Закон Ома для полной цепи: определение для замкнутого участка
Одним из принципов электротехники является закон Ома для полной цепи. Используя установленную учёным закономерность, можно вычислить сопротивление электрической цепи или источника тока, рассчитать электродвижущую силу (ЭДС). Практическое же применение полученным при расчёте данным велико. Это подбор шунтирующих и предохранительных элементов, вычисление необходимой мощности используемых деталей, согласование электронных узлов.
История открытия
Зависимость между током, напряжением и сопротивлением в электрической цепи была установлена опытным путём в 1827 году. Занимаясь исследованиями электричества, Георг Симон Ом проводил ряд экспериментов над проводниками, изучая их проводимость, и в частности, подключая последовательно к источнику энергии тонкие проводники, выполненные из различных материалов. Изменяя их длину, он получал определённую силу тока. Им было установлено, что на результаты экспериментов влияет источник электрической энергии, сопротивление которого оказывалось выше, чем у используемых в опытах проводников.
По совету своего наставника Поггендорфа Ом собрал термоэлектрическую батарею, отказавшись от использования химических элементов, применив вместо них открытую Зеебеком термопару медь-висмут. Для измерения параметров цепи им использовались крутильные весы, с магнитной стрелкой сконструированные Кулоном.
На основании своих исследований физик-экспериментатор пришёл к выводу, что отклонение стрелки зависит от определённой силы, названной силой тока. Когда стрелка отклонялась, Ом закручивал весы таким образом, чтобы она возвращалась в своё начальное положение. Угол, на который закручивалась нить, он считал пропорциональной силе тока. Изменяя условия, Ом вывел математическую зависимость, составив уравнение. Выглядело оно следующим образом: Х = а/b + x, где за Х принималась сила, отклоняющая магнитную стрелку, за а — длина исследуемого образца, а b+x обозначали интенсивность и считались постоянной величиной.
В 1862 году в журнале «Физика и химия» публикуется статья Ома под названием «Определение закона, по которому металлы проводят контактное электричество». Результаты его исследований не производят впечатления на других ученых, и его выводы остаются незамеченными. Ом продолжает эксперименты, выясняя, что электричество можно рассмотреть наподобие теплового потока. Подобно разнице температур, благодаря которой совершается тепловое движение, некой величиной можно описать движение электрического заряда. Так он вводит понятие ЭДС.
Открытие Ома было принято учёным миром уже после его смерти. Существенный вклад в это внесли русские учёные Ленц и Якоби. В 1842 году Лондонское Королевское общество наградило физика золотой медалью, а закон, открытый им, был назван его именем.
Понятие тока и напряжения
Закономерность учёного устанавливает зависимость между собой трёх электрических величин: тока, напряжения и сопротивления. Поэтому для того чтобы разобраться в сути закона Ома для полной электрической цепи, необходимо понимать, что же из себя они представляют.
В любом теле существуют свободные элементарные частички, обладающие определённым количеством энергии — зарядом. Если тело находится в спокойном состоянии, то есть на него не оказывается никакого воздействия, то происходит их хаотичное перемещение. Если же к телу приложено электрическое поле, то их перемещение становится упорядоченным, и они начинают передвигаться в одну сторону.
Такое направленное движение называют электрическим током. Мерой его служит сила тока, скалярная величина, определяемая отношением количества зарядов прошедших через поперечное сечение проводника за единицу времени: I = dq/dt. За единицу измерения силы тока принят ампер.
Если направление перемещения зарядов остаётся неизменным, то движение тока считается постоянным, а если изменяется — переменным. Возникновение тока возможно только в замкнутой цепи. Для того чтобы заряд переместился, приложенное поле должно выполнить работу. То есть затратить какую-то энергию для перемещения заряда с одной точки в другую. Если принять, что в начальном положении частичка обладает нулевым зарядом, то тогда переместившись, она уже будет иметь другое его значение. Разность между этими величинами называется разностью потенциалов или напряжением.
Для поддержания силы тока в полной цепи необходим источник, постоянно воздействующий на свободные заряды и поддерживающий разности потенциалов на различных участках цепи. Величина силы, которая действует на цепь, называется ЭДС. Физически она представляет собой отношение работы, затрачиваемой на передвижение заряда от одного своего полюса к другому, к значению заряда: E = A/q. Измеряется ЭДС, так же как и напряжение, в вольтах.
При перемещении заряд из-за особенностей строения кристаллической решётки вещества, он сталкивается с различными дефектами и примесями. В результате этого происходит частичное рассеивание его потенциала, а скорость движения замедляется. Потеря энергии характеризуется электрической величиной-сопротивлением. Другими словами, сопротивление — это величина, препятствующая прохождению тока.
Импеданс цепи
Немецкий физик, проводя эксперименты, смог обнаружить зависимость между током и напряжением. Их связь определялась через постоянную величину, которая после была названа сопротивлением. Так, формула закона Ома для полной цепи может быть записана в виде выражения:
I = E/Z, где:
- I — сила тока цепи;
- E — электродвижущая сила, приложенная к цепи;
- Z — постоянная величина (полное сопротивление).
Полное сопротивление (импеданс) электрической цепи важный параметр, определяющий силу тока и полезную мощность. Состоит она из нескольких составляющих: внутреннего сопротивления источника тока и сопротивления элементов, из которых состоит схема.
Поэтому в отличие от участка цепи, где берётся во внимание только сопротивление проводников, закон для всей цепи учитывает и электрическое сопротивление источника тока. В то же время характер происхождения сопротивления может носить как активную составляющую, так и реактивную, учитывающуюся для переменного тока.
Активная составляющая
Такое сопротивление называется активным, так как оно забирает на себя часть мощности, поступающей от источника питания. Эта забираемая энергия, проходя через проводник, превращается в тепло. При этом можно обнаружить, что если проводник подключить к переменному источнику сигнала, то его сопротивление будет немного больше. Связано это с тем, что индуцируемая ЭДС в материале в любой его точке неодинаковая. Ближе к центру она будет больше, чем у поверхности. То есть при переменном сигнале как бы происходит уменьшение полезного сечения проводника.
Сопротивление зависит от физических параметров материала. Математически это может быть описано выражением: R = p*L/S, где L — длина проводника, S — поперечное сечение, p — удельное сопротивление (табличное значение). Активное сопротивление слабо зависит от частоты сигнала, но при его увеличении возрастает.
Отличительной чертой элемента, обладающего активным сопротивлением, будет совпадение по фазе, протекающего через него тока и напряжения. Поэтому вычисляться оно по формуле: R = U/I.
Реактивное сопротивление
Индуктивное сопротивление связано с ЭДС самоиндукции. При протекании через элемент, обладающий индуктивностью, переменного тока, возникает магнитное поле, создающее ЭДС. Эта сила противодействует внешнему полю и препятствует его распространению. Затрачиваемая энергия увеличивает мощность магнитного поля. Как только ток уменьшается, значение магнитного поля начинает тоже снижаться, индуцируя ток самоиндукции. Его направление совпадает с убывающим током. В результате энергия, отобранная магнитным полем, начинает отдаваться обратно в цепь. То есть фактически, в отличие от активного сопротивления, потерь энергии не возникает.
Величина индуктивного сопротивления находится по формуле X L = 2 p * f * L, где: f — частота сигнала, L — значение индуктивности. Напряжение, приложенное к индуктивности и ток, поступающий от источника энергии, сдвинуты относительно друг друга по фазе на 90, при этом ток отстаёт от напряжения.
Ёмкостное же сопротивление обусловлено возникновением электродвижущей силы. При прохождении через ёмкость энергия, поступающая от источника питания должна преодолеть ёмкостное сопротивление, затрачивая часть мощности для её заряда. Но как только подаваемый сигнал изменит знак, весь накопленный заряд ёмкостью начнёт возвращаться в цепь, увеличивая энергию электрического поля.
Другими словами, ёмкость становится источником ЭДС. Ёмкостное сопротивление описывается выражением: X c = 1/ (2 p * f * C), где: C — величина ёмкости. При таком роде сопротивления ток будет опережать напряжение по фазе на 90.
Таким образом, реактивное сопротивление зависит от частоты сигнала. Общий же импеданс определяется не как сумма всех сопротивлений, а по формуле Z = (R2+ X l2+ X c2)½.
Суть закона
Общепринятая формулировка закона Ома гласит, что сила тока в полной цепи прямо пропорциональна электродвижущей силе источника, делённой на общее сопротивление всех элементов замкнутой цепи. Классическая формула закона Ома для цепи постоянного тока выглядит следующим образом:
I = E /(r+R), где:
- R — сопротивление внешней части цепи, Ом;
- r — внутренний импеданс источника энергии.
В замкнутой схеме ток течёт от источника энергии, протекает через различные элементы, последовательно или параллельно подключённые к нему, и возвращается обратно. Изучая открытие Ома можно сформулировать основной физический принцип, на котором строится электротехника. Заключается он в том, что чем больше ЭДС, тем большей энергией будут обладать носители заряда, а значит и их скорость перемещения будет больше. При увеличении сопротивления в цепи скорость движения, а значит, и энергия носителей заряда уменьшается, соответственно снижается и ток.
Величина ЭДС зависит от характеристик источника энергии, а сопротивление от физических параметров материала и температуры. Значение активного сопротивления не может быть изменено увеличением направленного движения частиц или напряжения, но при этом реактивная составляющая зависит от частоты сигнала.
Поэтому закон Ома для полного участка цепи переменного тока и учитывает индуктивную и ёмкостную составляющую, причём как источника питания, так и самой цепи. Описывается математически он формулой: I = Um /Z, где:
- Um — ЭДС источника питания;
- Z — импеданс всей замкнутой цепи: Z = (R2+(wL — 1/wC)2)½.
То есть для переменного тока закон будет описываться выражением вида:
I = Um/ (R2+(wL -1/wC)2)½.
Однако следует понимать, что в формуле используются амплитудные значения величин, а не мгновенные.
Дифференциальное уравнение
Так как сопротивление зависит не только от физических свойств материала, но и от его геометрических параметров, часто последнее при использовании закона Ома исключается из формулы. Открытие учёного, учитывающее только электропроводящие свойства, записывают в так называемой дифференциальной форме.
Такая формула имеет вид: J = σ*E, где:
- J — плотность, характеризующая силу электричества протекающего через единицу площади;
- σ — удельная проводимость, величина обратная удельному сопротивлению;
- E — напряжённость поля, определяется в определённой точке как отношение силы действующей на неподвижный заряд к его величине.
Составляющие уравнения представляются в виде функции координат и времени. Удельная проводимость выражается в виде единичной матрицы. Поэтому закон можно представить формулой:
Таким образом, закон Ома для замкнутой цепи практически ничем не отличается от его формулировки для неполной схемы, лишь только дополнительно учитывает внутреннее сопротивление источника ЭДС. При этом его формулировка не изменяется.
Электрический ток. Закон Ома для полной цепи.
Электрический ток
Мы выяснили, что подвижные носители зарядов в проводнике перемещаются под действием внешнего электрического поля, пока не выровняются потенциалы всех точек проводника. Однако если в двух точках проводника каким-то образом искусственно поддерживать различные потенциалы, то это поле будет обеспечивать непрерывное движение зарядов: положительных — от точек с большим потенциалом к точкам с меньшим потенциалом, а отрицательных — наоборот. Когда эта разность потенциалов не меняется со временем, то в проводнике устанавливается постоянный электрический ток.
Вспомним из курса физики некоторые сведения об электрическом токе.
Упорядоченное движение свободных зарядов в проводнике называется электрическим током проводимости, или электрическим током.
Основными условиями существования электрического тока являются:
- наличие свободных заряженных частиц;
- наличие источника тока, создает электрическое поле, действие которого приводит упорядоченное движение свободных заряженных частиц;
- замкнутость электрической цепи, которая обеспечивает циркуляцию свободных заряженных частиц.
В зависимости от величины удельного сопротивления, который вещества оказывают постоянному току, они делятся на проводники, полупроводники, диэлектрики.
В зависимости от среды различают особенности прохождения электрического тока, в частности в металлах, жидкостях и газах, где носителями тока могут быть свободные электроны, положительные и отрицательные ионы.
Направление движения электронов
Полная электрическая цепь содержит источник тока и электроприборы, а также устройство для замыкания (размыкания) электрической цепи. За направление тока в цепи условно выбирают направление от положительного полюса источника тока к отрицательному (реальное движение носителей тока — электронов — происходит в обратном направлении).
Основными физическими величинами, характеризующими электрический ток, являются следующие:
Сила тока I — физическая величина, характеризующая скорость перераспределения электрического заряда в проводнике и определяется отношением заряда q, проходящий через любой сечение проводника за время t, к величине этого интервала времени, I=q/t. Единица силы тока — ампер, 1А =1Кл/сек.
Термин «сила тока» предложили задолго до установления научных положений электродинамики. Он несколько неудачный, поскольку никакого отношения к «силе» он не имеет.
Электрическое сопротивление R — это физическая величина, характеризующая свойство проводника противодействовать прохождению электрического тока. Единица электрического сопротивления — ом, 1 Ом.
Сопротивление проводника зависит от его физических параметров — длины l, площади поперечного сечения S и от удельного сопротивления вещества p, из которой он изготовлен: R = р*l/S.
И как мы знаем, образования тока в проводнике обуславлено наличием разности потенциалов ϕ 1 – ϕ 2 , которую еще называют напряжением.
Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля, U = A/q. Единица напряжения — вольт, 1 В.
Электродвижущая сила
При подключении к полюсам источника проводник, благодаря наличию разности потенциалов, свободные электроны проводимости, не прекращая хаотического движения, под действием кулоновских сил начнут двигаться направлено — от конца проводника с более низким потенциалом к концу с высшим, то есть от отрицательного полюса источника тока к положительному. Но силы электрического поля не могут переместить электрические заряды между полюсами внутри источника, поскольку действуют на них в противоположном направлении. Поэтому внутри источника, кроме электрических сил F кл , действуют еще и сторонние силы F ст. Природа сторонних сил может быть различной: в химических элементах — это действие химических реакций, в фотоэлементах — действие солнечных лучей, электрогенераторах — изменение магнитного потока.
Движение носителей заряда в полной электрической цепи
Сторонние силы перемещают отрицательные заряды от положительного полюса батареи к отрицательному и противодействуют электрическим силам, которые стремятся выровнять потенциалы на полюсах. Благодаря этому заряды циркулируют по замкнутому кругу, создавая ток. Участок круга, в которой заряды движутся под действием кулоновских сил, называют однородной, а ту, в которой носители заряда движутся под действием как кулоновских, так и сторонних сил, — неоднородной. Если соединить концы неоднородного участка, получим полный круг, в котором ту часть замкнутого круга, в которой заряды движутся под действием кулоновских сил (электростатической разности потенциалов), называют внешней, а ту, в которой носители заряда движутся под действием сторонних сил, — внутренней. Полюса источника тока разделяют внутренний и внешний участки цепи.
Электрическая цепь: а — однородный участок;
б — неоднородный участок; в — полный круг, содержащий внешнюю и внутреннюю части
Для перемещения зарядов сторонние силы выполняют соответствующую работу А. Чем больше заряд перемещается, тем больше работа выполняется. Иными словами, A ст ~ q или, используя знак равенства, A ст = εq, где ε — постоянный коэффициент пропорциональности, характеризующий соответствующий источник и называеющийся электродвижущей силой источника тока (сокращенно ЭДС).
Электродвижущая сила ε — это физическая величина, характеризующий энергию стороних сил источника тока и измеряется: работой сторонних сил (то есть сил не электростатического происхождения), выполненной для перемещения единичного позитивного электрического заряда, ε = A ст/q.
Единица электродвижущей силы — вольт, 1 В = 1 Дж/ 1Кл.
В результате разделения внутри источника положительных и отрицательных зарядов, источник приобретает запас потенциальной электрической энергии, которая тратится на выполнение работы по перемещению зарядов по всей окружности. Работа сторонних сил равна сумме работ, выполняемых по перемещению заряда на внутренней и внешней участках цепи.
В источниках тока постоянно происходит разделение положительных и отрицательных зарядов, которые сосредотачиваются на его полюсах, что вызывает появление электрического поля (стационарного). Свойства этого поля отличаются от электрического поля неподвижных зарядов, которое мы изучали в электростатике. В таблице 2 представлены сравнения свойств электрических полей подвижных и неподвижных зарядов.
Электростатическое поле неподвижных зарядов | Стационарное электрическое поле движущихся зарядов |
Линии напряженности являются незамкнутыми. Работа поля по замкнутому контуру равна нулю | Имеет замкнутые линии напряженности. Работа поля по перемещению заряда вдоль замкнутой линии напряженности не равна нулю. Такое поле называют вихревым |
Закон Ома для полной цепи
Источник тока, как и любой проводник, имеет определенное сопротивление, который называют внутренним сопротивлением источника и обозначают r, в отличие от сопротивления внешней цепи R. Как известно из курса физики, по закону Ома, для участка цепи сила тока I на участке цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению R этого участка, I=U/R. Формулу закона Ома записывают и в таком виде: U = IR, где произведение IR называют падением напряжения на данном участке цепи. Для участка, который не содержит источника тока, понятие напряжения и падения напряжения совпадают.
Согласно закону Ома, для внешней и внутренней участков цепи можно записать U вн = Ir, U вн = IR. Тогда ε = IR + Ir, то есть сумма падений напряжений на внешнем и внутреннем участках цепи равна ЭДС источника.
Соотношение, записанное в виде I = ε/R+r, называют законом Ома для полной цепи: сила тока в замкнутоq электрической цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.
Следовательно, сила тока в цепи зависит от трех величин, две из которых (ЭДС и внутреннее сопротивление) характеризуют источник, а третья зависит от самой цепи. Если пользоваться определенным источником электрической энергии, то ε и r можно считать постоянными величинами. Если менять сопротивление внешней цепи, то соответственно будет меняться сила тока I в цепи и падение напряжения IR на наружной части круга. С увеличением сопротивления внешней цепи сила тока уменьшается, а напряжение растет. Если R = ∞ (цепь разомкнута), то I = 0, падение напряжения внутри источника отсутствует, а напряжение на полюсах источника равна его ЭДС. На этом основывается метод измерения ЭДС источника. Вольтметр присоединяют к полюсам источника при разомкнутой внешней цепи. В этом случае вольтметр показывает падение напряжения IR на самом себе. А поскольку сопротивление вольтметра обычно очень большое, т.е R >> r, U = IR ≈ ε. Чем больше сопротивление вольтметра по сравнению с внутренним сопротивлением источника тока, то точнее будет измеренное значение ЭДС.
Работа и мощность электрического тока
Электрическое поле, создавая упорядоченное движение заряженных частиц в проводнике, выполняет работу, которую принято называть работой тока.
Работа электрического тока А — физическая величина, характеризующая: изменение электрической энергии тока — превращение ее в другие виды.
Единица работы электрического тока — джоуль, 1 Дж. В быту и технике используют также внесистемная единица — киловатт-час (кВт • ч), 1 кВт • ч = 3,6 • 106 Дж.
Если рассматривать внешний участок электрической цепи, то работа тока определяется как А = qU = UIt, где q — заряд, прошедший через поперечное сечение проводника за время t, U — электрическое напряжение на участке цепи, I — сила тока.
Если на участке цепи, по которой проходит ток, не выполняется механическая работа и не происходят химические реакции, то результатом работы электрического тока будет только нагрев проводников. Нагретый проводник вследствие теплообмена отдает полученную энергию в окружающую среду. Согласно закону сохранения энергии, количество выделенной теплоты равна работе тока: Q = А и вычисляется по закону Джоуля — Ленца: количество теплоты Q, выделяемой за время t в проводнике с сопротивлением R во время прохождения по нему тока силой I, равна Q = I2Rt.
Воспользовавшись законом Ома I = U/R, математически можно получить и такие формулы закона Джоуля — Ленца: Q =U2t/R и Q = UIt. Однако, если в цепи выполняется механическая работа или происходят химические реакции, эти формулы использовать нельзя.
Мощность электрического тока Р — физическая величина, характеризующая способность электрического тока выполнять определенную работу и измеряется работой, выполненной в единицу времени, Р = A/t, здесь А — работа электрического тока, t — время, за которое эта работа выполнена. Мощность во внешнем участке электрической цепи можно определить по формулам Р = UI, Р = I2R, Р = U2/R, где U — электрическое напряжение, I — сила тока, R — электрическое сопротивление участка цепи. Единица мощности — ватт, 1 Вт = 1.
Если цепь состоит из нескольких потребителей, то при параллельном их соединения общая мощность тока во всей цепи равна сумме мощностей отдельных потребителей. Это стоит принять во внимание. В быту мы пользуемся мощными электрическими приборами. Если одновременно их включить, то общая мощность может превышать ту, на которую рассчитана электрическая сеть в помещении.
Выясним, в каком случае в электрической цепи выделяется максимальная мощность. Для этого запишем закон Ома для полной цепи в таком виде: ε = IR + Ir. Умножив обе части уравнения на I, получим: εI = I 2 R + I 2 r, где εI — полная мощность, которую развивает источник тока, I2R — мощность потребителей внешней участка цепи, I2г — мощность, которую потребляет внутренняя часть круга. Итак, потребляемая мощность внешней частью цепи, составляет: P = εI – I 2 r.
График зависимости потребляемой мощности во внешней части цепи от силы тока
Графиком зависимости Р (I) является парабола, вершина которой имеет координаты {ε/2r;ε2/4r}. Из графика видно, что максимальная мощность потребляется во внешнем цепи при силе тока I = ε/2r.
Короткое замыкание
С уменьшением сопротивления внешней цепи, R -> 0, сила тока достигает максимального значения Iк.з. Этот случай называют коротким замыканием. Для источников тока, имеющих сравнительно малое внутреннее сопротивление (например, в свинцовых аккумуляторах r=0,1-0,001 Ом), сила тока короткого замыкания может достичь очень больших значений. Проводники могут расплавиться, а сам источник — выйти из строя. Особенно опасны короткие замыкания в осветительных сетях, питающихся от трансформаторных подстанций, ЭДС которых измеряется сотнями вольт. Сила тока короткого замыкания в них может достичь нескольких тысяч ампер.
Закон Ома для полной цепи — Студопедия
Формулировка закона Ома для полной цепи — сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.
Электродвижущая сила — это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущаяговорит о том, что эта сила двигает электричество, то есть заряд.
В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.
Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.
Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.
Задача
Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.
ЛЕКЦИЯ 4. РЕЗИСТОРЫ: ПОНЯТИЕ, СПОСОБЫ СОЕДИНЕНИЯ. СЛОЖНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПОНЯТИЕ, ЗАКОНЫ КИРХГОФА, МЕТОД КОНТУРНЫХ ТОКОВ.
Рези́стор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования тока в напряжение и напряжения в ток, ограничения тока, поглощения электрической энергии и др.
Весьма широко используемый компонент практически всех электрических и электронных устройств.
Электродвижущая сила. Закон Ома для полной цепи — Студопедия
Полная электрическая цепь обязательно содержит источник тока.
Внутри источника тока происходит разделение зарядов: на одном полюсе накапливается положительный заряд, на другом – отрицательный.
Силы, совершающие работу по разделению зарядов, называются сторонние.
Электродвижущей силой источника (ЭДС) называется величина равная отношению работы сторонних сил Аст по перемещению заряда вдоль замкнутой цепи к величине этого заряда q.
ЭДС обозначается буквой ; измеряется в Вольтах.
Закон Ома для полной цепи: Сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивлений цепи.
I – сила тока (А),
Механическое движение и его относительность. Системы отсчёта. Скорость и перемещение при прямолинейном равномерном движении
Механическим движением называется изменение положения тела в пространстве относительно других тел с течением времени.
Примеры: движение автомобиля, Земли вокруг Солнца, облаков на небе и др.
Механическое движение относительно: тело может покоиться относительно одних тел, и двигаться относительно других. Пример: водитель автобуса покоится относительно самого автобуса, но находится в движении вместе с автобусом относительно земли.
Для описания механического движения выбирают систему отсчёта.
Системой отсчёта называется тело отсчёта, связанная с ним система координат и прибор для измерения времени (напр. часы).
В механике часто телом отсчёта служит Земля, с которой связывают прямоугольную декартову систему координат (XYZ).
Линия, по которой движется тело, называется траекторией.
Прямолинейным называется движение, если траектория тела – прямая линия.
Длину траектории называют путем. Путь измеряется в метрах.
Перемещение – это вектор, соединяющий начальное положение тела с его конечным положением. Обозначается , измеряется в метрах.
Скорость – это векторная величина, равная отношению перемещения за малый промежуток времени к величине этого промежутка. Обозначается , измеряется в м/с.
Равномерным называется такое движение, при котором тело за любые равные промежутки времени проходит одинаковые пути. При этом скорость тела не меняется.
При этом движении перемещение и скорость вычисляются по формулам:
,
Если тела за равные промежутки времени проходит неодинаковые пути, то движение будет неравномерным.
При таком движении скорость тела либо увеличивается, либо уменьшается.
Процесс изменения скорости тела характеризуется ускорением.
Ускорением называется физическая величина, равная отношению очень малого изменения вектора скорости ? к малому промежутку времени ?t, за которое произошло это изменение: .
Ускорение обозначается буквой измеряется в м/с2.
Направление вектора совпадает с направлением изменения скорости.
При равноускоренном движении с начальной скоростью ускорение равно
, где .
Отсюда скорость равноускоренного движения равна .
Перемещение при прямолинейном равноускоренном движении вычисляется по формуле:
.
Вопрос 2. Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон. Распад молекул на ионы и электроны называется ионизацией газа. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.
Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные. Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ. Факторы, вызывающие ионизацию газа называются ионизаторами. Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.
Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.
Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.
Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами. Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию.
Это может вызвать, например, свечение газа. Если действие ионизатора неизменно, то в ионизованном газе устанавливается динамическое равновесие, при котором в единицу времени восстанавливается столько же молекул, сколько их распадается на ионы. При этом концентрация заряженных частиц в ионизованном газе остается неизменной. Если же прекратить действие ионизатора, то рекомбинация начнет преобладать над ионизацией и число ионов быстро уменьшится почти до нуля. Следовательно, наличие заряженных частиц в газе — явление временное (пока действует ионизатор). При отсутствии внешнего поля заряженные частицы движутся хаотически.
Газовый разряд
При помещении ионизированного газа в электрическое поле на свободные заряды начинают действовать электрические силы, и они дрейфуют параллельно линиям напряженности: электроны и отрицательные ионы — к аноду, положительные ионы — к катоду. На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток. Электрический ток в газах — это направленное движение ионов и электронов.
Электрический ток в газах называется газовым разрядом.
Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду. В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов. Таким образом, проводимость газов имеет ионно-электронный характер.
Несамостоятельный разряд. Рассмотренный выше механизм прохождения электрического тока через газы при постоянном воздействии на газ внешнего ионизатора представляет собой несамостоятельный разряд, так как при прекращении действия ионизатора прекращается и ток в газе.
Несамостоятельный разряд — это разряд, который зависит от наличия ионизатора. Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать . Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.
Виды самостоятельного разряда
В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.
Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Для возбуждения такого разряда достаточно напряжения между электродами в несколько сотен (а иногда и значительно меньше) вольт. Тлеющий разряд используют в газоразрядных трубках для освещения и рекламы. Красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути.
Искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами. При некотором напряжении возникает электрическая искра. Примером гигантского искрового разряда является молния. Она возникает либо между двумя заряженными облаками, либо между заряженным облаком и Землей. Сила тока в молнии достигает 500000 ампер, а разность потенциалов между облаком и Землей — 1 млрд. вольт. Длина светящегося канала может достигать 10 км, а его диаметр — 4 м.
Если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться, и возникнет новая форма газового разряда, называемого дуговым. В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Ее температура при атмосферном давлении около 4000 °С. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.
Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Так, например, коронный разряд можно получить около тонкой проволоки. При этом возле нее наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей. В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением.
Понятие о плазме
Плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой. Степень ионизации плазмы α определяется отношением числа ионизированных атомов к их общему числу. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (α — доли процента), частично ионизированную (α — несколько процентов) и полностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы.
В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 106 — 107 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах. Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.
Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму. Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы.
Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.
Движение по окружности с постоянной по модулю скоростью
Криволинейное движение – движение, траекторией которого является кривая линия. Вектор скорости в любой точке направлен по касательной к траектории. Любой участок криволинейного движения приближённо можно представить в виде дуги окружности.
Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения. Это движение с переменным ускорением. Траектория движения – окружность. Вектор скорости всегда направлен по касательной к окружности. Величина скорости постоянная, направление скорости всё время меняется. Ускорение при движении по окружности называют центростремительным. Оно всегда, в каждой точке, направлено к центру окружности. Центростремительное ускорение не меняет модуля скорости, но изменяет направление скорости. Величины, характеризующие движение по окружности с постоянной по модулю скоростью.
Период Т (с) – время одного полного оборота. Частота v (Гц, греческая буква «ню») – число полных оборотов за 1 с. Эти два параметра также встретятся вам в теме «Колебания и волны», формулы будут те же . Формулу ускорения надо запомнить сейчас. Всё остальное выводится из математических соображений: надо знать формулу длины окружности, что такое угол в градусах и в радианах.
Принципиальная схема закона Ома
[Как читать символы] • Закон Ома
Простая электрическая схема по закону Ома представляет собой сопротивление, подключенное последовательно к источнику постоянного напряжения.
Две параллельные линии, одна из которых имеет сравнительно большую длину, представляют источник постоянного тока, а символ зигзага представляет резистор. В то время как простые линии используются для обозначения проводов.
Приведенная выше диаграмма верна для общего случая, на практике нам нужно добавить амперметр и вольтметр для измерения.Теперь наша диаграмма с инструментами будет выглядеть так:
Давайте разберемся с компонентами нашей принципиальной схемы.
Батарея: это источник постоянного напряжения, обеспечивающий питание внутренней цепи. Как мы изучили утверждение Ома: V = IR. Фактически, V — это батарея или источник напряжения, который питает всю схему.
Амперметр: он считывает ток, протекающий по всей цепи. Помните, что амперметр всегда подключается последовательно к цепи.
Вольтметр: Считывает напряжение на резисторе. Помните, что вольтметр всегда подключается параллельно компоненту.
А теперь давайте начнем изучать основы математики права на 5 различных примерах.
Пример 1: Батарея 10 В подключается последовательно с сопротивлением 20 кОм. Найдите ток, протекающий по цепи.
Решение: Использование V 1 = I 1 R 1 .
I 1 = V 1 / R 1 = 0.5 мА
Пример 2: Источник 15 В подключается к неизвестному резистору. Значение тока измеряется как 5 мА. Найдите значение
р.
Решение: R 2 = В 2 / I 2 = 15 В / 5 мА = 3 кОм
Пример 3: Резистор 50 кОм подключается к источнику переменного тока 25 В постоянного тока. Найдите значение неизвестного тока, протекающего по этой цепи.
Решение: I 3 = В 3 / R 3 = 25 В / 50 кОм = 0,5 мА
Пример 4: Рассеиваемая мощность через сопротивление 29 кОм составляет 15 Вт.Найдите значение тока и входного напряжения, подаваемого источником.
Решение: Здесь будут использоваться формулы: I = SQRT (P / R) и V = SQRT (P * R). Вы можете узнать обо всех этих формулах из Ohmic Wheel.
Пример 5: R5 = 10 Ом и P5 = 20 Вт
Решение: V5 = 14,14 и I5 = 1,414
.Закон
Ома — Простая английская Википедия, бесплатная энциклопедия
Закон Ома гласит, что в электрической цепи ток, проходящий через резистор между двумя точками, связан с разностью напряжений между двумя точками и связан с электрическое сопротивление между двумя точками.
- Пример) R = VI {\ displaystyle R = {\ frac {V} {I}}}
Где I — ток в амперах, V — разность потенциалов в вольтах, а R — постоянная, измеряемая в Ом, называется сопротивлением.
Ток прямо пропорционален потере напряжения через резистор. То есть, если ток удваивается, то увеличивается и напряжение.
Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение. Закон Ома показывает взаимосвязь между напряжением (V), током (I) и сопротивлением (R). Это можно записать тремя способами:
- I = VRorV = IRorR = VI {\ displaystyle I = {\ frac {V} {R}} \ quad {\ text {or}} \ quad V = IR \ quad {\ text {or}} \ quad R = {\ frac {V} {I}}}.
Формулировка закона Ома — закона Ома гласит, что «ток, протекающий в проводнике, прямо пропорционален разности потенциалов, приложенной к его концам, при условии, что физические условия и температура проводника остаются постоянными».
Напряжение [изменить | изменить источник]
Напряжение — это количество энергии между двумя точками цепи. У этих двух точек разные заряды, одна выше, а другая ниже. Разница между этими двумя точками заряда заключается в том, как мы измеряем напряжение. Единица измерения «вольт» — это имя итальянского физика Алессандро Вольта, создавшего первую химическую батарею. Буква «V» обозначает напряжение.
Текущее [изменение | изменить источник]
Ток — это скорость прохождения заряда.Чем выше заряд, тем быстрее ток. Ток связан с движением электронов по цепи. Ток измеряет скорость движения электронов. Единица измерения тока — «ампер», и обычно человек записывает ее как «амперы». Букву «I» можно представить как ток.
Сопротивление [изменение | изменить источник]
Сопротивление — это то, насколько цепь сопротивляется потоку заряда. Это гарантирует, что заряд не будет течь слишком быстро и не повредит компоненты. В цепи лампочка может быть резистором.Если электроны проходят через лампочку, то лампочка загорается. Если сопротивление велико, то лампа будет тусклее. Единица измерения сопротивления — «Ом», что называется омега, и произносится «ом», это имя изобретателя закона Ома. [1]
Как связаны ток, напряжение и сопротивление [изменить | изменить источник]
Ток, напряжение и сопротивление связаны между собой, что называется «законом Ома». Ом определяет единицу сопротивления «1 Ом» как сопротивление между двумя точками в проводнике, где приложение 1 вольт толкает 1 ампер, или 6.18 электронов. [2]
Например, ученый знает, что значение напряжения составляет 20 В. Как известно, сопротивление, которое есть в лампочке, составляет 10 Ом. Теперь нам нужно найти другую неизвестную переменную, которая является текущей. Для ее решения можно использовать формулу закона Ома. С двумя известными переменными, V (напряжение) и R (сопротивление), единственной переменной, которую нужно найти, является I (ток).
20 В = 10 Ом * I
I = 2A
В задаче ученый всегда получает достаточно информации для решения других значений, единственное, что ученый должен запомнить, — это формула закона Ома.Затем он используется с тем, что дано для решения неизвестной части. В приведенном выше примере сила тока составляет 2 ампера.
[1]
- ↑ ссылка, Get; Facebook; Twitter; Pinterest; Эл. адрес; Приложения, Другое. «Калькулятор закона Ома | Расчет сопротивления и силы напряжения и тока». Проверено 21 августа 2019.
.Закон
Ома
Закон Ома гласит, что
«ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению между двумя точками, и обратно пропорционален сопротивлению между ними».
Закон Ома можно выразить как
I = U / R (1)
, где
I = ток (ампер, А)
U = электрический потенциал (вольт, В)
R = сопротивление (Ом, Ом )
Пример — закон Ома
Батарея 12 вольт обеспечивает питание до сопротивления 18 Ом .Ток в электрической цепи можно рассчитать как
I = (12 вольт) / (18 Ом)
= 0,67 ампер
Эквивалентные выражения закона Ома
Закон Ома (1) можно также выразить как
U = RI (2)
или
R = U / I (3)
Загрузите и распечатайте диаграмму закона Ома !
Пример — сопротивление электрической цепи
Ток 1 ампер протекает через электрическую цепь 230 В, .На приведенной выше диаграмме это означает сопротивление
R ≈ 220 Ом
Его можно также рассчитать по закону Ома
R = (230 В) / (1 А)
= 230 Ом
Пример — Закон Ома и кратные и подкратные
Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и подмножители.
Требуемое напряжение, подаваемое на 3.Резистор 3 кОм для создания тока 20 мА можно рассчитать как
U = (3,3 кОм) (1000 Ом / кОм) (20 мА) (10 -3 А / мА)
= 66 В
Номограмма электрического сопротивления
Загрузите и распечатайте номограмму зависимости электрического сопротивления от вольт и ампер!
Значения по умолчанию на номограмме выше указывают 230 вольт , сопротивление 24 Ом и ток 10 ампер .
Мощность
Электрическая мощность может быть выражена как
P = UI
= RI 2
= U 2 / R (4)
где
P = электрическая мощность (Вт, Вт)
Пример — потребляемая мощность
Мощность, потребляемая в указанной выше электрической цепи 12 В , может быть рассчитана как
P = (12 вольт) 2 / ( 18 Ом)
= 8 Вт
Пример — мощность и электрическое сопротивление
Электрическая лампочка 100 Вт подключена к источнику питания 230 В и .Текущий ток можно рассчитать, преобразовав (4) в
I = P / U
= (100 Вт) / (230 В)
= 0,43 ампера
Сопротивление может быть вычислено путем реорганизации (4) в
R = U 2 / P
= (230 В) 2 / (100 Вт)
= 529 Ом
Номограмма электрической мощности
Эта номограмма может использоваться для оценки зависимости мощности отнапряжение и ампер.
Скачайте и распечатайте номограмму зависимости электрической мощности от вольт и ампер!
Значения по умолчанию на номограмме выше: 240 В, , сопротивление 10 ампер и мощность 2,4 кВт, для постоянного или однофазного переменного тока и 4 кВт, для трехфазного переменного тока.
.