06.10.2024

Вместо диода транзистор: Полноценная замена диода на полевой транзистор

Содержание

Прекращаем ставить диод / Хабр

Нет, это не очередной «вечняк»

После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.


Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?

При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса

Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)

Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.

Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)

При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)

После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой беcтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)

Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)

Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

Архив с файлами схемы и разводки для EAGLE.

Спасибо за внимание.

Что будет если MOSFET транзистор заменит выпрямительный диод

Кремниевые выпрямительные диоды обладают большим значением прямого падения напряжения, которое достигает величины 1,2 В. Мощность, которую они рассеивают, способна понизить величину КПД питающего источника. На антивозвратном диоде в панели фотоэлектрического типа с величиной мощности 120 Вт и номинальным значением напряжения 24 В, теряется до 6 Вт, что равно 5% относительных единиц. Еще одним отрицательным фактором использования диодов может служить добавочные затраты на систему охлаждения, что служит причиной потерь мощности.

Экономичное решение проблемы заключается в замене выпрямительного диода на MOSFEТ транзистор, который функционирует в режиме вкл/откл.

Рис. Прецизионный диод большой мощности работает в качестве выпрямителя, питает нагрузку индуктивности.

Схема выпрямительного устройства с МOSFEТ транзистором Q1 с низким значением сопротивления  сток-исток во время работы, является источником 36 В. Нагрузка образуется с помощью использования последовательного соединения резистора на 9 Ом и индуктивности – 25 мГн. Компаратор IC служит для управления (открытия/ закрытия) затвора транзистора Q1. Это возможно на тех временных отрезках, когда питающее напряжение на аноде выше напряжения на катоде. Исток работает в качестве анода, а катод заменяется стоком. Способность проводить транзистором ток в направлении сток-исток весьма эффективно работает в этой схеме. При включении Q1 можно эффективно шунтировать паразитный диод, расположенный  между подложкой и стоком, при этом наблюдаются минимальные потери мощности. При небольшом напряжении, происходит работа затвора-истока в качестве транзистора. Так, и паразитный диод D1, и резистор R1 работают в качестве компаратора, они служат для ограничения напряжении я на входах.

Нормальный режим работы выпрямителя при максимально большом токе нагрузки 2,65 А наблюдается падение напряжения, оно равно 33 мВ, а Q1 действует в омической области, там, где нарастает вольт-амперная характеристика. Если напряжение затвора оставить без управления, то падение напряжения будет равно величине способствующей мгновенному возрастанию максимальной мощности.

Подобный подход к решению задачи может быть справедливым для выпрямляющих устройств самого различного типа и  с самым разным количеством диодов.

Эту же схему можно применять в DC/DC и  DS/AC преобразователях, потому как в мостовых схемах, при этом MOSFET транзисторы имеют возможность пропускать и активные, и реактивные токи. Значительной особенностью может считаться исключение воздействие паразитного диода подложка-сток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Опыты с аналогом туннельного диода / Хабр

Помимо туннельного диода, интересно провести ряд экспериментов с его функциональным аналогом, известным уже несколько десятилетий. Он подобен эмулятору на медленном железе: и квантовых эффектов настоящих нет, и быстродействие не то. Но ВАХ аналогична, как и поведение устройства в схеме.

Из КДПВ можно сделать вывод, что аналог представляет собой двухполюсник, внутри которого находится некая несложная схема. Вот она:

Автор пробовал применять транзисторы 2N3904 и 2N2222, но оказалось, что 2N4401 работают лучше. Свойства аналога можно варьировать, подбирая резистор R6. Схема импровизированного характериографа — всё та же:

И всё так же она измеряет по одному каналу суммарное напряжение на «диоде» и резисторе, а по другому — только на резисторе. Падение напряжения только на «диоде» можно определить вычитанием. А зная напряжение на резисторе, можно рассчитать ток.

Характериограф работает одинаково независимо от формы вырабатываемых генератором колебаний. Частоту автор выставил порядка 100 Гц. Аналог значительно «крепче» настоящего туннельного диода: можно не бояться вывести его из строя статикой, слегка превышенным напряжением с генератора, слишком долгой пайкой. Характеристика получилась следующей:

Отрицательное сопротивление на том практически линейном участке ВАХ, где оно есть (от 1,55 до 3,0 В), приблизительно равно -64 Ом. Ток при увеличении напряжения в этих пределах падает от 27,2 до 4,4 мА. При дальнейшем увеличении напряжения ток слегка возрастает.

Генератор на аналоге туннельного диода получается, если просто включить последовательно с ним колебательный контур и подать питание:

Расчётная частота получилась равной 5,033 кГц, реальная — 5,11 кГц. Генератор работает в диапазоне напряжений питания от 1,6 до 3,6 В, наилучшая форма колебаний получается при 3,6 В. Но при напряжении выше 2,6 В генератор не самозапускается, то есть, надо сначала запустить его при меньшем напряжении, которое затем плавно увеличить до оптимального. Амплитуда колебаний превышает напряжение питания: при 3,5 В она равна 4,3 В.

Конденсатор параллельно питанию при такой низкой частоте необязателен.

Усилитель напряжения на аналоге туннельного диода совсем необычен: он питается усиливаемым сигналом, и амплитуда на выходе получается чуть больше, чем на входе. Чтобы получить такой усилитель, достаточно добавить к устройству два резистора: 51-омный уменьшает выходное сопротивление генератора до 25 Ом, 30-омный — нагрузочный:

Подаём прямоугольные импульсы, подстраиваем амплитуду, и внезапно видим:

Амплитуда на входе — 1,26 В, на выходе — 1,84 В.

Конечно, чуда не произошло, автор добавил к входному сигналу и отрегулировал некий «offset». Очевидно, в имеющемся у него генераторе есть функция смещения сигнала вверх добавлением к нему постоянной составляющей. За счёт этого выходная амплитуда и получилась больше входной, хотя в схеме отсутствуют любые ёмкости и индуктивности, кроме паразитных. Но усиление по переменной составляющей налицо.

Стабилитроны из транзисторов, или о чем было видео

После публикации моего предыдущего поста самые внимательные начали спрашивать меня в ЛС о том, что же это за устройство, почему схема такая странная и как она работает. Эта статья содержит ответы на заданные вопросы.

Итак, все началось с того, что мне понадобился следующий пятиполюсник:

Т.е., необходимо хитро разделять питание, делая его двухуровневым/двуполярным (для чего мне нужна такая схема — тема отдельной статьи, пока призываю читателя принять эту нужду как данность).

Очевидное решение этой проблемы изображено на рисунке ниже.

Здесь бы все могло и закончиться, если бы я мог купить стабилитрон. Но, по известным сообществу причинам, в этом деле меня постигла э-э-э… большая неудача.

Что делать, если нет стабилитрона? Конечно, сделать его самому!

Шаг 1.

Известно, что диод — по сути низковольтный стабилитрон.

Видно, что прямая ветвь ВАХ диода по своим свойствам, в принципе, очень похожа на обратную (рабочую) ВАХ стабилитрона (и, естесственно, на его прямую ВАХ). Обе ветви имеют участок, на котором напряжение слабо зависит от тока — для стабилитрона это область обратного пробоя (конечно, и на прямой ветви стабилитрона такой участок тоже есть, но обычно он не используется), для диода — участок ВАХ, на котором диод открыт. В этом случае падение на диоде постоянно и составляет примерно 0.6В для кремния.

Шаг 2.

Известно, что диод можно заменить транзистором:

Это классическая схема, которая применялась в эпоху ТТЛ в микросхемах, и которую до сих пор преподают в ВУЗах.

Шаг 3.

Видно, что если расматривать диоды и стабилитроны как черные ящики, то друг от друга они отличаются только напряжением стабилизации. Например, обычный диод можно использовать как стабилитрон на 0.6В (диоды, специально предназначенные для стабилизации напряжения на прямой ветви ВАХ, называются стабисторами), синий светодиод — как стабилитрон (стабистор) на 3.3В, и т.д. Т.е., в реальности напряжение на открытом диоде зависит от материала полупроводника. Но можно доработать эквивалентную схему диода на транзисторе так, чтобы получить любое нужное напряжение на открытом аналоге диода за счет схемотехнической хитрости.

Переход база-эмиттер транзистора представляет собой самый настоящий диод. Таким образом, в рабочем режиме транзистор будет открываться ровно до тех пор, пока на переходе база-эмиттер не установится напряжение примерно 0.6В (для кремниевого транзистора). Потому очевидно, что в такой схеме

напряжение коллектор-эмиттер тоже будет равно 0.6В, ибо база подключена напрямую к коллектору.

Теперь давайте сделаем так, чтобы напряжение 0.6В получалось не при 0.6В между коллектором и эмиттером, а при произвольном напряжении (ясно, что для этого на базу надо подавать только часть напряжения коллектор-эмиттер):

И вот, мы имеем двухполюсник, падение напряжения на котором мы можем произвольно менять. По сути, мы получаем регулируемый стабилитрон.

Исходя из этих соображений, исходная схема преобразуется следующим образом:

Надеюсь, я ответил на все вопросы интересующихся. :)

Прекращаем ставить диод 2 / Хабр

Несколько лет назад мною была опубликована статья под аналогичным заголовком. Если кратко, то в ней я рассказал о процессе разработки с нуля устройства, выполняющего функции «идеального диода» для предотвращения разряда буферного аккумулятора на обесточенный блок питания.

Устройство получилось относительно сложным, хотя и довольно экономичным (ток потребления при использовании современной версии компаратора LM393 получился около 0.5 mA). Читатели обратили внимание на эту сложность и в комментариях предложили другой вариант «идеального диода», который выглядит на порядок более простым. К своему стыду, на тот момент я не был знаком с такой схемой, поэтому решил при удобном случае разобраться с ней подробнее. После серии экспериментов, которые начались с компьютерной симуляции, а закончились макетной платой, было выяснено, что при своей кажущейся простоте, эта схема очень нетривиальна как с позиции понимания всех протекающих в ней процессов, так и с точки зрения подводных камней, которые она в себе таит.

В общем, предлагаю вашему вниманию другой вариант реализации «идеального диода» с подробным описанием его особенностей.

Канонический вариант, предложенный в комментариях, имеет такой вид:

Всего четыре (или пять, смотря как считать) деталей и «идеальный диод» готов. Вроде бы все очень просто. Однако первое, что бросается в глаза, это использование сборки вместо обычных дискретных транзисторов. Может показаться, что это прихоть автора данного конкретного исполнения. Однако после изучения других вариантов обнаруживается, что такой подход используется почти во всех схемах, которые можно найти в сети. Тут мы и подходим к разбору принципа действия этой схемы.
Для понимания принципа начинать лучше с момента, когда все переходные процессы уже завершены, и нагрузка потребляет некоторый ток от блока питания. Этот ток течет через ключ и из-за ненулевого сопротивления канала, напряжение в точке 1 немного больше, чем в точке 2. В этом случае ток из точки 1 через эмиттерный переход T1 попадает в цепь баз обоих транзисторов, а затем через R1 стекает на «землю». В результате на базах транзисторов устанавливается напряжение, равное напряжению открытия эмиттерного pn-перехода. Но из-за того, что эмиттер T2 находится под более низким потенциалом, чем эмиттер T1, ток через его базу почти не течет потому что напряжение между его эмиттером и базой меньше, чем необходимо для открытия перехода. А раз базового тока нет, то T2 закрыт, сопротивление эмиттер-коллектор высокое, затвор силового ключа заземлен через R2, что создает условия для его открытия. Как итог, ток течет из точки 1 в точку 2 через открытый канал силового ключа (а не просто через технологический диод) и падение напряжения на этом участке измеряется милливольтами.

При обесточивании блока питания напряжение в точке 1 очень быстро станет ниже, чем в точке 2. При этом ток прекратит течение через эмиттерный переход T1 и вместо этого начнет протекать через эмиттерный переход T2, открывая его. В итоге сопротивление эмиттер-коллектор транзистора T2 сильно уменьшится, затвор силового ключа окажется соединенным с истоком, и канал будет закрыт.

Исходя из вышесказанного, необходимым условием работы схемы является тождественность транзисторов T1 и T2. Особенно это касается напряжения открытия эмиттерных переходов. Оно, во-первых, должно совпадать с точностью не хуже единиц милливольт, а во-вторых, любые его колебания под действием температурного фактора должны быть синхронными для обоих транзисторов.

Именно поэтому использование дискретных транзисторов в этой схеме недопустимо. Только изготовленная в рамках единого технологического цикла пара может считаться достаточно тождественной. А их размещение на общей подложке гарантирует необходимую температурную связь.

И уж тем более лишен смысла вариант схемы, который тоже можно найти на просторах интернета, где вместо одного из транзисторов используется диод.

Такая схема при определенном везении заработает, но ни о какой надежности работы тут речи просто не идет.

Кстати, некоторые авторы идут дальше, и кроме транзисторной сборки используют так же и резисторную (либо дискретные резисторы с допуском 1% или лучше), мотивируя это необходимостью дальнейшего соблюдения симметрии схемы. На самом деле резисторы совершенно не нуждаются в точном подборе, но об этом ниже.

Приведенное выше объяснения принципа действия является сильно упрощенным, оно дает краткий ответ на вопрос «как работает», но не дает понимания глубинных процессов, происходящих в схеме, и, в частности, никак не обосновывает выбор номиналов элементов.

Так что, если кому интересны подробности, то читаем дальше, а кому достаточно практической схемы, просто скрольте до последнего изображения статьи.

Для наглядности давайте сначала перевернем схему, заменим PNP-транзисторы более привычными NPN, и, наконец, немного усложним, чтобы было понятно, откуда вообще взялся конечный вариант.

Итак, что мы тут видим? Два простых усилительных каскада по схеме ОЭ и общая цепь смещения через резистор Rs. Если транзисторы одинаковые, то ток, текущий через резистор смещения, поровну разделится между базами обоих транзисторов и приоткроет их на одинаковую величину. В результате через коллекторные нагрузочные резисторы потекут одинаковые токи, и выходные напряжения в точках OUT1 и OUT2 будут тоже равны.

Теперь вернемся к нашим баранам и вспомним, что эмиттеры транзисторов не соединены вместе, напротив, между ними может возникать разность потенциалов, равная падению напряжения на открытом канале силового ключа. Учитывая величину сопротивления канала, разность напряжений между эмиттерами может составлять от единиц до сотен милливольт. Вот как это выглядит на нашей схеме.

В результате смещения эмиттер T2 оказывается немного «выше над землей», чем эмиттер T1, а значит напряжение Ube2 будет ниже, чем Ube1. Теперь вспомним, как выглядит ВАХ эмиттерного pn-перехода.
Если рабочая точка находится в области максимального наклона характеристики, то даже незначительное изменение приложенного напряжения ведет к очень сильному изменению протекающего тока, т.е. чем ниже прямое напряжение, тем больше эквивалентное сопротивление перехода.

Снова посмотрим на схему. Напряжение на эмиттерном переходе T2 уменьшилось, его эквивалентное сопротивление увеличилось, а значит ток смещения, текущий через Rs уже не разделяется симметрично между базами транзисторов, а течет преимущественно через эмиттерный переход T1. От этого T1 открывается, а T2, соответственно, закрывается на ту же величину. Распределение токов теряет симметрию и схему как-бы «перекашивает». Причем абсолютная величина перекоса равна коэффициенту передачи тока транзисторов (не суммарно, а каждого в отдельности, при условии, что транзисторы одинаковые).

Если мы перевернем разность потенциалов эмиттеров на обратную, схему аналогично перекосит в противоположную сторону: чем больше коллекторный ток у одного транзистора, тем меньше у второго и наоборот. В итоге имеем «обратное» токовое зеркало, где под влиянием одного входного сигнала происходит симметрично-противоположное изменение токов в плечах схемы.

Классическое «прямое» токовое зеркало (как те, что входят в состав операционных усилителей и компараторов) отличается тем, что в нем наоборот под влиянием двух однополярных входных величин в противоположные стороны изменяется ток одного транзистора.

Идем дальше. Полученная схема дает нам понятие о ролях резисторов. Коллекторные резисторы R1 и R2 являются нагрузкой транзисторов. Их роль – питание тех цепей, которые подключаются к нашей схеме, как к источнику управляющего сигнала. А значит, их сопротивление должно быть таким, чтобы протекающего через них тока было достаточно для активации входных цепей нагрузки. В данном конкретном случае нагрузкой является затвор MOS-транзистора, который имеет входное сопротивление многие мегаомы.

В даташитах обычно указывается не входное сопротивление, а ток утечки затвора при заданном напряжении. Из этого тока можно определить оммическое сопротивление изоляции затвора и защитных диодов. Например, для транзистора IRF5305 заявлен ток утечки не более 100 нано-ампер при напряжении 20 вольт. Простой подсчет дает нам величину входного сопротивления по меньшей мере 200 МОм.

При таком входном сопротивлении потребителя можно было бы использовать очень высокоомные нагрузочные резисторы, уменьшив таким образом собственное потребление транзисторов до наноамперного уровня. Однако лучше не «шиковать» слишком сильно, потому что высокоимпедансные цепи становятся чувствительными к разнообразным наводкам. А кроме того, при субмикроамперных коллекторных токах падает коэффициент усиления биполярного транзистора. Наиболее уместным сопротивлением нагрузок в данном случае можно считать сотни кОм. Это оптимальное сопротивление с точки зрения надежности, и при этом достаточно высокое с позиции экономичности.

С коллекторными резисторами разобрались. Теперь перейдем к резистору смещения Rs. Что зависит от его сопротивления? От него зависят начальные токи коллекторов, то есть токи полностью сбалансированной схемы. Причем эти токи зависят и от выбранных ранее номиналов нагрузочных резисторов, и от коэффициента усиления транзисторов. Так какое же значение этого сопротивления все-таки будет оптимальным? А такое, при котором режимы транзисторов окажутся в точках наименьшей устойчивости.

Ведь чем проще схема поддается влиянию дисбалансирующих факторов, тем выше получается ее чувствительность ко входному сигналу. Именно поэтому в отсутствие входного сигнала транзисторы не должны быть полностью открытыми или полностью закрытыми, они должны быть в промежуточном состоянии.

Тут уместна аналогия с простейшими качелями-балансирами. Если такие качели находится в равновесии, то вывести их из этого состояния проще всего: легкий толчок, и они наклоняются в нужную сторону. А вот если они уже перекошены грузом на одном из плечей, выведение из такого устойчивого состояния требует значительных усилий.

Поэтому наилучшим сопротивлением Rs является такое, при котором напряжения на коллекторах транзисторов примерно равны половине питающего напряжения. Это условие не нужно воспринимать буквально и подбирать сопротивление до ома. Более того, для уменьшения рабочих токов вполне допустимо сознательно увеличить Rs так, чтобы напряжения на коллекторах было примерно на 5 вольт ниже питающего. Это оставит достаточный запас для надежного управления силовым ключом, но при этом до минимума уменьшит токи во всех цепях, а значит и потребление схемы.

Для управления современным силовым MOSFET-том на его затвор нужно подавать напряжение, не менее того, что заявлено в строке «Gate threshold voltage» даташита. Для типичного современного транзистора это напряжение равно 3-4 вольта, отсюда и выбранное значение 5 вольт, которого гарантировано хватит чтобы полностью открыть транзистор при минимальном входном сигнале.

Что касается конкретного номинала Rs, то натурный эксперимент показал, что, например, для сборки BC807DS его сопротивление должно быть примерно 5 MОм. Для других транзисторов эта величина может отличаться, но есть еще один фактор, который играет нам на руку и уменьшает необходимость в тонком подборе сопротивлений.

Дело в том, что в реальной схеме, когда через силовой ключ начнет идти ток, выводящий схему из равновесия, напряжение на затворе начнет изменяться, а значит, начнет изменяться и сопротивление канала. И вот эта обратная связь носит усиливающий характер, когда падение напряжения на канале приводит к дисбалансу схемы, от чего изменяется напряжение на затворе так, что сопротивление канала меняется еще сильнее, что ведет к еще большему перекосу. И так продолжается до достижения крайнего положения, в котором силовой ключ больше не реагирует изменением сопротивления канала на изменение напряжения затвора. Однако, если коэффициент усиления транзистора достаточно большой, то процесс идет дальше, вплоть до достижения напряжения питания или нуля (в зависимости от соотношения напряжений в точках 1 и 2).

Таким образом, реальная схема, которую можно нарисовать с учетом сказанного выше, может иметь такой вид:

И в таком виде она действительно изредка встречается на сайтах, посвященных электронике. Однако начинали мы с другой вполне рабочей схемы, которая и проще и встречается гораздо чаще. Что отличает эти два варианта? Давайте снова на короткое время вернемся к прототипу, с которого начинали подробный разбор.
Что в этой схеме лишнее? По той причине, что управляющее напряжение для затвора силового ключа мы снимаем с коллектора одного из транзисторов (точка OUT2), напряжение на коллекторе второго (OUT1) нас совершенно не волнует. А по той причине, что наличие или отсутствие малого коллекторного тока весьма слабо сказывается на вольт-амперной характеристике эмиттерного перехода, нагрузочный резистор R1 спокойно можно удалить из схемы. А чтобы коллекторный вывод T1 не болтался воздухе и не собирал наводки, его лучше соединить с базой T1 (хотя делать это не обязательно, схема отлично работает и с оборванным выводом коллектора).
Итоговая схема принимает до боли знакомый вид:
Причем я специально сохранил расположение резисторов как в прототипе, чтобы подчеркнуть тот факт, что резисторы эти выполняют совершенно разные функции. Это не очевидно на исходной схеме, зато хорошо видно здесь, особенно после всех объяснений и выкладок. Левый резистор – это резистор смещения Rs, а правый – нагрузочный резистор R2 из схемы прототипа. Они не то что не должны быть совершенно одинаковыми (как думают некоторые авторы), их номиналы вообще взаимосвязаны очень косвенно и в общем случае не обязаны даже иметь общий порядок.

Именно поэтому нет никакой надобности использовать в этом месте резисторную сборку или дискретные резисторы малого допуска.

А еще из этой схемы следует, что питание устройство получает из точки 2, а точка 1 – просто источник входного сигнала. Таким образом, когда напряжение присутствует только в точке 2, питание подается непосредственно, а если только в точке 1, то сначала запитка происходит через технологический диод силового транзистора, а затем, когда схема проснется и начнет работать, уже через открытый канал.

С принципом действия и номиналами разобрались, результат на схеме:
Именно в таком виде схему массово рекомендуют на разных форумах, но есть пара нюансов, которые сильно ограничивают ее практическое применение. Первая проблема заключается в одном параметре биполярных транзисторов, о котором не принято вспоминать в большинстве практических применений. Вот он:
Оказывается, что максимальное обратное напряжение эмиттерного перехода большинства маломощных транзисторов составляет единицы вольт, и вот чем это грозит нашей схеме. Если напряжение есть только в точке 2, а точка 1 через небольшое сопротивление соединена с землей (как раз так себя ведет обесточенный блок питания), то ток из точки 2 через прямосмещенный эмиттерный переход T2 попадает на обратносмещенный эмиттерный переход T1, за которым уже почти земля. То есть почти все напряжение точки 2 оказывается приложено к эмиттерному переходу T1.
И вот тут и происходит самое интересное. Если напряжение в точке 2 выше предельно допустимого, то эмиттерный переход T1 входит в режим лавинного пробоя, и при достаточно малом значении RL, транзистор просто выходит из строя.

Таким образом, надежная эксплуатация этой схемы возможна только при рабочих напряжениях не выше, чем то, что заявлено в даташите на выбранный транзистор, т.е. на практике это не более 5-8 вольт. Даже 12-вольтовый источник формально уже не может быть подключен к такой схеме.

Тут кстати, интересный факт. Я перепробовал несколько сборок разного типа, у которых заявлено максимальное напряжение эмиттерного перехода от 5 до 8 вольт, и все они показали напряжение лавинного пробоя аж 12-13 вольт. Однако не стоит на это рассчитывать в практических схемах, не зря же говорят, что спецификации пишутся дымом сгоревших компонентов.

Если нужно коммутировать относительно высокое напряжение, то транзистор T1 нуждается в защите. Проще всего это сделать, просто внеся дополнительное сопротивление, которое ограничит обратный ток через переход.
Этот резистор внесет некоторый дисбаланс в схему, однако по той причине, что его сопротивление довольно мало по сравнению с сопротивлением резистора смещения, влияние будет минимальным и на практике не ощутимым. Кроме того, через этот резистор потечет небольшой ток утечки из точки 2 в точку 1, который сделает наш диод не таким идеальным, как хотелось бы. Но тут приходится идти на некоторый компромисс.

Некоторые авторы (те немногие, которые осознали саму необходимость защиты) предлагают дополнительно оградить эмиттерный переход при помощи прямо включенного диода.

Этот диод позволяет вообще не достигать порогового значения напряжения, ограничив его величиной прямого падения, то есть менее одного вольта.

Однако по моему скромному мнению, скрипач диод не нужен. Дело в том, что лавиный пробой для любого pn-перехода является совершенно нормальным режимом работы и с ним не нужно бороться.

Старая поговорка гласит: убивает не напряжение, убивает ток. И это относится не только к случаю поражению человека электрическим током. С диодами и транзисторами ситуация аналогичная. Лавинный пробой сам по себе полностью обратим и штатным образом используется, например, в стабилитронах. А дурная слава закрепилась за ним из-за того, что в силовых схемах это явление как правило сопровождается неконтролируемым ростом тока, протекающего через переход, сильным нагревом, и следующим за ним уже необратимым тепловым пробоем.

Если схему планируется использовать при напряжениях около 12 вольт, то все можно оставить как есть и наслаждаться. Но ситуации в жизни бывают разные и рано или поздно напряжение может оказаться и выше, например 24-27 вольт, как в бортовой сети больших автомобилей.

И вот тут всплывает еще одно ограничение, о котором тоже не часто приходится вспоминать при проектировании маловольтажных схем. Дело в том, что затвор MOSFET отделен от канала тончайшей оксидной пленкой. Ее толщина определяет передаточные свойства транзистора и на практике составляет единицы атомов оксида кремния. Естественно, что электрическая прочность такого тонкого диэлектрика оказывается весьма невысокой. Заглянем в даташит типового мощного «полевика».

Тут мы видим, что предельное напряжение завтора – 20 вольт. А теперь снова посмотрим на конечную схему нашего устройства и подумаем, что будет, когда транзистор T2 окажется полностью закрыт. В этом случае затвор полевого транзистора через R2 окажется заземлен. А так как сопротивление затвора, как мы выяснили выше, имеет порядок сотен мегаом, потенциалы распределятся так, что почти все напряжение питания будет приложено к изоляции затвора.

При питании напряжением выше 20 вольт получаем риск пробоя затвора силового ключа. Чтобы этого не произошло, нужно как-то ограничить напряжение между истоком и затвором до допустимой величины. Проще всего сделать это при помощи стабилитрона, шунтирующего выводы истока и затвора.

В этом случае даже если транзистор T2 окажется полностью закрыт, излишний ток возьмет на себя стабилитрон, и напряжение на затворе ограничится напряжением стабилизации D1. Именно поэтому напряжение стабилизации должно быть в диапазоне от параметра «Gate Threshold Voltage» до «Gate-to-Source Voltage», с небольшими отступами, конечно же.

В принципе, в некоторых даташитах в составе силового MOS-транзистора рисуют встречно-последовательную пару стабилитронов между затвором и истоком, которая, надо полагать, как раз и предназначена для ограничения напряжения на затворе. Так что тут каждый пусть решает сам, доверять судьбу транзистора встроенной защитной цепи, или же подстраховаться собственными силами.

Полученное тут устройство отлично выполняет свои функции «идеального диода», обеспечивая прямое сопротивление, полностью соответствующее выбранному силовому «полевику», обратное сопротивление более 100 кОм, и собственное потребление при напряжении 25 вольт не более 150 мкА.

Идеальный диод на MOSFET / Схемотехника / Сообщество разработчиков электроники

Наверняка, тема тыщу раз обсуждалась, но раз народ спрашивает, то вот он, «идеальный» диод на MOSFET’е:

Идеальный диод на MOSFET


«Идеальный» он потому, что он лишен главного недостатка обычного диода: на обычном диоде падает постоянное напряжение, обычно 0.6 вольт для pn диодов и 0.3 вольта для диодов Шоттки. Если ваша система питается, к примеру от 2*AA баратеек, то 0.6 вольта — это уже 25% емкости батареек, которая уйдет в тепло.

«Идеальный» диод обладает постоянным сопротивлением, и его можно сделать намного более эффективным, чем обычный.

Работает он очень просто. При подачи питания, ток протекает через паразитный диод транзистора. Напряжение на истоке оказывается больше чем на затворе и транзистор открывается, ток течет в нагрузку.

Возможен вариант и с N-канальным транзистором. Вот такой:

N канальный идеальный диод

Тут все аналогично: транзистор открывается когда напряжение на затворе становится больше чем на истоке. N-канальные транзисторы обычно лучше p-канальных, и, поэтому, эта схема лучше.

Низкие напряжения

Во-первых, такому «диоду» нужно некоторое минимальное напряжение, чтобы он хорошо открыться. К примеру, если ваша система работает от одной AA батарейки, то такой транзистор найти будет очень сложно, если вообще возможно. Альтернативой может стать вот такая система:
Защита от переполюсовки при малых напряжениях
RT1 — это самовостанавливающийся предохранитель, он-же, сопротивление с положительным температурным коэффициентом. При переполюсовке ток начинает идти через диод, сопротивление нагревается и ток практически прекращается.

Ввод резерва

Для ввода резерва, в случае и «идеальными диодами», нужна немного более сложная схема, чем с обычными:
Ввод резерва
In2 должен иметь большее напряжение и имеет приоритет над In1. Если нужно еще и отключать In1, то посмотрите статью «двусторонний ключ для питания»

Устраняем заблуждения относительно внутреннего диода MOSFET

Проектировщики мощных импульсных цепей на основе полупроводниковых приборов с широкой запрещенной зоной часто допускают ошибки, связанные с режимом переключения транзисторов, которые потом дорого им обходятся.

Порой нам приходится сталкиваться с неприятной для самолюбия правдой о собственных познаниях в области силовой электроники. Поэтому автору этой статьи хотелось бы попросить читателей попытаться хотя бы на время стать полностью самокритичными!

У вас неверные представления о внутреннем диоде в мощных полевых транзисторах? Вы не одиноки в этом среди множества остальных специалистов. У любого из нас есть похожие истории о том, с чего начиналась эта путаница.

MOSFET обладают весьма полезным свойством, которое заключается в том, что когда VGS = 0, транзистор все еще проводит ток в обратном направлении. Происходит это из-за образования между истоком и стоком транзистора паразитного диода, называемого также внутренним диодом (body diode). Работая с силовой электроникой, мы обнаруживаем, что MOSFET могут пропускать ток в обратном направлении через внутренний диод, а у IGBT такой возможности нет (из-за отсутствия подобного диода).

В англоязычной литературе этот эффект уже привыкли называть просто «body diode». И все было прекрасно на протяжении десятилетий, пока не появились полупроводниковые приборы с расширенной запрещенной зоной. Благодаря измененной полупроводниковой топологии у некоторых из них нет паразитных диодов. Но они по-прежнему имеют то же самое полезное свойство, что и MOSFET: они обладают проводимостью в обратном направлении, когда VGS = 0. В частности, этим свойством отличаются GaN-транзисторы типа E-HEMT (High Electron Mobility Transistor).

Вот после этого и возникла путаница.

Я и мои коллеги неоднократно встречались с инженерами, которые предполагают, что поскольку GaN-приборы не имеют паразитных диодов, то они не проводят ток в обратном направлении. Мы неоднократно обсуждали эту тему, беседы велись в подобном ключе:

Инженер: Таким образом, у GaN-транзисторов нет паразитного диода?

Я: Да, верно.

Инженер: Значит, они не могут проводить ток в обратном направлении при отсутствии управляющего напряжения между затвором и истоком? Поэтому мне нужно добавить в схему встречно-параллельный диод?

Я: Это не совсем так.

Инженер оставался в недоумении.

Пришло время обновить используемые в данном случае понятия, чтобы правильно ссылаться на канал обратной проводимости, понимая, почему для этого не нужны внутренние body-диоды, и даже оценить преимущества, которые обеспечивают GaN-транзисторы, не имеющие таких диодов.

 Что же на самом деле происходит

Внутри GaN E-HEMT есть так называемый вторичный канал двумерного электронного газа (2DEG), сформированный на гетероэпитаксиальной структуре AlGaN/GaN. Он обеспечивает чрезвычайно высокую плотность заряда и подвижность носителей. Для работы в режиме обогащения затвор, по сути, обедняет 2DEG под этим электродом при нулевом или отрицательном смещении. Положительное смещение на затворе притягивает электроны в обедненную область и открывает канал 2DEG. При прямой проводимости (первый квадрант на рисунке 1) такое поведение во многом напоминает MOSFET, но с улучшенными характеристиками переключения.

В третьем квадранте (когда VGS = 0, а VDS отрицательное) устройство ведет себя не так, как MOSFET. Проще говоря, отрицательное смещение на выводе стока создает градиент напряжения в канале полупроводникового устройства. Это, в свою очередь, приводит к тому, что обедненная область под затвором имеет отрицательный электрический потенциал относительно электрода затвора. Другими словами, сток GaN HEMT будет вести себя как исток, а исток будет действовать как сток. Как только разность потенциалов между затвором и каналом превышает пороговое напряжение (VTH_GD), транзистор включается. Этот эффект иногда называют «самокоммутацией» (self-commutation). Поскольку транзистор проводит ток I через резистивный канал Ron, падение напряжения D вычисляется по формуле 1:

D = VTH_GD + IRon   (1)

Если транзистор выключен с отрицательным напряжением, сток должен быть более отрицательным, прежде чем возникнет самокоммутация, а общее падение напряжения DT будет вычисляться по формуле 2:

DT= VTH_GD+ (-VGS) + IRon   (2)

На диаграмме из указаний GaN Systems по применению GN001 показаны графики IR для различных значений VGS

Рис. 1. На диаграмме из указаний GaN Systems по применению GN001 показаны графики IR для различных значений VGS

Теперь займемся поиском истины. Стоит отметить, что закреплению ошибочного представления о канале обратной проводимости способствовали сами производители GaN-транзисторов.

Многие годы они использовали два основных подхода для объяснения характеристик своих изделий при нулевом обратном смещении VGS. Во-первых, некоторые производители просто продолжали пользоваться термином «body diode». Они объясняли это тем, что GaN-транзисторы имеют некий магический диод с нулевым QRR (заряд обратного восстановления диода) и необычайно высоким падением напряжения. Это не истина, но скорее удобная фикция, позволяющая разработчикам почти всегда создавать удачные схемные решения.

Во-вторых, некоторые производители публикуют подробную документацию с характеристиками своих полупроводниковых приборов, ожидая, что инженеры внимательно прочитают эти руководства, осознают возможные ошибки и способы их устранения, прежде чем рассматривать технологию. Это достойный одобрения подход, хотя он и упускает из виду тот факт, что инженеры — такие же люди, которым трудно изменить прочно укоренившиеся привычки.

Как и следовало ожидать, результатом этих подходов стала дезориентация пользователей. До сих пор специалисты технической поддержки из компании GaN Systems встречают схемы заказных проектов, где к нашим транзисторам подключают встречно-параллельные диоды. 

Преимущества при отсутствии внутреннего диода

В конце концов, обратная проводимость при отсутствии внутреннего диода имеет некоторые реальные преимущества.

Во-первых, отсутствие этого диода означает отсутствие QRR (заряда для обратного восстановления диода), что делает GaN-транзистор пригодным для мощной полумостовой схемы коммутации. Это, в свою очередь, означает отсутствие дополнительных проблем с жесткой коммутацией из-за обратного восстановления диода, что приводит к гораздо более высоким потерям на переключение. К тому же отсутствие в GaN-транзисторах эффекта обратного восстановления позволяет использовать новые высокоэффективные схемные решения, такие как PFC (управление коэффициентом мощности) с безмостовым выходным каскадом на двух транзисторах.

Во-вторых, как видно из рисунка 2, при отсутствии этого диода нет всплеска шума при его включении. Все это упрощает разработку цепей защиты от ЭМП и повышает быстродействие схемы, что особенно полезно в компактных конструкциях, где и преобразование мощности, и обработка сигнала выполняются на одной и той же небольшой печатной плате.

Наконец, есть преимущества в ограничениях dv/dt и надежности. MOSFET имеют механизм отказа, вызываемый быстрым нарастанием напряжения на встроенном в MOSFET диоде (dv/dt). Пока этот диод находится в состоянии обратного восстановления, на нем увеличивается напряжение «сток-исток». Такое поведение может вызвать ложное включение внутреннего паразитного биполярного NPN транзистора, что в итоге разрушает структуру MOSFET.

Осциллограммы сигналов переключения типичного MOSFET и E-HEMT иллюстрируют некоторые различия в поведении при включении, вызываемые встроенным диодом

Рис. 2. Осциллограммы сигналов переключения типичного MOSFET и E-HEMT иллюстрируют некоторые различия в поведении при включении, вызываемые встроенным диодом

В действительности, при отсутствии встроенного диода имеется только один недостаток: повышенное падение обратного напряжения (рисунок 3). В GaN E-HEMT падение обратного напряжения включает пороговое напряжение и напряжение на резистивном элементе, возникающее из сопротивления канала. Падение напряжения в GaN E-HEMT, рассчитанном на 650 В, может достигать 3 В при протекании больших токов. Это больше чем эквивалентное падение в MOSFET. Такое повышенное обратное напряжение может снизить эффективность типичной полумостовой схемы за счет увеличенных потерь при переключении («мертвое время»).

Правда, эти потери можно понизить, сократив длительность паузы между переключениями. Режим ускоренного переключения GaN E-HEMT обычно упрощает задачу сокращения паузы между открытым и закрытым состояниями ключей. Кроме того, есть такие корпусные решения от компании GaN Systems как GaNPx, они отличаются малой паразитной индуктивностью, что обеспечивает крутые фронты переключающих импульсов с сокращенным мертвым временем.

Различия между обратной проводимостью в MOSFET и GaN-HEMT

Рис. 3. Различия между обратной проводимостью в MOSFET и GaN-HEMT 

Как правило, выигрыш в эффективности усиления при реализации GaN-схем получают от сокращения мертвого времени, что значительно перевешивает потери от повышенного обратного напряжения. Сегодня такое повышение эффективности реализовать проще, поскольку драйверы и контроллеры нового поколения все чаще поддерживают сокращение мертвого времени.

Также стоит отметить, что короткое мертвое время выгодно и по другим причинам. Например, в аудиоусилителях класса D укороченное мертвое время приводит к снижению гармонических искажений и повышению качества звука.

Есть немало учебных пособий, способных помочь тем, кто хочет избавиться от ошибочных представлений о роли встроенных диодов и намерен создавать оптимизированные по эффективности и стоимости схемы. Понимание особенностей поведения встроенного диода и четкое представление рабочих режимов GaN-устройств помогают устранить путаницу в голове, по крайней мере, до тех пор, пока очередная эволюция в сфере силовой электроники не приведет к появлению новой терминологии.

Источник: https://www.eeworldonline.com

Литература:

  1. Design/High side driver considerations
  2. Recommended GaN driver/controller ICs
  3. Design examples

Разница между диодом и транзистором (со сравнительной таблицей)

Одно из основных различий между диодом и транзистором состоит в том, что диод преобразует переменный ток в постоянный, в то время как транзистор передает входные сигналы от цепи с низким сопротивлением к цепи с высоким сопротивлением. Другие различия между ними объясняются ниже в виде таблицы.

Диод также известен как кристаллический диод, потому что он состоит из кристаллов (кремния или германия).Это двухконтактное устройство, которое начинает проводить ток, когда положительный вывод источника питания подключается к области p-типа, а отрицательный вывод подключается к n-области диода.

Транзистор имеет три области: эмиттер, коллектор и базу. Эмиттер сильно легирован, поэтому он может переносить тяжелую заряженную частицу на базу. База транзистора меньше по размеру и слегка легирована, поэтому носитель заряда легко перемещается от базы к области коллектора.Коллектор — это самая большая область транзистора, поскольку он может рассеивать тепло, выделяемое на переходе база-коллектор.

Таблица сравнения

Основа для сравнения Диод Транзистор
Определение Полупроводниковый прибор, в котором ток течет только в одном направлении. Полупроводниковое устройство, которое передает слабый сигнал от цепи с низким сопротивлением к цепи с высоким сопротивлением.
Символ diode-symbols transistor-symbols
Использует Выпрямитель Регулятор, усиление и выпрямление
Клемма Два (анод и катод) Три (эмиттер, база и коллектор)
Переключатель Неуправляемый Управляемый
Типы Переходный диод, светоизлучающий диод, фотодиоды, диоды Шоттки, туннель, вератор и стабилитрон. Биполярный транзистор и полевой транзистор.
Область P-область и N-область Эмиттер, коллектор и база
Область истощения Один Два

Определение диода

Диод представляет собой устройство с двумя выводами, которое позволяет току течь в одном направлении. Диод изготовлен из полупроводникового материала и в основном используется для выпрямления.Проводимость в цепи возникает при прямом смещении диода.

Прямое смещение означает, что материал P-типа подключен к положительной клемме батареи, а материал N-типа подключен к отрицательной клемме батареи. Блок-схема диода представлена ​​на рисунке ниже.

diode-image

Определение транзистора

Транзистор — это трехконтактное устройство, которое используется для усиления электрических сигналов. Он состоит из полупроводникового материала.Эмиттер, коллектор и база — это три вывода батареи. Эмиттерный переход имеет прямое смещение и имеет небольшое сопротивление, тогда как коллекторный переход имеет обратное смещение и имеет высокое сопротивление. Когда слабый сигнал вводится в цепь низкого сопротивления транзистора, он передает сигнал из цепи высокого сопротивления.

transistor-image

Ключевые различия между диодом и транзистором

  1. Диод представляет собой полупроводниковое устройство, которое позволяет току течь только в одном направлении, тогда как транзистор передает сопротивление из области низкого сопротивления в область высокого сопротивления.
  2. Диод используется для преобразования переменного тока в постоянный или для выпрямления, тогда как транзистор в основном используется для усиления и в качестве регулятора.
  3. Диод имеет два вывода, а именно анод и катод. Анод — это положительный вывод, а катод — отрицательный вывод диода. Транзистор имеет три вывода; они эмиттер, коллектор и база.
  4. Диод — это тип неуправляемого переключателя, тогда как транзистор — это управляемый переключатель.
  5. Транзисторы в основном подразделяются на два типа, т.е.е., биполярный переходной транзистор и полевой транзистор. BJT использует как электроны, так и дырку в качестве носителя заряда, а полевой транзистор является униполярным транзистором. Диод бывает многих типов, например, фотодиоды, стабилитрон, туннельный диод, варакторный диод и т. Д.
  6. P-тип и N-тип — это две области диода. Дырка является основным носителем заряда P-области, а электроны — основным носителем заряда N-области диода. Транзистор имеет три области: эмиттер, базу и коллектор.Среди трех областей база является самой маленькой областью, а коллектор — самой большой областью транзистора.
  7. Диод имеет только один обедненный слой между P-типом и N-типом, тогда как транзистор имеет два обедненных слоя, один находится между эмиттером и базой, а другой — между базой и коллектором.

Считается, что транзистор состоит из двух диодов с PN переходом. Но два дискретных диода, соединенных спина к спине, никогда не работают как транзисторы.

.

Как проверить транзистор и диод »Электроника

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Учебное пособие по мультиметру Включает:
Основы работы с измерителем
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр DMM
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения

Измерения сопротивления
Тест диодов и транзисторов
Диагностика транзисторных цепей


В то время как многие цифровые мультиметры в наши дни имеют особые возможности для тестирования диодов, а иногда и транзисторов, не все это делают, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Эта форма тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты будут проверены при изготовлении, и производительность сравнительно редко упадут до точки, в которой они не работают в цепи.

Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра могут очень быстро и легко обнаружить эти проблемы.

Таким способом можно тестировать диоды

большинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает нормально, необходимо провести всего два теста мультиметра.

Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от другого.

Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет различным — оно будет даже различным в разных диапазонах измерителя.

… полоса на корпусе диода представляет катод ….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговая инструкция:
  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
  3. Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что измеритель сильно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.

Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он дает очень быстрое определение того, находится ли диод в рабочем состоянии.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.

Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диодов мультиметром

Как проверить транзистор мультиметром

Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.

Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к незначительному ухудшению характеристик.

Тест основан на том факте, что биполярный транзистор может рассматриваться как состоящий из двух встречных диодов, и путем выполнения теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть может быть установлена ​​базовая целостность транзистора.

Эквивалентная схема транзистора с диодами для проверки мультиметром.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Тем не менее, возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.

Пошаговая инструкция:

Инструкции приведены в первую очередь для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
  3. Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
  4. Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
  5. Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательный или общий (черный) вывод аналогового измерительного прибора к базе транзистора.
  6. Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
  7. Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
  8. Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
  9. Если транзистор проходит все тесты, значит, он в основном исправен и все переходы исправны.

Примечания:

  • Заключительные проверки от коллектора до эмиттера гарантируют, что база не «продувалась». Иногда возможно, что между коллектором и базой и эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены вместе.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой уровень тока, так как это является следствием наличия неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство мультиметров, имеющихся в продаже сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных указанным выше.

Analogue multimeter

Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест очень прост.

Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
Осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG

Вернуться в меню тестирования.. .

.

Выбор замены транзистора »Примечания по электронике

При ремонте схемы или даже при создании новой часто невозможно найти точный компонент электроники — мы расскажем, как выбрать подходящую замену.


Transistor Tutorial:
Основы транзисторов
Усиление: Hfe, hfe и бета
Характеристики транзистора
Коды нумерации транзисторов и диодов
Выбор транзисторов на замену


При работе с электронным оборудованием, будь то проектирование электронных схем, сборка или ремонт, иногда необходимо выбрать транзистор для замены.Либо тип транзистора может не оказаться под рукой, либо он может быть недоступен.

К счастью, обычно можно использовать заменяющий тип транзистора, поскольку часто существует значительная степень перекрытия между спецификациями различных типов транзисторов, и, глядя на основные характеристики, обычно можно выбрать правильные замены транзистора.

Это объяснение сосредоточено на биполярных транзисторах, но можно применить аналогичную логику к другим электронным компонентам, включая полевые транзисторы, чтобы гарантировать, что можно будет найти подходящую замену.

При поиске подходящей замены транзистора необходимо обратить внимание на основные характеристики транзистора. После определения характеристик и параметров транзистора можно проверить наличие других типов транзисторов для замены с аналогичными параметрами, которые смогут работать в рассматриваемой схеме.

При рассмотрении возможных замен транзисторов необходимо учитывать множество параметров. К ним будут относиться основные параметры работы транзистора.Они также будут включать параметры, связанные с окружающей средой, и физические параметры. Все это необходимо учитывать при выборе подходящего транзистора на замену.

BC547 plastic leaded transistor: transistor gain Beta, is upwards of 110 BC547 Транзистор с пластиковыми выводами

Основные параметры транзистора

К счастью, многие транзисторы, используемые в электронных схемах, относятся к типам общего назначения. Их спецификации не особенно строгие, и можно использовать различные транзисторы общего назначения. Сегодня характеристики даже транзисторов общего назначения чрезвычайно высоки, и их можно использовать в самых разных приложениях.

Тем не менее, необходимо более пристально рассмотреть транзисторы, которые выполняют более строгую роль. Их спецификации необходимо изучить более внимательно, чтобы гарантировать, что любые заменители будут иметь аналогичную спецификацию.

При поиске подходящей замены транзистора некоторые из основных параметров транзистора, которые необходимо учитывать, включают следующее:

  1. Используемый полупроводниковый материал: Большинство транзисторов изготовлены из германия или кремния.Другие типы обычно используются только в очень специализированных приложениях.

    Важно знать, какой тип транзистора, потому что существует разница в падении напряжения прямого смещения базы-эмиттера. Для германия оно составляет около 0,2 — 0,3 вольт, а для кремния — около 0,6 вольт. Схема будет рассчитана на конкретное падение напряжения.

  2. Полярность: Совершенно необходимо выяснить, является ли транзистор типом NPN или PNP.Установите неправильный тип, и он испытает напряжение, обратное всем ожидаемым, и, вероятно, будет разрушено.

    Типы транзисторов: символы цепи транзистора NPN и транзистора PNP

  3. Общее применение: Хотя не всегда необходимо точно соответствовать назначению транзистора, различные области его характеристик будут адаптированы к его предполагаемому применению.

    Возможные типы приложений могут включать: коммутационные, аналоговые, маломощные, ВЧ-усилители, малошумящие и т. Д.Введите правильный шрифт, и он может не работать. Например, маломощный транзистор общего назначения вряд ли будет хорошо работать в коммутационном приложении, даже если он имеет высокий предел или предел частоты.

  4. Корпус и распиновка: У транзисторов много корпусов. Часто бывает необходимо подобрать заменяющий транзистор как можно точнее, чтобы транзистор мог физически соответствовать. Также в пакете могут быть указаны другие параметры.
  5. Пробой напряжения: Необходимо убедиться, что транзистор способен выдерживать напряжения, которые он может увидеть. Необходимо проверить параметры транзистора, такие как Vceo и т. Д.
  6. Коэффициент усиления по току: . Параметр усиления по току транзистора обычно имеет очень широкий разброс. Обычно это цитируется как Β или hfe. Хотя они немного отличаются, для всех подобных схемных эквивалентов параметры транзисторов одинаковы.

    Необходимо выбрать транзистор на замену с примерно таким же усилением по току. Обычно выбор транзистора на замену с более высоким коэффициентом усиления не является проблемой. Часто может быть приемлемо меньшее усиление по току.

  7. Предел частоты: Верхний предел частоты для транзистора обычно указывается как его футы. Обычно важно обеспечить соответствие транзистора любым частотным ограничениям.
  8. Рассеиваемая мощность: Необходимо убедиться, что заменяемый транзистор может рассеивать достаточную мощность.Часто тип упаковки является хорошим показателем этого.

Это основные параметры, которые важны для большинства приложений, но обратите внимание на любые другие параметры транзистора, которые могут потребоваться при выборе транзистора для замены.

Подбор транзистора на замену

При выборе подходящего заменяющего транзистора для использования в электронной схеме необходимо учитывать несколько этапов при выборе.Они могут быть продвинуты в логическом порядке, чтобы сузить выбор и сделать лучшую альтернативу замене транзистора.

Пошаговая инструкция:
  1. Выберите транзистор той же полярности: Первым основным критерием выбора является тип транзистора PNP или NPN.
  2. Выберите транзистор для замены из того же материала: Большинство транзисторов выполнены из кремния или германия.Поскольку напряжения смещения и другие характеристики различны, необходимо выбрать транзистор для замены из того же материала.
  3. Выберите тот же функциональный тип транзистора: Для транзисторов обычно указывается их применение в технических описаниях. Если возможно, замена должна иметь такое же применение.
  4. Выберите замену в том же корпусе: Выбор транзистора на замену с тем же корпусом и распиновкой значительно упростит замену.Различия в корпусах транзисторов с малым сигналом обычно не являются проблемой, но для более крупных, где могут быть задействованы радиаторы и т. Д., Разные корпуса могут вызвать серьезные проблемы.

    Также, если соединения контактов различны, следует позаботиться о том, чтобы правильные выводы были выбраны правильными соединениями. Распиновка многих транзисторов — EBC, но есть и другие конфигурации выводов, которые могут легко запутать многих людей.

  5. Выберите транзистор на замену с таким же напряжением пробоя: Убедитесь, что значения для V CEO и V CBO и т. Д. Не меньше, чем у исходного транзистора.
  6. Проверьте, может ли он принимать ток: Убедитесь, что новый транзистор может пропускать требуемый ток — он должен иметь I Cmax больше или равное исходному транзистору.
  7. Выберите транзистор с аналогичным Hfe: Необходимо убедиться, что коэффициент усиления по току заменяющего транзистора примерно такой же, как у исходного. Значения коэффициента усиления по току обычно сильно различаются даже для транзисторов одного типа, поэтому допустимы некоторые вариации.
  8. Выберите транзистор для замены с эквивалентным Ft: Необходимо убедиться, что транзистор на замену сможет работать на соответствующих частотах, поэтому рекомендуется использовать аналогичный или немного более высокий Ft. Не выбирайте транзистор с гораздо более высоким Ft, так как это может увеличить риск колебаний.
  9. Выберите транзистор с аналогичной рассеиваемой мощностью: Необходимо убедиться, что заменяющий транзистор может справиться с мощностью, которую он будет рассеивать в цепи.Выбор транзистора на замену с похожим стилем банки часто означает, что оба транзистора имеют одинаковую рассеиваемую мощность.
  10. Проверьте наличие каких-либо специальных функций: Убедитесь, что выбраны перечисленные выше функции, но могут быть некоторые дополнительные функции, которые необходимо учитывать. Обычно они требуются, когда транзисторы используются в специализированных приложениях.

После выбора транзистора на замену его можно установить в схему и проверить работоспособность.В большинстве случаев он будет работать удовлетворительно, но иногда могут возникать проблемы. Если это так, необходимо повторно изучить способ, которым был сделан выбор транзистора для замены, и посмотреть, были ли допущены какие-либо ошибки, или найти другие параметры, которые могут повлиять на работу схемы транзистора.

Что делать, если я не могу найти оригинальные детали транзистора?

Иногда очень легко узнать параметры конкретного транзистора, поскольку их можно найти в Интернете или в справочнике транзисторов.Если это невозможно, потому что маркировка не видна, или данные не могут быть найдены, то не все потеряно.

Еще можно многое узнать о транзисторе из его корпуса, а также о схеме, в которой он используется. Таким образом обычно можно найти подходящий транзистор на замену. Приведенные ниже пошаговые инструкции должны помочь определить основные параметры транзистора.

Пошаговая инструкция:

Эти инструкции изложены в примерном порядке: сначала наиболее важные параметры следуют за менее значимыми:

  1. Это транзистор? Это может показаться очевидным вопросом, но иногда некоторые устройства могут показаться на первый взгляд транзисторами.Это может быть полевой транзистор, транзистор Дарлингтона или даже какое-то другое устройство. В качестве альтернативы, иногда небольшие регуляторы напряжения содержатся в корпусах, подобных корпусу транзистора. Другие устройства также могут появляться в корпусах, которые на первый взгляд могут показаться транзисторными. Тщательное изучение заявки позволит убедиться в этом.
  2. Кремний или германий: Важно выяснить, является ли транзистор кремниевым или германиевым.Обнаружить это можно несколькими способами. Если исходный транзистор все еще работает, это можно обнаружить, измерив напряжение на переходе база-эмиттер, когда он смещен в прямом направлении. Это должно быть от 0,2 до 0,3 В для германиевого транзистора и 0,6 В для других разновидностей. В качестве альтернативы можно определить тип, посмотрев на другие транзисторы в схеме. Часто во всем оборудовании используется одна и та же технология. Это не всегда так, поэтому будьте осторожны!
  3. Рассеиваемая мощность: Это часто определяется корпусом, в котором размещен транзистор.Посмотрите спецификации других транзисторов в тех же корпусах, и это послужит хорошим ориентиром. Пакеты, предназначенные для установки на радиаторах, будут более гибкими, потому что они часто могут рассеивать больше мощности в зависимости от радиатора. С этими пакетами лучше быть осторожнее.
  4. Максимальное напряжение: Представление о максимальном напряжении можно получить из схемы, в которой оно используется. На всякий случай убедитесь, что максимальное рабочее напряжение заменяемого транзистора как минимум в два раза превышает напряжение шины цепи, в которой он работает
  5. Текущее усиление: Текущее усиление транзисторов, как известно, трудно определить.Транзисторы большой мощности часто предлагают более низкий коэффициент усиления — более старые типы силовых транзисторов могут иметь всего 20-50, тогда как транзисторы меньшего размера могут обеспечивать коэффициент усиления где-то между 50 и 1000.
  6. Максимальная частота: Необходимо убедиться, что заменяющий транзистор способен работать на требуемой частоте. Посмотрите на компоненты схемы и функции схемы. Обычно можно оценить частоту срабатывания. Затем возьмите это и выберите транзистор на замену, который может легко работать на этой частоте.
  7. Любое другое: Хотя большинство основных моментов было рассмотрено в пунктах выше, всегда лучше следить за другими параметрами, которые могут повлиять на выбор замены транзистора. Это особенно верно для специализированных схем, где некоторые особенности производительности могут быть критичными.

Выбрать транзистор для замены обычно довольно просто. Доступно огромное количество типов транзисторов, а спецификации многих типов транзисторов совпадают, что во многих случаях делает выбор транзистора для замены довольно простым.

Часто бывает полезно проверить складские запасы у местных продавцов или надежных дистрибьюторов электронных компонентов. Часто бывает необходимо выбрать транзистор, который можно получить быстро и легко. Проверка того, что может быть доступно у продавца или дистрибьютора электронных компонентов, поможет принять окончательное решение.

Возможность выбора транзистора на замену может быть очень полезной, если не удается найти точный тип транзистора. Вполне вероятно, что похожий может быть доступен под рукой или, возможно, у местного продавца.В любом случае полезно иметь возможность выбрать заменяющий транзистор с хорошей вероятностью его работы.

Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле

Вернуться в меню «Компоненты».. .

.

Двухцентровые датчики температуры | Hackaday

Когда им нужно добавить в проект контроль температуры, многие хакеры обращаются к термопаре типа K для своих высокотемпературных нужд или к встроенной ИС, чувствительной к температуре, когда она еще не нагревается. Термопара использует очень малые токи и чрезвычайно высокое усиление, и вам в значительной степени понадобится специальная ИС для ее считывания, что может быть дорогостоящим. Микросхемы не такие дорогие, но они в основном ограничиваются кипятком. Что делать, если вы хотите управлять печью оплавления?

Есть более дешевый способ, охватывающий диапазон между антарктической зимой и расплавленным припоем, и у вас, вероятно, уже есть детали на вашей полке.Даже если вы этого не сделаете, вам потребуется всего лишь два дополнительных цента при условии, что у вас уже есть микроконтроллер с АЦП в вашем проекте. Спецификация: простой диод и резистор.

За последний год я использовал диоды в качестве датчиков температуры в трех проектах: один — это устройство для обжарки кофе, которое нагревает зерна до 220 ° C горячим воздухом, другое — конфорка оплавления, максимальная температура которой составляет около 210 ° C, и третий — утюг с переносом тонера, который сохраняет очень стабильную температуру 130 ° C.Во всех этих случаях меня не волнует реальное числовое значение температуры — все, что имеет значение, — это воспроизводимость, поэтому я никогда не утруждал себя калибровкой. Я подумал, что сделаю это правильно для Hackaday и попробую довести скромный диод до предела для науки.

В результате произошел пожар на печатной плате, тестовые схемы распаялись при температуре выше 190 ° C, отсоединились датчики температуры и, наконец, сломанная формовка и арахисовое масло 200 ° C повсюду на моем столе. Веселые времена! С другой стороны, мне удалось получить достаточно данных для калибровки некоторых диодов, и результаты просто фантастические.Тестируемые схемы включали в себя как лучшие практики, так и самое простое, что могло работать, и результаты довольно близки. Это определенно метод, который вы хотите иметь в своем арсенале для большинства температурных диапазонов. Дьявол, конечно, кроется в деталях, так что читайте дальше!

Диоды

Мы все знаем, что такое прямое падение напряжения на обычном кремниевом диоде, верно? 0,6 В или 0,7 В или около того, и этого достаточно для множества вычислений с помощью салфетки. Но это падение напряжения зависит от двух основных факторов: тока, протекающего через диод, и температуры.Если вы удерживаете постоянный ток и считываете прямое напряжение, вы получаете датчик температуры. Хотя он может немного отличаться в зависимости от диода, рассчитайте чувствительность -2 мВ / ° C.

Удерживать ток «фиксированным» можно так же просто, как использовать резистор: поскольку прямое напряжение диода не сильно меняется, ток через резистор почти постоянный. Все, что вам нужно сделать, это выбрать подходящее сопротивление резистора. Следующим шагом будет создание источника постоянного тока из двух транзисторов.Здесь я тестирую оба этих метода.

Но это не новость. Следующим этапом повышения сложности, который используется в большинстве термочувствительных микросхем IC, является «кремниевый датчик температуры запрещенной зоны». Вместо диода используются два транзистора, а синфазные недостатки компенсируются операционным усилителем. Это отлично работает в ИС, где два транзистора могут быть почти идентичными и иметь одинаковую температуру, но для домашних целей это добавляет больше сложности, чем того стоит. Вот технический документ, если вы хотите вникнуть в подробности.

Однако вместо того, чтобы стремиться к точности, которая измеряется долями градуса, мне интересно оценить, насколько точными могут быть простейшие самодельные хакерские решения. Что вы получите, добавив реальный источник постоянного тока? Стоит ли оно того? Давай выясним.

Экспериментальный образец

Я взял семь диодов, шесть 1N4148 и 1N4002, и нагрел их вместе с термопарой типа K и довольно хорошим мультиметром Fluke, который ее считывает. 1N4148 — это эталонный малосигнальный диод, и он поставляется в корпусе из неплавленого стекла: он идеально подходит для наших целей.Три из 1N4148 получали ток через резистор 10 кОм просто потому, что это хорошее среднее значение, и я хотел оценить изменчивость между диодами. Были выбраны два других номинала резистора, 3,3 кОм и 100 кОм, что примерно соответствует разумному диапазону токов.

Резисторы и источник постоянного тока

I соединил 1N4002, высоковольтный сильноточный выпрямительный диод, с резистором 10 кОм, чтобы увидеть, какое влияние оказывает другой тип диода. Наконец, последний 1N4148 питался от цепи постоянного тока, прямо из Art of Electronics , которая давала довольно солидные 50 мкА.

Микроконтроллер STM32 был запрограммирован так, чтобы снимать показания с каждого из диодов всякий раз, когда я набирал температуру. Если бы у меня был мультиметр для регистрации, это было бы намного менее скучно. Как бы то ни было, я дождался, пока отображаемая эталонная температура достигнет четного значения в пять градусов, и ввел его в STM32, который считал семь АЦП и распечатал все эти значения через последовательный порт. Поэтому я нагрел все диоды, записал данные на своем ноутбуке, пока они медленно охлаждались, очистил их, как только это было сделано, и построил график.

Звучит просто, правда? Что ж, вот где развлекается. Настоящая уловка заключается в том, чтобы убедиться, что все семь диодов и термопара имеют одинаковую температуру, в диапазоне от комнатной до температуры сгорания печатной платы.

Четыре неудачи равны успеху

В беседе с Майком Щисом из Hackaday он спросил, как паять диоды, когда температура превышает температуру плавления припоя. Я, естественно, ответил, что в таких ситуациях всегда обжимаю (что верно), а затем построил стенд для испытания диодов с припаянными соединениями.Прочитав где-то, что арахисовое масло хорошо работает при температуре до 210 ° C или около того, я подумал, что оно станет отличной иммерсионной средой для выравнивания температуры. Что ж, так оно и было, потому что все паяные соединения откреплялись одновременно при 190 ° C: отличное испытание на однородность температуры. Это также была ценная калибровка моего эталонного датчика температуры — точка плавления припоя 60/40 составляет 185 ° C — 190 ° C. Пятно! Но при распайке проводов никакие данные не регистрируются.

При оплавлении я использую электрическую плиту с (гофрированным) диодом в качестве датчика температуры, но я часто прикрепляю каптоном еще один или два диода к рассматриваемой печатной плате, чтобы получить измерение на печатной плате.А поскольку ножки этих диодов болтаются на ветру, я избавился от пайки. Я решил, что это тоже сработает, поэтому я перепаял испытательный стенд с семью новыми диодами, приклеенными к куску пустой печатной платы, чтобы выровнять температуру. Все выглядело так, пока температура не опустилась ниже моей целевой 250 ° C, когда я почувствовал запах дыма. Я немедленно выключил обогреватель и начал регистрировать температуры, и, конечно же, они упали. А потом они снова начали подниматься, и появилось еще дыма.

Эпоксидный слой печатной платы загорелся! Оказывается, он начинает тлеть примерно при 240 ° C и хорошо горит при 260 ° C. Вместо того чтобы пойти за огнетушителем, я открыл несколько окон, продолжил вести лесозаготовку и достал фотоаппарат. Я действительно получил некоторые данные по ходу, но мой офис все еще немного пахнет.

Следующая неисправность связана с приклеиванием диодов непосредственно к твердой металлической пластине. В конце концов, он не горит при 250 ° C. Проблема в том, что он охлаждает очень медленно, , если вы не снимаете его с керамического нагревательного элемента, и в процессе этого диоды и термопара откручиваются от пластины, что приводит к аномальному падению температуры на пять градусов по всей плате.Оказывается, в меньшей степени это произошло и при запуске firey-PCB. Вы могли бы решить это с помощью обработки данных в пост-продакшн, но я решил дать обработке горячим маслом еще один шанс, потому что это очень хорошо решает проблему с контактом.

Последний прогон снова был с арахисовым маслом, но на этот раз начиная с более мягкой высокой температуры около 200 ° C и без полного погружения паяных соединений. И это тоже сработало бы, если бы не растрескивание формочки при ударе о мраморную плиту, которую я использовал для ее охлаждения.Оглядываясь назад, это было очевидно, и, вероятно, это сработало бы безупречно, если бы я поставил силиконовую подставку под горячее. Из-за утечки масла 200 ° C по всему моему столу и большого количества бумажного полотенца мне удалось зарегистрировать этот прогон, по крайней мере, до тех пор, пока масло не исчезло полностью. Завтра уберу.

Окончательный результат: два пригодных для использования набора данных, один из прогона сгоревших ПХД, а другой из теста погружением в масло с трещинами. Нет ничего идеального, но этого достаточно, чтобы сделать некоторые выводы.

Результаты

Мой первый вывод состоит в том, что простейшего метода — подключения диода и резистора 10 кОм к АЦП — достаточно для неточной работы в любом разумном диапазоне температур.Я знал это по использованию его для оплавления припоя и обжарки кофе, но меня все равно впечатлила хорошая линейность диода по сравнению с эталонной термопарой. Вы должны использовать этот «трюк».

Далее, создание источника постоянного тока, вероятно, не стоит того, если вы не заботитесь о температуре. Если подойдет простая воспроизводимость, не беспокойтесь. Да, я получил прекрасные результаты до 220 ° C, но разница между лучшим и худшим случаями, вероятно, составляет один или два градуса по всему диапазону.Вы должны потратить свое время на обеспечение хорошего физического контакта между диодом и объектом, который вы измеряете, а затем подключите транзисторы.

1N4002, большой мощный диод, работал почти так же, как 1N4148, при питании с тем же сопротивлением, и три 1N4148 идеально отслеживали друг друга. Единственное, что имеет значение, это ток. Честно говоря, я был удивлен. Это говорит о том, что вы могли бы просто купить пакет диодов и 1% резисторов, возможно, откалибровать несколько для проверки, и все готово.Поскольку наклон всех диодов практически одинаков, вы даже можете откалибровать их по одной точке при комнатной температуре. Насколько это просто?

Хотите знать, что на самом деле во всем этом сложного? Тестирование схемы за пределами диапазона, в котором она будет работать.

Треснувшая формовочная машина, утечка горячего масла, сбор данных.

Как выглядит сгоревшая печатная плата

Испытательный стенд, растворенный в арахисовом масле при температуре 190 ° C

Предыдущий тест на печатную плату.

Резисторы и источник постоянного тока

На этот раз точно! (Плохой тепловой контакт.)

Тест печатной платы при температуре. Вы видите дым?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *