобильным транспортом, что свидетельствует о необходимости развития хорошей дорожной сети.

В Индии гибкое покрытие (битум) является наиболее распространенным для автомобильных дорог национального и государственного значения. Большинство дорог также построено с использованием обычных битумных покрытий, учитывая их более низкую начальную стоимость, хотя стоимость жизненного цикла этих покрытий очень высока по сравнению с жесткими покрытиями из-за частого ремонта, а также необходимости полной замены покрытия с интервалом в 4-5 лет.Дальнейший расход топлива автомобилей на этом типе покрытия намного выше, чем на жестком. В развитых странах все чаще используется жесткое покрытие из-за большого количества преимуществ, которые оно дает. Учитывая долговечность бетонных покрытий, некоторые участки скоростных дорог Дели — Матхура и Мумбаи — Пуна были построены с сочлененным бетонным покрытием. Непрерывно армированное бетонное покрытие (CRCP) устраняет необходимость в поперечных швах (кроме мостов и других конструкций) и сохраняет трещины герметичными, что приводит к непрерывной гладкой поверхности, которая практически не требует обслуживания.

Объявления

1.1 Что такое CRCP?
В бетонном покрытии продольная армирующая сталь сплошная по всей длине покрытия. Это покрытие без швов из бетона, достаточно армированное для предотвращения образования трещин, без помощи ослабленных поперечных швов, которые используются в обычных или традиционных типах бетонных покрытий с швами. Армированные стержни в бетоне накладываются внахлест, образуя непрерывную арматуру, удерживающую дорожное покрытие вместе при любых погодных условиях и предотвращающую образование больших трещин, которые в противном случае сократили бы срок службы дорожного покрытия. CRCP обладает всеми хорошими характеристиками бетонных покрытий, такими как долговечность, высокая структурная прочность, нескользящая поверхность и хорошая видимость в ночное время, как в мокрую, так и в сухую погоду, — особенности, которые делают бетон, особенно непрерывно армированный бетон, долговечным материалом для дорожного покрытия.

В арматуре CRCP сталь является важным элементом и выполняет следующие функции:
1. Удерживает трещины
2. Облегчает передачу нагрузки через трещины
3. Обеспечивает жесткость, ограничивая движение концов

1.2. Определения и характеристики CRCP
Непрерывно армированное бетонное покрытие (CRCP) — это бетонное покрытие, армированное непрерывными стальными стержнями по всей его длине. Его конструкция устраняет необходимость в поперечных соединениях (кроме мостов и других конструкций) и сохраняет трещины герметичными, в результате чего получается непрерывная гладкая поверхность, которая практически не требует обслуживания. Вся идея CRCP основана, по сути, на философии «давай взлом», а не на сложной концепции предотвращения трещин любой ценой.Принцип CRCP состоит в том, чтобы ограничить случайное растрескивание допустимым интервалом и шириной трещины, чтобы плита работала так же, как если бы трещина не существовала, то есть равный прогиб в трещинах и среднем пролете плиты. В неармированной плите возникающие трещины обычно расширяются и становятся все хуже под воздействием дорожного движения и климатических условий. Во время сжатия бетона мелкая грязь проникает в широкие трещины, что приводит к возникновению тектонических нарушений, сколов и трещин, а также к взрывам, требующим капитального ремонта и ранней обработки поверхности для восстановления гладкости поверхности.Количество арматуры, необходимое для предотвращения растрескивания, относительно меньше для более коротких пролетов. По мере увеличения длины плиты увеличивается и количество необходимой стали.

2. АСПЕКТЫ ПРОЕКТИРОВАНИЯ
2. 1 Аспекты проектирования:

Напряжения изменения объема в CRCP будут учтены путем обеспечения достаточного армирования, чтобы трещины оставались плотно закрытыми при сохранении соответствующей толщины покрытия для противодействия напряжениям, создаваемым колесными нагрузками.CRCP позволяет бетону образовывать очень мелкие поперечные трещины, которые кажутся неконтролируемыми и случайными. Расстояние между поперечными трещинами, возникающими в CRCP, является важной переменной, которая напрямую влияет на поведение дорожного покрытия. Относительно большие расстояния между трещинами приводят к высоким напряжениям стали в трещине и чрезмерной ширине трещины. Уменьшение расстояния между трещинами снижает напряжения в стали и ширину трещин.

2.1.1 Расстояние между трещинами:
Пределы расстояния между трещинами основаны на возможности выкрашивания и выбивки.Опыт показывает, что максимальное расстояние между последовательными трещинами должно быть ограничено 2,4 м, чтобы свести к минимуму выкрашивание. Чтобы свести к минимуму возможность выбивания отверстий, минимальное желаемое расстояние между трещинами составляет около 1,1 м.

2.1.2 Ширина трещины:
Предел ширины трещины основан на учете растрескивания и проникновения воды. Ширина трещины должна быть уменьшена насколько возможно за счет выбора арматурных стержней с более высоким процентным содержанием стали или меньшего диаметра. В соответствии с положениями AASHTO допустимая ширина трещины не должна превышать 1.0мм.

2.2 Напряжение стали:
Рекомендуется предельное напряжение 75% от предела прочности на разрыв. Расчетные номограммы и уравнения AASHTO доступны для определения процента продольной арматуры для удовлетворения критериев расстояния между трещинами, ширины трещины и напряжения стали соответственно. Оптимальное количество стальной арматуры выбирается в CRCP таким образом, чтобы расстояние между трещинами составляло от 1,1 м до 2,4 м. ширина трещины составляет менее 1,0 мм, а напряжение в стали не превышает 75% предела прочности на растяжение. CRCP позволяет использовать немного меньший коэффициент передачи нагрузки по сравнению с JPCP. Следовательно, требования к толщине меньше по сравнению с JPCP. Максимально желаемый интервал трещин определяется корреляцией между расстоянием между трещинами и частотой выкрашивания. Максимальное расстояние между трещинами рассчитывается с учетом влияния длины плиты на образование выбивки.

2.2.1 Стальная арматура:
Количество и глубина продольной арматурной стали являются наиболее важными аспектами стальной арматуры в CRCP, поскольку она влияет на расстояние между поперечными трещинами и ширину трещин.Продольная арматура в CRCP используется для контроля мелких поперечных трещин, которые образуются из-за изменения объема в бетоне. Функция стали состоит в том, чтобы удерживать случайные трещины плотно закрытыми, обеспечивать целостность конструкции и минимизировать проникновение потенциально разрушающей поверхностной воды и несжимаемой жидкости.

2.2.2 Продольные арматурные стержни:
Это основная арматура в CRCP. Общая площадь требуемых продольных арматурных стержней обычно указывается в процентах от площади поперечного сечения дорожного покрытия.Количество продольных арматурных стержней обычно составляет от 0,5% до 0,7% и может быть больше при суровых погодных условиях и более высоких перепадах температур. Поперечная арматура полезна для поддержки продольной стали, когда сталь предварительно установлена ​​перед укладкой бетона. Поперечная арматура может быть меньшей марки.

2.2.3 Поперечные арматурные стержни:
Стержни выполняют следующие функции:
1. Поддерживать продольные стержни и удерживать их на указанном расстоянии.При использовании для этой цели продольные стержни привязываются или зажимаются к поперечной стали в определенных местах.
2. Удерживать незапланированные продольные трещины, которые могут возникнуть, плотно закрытыми.

Объявления

2.3 Типовая конструкция CRCP:
При проектировании учитываются следующие параметры:
1. Расчетный срок службы -> (a) 20 лет для гибкого покрытия
(b) 30 лет для жесткого покрытия.
2. Плотность движения -> (a) 5000 автомобилей в день на 4-полосной дороге

Для жестких покрытий:
1.Марка бетона: M40
2. Марка стали: Fe 415
3. Максимальный перепад температур между верхом и низом плиты = 21 ° C (максимальное значение для Индии согласно IRC 58)
4. Разница между средними температурами плиты на момент строительства и самый холодный период = 30 ° C (при условии, что 35 ° C во время строительства и 5 ° C в самый холодный период)

Таблица № 2.1: Сравнение различных типов покрытий для автомобильных дорог

Товар

Гибкое покрытие

JPCP

CRCP

Код дизайна

IRC-37

IRC-58

Британский-HD 26/94, Часть-3, т. 7, раздел 2

ААШТО’93

Общая толщина покрытия (мм)

800

675

625

610

Марка бетона

M40

M40

M40

Расстояние между усадочными швами

4.25 м

Арматура стальная

Только в стыках, иногда тонкая сетка на верхней поверхности

0,69% длинное — 16 мм при 140 мм поперечном сечении Транс — 12 мм при 600 мм поперечном сечении

0,57% длинна — 16 мм при 140 мм поперечном сечении Trans — 12 мм при 600 мм поперечном сечении

Прочность

Плохо (5-6 лет)

Long (> 30 лет)

Long (> 30 лет)

Экономия топлива

10-20%

10-20%

Техническое обслуживание

Высокая

Меньше

Очень меньше

Мировой опыт

Низкая производительность

Хорошие отчеты

Очень хорошие отчеты. 4500 км по США; все штаты начали использовать CRCP

Строительство

Легко

Требуется особый уход

Требуется особый уход

Экспертиза в стране

Очень большой

Есть

Есть

Проблема коррозии

R / F на стыках требует защиты

Нет проблем с коррозией.

3. МЕТОДОЛОГИЯ
CRCP характеризуется наличием непрерывной стальной арматуры, закрепленной в цементе, и отсутствием поперечных стыков, кроме конструкционных и концевых, вместо того, чтобы концентрироваться в усадочных стыках, как в случае с JPCP изменения объема (из-за температуры и влажности) приводят к развитию большого количества равномерно распределенных микротрещин, появляющихся случайным образом. Количество продольного армирования определяется таким образом, чтобы предотвратить образование трещин и обеспечить целостность конструкции покрытия.Преследуемой целью является создание большого количества достаточно мелких трещин, чтобы ограничить проникновение антиобледенительных солей и обеспечить надлежащую блокировку заполнителя, которая приводит к более высокой эффективности передачи нагрузки. Одним из основных аргументов в пользу использования этого типа плит является то, что они практически не требуют обслуживания. Это означает экономию затрат на обслуживание, а также прямую экономию для пользователей. Первоначальные затраты выше из-за армирования, но эти затраты аналогичны затратам на обычное покрытие через 10–15 лет по данным Всемирной дорожной ассоциации (PIARC) или через 15–18 лет по мнению бельгийских экспертов.Другими благоприятными факторами являются лучшая долговечность и ровность покрытия. Использование CRCP рекомендуется для городских и сельских магистралей, особенно там, где есть интенсивное движение и большое количество грузовиков. Использование CRCP широко распространено в мире, особенно в США и Европе.

• Впервые это бетонное покрытие было использовано в США в 1921 году. В 1940-х и 1950-х годах было проведено несколько дорожных испытаний. На сегодняшний день в CRCP построено более 50 000 километров автомобильных дорог.

• Бельгия построила свою первую секцию CRCP в 1950 году. Эта страна широко использовала этот тип бетонного покрытия с 1970 года. С тех пор было проведено несколько проектов для достижения нынешней конструкции. Интересно отметить, что эта страна использует CRCP не только на своих автомагистралях, но также на проселочных дорогах и национальных автомагистралях. Участники Квебекского тура 2001 года в Бельгии имели возможность воочию убедиться в ноу-хау этой страны в области бетонного покрытия.

• Франция использует CRCP с 1983 года, и на сегодняшний день у нее более 600 километров полос движения, а также несколько проектов по реабилитации в стадии реализации.

3. 1. Строительство CRCP:
Строительство CRCP аналогично другим типам бетонных покрытий. Планирование и выполнение имеют решающее значение, поскольку ошибки, допущенные на этих этапах, могут нанести ущерб общему успеху проекта. Важно обратить особое внимание на определенные детали, такие как выбор и установка арматуры, выполнение строительных швов и т. Д.Как и в случае с любым другим типом покрытия, основание должно быть отделано таким образом, чтобы обеспечить равномерное полотно дороги для арматурных опор и строительного оборудования, а также обеспечить равномерную толщину плиты. Основание должно обеспечивать надлежащий дренаж к поверхности раздела основания плиты и не подвергаться эрозии, чтобы ограничить возможность пробивки. Этим критериям полностью удовлетворяет проницаемая основа. Сначала поперечные стержни арматуры вручную помещаются на металлические опоры бригадами стальных фиксаторов. Достаточное количество опор предотвратит обрушение под нагрузкой 250 кг.Их конструкция должна соответствовать техническим характеристикам бетонного покрытия.

Продольные стержни арматуры кладут на поперечные и привязывают к ним. Как правило, рекомендуется размещать продольную арматуру на верхней третьей части плиты для ограничения раскрытия трещин. Для предотвращения коррозии необходимо достаточное количество бетонного покрытия над арматурой. Рекомендуется минимальное расстояние 150 мм между стержнями арматуры для обеспечения надлежащего стального покрытия.Продольные стержни можно приваривать друг к другу или связывать. В случае завязки рекомендуемое перекрытие составляет от 25 до 35 диаметров стержня. Перекрытия обычно смещены от одной полосы к другой, чтобы убедиться, что они не находятся в одном поперечном сечении. Свободные концы CRCP подвергаются движениям, в основном вызываемым перепадами температур. Системы устанавливаются на каждом конце, чтобы ограничить перемещение с последних 100 метров плиты. Исследования, проведенные в некоторых американских штатах, показали, что балка с широкими полками обеспечивает рентабельный метод компенсации смещения концов.В Бельгии используются анкеры из несъемных балок, встроенных в основание. Допускается также использование мостовых компенсаторов. На рисунке 3 показан план работы и изображение анкерной балки. Укладка бетона для CRCP аналогична укладке обычного покрытия. Желаемые результаты зависят от следующих факторов: регулировка вибратора, чтобы избежать контакта с арматурными стержнями, и удобоукладываемость бетона для обеспечения надлежащего стального покрытия. На Рисунке 4 показано укладывание дорожного покрытия, полученное с помощью бетоноукладчика со скользящей формой.В продольные швы конструкции следует укладывать анкерные стяжки, чтобы края плиты скреплялись по обе стороны от шва. Особое внимание следует уделять формированию поперечных строительных швов, когда бетонирование завершено в конце рабочего дня. Бельгийцы отметили случаи вздутия плиты (9) на строительном шве, в основном из-за более низкого качества бетона в результате замедленного или недостаточного виброуплотнения на одной или обеих сторонах стыка.

Фазы после установки CRCP (чистовая обработка, текстурирование, отверждение, распиловка продольных швов и герметизация) аналогичны другим типам плит.

3.2. Выполнение CRCP:
Провинциальная долгосрочная программа эффективности была реализована в MTQ в 1992 году. Ее основные цели заключаются в увеличении срока службы и производительности дорожного покрытия, а также в оптимизации использования средств, выделенных на строительство и обслуживание дорожная сеть. Наше стремление улучшить нашу практику и различные шаги, предпринятые для достижения вышеупомянутых целей, будут недостаточными, если не будет реализован настоящий процесс обратной связи, такой как выезд на места для сбора данных о характеристиках дорожного покрытия.Именно на этом этапе наши методы должны быть проверены. Результат может привести к отклонению, модификации или стандартизации новой техники. Исследование характеристик дорожного покрытия началось в 2000 и 2003 годах по первым двум проектам CRCP, выполненным MTQ. Два участка длиной 150 м в каждом проекте находятся под пристальным наблюдением. В опросе вошли:

• Картирование аварийных ситуаций на 150-метровых участках и общее обследование всего проекта CRCP
• Измерения раскрытия трещин и концевых стыков
• Измерения продольного профиля (гладкости)
• Измерения поперечного профиля (колеи)
• Кернение и отбор проб
• Измерение прогибов на плите и на стыках
• Измерение сопротивления скольжению и макротекстуры
• Измерение уровней проникновения соли в бетон (только автомагистраль)
• Измерение потенциала коррозии стали (только автомагистраль)

На сегодняшний день на автомагистрали было выполнено по крайней мере две серии детальных мероприятий: в 2000 году, непосредственно перед открытием движения после реконструкции, и в 2002 году в рамках большого тура по всем участкам дорожных испытаний в районе Большого Монреаля.На шоссе измерения были проведены в ноябре 2003 года, незадолго до открытия движения. Некоторые контролируемые параметры, такие как плавность хода и сопротивление скольжению, были объектом обширных мер на всем участке CRCP. В этой статье основное внимание будет уделено параметрам, характерным для CRCP, таким как растрескивание (скорость, интервал и ширина) и гладкость. Уровни проникновения соли в бетон — это меры, которые могут быть полезны при оценке эффективности бетона для защиты арматуры от коррозии.

4.2.1. РАСШИРЕНИЕ:
Скорость растрескивания была получена путем составления длин трещин с использованием измерения карт из испытательных секций. Результаты, показанные на рисунке 5, выражены в м / м2. Показатели растрескивания представлены на 150-метровом участке и представляют собой среднюю скорость для трех полос движения и левого обочины для шоссе и трех полос для шоссе.

В течение первого зимнего сезона, то есть через четыре месяца после открытия для движения, скорость растрескивания одинакова для четырех испытательных участков.Впоследствии для Highway прогресс остается значительным, но менее заметным. Через 30 месяцев после реконструкции скорость растрескивания составляет 0,83 и 0,89 м / м2 соответственно для участков 1 и 2 автомагистрали. Эти средние скорости растрескивания аналогичны критериям минимальной допустимой ширины трещины, используемым при проектировании арматуры шоссе (1,07 м или 3,5 фута). Чтобы проверить этот результат с точки зрения эффективного расстояния между трещинами на месте, были выполнены расчеты с использованием картографических измерений в июне 2002 года. Примерно 9% расстояний находились в диапазоне 0.От 2 до 0,6 м, 20% в диапазоне от 0,5 до 0,8 м, 60% в диапазоне от 0,8 до 3 м и 8% на расстоянии более 3 м. Определенная доля расстояния между трещинами ниже проектных предельных значений, что необходимо будет тщательно контролировать в ближайшие месяцы. Однако на сегодняшний день CRCP не обнаружила каких-либо повреждений. На шоссе было выполнено три измерения ширины трещины с использованием так называемого сравнительного метода. Ширина трещин, полученная между весной (17,5 ° ° C) и зимой (-22,5 ° ° C), составила 0.183, 0,057 и 0,055 мм для среднего 0,098 мм. Другое измерение было проведено в июне 2003 г. при температуре 37 o C. Разница в 0,1 мм с замером проема в зимний период, что намного меньше ширины, указанной в конструкции (1 мм). Сообщаемое значение 0,1 мм очень похоже на значение, опубликованное бельгийцами для температур, колеблющихся от -1 до ° C и 19 ° C до ° C.

Объявления

3.2.2 Гладкость:
Профильная съемка для оценки гладкости дорожного покрытия, то есть неравномерности продольного профиля на траектории движения колес по сравнению с идеально гладкой базовой поверхностью.Индекс, используемый MTQ для оценки гладкости, — это IRI (Международный индекс шероховатости). Для мощеной поверхности шкала от 0 до 12, где 0 — идеально гладкая поверхность. Обратите внимание, что поверхность с рейтингом 1,2 является допустимым пределом, указанным в технических характеристиках, и что-либо сверх этого может повлечь за собой штраф. На шоссе шлифовка была запрещена для значений до 1,8, поэтому на шоссе это было не так. На рисунке 6 показаны средние значения IRI в трех полосах движения для всего сектора в CRCP для шоссе (2 км) и для участка JPCP (1.5 км) в непосредственной близости от участка CRCP. Средние значения для всех трех полос шоссе также представлены на этом же рисунке. Сразу после реконструкции шоссе значения IRI двух из трех полос движения с JPCP выше, чем у CRCP. Три года спустя гладкость CRCP изменилась незначительно, тогда как значения JPCP увеличились на 0,2. Для шоссе мы наблюдали небольшой рост в первую зиму.

4. ЗАКЛЮЧЕНИЕ
1.По сравнению с гибким покрытием CRCP дает дополнительный расчетный срок службы не менее 10 лет. Кроме того, он предлагает гораздо лучшее качество езды, меньше затруднений при движении и существенную экономию эксплуатационных расходов транспортного средства, включая снижение расхода топлива, смазочных материалов и т. Д.
2. Учитывая долговечность и не требующее обслуживания обслуживание CRCP, желательно построить все эти бетонные дороги с CRCP.
3. Термомеханически обработанные стержни TMT желательны для покрытия из CRCP. Коррозионно-стойкие стержни TMT могут использоваться в зонах, подверженных коррозии.
4. Недостатком CRCP является его высокая начальная стоимость и сложность ремонтных работ, которые необходимо выполнить, если они построены неправильно.
5. Покрытие из бетона без швов, CRCP предлагает отличную гладкую поверхность для движения транспортных средств, что обеспечивает максимальный комфорт для пассажиров.
6. Требует минимальных затрат на содержание и восстановление. Это сводит к минимуму вредные динамические нагрузки, которые применяются к автомобилям и дорожному покрытию. Воздух и шум улучшаются в густонаселенном существующем коридоре.Ожидается, что концентрации CO и NOX снизятся примерно на 70% и 45% соответственно. Уровень шума существенно снизится.
7. Бетон выдерживает даже самые тяжелые транспортные нагрузки. Не нужно беспокоиться о колеях и толчках, характерных для асфальтового покрытия.
8. Твердая поверхность бетона облегчает катание колес. Исследования даже показали, что это может повысить топливную экономичность грузовиков. Экономия топлива до 20% может считаться в конечном итоге снижением эксплуатационных расходов автомобиля.
9. Бетонные дороги позволяют увеличить скорость и тем самым сэкономить время и деньги. Практически не требующее обслуживания обслуживание снижает дорожные помехи и, таким образом, сокращает потери человеко-часов для участников дорожного движения.
10. Использование CRCP может резко сократить импорт битума, что приведет к экономии иностранной валюты.

СПИСОК ЛИТЕРАТУРЫ
1. Сончхол Чой а, Суджун Ха б, Мун С. Вонк «Горизонтальное растрескивание непрерывно армированного бетонного покрытия Экологические нагрузки на разрушение.
2. Сон-мин Ким «Эффект сцепления и модель скольжения для непрерывного армирования бетонных покрытий.
3. Амрут Нашиккар, Нирав Шах Сиддхарт, Наутиял Винайрадж, А.К. Вивек Сахай «Частичное выполнение требований курса« Развитие и финансирование инфраструктуры ».
4.E Дж. Йодер «Альтернативные методы строительства бетонных дорог», Браджендра Сингх, «Принципы проектирования дорожной одежды», Национальный семинар по бетонным дорогам и тротуарам.

Мы в инженерно-гражданском.com выражает благодарность профессору Б. Э. Гите и г-ну Йогешу С. Нагаре за то, что они предоставили нам свои исследовательские работы по «Непрерывно армированное бетонное покрытие» . Мы уверены, что это будет очень полезно для тех, кто ищет информацию о непрерывно армированных бетонных покрытиях.

RF-CONCRETE: конструкция из железобетона | Dlubal Software

Дополнительный модуль RF-CONCRETE для проектирования конструктивных элементов из железобетона состоит из двух отдельных частей:

  • RF-CONCRETE Surfaces проектирует плиты, фасадные плиты, плиты, стены, плоские конструкции и оболочки для предельного и предельного состояния по пригодности к эксплуатации.
  • RF-CONCRETE Members проектирует элементы стержней железобетонных конструкций.

RF-CONCRETE выполняет расчет железобетонных поверхностей, стержней и комплектов стержней на предельное и предельное состояние по пригодности к эксплуатации. Соответствующие удлинители позволяют проектировать в соответствии со следующими стандартами:

Опционально можно выполнить расчет огнестойкости прямоугольного и круглого сечения в соответствии с:

Дополнительный модуль RF ‑ CONCRETE также доступен в 2D-версия по хорошей цене.

  1. Характеристики
    • Автоматический импорт внутренних сил из RFEM
    • Расчет предельного состояния и эксплуатационной пригодности
    • С помощью модуля расширения EC2 для RFEM можно выполнить расчет железобетонных элементов в соответствии с Еврокодом 2 (EN 1992‑1‑1: 2004) и следующие национальные приложения:

    В дополнение к национальным приложениям (NA), перечисленным выше, вы также можете определить конкретное NA, применяя определяемые пользователем предельные значения и параметры.

    • Гибкость за счет возможности детальной настройки основы и объема вычислений
    • Быстрый и четкий вывод результатов для обзора распределения результатов сразу после проектирования
    • Вывод результатов в графическом виде, интегрированный в RFEM, например, требуемое армирование
    • Понятно -организованный вывод числовых результатов, отображаемый в таблицах, и возможность графического представления результатов в модели
    • Полная интеграция вывода данных в распечатанный отчет RFEM
  2. Характеристики стержней RF-CONCRETE
    • Определение продольной, поперечной и скручивающей арматуры
    • Представление минимальной и сжатой арматуры
    • Определение глубины нейтральной оси, деформаций бетона и стали
    • Расчет поперечных сечений стержня, подверженных изгибу вокруг двух осей
    • Расчет конических элементов
    • Определение деформации участков с трещинами (состояние II), например, согласно EN 1992-1-1, 7.4.3
    • Учет жесткости при растяжении
    • Учет ползучести и усадки
    • Детализация причин неудачного проектирования
    • Детали проекта для всех проектных мест для лучшей прослеживаемости определения арматуры
    • Варианты оптимизации поперечных сечений
    • Визуализация поперечного сечения бетона ‑Сечение с армированием в 3D-рендеринге
    • Выпуск полной спецификации стали
    • Расчет огнестойкости по упрощенному методу (зонный метод) согласно EN 1992‑1‑2 для прямоугольных и круглых сечений
    • Дополнительное расширение RF ‑CONCRETE Members — дополнительный модуль с нелинейным расчетом каркасов для предельного и предельного состояния эксплуатационной пригодности.Расширение позволяет проектировать потенциально нестабильные структурные компоненты с помощью нелинейного расчета или нелинейного анализа деформации трехмерных каркасов. Дополнительную информацию можно найти в описании продукта дополнительного модуля RF-CONCRETE NL.
  3. Характеристики поверхностей RF-CONCRETE
    • Свободное определение двух или трех армирующих слоев в предельном состоянии
    • Векторное представление основных направлений напряжений внутренних сил, позволяющее оптимально регулировать ориентацию третьего армирующего слоя в зависимости от воздействий
    • Расчетные альтернативы для предотвращения сжатия или сдвига армирования
    • Расчет поверхностей в виде глубоких балок (теория мембран)
    • Возможность определения базового армирования для верхнего и нижнего армирующего слоя
    • Определение расчетной арматуры для расчета предельных состояний эксплуатационной пригодности
    • Вывод результатов в точках сетки любой выбранной сетки
    • Дополнительно расширение модуля нелинейным анализом деформаций.Расчет выполняется в RF ‑ CONCRETE Deflect путем уменьшения жесткости в соответствии со стандартом или в RF ‑ CONCRETE NL путем общего нелинейного расчета, определяющего снижение жесткости в итерационном процессе.
    • Расчет с расчетными моментами на краях колонн
    • Детализация причин неудачного расчета
    • Расчетные детали всех расчетных местоположений для лучшей прослеживаемости определения армирования
    • Экспорт изолиний продольной арматуры в файл DXF для дальнейшего использования в программах САПР за основу чертежей арматуры
  4. Ввод

    Для облегчения ввода данных в RFEM предварительно установлены поверхности, стержни, наборы стержней, материалы, толщины поверхностей и поперечные сечения.Можно выбрать элементы графически, используя функцию [Выбрать]. Программа предоставляет доступ к глобальным библиотекам материалов и сечений. Загружения, сочетания нагрузок и результирующие сочетания можно комбинировать в различных расчетных случаях. Вы можете ввести все геометрические и стандартные параметры армирования для железобетонного проекта в сегментированном окне. Записи геометрии в обоих модулях RF ‑ CONCRETE отличаются друг от друга.

    • В дополнительном модуле RF ‑ CONCRETE Members вы можете определить, например, сокращение арматуры, количество слоев, режущую способность звеньев и тип анкеровки.Для расчета огнестойкости железобетонных элементов необходимо определить класс огнестойкости, огнестойкие свойства материала, а также стороны поперечного сечения, подверженные воздействию огня.
    • В дополнительном модуле RF ‑ CONCRETE Surfaces необходимо указать, например, покрытие бетона, направление армирования, минимальную и максимальную арматуру, базовую арматуру, которую необходимо применить, или рассчитанную продольную арматуру, а также диаметр арматуры.

    Поверхности или стержни могут быть объединены в специальные «группы армирования», каждая из которых определяется различными проектными параметрами. Таким образом, можно эффективно рассчитывать альтернативные конструкции с другими граничными условиями или модифицированными поперечными сечениями.

  5. Результаты

    После расчета модуль показывает наглядные таблицы с указанием необходимой арматуры и результатов расчета предельного состояния по пригодности к эксплуатации.Все промежуточные значения включены в понятной форме.

    Результаты элементов RF ‑ CONCRETE отображаются в виде диаграмм результатов каждого элемента. Предложения по армированию продольной и поперечной арматуры, включая эскизы, документируются в соответствии с действующей практикой. Можно отредактировать предложение армирования и отрегулировать, например, количество стержней и анкеровку. Изменения будут обновлены автоматически. Бетонное поперечное сечение, включая арматуру, можно визуализировать в 3D-рендеринге.Таким образом, программа предоставляет оптимальный вариант документации для создания чертежей армирования, включая спецификации стали.

    Результат RF ‑ CONCRETE Surfaces может отображаться графически в виде изолиний, изоповерхностей или числовых значений. Отображение продольного армирования можно отсортировать по требуемому армированию, требуемому дополнительному армированию, предоставленному базовому или дополнительному армированию и по предоставленному общему армированию. Изолинии продольной арматуры можно экспортировать как файл DXF для дальнейшего использования в программах САПР в качестве основы для чертежей армирования.

Проектирование железобетона — Армирование цементного бетона, теории и преимущества

Перейти к основному содержанию

Дополнительное меню

  • Насчет нас
  • Контактная информация
  • Дом

О гражданском строительстве

  • Дом

  • Гражданские ноты

    • Банкноты

      • Строительные материалы
      • Строительство зданий
      • Механика грунта
      • Геодезия и выравнивание
      • Ирригационная техника
      • Инженерия окружающей среды
      • Дорожное строительство
      • Инфраструктура
      • Строительная инженерия
    • Лабораторные заметки

      • Инженерная механика
      • Механика жидкости
      • Почвенные лабораторные эксперименты
      • Экологические эксперименты
      • Материалы Испытания
      • Гидравлические эксперименты
      • Дорожные / шоссе тесты
      • Стальные испытания
      • Практика геодезии

Что такое железобетон? (с иллюстрациями)

Армированный бетон — это бетон, смешанный с очень прочными материалами, которые повышают прочность бетона при растяжении, что снижает вероятность его разрушения.Разработка железобетона началась в середине 1800-х годов, и это оказалось революционным нововведением в проектировании зданий. Сегодня железобетон является одним из самых распространенных строительных материалов в мире как для целых зданий, так и для ключевых структурных элементов, которые должны выдерживать значительные нагрузки.

У железобетона меньше шансов выйти из строя.

Особый тип железобетона, известный как железобетон, армируется металлическими стержнями, плитами или решетками. Другие материалы, включая пластмассы, волокна и стекло, также могут быть использованы для повышения прочности бетона. Эти альтернативные материалы могут использоваться в средах, где желательны такие свойства, как прозрачность для радиоизлучения и устойчивость к растрескиванию, где требуется бетонная крошка или хлопья. Обычно щелочная среда внутри бетона защищает армирующие материалы, хотя материалы также можно обрабатывать для защиты от коррозии, если есть опасения.

Бетон можно армировать металлическими стержнями, чтобы выдерживать растяжение.

Этот строительный материал должен быть тщательно разработан.Если его недостаточно армировать, бетон может стать слабым и разрушиться. С другой стороны, слишком большая нагрузка на бетон армирующими материалами может сделать его негибким и хрупким. При работе с бетоном люди должны идти по тонкой линии, которая позволяет бетону противостоять растяжению и нагрузкам, сохраняя при этом некоторую гибкость, которая позволит ему подойти до того, как он расколется или сломается по другим причинам.

Железобетон — это тип бетона, армированный металлическими стержнями или сетками.

Железобетон — популярный строительный материал, потому что он очень прочный, с ним легко работать и он доступен по цене. Он обычно используется для фундаментов и несущих стен, поскольку может выдерживать значительный вес. Целые конструкции могут быть изготовлены из бетона по соображениям стоимости или для удовлетворения определенных эстетических потребностей. Этот строительный материал можно формовать и придавать ему такую ​​форму, которая невозможна для некоторых других материалов, предоставляя возможности для новаторского и визуально интригующего дизайна.

Материалы, используемые для армирования, обычно имеют грубую текстуру, чтобы обеспечить полное сцепление бетона. Это распределяет напряжения по бетону, снижая риск развития горячих точек напряжения и напряжения. Строители должны использовать бетон, подходящий для данной области применения, и избегать проблем, таких как низкое качество или плохие условия отверждения, которые могут повредить железобетон.Если бетон затвердевает слишком быстро, с ним плохо обращаются во время заливки или он сделан из плохих материалов, он может выйти из строя после того, как начнет активно использоваться.

Прочность стали на разрыв усиливает армированные балки.

Оборудование для испытаний бетона, средства управления

Испытания на сжатие EN 12390-4 / ASTM C39 / ASTM C109 / ASTM C349 / EN 196-1 / ASTM D2664 / ASTM D2938 / ASTM D7012
  • Обновления для тестеров сжатия

  • Тестеры компрессии общего назначения, COMPACT-Line
    • GENERAL UTILITY — WIZARD AUTO — Стандарт Автоматические тестеры сжатия для кубов и цилиндров
    • GENERAL UTILITY — WIZARD AUTO — Стандарт Автоматические тестеры сжатия для кубов, цилиндров и блоков
    • GENERAL UTILITY — PILOT PRO — Автоматические тестеры сжатия для кубов и цилиндров
    • GENERAL UTILITY — PILOT PRO — Автоматические тестеры сжатия для кубов, цилиндров и блоков
  • Только компрессионная рама
ASTM C39 / AASHTO T22 / ASTM C140
    • ASTM C39, C140, AASHTO T22 Компрессионные рамы
EN 12390-4 / EN 772-1
    • EN 12390-4, EN 772-1 Компрессионные рамы
    • Общие служебные кадры сжатия
  • Машины для сжатия ASTM и AASHTO, COMPACT-Line
ASTM C39 / AASHTO T22
    • ASTM — WIZARD AUTO — Стандартные Автоматические тестеры сжатия для цилиндров
ASTM C39 / AASHTO T22
    • ASTM — PILOT PRO — Автоматические тестеры компрессии для цилиндров
ASTM C39 / AASHTO T22 / ASTM C140 / ASTM C1314
    • ASTM — PILOT PRO — Автоматические тестеры компрессии для цилиндров и блоков
ASTM C39 / AASHTO T22
    • ASTM — AUTOMAX PRO — Автоматические тестеры компрессии высшего качества для цилиндров
ASTM C39 / ASTM C1550 / ASTM C469 / EN 14651 / EN 14488-5 / AASHTO T22 / ASTM C1609
    • ASTM — AUTOMAX PRO-M — Расширенные автоматические тестеры сжатия для цилиндров
  • Консоли управления SMART-Line
    • Pilot PRO SMART line, пульт автоматического управления
    • Automax PRO SMART line, полностью автоматический пульт управления
    • Automax PRO-M SMART line, полностью автоматический пульт управления
  • Тестеры сжатия стандартов EN, COMPACT-Line
EN 12390-4
    • EN — WIZARD AUTO Standard Автоматические тестеры сжатия для кубов и цилиндров
EN 12390-4 / EN 772-1
    • EN — WIZARD AUTO Standard Автоматические тестеры сжатия для кубов, цилиндров и блоков
EN 12390-4
    • RU — PILOT PRO Автоматические тестеры сжатия для кубов и цилиндров
EN 12390-4 / EN 772-1
    • RU — PILOT PRO Автоматические тестеры сжатия для кубов, цилиндров и блоков
EN 12390-4
    • RU — AUTOMAX PRO Первоклассные автоматические тестеры сжатия для кубов и цилиндров
EN 12390-4 / EN 772-1
    • RU — AUTOMAX PRO Первоклассные автоматические тестеры сжатия для кубов, цилиндров и блоков
EN 12390-4 / ASTM C1550 / EN 14651 / EN 14488-5 / ASTM C1609 / EN 12390-13
    • RU — Автоматические тестеры сжатия AUTOMAX PRO-M Advanced для кубов и цилиндров
EN 12390-4 / ASTM C1550 / EN 14651 / EN 14488-5 / EN 772-1 /

Как производится бетон (новое исследование) — Цементный бетон

Как производится бетон: Бетон представляет собой жидкую смесь цемента, воды, песка и гравия .Бетон можно заливать в формы или формы, и он затвердеет, чтобы создать необходимые компоненты бетонной конструкции. Вам интересно узнать о микроструктуре бетона? Вот Новое исследование по микроструктуре бетона.

Химическая реакция и гидратация

схватывание и твердение бетона вызвано химической реакцией между портландцементом и водой, это может быть продемонстрировано добавлением небольшого количества цемента в воду, содержащую индикатор, быстрое развитие синего цвета отражает выделение гидроксила. Ионы из растворяющегося цемента химическая реакция между цементом и водой называется гидратацией.

Связанные: — Высокопрочные свойства бетона, прочность, добавки и состав смеси

Рис1.Ингредиенты бетона

Растворение цемента увеличивает уровни кальция и кремния в растворе, когда концентрация растворенных веществ достигает критических уровней, в результате реакции осаждения образуются новые твердые продукты. Это эскиз зерен цемента, взвешенных в воде.

Твердые продукты Hydration образуют покрытия вокруг частиц цемента и постепенно заполняют пространство между ними, когда покрытия впервые начинают схватываться, происходит устойчивое увеличение прочности по мере того, как покрытия срастаются вместе, величина прочности, достигаемая за счет смесь цемента и воды зависит от того, насколько эффективно заполнено пространство между зернами.

Бетон затвердеет в течение нескольких часов, , но гидратация продолжается в течение недель и даже лет после укладки. Вот изображение частиц цемента до воздействия воды. Сухой цемент представляет собой мелкий порошок, и частицы не прикрепляются друг к другу после того, как цемент смешан с водой и оставлен стоять.

Сейчас картина совсем другая, частицы сгруппированы вместе и прикреплены твердым материалом, который обеспечивает структурную целостность.Ученые Национального института стандартов и технологий научились моделировать гидратацию цемента на компьютере с помощью компьютерного моделирования.

Гидратация ускоряется за несколько минут, а не дней до гидратации. Моделирование частиц цемента размещается на дисплее компьютера, компьютер определяет области частиц, которые могут растворяться в воде.

Кусочки растворенного цемента диффундируют через воду случайным образом и реагируют с образованием твердых фаз.Согласно определенным правилам после завершения цикла , растворения, диффузии и осаждения , компьютер переходит к другому циклу, поскольку этот процесс повторяется снова и снова.

Микроструктура бетона

Микроструктура создает мосты между частицами, которые обеспечивают прочность материала. Компьютерное моделирование оказалось ценным, поскольку позволяет исследователям проверять условия и проводить измерения, которые трудно достичь в реальной жизни.В конце моделирования гидратации структура затвердевшего цементного теста очень похожа на ту, что наблюдается под микроскопом.

Гидратация — это экзотермический процесс, при котором в результате химических реакций выделяется тепло, за процессом гидратации можно легко следить, отслеживая выделение тепла, которое сопровождает реакции,

это делается путем отхлебки раствора из партии бетона и его взвешивания в бутылку, которая помещается в изотермический контейнер, термистор встраивается в свежий раствор , выходной сигнал термистора можно регистрировать с помощью компьютер, результаты этого эксперимента могут быть построены в виде кривой зависимости температуры от времени .

Подробнее : Производство портландцемента — процесс и материалы

Площадь под основным пиком может быть связана с ранним развитием прочности, начальное растворение цемента Purdue — это кратковременное выделение тепла, показанное первым пиком на калориметрической кривой.

После того, как продукты гидратации начального растворения быстро осаждаются на поверхности каждой частицы цемента, слой действует как защитный барьер и временно задерживает дальнейшее растворение частицы, это замедляет реакцию на несколько часов и называется период покоя.

Существование периода покоя позволяет транспортировать бетон на строительную площадку, укладывать и обрабатывать формы, конец периода покоя представляет собой начало схватывания, после чего цемент снова начинает реагировать. быстро с водой, поскольку образуются новые продукты гидратации.

Ученые используют измерения других свойств для контроля схватывания и твердения бетона, исследователям часто необходимо знать, какая часть цемента гидратирована.

Степень гидратации

Степень гидратации можно оценить путем нагревания образца цементного теста и измерения потери веса в зависимости от температуры с помощью оборудования для термогравиметрического анализа . Свободная вода в образце удаляется путем нагревания до 105 градусов Цельсия при 105 градусах. . Образец сухой, но сохраняет свою прочность.

Вода, участвующая в реакциях гидратации, химически соединяется с цементом. Ее можно удалить из образца путем нагревания до 1000 градусов при 1000 градусов всей исходной смеси.вода была удалена из образца. Степень гидратации рассчитывается по весу химически объединенной воды, типичное цементное тесто, отвержденное во влажных условиях, достигает степени гидратации около 80% за 28 дней с,

Электрические свойства образцов цемента или раствора можно отслеживать с течением времени, что приводит к профилям изменений электрического сопротивления. Электрические свойства этого образца цемента измеряются с использованием двух металлических дорог и оборудования, которое измеряет сопротивление и импеданс.

На этой диаграмме показано, как сопротивление электричества через цемент увеличивается по мере того, как цемент гидратируется в раннем возрасте, вода легко проводит ток через образец, но когда продукты гидратации заполняют открытые пространства внутри образца, электрический ток не может проходить так же легко, в этом случае Таким образом, электрические свойства могут быть связаны со степенью гидратации.

Сопротивление и импеданс цемента — это тема исследований, которые когда-нибудь могут изменить методы испытаний свежего бетона в полевых условиях.Текучие свойства бетона очень важны в этой области, потому что качественное строительство требует соответствующего уплотнения.

Стандартное испытание на осадку обеспечивает грубую оценку удобоукладываемости бетона, это испытание широко используется, потому что его легко проводить в полевых условиях, свойства жидкости также являются предметом исследования в лаборатории из-за потока изменений цемента по мере гидратации. Такие свойства, как вязкость и начальное сопротивление потоку, используются для характеристики жидких материалов.

Вода — это жидкость с низкой вязкостью и низким начальным сопротивлением текучести, но бетонный раствор и свежий цементный клей имеют гораздо более высокую вязкость, чем вода.

Вибрация часто используется для преодоления этого сопротивления в бетоне в лаборатории, текучие свойства цементного теста можно измерить с помощью этого реометра Brookfield , исследователи используют более крупное оборудование, такое как реометр Tattersall, для измерения свойств раствора и бетона.

Реологическое оборудование т можно использовать для измерения начального сопротивления потоку, которое во время схватывания называется пределом текучести.Предел текучести начинает увеличиваться, и способность к течению теряется, исследователи заинтересованы в характеристиках текучести, чтобы понять, как процесс гидратации делает свежий бетон жестким и приводит к его застыванию.

Скорость гидратации можно контролировать несколькими способами, такими как температура, тип цемента и примеси . влияют на скорость, одной из наиболее важных переменных является температура окружающей среды, высокие температуры ускоряют гидратацию, так что схватывание также происходит быстрее. как последующее развитие силы.

Когда температура понижается, происходит обратное, хорошее практическое правило состоит в том, что на каждые 10 градусов Цельсия изменение температуры скорость гидратации изменяется в два раза, например, повышение температуры с 20 градусов Цельсия до 30. градусов Цельсия удваивает скорость гидратации , важно помнить, что, когда погода становится более прохладной, бетон затвердевает медленно и его необходимо хранить в форме в течение более длительного периода времени.

Гидратацию бетона также можно контролировать, используя различные типы цемента для противодействия влиянию высоких или низких температур в полевых условиях, например, использование 3 типов цемента противодействует холоду, поскольку они быстрее гидратируются, также есть специальные химические вещества. которые регулируют гидратацию, могут быть добавлены в бетон, чтобы ускорить процесс гидратации.

Установить замедлители гидратации эти материалы широко доступны.

Таким образом, гидратация — это химическая реакция между цементом и водой, которая связывает частицы цемента и заполнитель в бетоне в прочную структуру, и во время массирования одним из важных преимуществ бетона перед другими строительными материалами является то, что он смешивается и формируется на месте и может принимать очень больших и гибких.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *