22.11.2024

Как с 220 сделать 12 вольт: Как получить напряжение 12 Вольт: описание 8 простых способов

Содержание

суть работы, как сделать самодельное понижающее устройство на 10 ампер

Для того чтобы понизить напряжение промышленной сети, используются трансформаторы 220 на 12 вольт. Такое значение амплитуды необходимо для питания различной техники, в том числе и осветительных приборов. Понижающий трансформатор может располагаться непосредственно в блоке питания или быть выполнен как отдельное устройство. Этот радиоэлектронный элемент можно приобрести в специализированных магазинах, но при желании несложно изготовить и своими руками.

Суть работы устройства

Трансформатор — это электронное устройство, использующееся для преобразования переменного сигнала одной амплитуды в другую без изменения частоты. Сложно найти электротехническое оборудование, которое бы не содержало в своей схеме такое изделие. Оно является ключевым звеном в передаче энергии от одной части цепи к другой.

Появление трансформатора стало возможным после изобретения индукционной катушки в 1852 году механиком из Германии Румкорфом. Его устройство было похоже на катушку для наматывания ниток, но вместо последних использовалась проволока. Внутри катушки располагалась другая такая же конструкция. При подаче тока на нижнюю катушку фиксировалось напряжение и на верхней. Объяснялось это явлением, названным индуктивностью.

Кто точно изобрёл трансформатор, доподлинно неизвестно. В 1831 году Фарадей, проводя эксперименты, обнаружил, что в замкнутом контуре при изменении магнитного поля возникает электричество. Он также нарисовал примерную схему, как должен выглядеть трансформатор. Используя в 1876 году стальной сердечник и две катушки, русский учёный Яблочков фактически изготовил прообраз современного устройства. При подаче тока на одну из них он наблюдал возникновение магнитной индукции, приводящей к появлению тока на другой. При этом напряжение на катушках было разным из-за отличающегося количества витков.

Появление такой конструкции подтолкнуло других учёных к исследованиям, в результате которых появилась технология изготовления современного трансформатора.

Принцип действия

Современная промышленность выпускает трансформаторы, отличающиеся как по внешнему виду, так и по характеристикам. Но их всех объединяет принцип действия и пять элементов конструкции. Чтобы понять, как работает понижающий трансформатор с 220 на 12 вольт, необходимо знать эти основные части изделия. К ним относятся:

  1. Сердечник. По-другому его называют магнитопровод. Его назначение проводить магнитный поток. По виду исполнения сердечники делятся на три группы: плоскостные, ленточные, формованные. Изготавливают из электротехнической стали, феррита или пермаллоя, то есть материалов, имеющих способность к высокой намагниченности и обладающих проводящими свойствами.
  2. Обмотки. Представляют собой токопроводящую проволоку, намотанную витками. В качестве материала для её изготовления используется медь или алюминий.
  3. Каркас. Служит для намотки на него обмоток, изготавливается из изоляционного материала.
  4. Изоляция. Защищает катушки от межвиткового замыкания, а также их непосредственного контакта с токопроводящими частями конструкции. Чаще всего используется лак, клипперная лента, лакоткань.
  5. Монтажные выводы. Для предотвращения обрыва обмоток во время монтажа в конструкции делаются специальные выводы, позволяющие подключать к трансформатору источник питания и нагрузку.

Основной частью обмотки является виток. Именно из-за него и создаётся магнитная сила, впоследствии приводящая к появлению электродвижущей (ЭДС).

Таким образом, трансформатор представляет собой замкнутый контур (сердечник) на котором располагаются катушки (обмотки). Их количество может составлять от двух и более штук (исключение автотрансформатор). Катушка, подключаемая к источнику питания, называется первичной, а которая соединяется с нагрузкой — вторичной.

При подключении к источнику переменной энергии через первичную обмотку устройства начинает протекать изменяющийся во времени ток (синусоидальный). Он создаёт переменное электромагнитное поле. Линии магнитной индукции начинают пронизывать сердечник, в котором происходит их замыкание. В результате на намотанных витках вторичной катушки индуцируется ЭДС, создающая ток при подключении выводов к нагрузке.

Характеристики и виды изделия

Разность потенциалов, возникающая между выводами вторичной обмотки, зависит от коэффициента трансформации, определяющегося отношением количества витков вторичной и первичной катушки. Математически это можно описать формулой: U2/U1 = n2/n1 = I1/I2, где:

  • U1, U2 — соответственно разность потенциалов на первичной и вторичной обмотке.
  • N1, N2 — количество витков первичной и вторичной катушки.
  • I1, I2 — сила тока в обмотках.

По виду сердечника трансформаторы на 12 В разделяются на кольцевые, Ш-образные и П-образные. По конструктивному же исполнению они бывают: броневыми, стержневыми и тороидальными (кольцевыми). Стержневой тип собирается из П-образных пластин. На броневом виде используются боковые стержни без обмоток. Этот вид самый распространённый, так как обмотки надёжно защищены от механических повреждений, хотя при этом эффективность охлаждения уменьшается.

Тороидальный же трансформатор обладает самыми лучшими характеристиками. Его конструкция способствует хорошему охлаждению. Эффективное распределение магнитного поля увеличивает КПД изделия. Этот тип является самым популярным среди радиолюбителей, так как простота конструкции позволяет быстро его разбирать и собирать. Например, очень часто, именно на базе тора делают самодельные мощные сварочные аппараты.

К основным параметрам изделия относят:

  1. Мощность. Обозначает величину энергии, передающуюся через устройство, не приводя к его повреждению. Определяется толщиной провода, используемого при намотке катушек, а также размеров магнитопровода и частоты сигнала.
  2. КПД. Определяется отношением мощности, затрачиваемой на полезную работу к потребляемой.
  3. Коэффициент трансформации. Определяет способ преобразования.
  4. Количество обмоток.
  5. Ток короткого замыкания. Определяет максимальную силу тока, которую может выдержать устройство без перегорания обмоток.

Самостоятельное изготовление

Конструкция трансформатора довольно простая, поэтому его несложно сделать своими руками. Но перед тем как приступить непосредственно к его изготовлению необходимо не только подготовить материал и инструменты, но и выполнить предварительный расчёт.

Как сделать понижающий трансформатор своими руками можно рассмотреть на конкретном примере. Пускай стоит задача изготовить преобразователь с 220 В до 12 в с выходным током 10 А.

Сердечник самостоятельно вряд ли получится сделать, поэтому лучше воспользоваться ненужным трансформатором любого типа. Его понадобится аккуратно разобрать и извлечь оттуда «железо».

На следующем этапе стоит изготовить каркас. Можно использовать различные материалы, например, стеклотекстолит. Для его расчёта можно воспользоваться программой Power Trans. При этом стоит отметить, что хотя это приложение умеет рассчитывать также и количество витков, для этих целей лучше её не использовать, из-за не совсем корректных результатов.

В программе можно выбрать тип сердечника, а также задать сечение сердечника, окна и мощность изделия. Затем нажать расчёт и получить готовый чертёж с размерами. Далее, останется перенести рисунок на текстолит и вырезать нужное количество деталей. После того как все элементы подготовлены они собираются в каркас.

Теперь можно переходить к заготовке изолирующих прокладок. Они будут необходимы для изолирования слоёв друг от друга. Вырезаются они полосками из лакоткани, фторопласта, майлара или даже плотной бумаги, например, которую используют для выпечки. Важно отметить, что ширина полоски делается на пару миллиметров больше, при этом размечать линии реза графитовым карандашом не рекомендуется (графит проводит ток).

На последнем этапе готовится провод. Так как будет необходимо намотать трансформатор 220 В 12 В 10а, то есть понижающий, вторичная катушка будет выполняться толстым проводом, а первичная тонким.

Расчёт конструкции

Расчёт конструкции начинают с нахождения мощности, которую должна выдерживать вторичная обмотка. Подставив в формулу: P = U * I, заданные условиям b значения для вторичной катушки, получится: P 2 = 12*10 = 120 Вт. Приняв, что КПД изделия будет около 80% (среднее значение для всех трансформаторов) можно определить первичную мощность: P = P 2/0,8 = 120/0,8 = 150 Вт.

Исходя из того, что мощность передаётся через сердечник, то величины P1 будет зависеть сечение магнитопровода. Находится сечение сердечника из выражения: S = (P 1)½ = 150 = 12.2 см2. Теперь можно найти и необходимое количество витков в первичной обмотке для получения одного вольта: W =50/ S = 4. 1. То есть для напряжения 220 вольт потребуется намотать 917 витков, а для вторичной — 48 витков.

Ток, протекающий через первичную катушку, будет равен: I = P / U = 150/220 = 0,68 А. Отсюда диаметр провода первичной обмотки вычисляемый по формуле: d = 0,8*(I)½ будет 0,66 мм, а для вторичной — 2,5 мм. Площадь же поперечного сечения можно взять из справочных таблиц или рассчитать по формуле: S = 0,8* d 2. Она соответственно составит — 0,3 мм2 и 5 мм2.

Если вдруг провод такого сечения трудно достать, то можно использовать несколько проводников соединённых друг с другом параллельно. При этом их суммарная площадь сечения должна быть немного больше расчётной.

Техника намотки

Для намотки изделия сделанный каркас необходимо зажать на оси и отцентровать. Проволку предварительно лучше намотать на какой-либо цилиндрический предмет. Например, катушку ниток или отрезок трубы. Напротив зажатого каркаса ставится катушка с проволокой. Проволока заводится на основание и выполняется несколько оборотов вокруг него. Затем начинают вращать корпус каркаса. При этом следует внимательно следить, чтобы каждый виток ложился рядом с другим, а не пересекал его. После каждого слоя наносится два витка изоляции.

Как только первична обмотка будет намотана, проволоку необходимо вывести в сторону для формирования вывода. Остаток проволоки отрезается. Перед нанесением вторичной обмотки прокладывается несколько слоёв изоляции и повторяется весь процесс, но уже с проводом более толстого сечения. По окончании работ свободные концы катушек распаиваются к клеммам. С помощью тестера катушки проверяются на разрыв.

Существуют некоторые нюансы при намотке которые желательно знать. Во время намотки может случайно порваться провод. В этом случае понадобится зачистить оборванные концы, скрутить их и спаять. Место пайки тщательно заизолировать, например, подложив два слоя изоляционной бумаги. При намотке для увеличения электрической прочности изделия рекомендуется выполнять пропитку каждого слоя. Это предотвращает вибрацию провода. В качестве пропитки используются лаки на эпоксидной основе или акриле.

Теперь останется только подключить трансформатор с 220 на 12 к источнику питания. Соединение с ним происходит по параллельной схеме. С помощью мультиметра можно проконтролировать выходное напряжение. Для этого он переключается в режим измерения переменного сигнала.

Если в дальнейшем необходимо получить постоянный сигнал, то к вторичной обмотке трансформатора подключается диодный мост (выпрямитель) с электролитическим конденсатором (сглаживающий фильтр). Но при этом следует учесть, что для тока 10 ампер понадобится соответственный и выпрямительный блок, способный выдержать такую силу тока с запасом порядка 15%.

Таким образом, самостоятельно изготовить понижающий трансформатор сможет даже начинающий радиолюбитель. Главное при этом выполнить правильный расчёт. А изготовленное изделие наверняка найдёт своё применение.

Как из 12 вольт сделать 220 при помощи преобразователя напряжения

Понимание, как из 12 вольт сделать 220, позволяет самостоятельно изготовить преобразователь для получения стандартного сетевого напряжения.

Чтобы сделать прибор с качественной синусоидой на выходе, обязательно должны быть учтены все требования электротехники.

В каких случаях необходим преобразователь напряжения?

Преобразователи напряжения — приборы, изменяющие постоянный ток от аккумуляторной батареи в переменные показатели с заданными параметрами, равными 220 В и 50 Гц.

В бытовых условиях это устройство обеспечивает беспроблемное функционирование таких приборов, как газовый котел, холодильник, телевизор и другая сложная электротехника при невозможности использовать централизованную подачу электрической энергии на 220 В.

Особенности влияния параметров на электрические приборы:

  • амплитуда прилагаемого напряжения влияет на частоту оборотов двигателя, а от показателей питающей электросети напрямую зависит скорость валового вращения в двигателе асинхронного типа;
  • бытовые приборы нагревательного типа функционируют при показателях рабочего тока, пропорциональных уровню напряжения, но значительная часть таких изделий не рассчитана на эксплуатацию в нестандартных условиях напряжения;
  • бытовая электротехника часто нуждается в напряжении, отличном от сетевых параметров со строго определенными, стабильными показателями амплитуды, поэтому нормальная работоспособность некоторых приборов возможна только в условиях применения преобразователя напряжения.

Схема повышающего преобразователя напряжения 12-220 В

Особенно часто устройство используется в домовладениях с системой автономного обогрева, где в качестве отопительного прибора устанавливается импортное газовое оборудование с электронным управлением и контролем. Работоспособность таких приборов полностью зависит от наличия бесперебойного напряжения в 220 В и 50 Гц с правильной синусоидой.

Область применения преобразователя напряжения очень широкая, включая походные условия, эксплуатацию яхт и автомобилей, дачные участки без сетевого электроснабжения и так далее.

Электросчетчики бывают разными по количеству фаз, по тарифам и другим параметрам. Какой счетчик электроэнергии лучше поставить в квартире – читайте рекомендации специалистов.

Принцип работы светодиодных ламп и советы по ремонту неисправных лампочек своими руками описаны тут.

С правилами монтажа счетчиков электроэнергии вы можете ознакомиться по ссылке.

Разновидности преобразователей 12 на 220 вольт

Инверторы — устройства, позволяющие преобразовывать постоянные токовые величины, включая 12 В, в переменный ток с изменением уровня напряжения или без. Как правило, такие приборы являются генераторами периодического напряжения, приближенного к форме синусоиды.

Все выпускаемые в настоящее время преобразователи напряжения постоянных токовых величин могут быть представлены:

  • регуляторами напряжения;
  • преобразователями уровня напряжения;
  • линейными стабилизаторами.

Самодельный преобразователь

Чисто теоретически, на выход можно получить любые токовые величины, регулируемые от нулевой отметки до максимальных значений. Чаще всего в качестве источника постоянного тока на 12 В используется стандартная аккумуляторная батарея. Существующие на сегодняшний день преобразователи отличаются по нескольким параметрам.

В зависимости от вида получаемой синусоиды:

  • Приборы, создаваемые синусоиду нормального или постоянного вида, характеризуются функционированием без отклонений и соблюдением всех эксплуатационных параметров с высоким уровнем точности. Такие устройства используются в подключении любых электроприборов, которые работают в условиях напряжения 220 В.
  • Приборы, создаваемые синусоиду модифицированного вида, характеризуются незначительными отклонениями в величине напряжения. Такие особенности не способны оказывать негативное воздействие на эксплуатационные качества стандартных бытовых устройств. Тем не менее, такое оборудование не применяется для подключения приборов, относящихся к категории сложной измерительной или медицинской техники.

В зависимости от показателей мощности:

  • преобразователи с мощностью до 100 Вт не рассчитаны на слишком высокие нагрузки, поэтому являются оптимальным вариантом для питания зарядного устройства простого бытового прибора;
  • преобразователи с мощностью в пределах от 100 Вт до 1,5 кВт. Такой тип устройств применяется преимущественно для питания простых приборов, подключаемых к бытовой электросети;
  • преобразователи с мощностью выше 1,5 кВт позволяют обеспечивать питанием такие достаточно мощные бытовые приборы, включая микроволновую печь, утюги и объёмные мультиварки.

В зависимости от конструктивных особенностей:

  • устройства компактного типа, отличающиеся неприхотливостью к источнику питания, и функционирующие в условиях напряжения 12-50 В;
  • устройства стационарного типа, обладающие чистым синусом и выдающие низковольтное напряжение 12-36 В;
  • автомобильные устройства переносного типа, характеризующиеся работой в определенных устройствах.

При выборе модели преобразователя показателей напряжения рекомендуется приобретать прибор, имеющий некоторый запас по уровню мощности.

Преобразователи напряжения с 12 на 220 В выдают на выход стандартные показатели, соответствующие основным характеристикам домашней электросети, поэтому являются совместимыми с практически любыми бытовыми приборами.

По форме сигнала выходного напряжения

Электронные устройства в виде преобразователей или инверторов различаются в зависимости от формы сигнала в выходном напряжении:

  • Модифицированный вариант, представленный плавной синусоидой, измененной до трапециевидной, прямоугольной или даже треугольной формы. Такие устройства характеризуются ограниченной областью использования и пригодны для потребителей, представленных осветительными и нагревательными приборами. Чтобы обеспечить функционирование оборудования с индуктивной нагрузкой, инверторная мощность должна иметь значительный запас, что обусловлено высоким пусковым током.
  • Вариант «чистой» синусоиды используются в питании любого вида нагрузки, а также позволяют обеспечить надежное и стабильное функционирование высокочувствительного оборудования. Значительная часть инверторов такого вида имеет зарядное устройство встроенного типа, благодаря чему используется в качестве источника бесперебойного питания.
  • Гибридный вариант подходит для обеспечения схем электрического снабжения, рассчитанных на обслуживание нескольких источников питания. В устройстве есть возможность использовать определенный вид приоритетного источника энергии или использовать сразу несколько вариантов с целью зарядка аккумуляторной батареи.

Преобразователь напряжения 12-220 самодельный

При выборе устройства следует обратить внимание на доступность альтернативных источников энергии, что позволяет быстро окупить приобретенное, достаточно дорогостоящее оборудование.

Приобретаемое устройство должно иметь оптимальные показатели номинальной мощности, защиту от перегревов и замыканий, систему пассивного и активного охлаждения, а также достаточный для функционирования КПД.

Трансформаторные устройства

Преобразователи трансформаторного типа являются устройствами, основанными на двух обмоточных системах. Приборы такого вида характеризуются изменением индуктивной связи при воздействии входного перемещения.

При этом осуществляется подключение одной обмоточной системы к источнику переменного тока с напряжением, а вторая обмотка, в этом случае, используется в качестве выходной.

Автомобильный преобразователь напряжения 12-220 В

Любой трансформатор предназначен для выполнения таких основных функций, как измерение и защита. Особенно востребованы современные трансформаторные устройства преобразующего типа, предназначенные для выполнения схемы удвоения или утроения частоты питающего напряжения.

В производственной области и быту современные приборы, позволяющие обеспечивать контроль входного/выходного тока и трансформировать переменные показатели в постоянные параметры, а также способные распределять напряжение, – являются очень востребованными.

Конструкция обычного повышающего преобразователя напряжения с 12 на 220

Тем не менее, нужно учитывать и некоторые минусы таких проборов. Основные недостатки преобразователей напряжения представлены восприимчивостью многих моделей таких устройств к повышенным показателям влажности, часто весьма внушительными размерами и сравнительно высокой стоимостью, поэтому к выбору инвертора нужно подходить очень внимательно.

Видео на тему

ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

   Понадобился мне для некоторых целей повышающий преобразователь с 12В на стандартное сетевое напряжение 220 вольт. Поискав на форуме решил сделать из запчастей блока питания компьютера. Сразу замечу, что трансформатор лучше брать побольше — маленький может своеобразно мигать и обычно тянет в нормальном режиме порядка 20 ватт, а то и меньше. Радиаторы ставятся при нагрузке более 50 ватт, когда транзисторы нагреваются выше нормы.


Схема электрическая преобразователя 12-220 вольт

   Конструктивно плата устройства может крепится в любом корпусе, обеспечивающим защиту от прикосновения человеком. Рисунок смотрите на фото или ищите файл на форуме.

   Если питать будем телевизор или лампочку, то можно вообще не использовать выпрямитель Кстати, компактную люминисцентную лампу КЛЛ, этот преобразователь также запускает — пробовал с лампой на 15 Вт. Все детали, кроме трансформатора, брались новыми — поэтому особых проблем не наблюдалось. В будущем планируется сделать еще два экземпляра, с учетом выявленных осбенностей по деталям и схематически.

   Небольшое описание схемы и ее работы от уважаемого пользователя форума ear: Схема представляет собой двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (и ее аналогов), что позволяет сделать её довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. Также можно использовать его и без диодов, получая переменное напряжение. Для электронных балластов постоянное напряжение и полярность включения не актуальна, так как в схеме балласта на входе стоит диодный мост (правда диоды там не такие «шустрые» как в нашем преобразователе).  

   В преобразователе 12 вольт в 220 используется готовый высокочастотный понижающий трансформатор из блока питания (БП) компьютера, но в нашем преобразователе он станет наоборот повышающим. Понижающий трансформатор можно взять как из AT так и из ATX БП. Из практики трансформаторы отличаются только габаритами, а расположение выводов идентично. Убитый БП (или трансформатор из него) можно найти в любой мастерской по ремонту компьютеров.  

 C1 – это 1 нанофарад, на корпусе кодировка 102;
 R1 – задает ширину импульсов на выходе.
 R2 (совместно с C1) задаёт рабочую частоту.

   Уменьшаем сопротивление R1 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту. И наоборот. 

   Транзисторы – мощные МОП (металл-окисел-полупроводник) полевые транзисторы, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N. Радиатор не нужен, так как продолжительная работа не вызывает ощутимый нагрев транзисторов. А если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор! Используйте изоляционные прокладки и шайбы втулки от компьютерного БП. 

   Тем не менее, для первого запуска радиатор не помешает; по крайней мере транзисторы сразу не сгорят от перегрева в случае ошибок монтажа или КЗ на выходе. Защиту схемы от перегрузки и переполюсовки можно реализовать через предохранитель и диод на входе.  

   У меня в качестве ключей например были применены популярные полевые irf540n. В конференции ведется обсуждение схемы преобразователя и там вы можете задавать возникающие по ходу сборки вопросы. Сборка и испытания: redmoon.

   Форум по инверторным источникам питания

   Форум по обсуждению материала ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

Как сделать простой преобразователь с 12 на 220 из компьютерного БП

Привет всем, в этой статье подробно расскажу, как можно сделать простейшей преобразователь с 12 вольт на 220 вольт с использованием доступных компонентов. Мощные, хорошие схемы, как право сложны даже для профи, а для начинающих вообще не достижимы, поэтому сегодня будет рассмотрен вариант конструкции повышающего преобразователя напряжения, который можно сделать из деталей не рабочего блока питания от компьютера.

Схема выбрана специально самая простая, чтобы повторить её могли все. Наша схема не нуждается в дополнительной настройки, я также решил отказаться от стандартных вариантов на базе шим контроллера, это бы усложняло задачу и сделало бы настройку сложной.

Внимание — схема представлена только для ознакомительных целей, она не имеет стабилизацию, поэтому выходное напряжение будет отклоняться от заявленной 220 вольт. Не имеет также никаких защит, а на выходе постоянный ток, это значит, что таким инвертором нельзя питать двигатели переменного тока и сетевые трансформаторы.

Подключать паяльник, небольшие лампы накаливания, эконом лампы, но опять же использовать такую схему в бытовых целях не совсем хорошая идея.

В качестве донора у нас обычный? нерабочий, компьютерный блок питания, из этого блока нам потребуется: —Силовой, импульсный трансформатор, —Конденсатор, —Дроссель групповой стабилизации и ещё несколько компонентов, о которых будем говорить по ходу дела.Для того, чтобы изъять указанные компоненты нам нужно убрать плату, то есть отделить плату от корпуса, делается это достаточно простым образом, откручиваем винты, перекусываем проводу, которые идут на вентилятор и вытаскиваем плату.

Для того, чтобы отпаять трансформатор я воспользуюсь естественно паяльником и оловоотсосом, нам нужно также отпаять, помимо указанных компонентов, ещё и радиатор на котором стоят основные, силовые транзисторы, плюс изолирующие прокладки и шайбы для них.

Помимо основных запчастей, которые мы изъяли с компьютерного блока питания, нам понадобиться два резистора с мощностью 1-2 ватта, с сопротивлением от 270 до 470 Ом.
Далее нам понадобятся два диода типа UF5408, можно в принципе любой ультро-фаз с током не менее 1 ампера и напряжением 400 вольт и выше.

Два стабилитрона с напряжением стабилизации от 5.1 до 6.8 вольт, желательно на 1 и 2 ватт. Полевые транзисторы N-канальные можно использовать как вариант IRF840, но я бы посоветовал более мощные IRFP460 либо 250 из той же линейки, я же в своём варианте буду использовать на 18 ампер 600 вольт, типа 18N60.

Следующий ингредиент это у нас дроссель, в принципе на дросселе от групповой стабилизации несколько независимых обмоток, их можно в принципе смотать, я откусил, оставив только силовую обмотку. Если же дроссель мотается с нуля, то обмотка состоит из провода 1.2-1.5 мм и содержит от 7 до 15 витков.

Итак трансформатор, у нас есть вторичная, выходная обмотка и первичная, обратите внимание на отдельный отвод (провод) и два правых контакта, возле них мы ставим метку, то есть к этим контактам подключаются силовые выводы с транзисторов, дальше к этим же контактам с трансформатора параллельно подключаем наш конденсатор на 1 мКф.Потом начинается монтаж, собственно устанавливаются транзисторы на теплоотвод, я не буду использовать никакой изоляции, поскольку корпуса транзисторов у меня уже заранее изолированы с завода.

Я решил в принципе не травить, ни каких плат, а просто собрать всё навесным монтажом для максимальной простоты сборки.
Собранная монтажом схема выглядит примерно таким образом, сейчас нам нужно всего лишь подключить к выходной обмотке лампу накаливания небольшой мощности, падать питание, чтобы проверить схему на работоспособность. Теперь нам нужно отпаять два больших электролитических конденсатора с компьютерного БП, они стоят в абсолютно любом блоке питания от компьютера, ёмкость бывает разная, напряжение 200 вольт.

На базе этих конденсаторов и диодов мы создадим симметричный умножитель напряжения или просто удвоитель напряжения, поскольку выходное напряжение со вторичной обмотке трансформатора в районе 100 вольт и его нужно поднять.

Для этого мы использовать будем именно умножитель, который поднимет его в два раза.

Помимо этих конденсаторов нам также понадобиться два диода, в моём варианте UF5408, в принципе можно использовать любые диоды на 400-600, а ещё лучше 1000 вольт с током выше 2-3 ампер.

Небольшая лампа накаливания с мощностью 60 ватт горит полным накалом. Ну вот вроде и всё, на этой ноте наш преобразователь готов к работе )))В заключении хочу сказать, что схема работает в широком диапазоне питающих напряжений, в принципе от 6 вольт начинается работа, простота и доступность основное достоинство схемы, советуется подавать питание через предохранитель на 15-20 ампер.В схеме я также нарисовал резисторы, которые конденсаторы зашунтированы этими резисторами, в своём проекте я их не поставил, но вам обязательно советую это сделать.

Автор; Ака Касьян

12 или 220 вольт Энергосбережение в бесперебойном автономном электроснабжении дома, дачи, коттеджа, кемпера, катера, яхты,..

12 «постоянно» или 220 «переменно»?

 

 

Подавляющее большинство, имеющее загородный дом, дачу, коттедж, вынуждено обесточивать жилище в силу опасности короткого замыкания (сырость, перепад или скачёк напряжения, грозовые разряды).

Повреждения «сетевой» проводки грызунами часто приводят к возгоранию.

Почти все охранные сигнализации, датчики, системы видеонаблюдения, мониторы, ЖК(LCD)-телевизоры запитаны постоянным напряжением 12 вольт через понижающие трансформаторные устройства.

Само по себе (не говоря уже о переменном магнитном поле) трансформаторное устройство потенциально опасно и требует теплоотвод, отсутствие влаги и запылённости.

На выделяемое тепло затрачивается энергия, а бесплатной энергии не бывает (даже солнечной, т.к. преобразователь фотонов в электроны, солнечный модуль, стоит довольно дорого).

Для примера сравните нагрев блока питания и подключенного к нему телевизора или монитора.

Половину тепла выделяет блок питания.

Логично ли его использование?

Не буду вдаваться в электромагнитные тонкости, но если сравнить низковольтный насос постоянного тока и «сетевой», при одинаковой производительности разница в энергопотреблении и габаритах равна двум и более (для педантов: у «сетевого» насоса, помимо индуктивного, присутствует низкое активное сопротивление).

Это относится ко всем электромоторам,  трансформаторам и «намоточным» (которые гудят) изделиям. Иными словами если мощность насосов 150 ватт, то насос постоянного тока заполнит емкость 7000 литров, аналогичный переменного тока 2500 литров.

В виду меньшей материалоемкости в производстве себестоимость ниже, соответственно в продаже цена скромнее.

Коротко замечу, что в подавляющем большинстве своём генератор вырабатывает переменное напряжение с синусом 0,6 (в «сети» ~220v, &=0,8).

Это негативно сказывается на всех электродвигателях (насосы, компрессоры холодильников и т.д.) которые рассчитаны для стандартного, сетевого синуса 0,8.

К сожалению, инверторы грешат тем же, плюс модифицированная синусоида.

Учитывая вышеизложенное и неизложенное, логично сделать гибридную схему питания. Независимое, раздельное энергоснабжение. Низковольтное -12v постоянного тока и ~220v.

Из экономии можно использовать один, четырёх-жильный кабель (на провод заземления подключаем минус 12 вольт). Но предпочтительнее абсолютно раздельное.

При чём, для питания ~220v напряжением, как правило, достаточно 2-3 розеток.

За редким исключением, все энергосберегающие «сетевые» лампы работают с частотой мерцания 400 Гц (в подтверждение этому можно услышать характерный писк лампы), и хотя это незаметно для глаз, пользы от этого не ждите.

В низковольтных энергосберегающих лампах постоянного тока этих недостатков нет.

Оставляя, на время отъезда, низковольтное напряжение снимается вопрос с питанием систем охраны, дежурного освещения, автомобильного холодильника.

Солнечные батареи, ветрогенератор в естественном режиме выполняют роль зарядного устройства. Заряжать аккумулятор сетевым, трансформаторным методом небезопасно.

Мало кто рискнет оставить на длительный срок включёнными без присмотра инвертор и холодильник, компрессор которого запитан напряжением ~220v с модифицированной синусоидой. Особенно если инвертор находится в помещении со значительными перепадами температур (день/ночь).

Возникает опасность оказаться в точке росы*, с непредсказуемыми последствиями.

Предложенная нетрадиционная схема питания лишь на первый взгляд усложняет жизнь. На самом деле имеет несомненные плюсы.

Это электро и пожаробезопасность, возможность использования бестрансформаторных устройств, значительное (до 30-50%) энергосбережение и пр.

В конечном итоге переход на традиционную схему сводится только к замене ламп и подключению низковольтной сети к источнику сетевого напряжения.

Стоит добавить, что нам неизвестны случаи перехода от данной схемы к традиционной.

 

Да не осудят меня коллеги «технари», старался писать понятно, а не «заумно».

 

С уважением, Семён Лампочка.

2007г.

* — Разница температуры воздуха, при которой насыщение водяного пара конденсируется в росу.

 

Ваш обязательный вопрос: Срок службы солнечных батарей?

 

Как из трех вольт сделать 12. Как получить нестандартное напряжение. Автомобильное зарядное usb

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.


Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Или такие:

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.



Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…



Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А
.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания

При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.
Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки
, на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.

После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.

Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.

Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!

Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе.
Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:

Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона

– это напряжение стабилизации на стабилитроне.

Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:

Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.

Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.

Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта
? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!

Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.

Итак, что на выходе?

Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:

На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

 

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …

 

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

 

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Как сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?

Инверторы часто необходимы в местах, где невозможно получить питание переменного тока от сети. Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: истинные / чистые синусоидальные инверторы и квази или модифицированные инверторы. Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.

Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования.Здесь построена простая схема инвертора, управляемая напряжением, использующая силовые транзисторы в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.

Принцип, лежащий в основе этой схемы

Основная идея каждой схемы инвертора состоит в том, чтобы создавать колебания с использованием заданного постоянного тока и применять эти колебания через первичную обмотку трансформатора путем усиления тока. Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.

Также получите представление о схеме преобразователя постоянного тока 12 В в 24 В

Схема преобразователя с использованием транзисторов

Преобразователь 12 В постоянного тока в 220 В переменного тока также может быть разработан с использованием простых транзисторов. Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.

Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.

Принципиальная схема

Необходимые компоненты
  • Аккумулятор 12 В
  • MOSFET IRF 630-2
  • 2N2222 Транзисторы
  • 2.2 мкФ конденсаторы-2
  • Резистор
  • 12В-220В повышающий трансформатор с отводом по центру.
Рабочий

Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.

Этого можно достичь, сконструировав нестабильный мультивибратор, который генерирует прямоугольную волну с частотой 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.

Каждый транзистор генерирует инвертирующие прямоугольные волны.Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту. Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором:

F = 1 / (1,38 * R2 * C1)

Инвертирующие сигналы генератора усиливаются силовыми полевыми МОП-транзисторами T1 и T4. Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.

Выходное видео

Коэффициент трансформации трансформатора должен быть 1:19, чтобы преобразовать 12 В в 220 В.Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.

К при использовании батареи 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.

Чтобы спроектировать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт

Схема преобразователя 12 В постоянного тока в 220 В переменного тока с использованием нестабильного мультивибратора

В схемах инвертора можно использовать тиристоры в качестве переключающих устройств или транзисторов.Обычно для приложений малой и средней мощности используются силовые транзисторы. Причина использования силовых транзисторов заключается в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.

Одно из важных применений транзистора — это переключение. В этом случае транзистор смещен в области насыщения и отсечки.

Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении.Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.

Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.

Нестабильный мультивибратор генерирует выходной сигнал, который переключается между двумя состояниями и, следовательно, может использоваться в качестве генератора. Частота колебаний определяется номиналами конденсатора и резисторов.

[Также прочтите: Как сделать регулируемый таймер]

Принципиальная схема

Принципиальная схема преобразователя 12В постоянного тока в 220В переменного тока — ElectronicsHub.Org

Компоненты цепи

  • V1 = 12 В
  • R1 = 10 кОм
  • R2 = 150 кОм
  • R3 = 10 Ом
  • R4 = 10 Ом
  • Q1 = TIP41
  • Q2 ​​= TIP42
  • D1 = D2 = D2
  • C3 = 2200 мкФ
  • T1 = повышающий трансформатор 12 В / 220 В

Описание схемотехники

Конструкция осциллятора: В качестве генератора можно использовать нестабильный мультивибратор. Здесь сконструирован нестабильный мультивибратор с таймером 555.Мы знаем, что частота колебаний таймера 555 в нестабильном режиме определяется выражением:

f = 1,44 / (R1 + 2 * R2) * C

, где R1 — сопротивление между выводом разряда и Vcc, R2 — сопротивление. сопротивление между разрядным выводом и пороговым выводом, а C — это емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется следующим образом:

D = (R1 + R2) / (R1 + 2 * R2)

Поскольку наше требование составляет f = 50 Гц и D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.

Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.

Схема коммутации: Наша главная цель — разработать сигнал переменного тока напряжением 220 В. Это требует использования мощных транзисторов, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6А, где ток базы равен току коллектора, деленному на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен

R b = (V cc — V BE (ON) ) / I bias

Для каждого транзистора V BE (ON) равен около 2В. Таким образом, R b для каждого рассчитывается как 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.

Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.

Конструкция выходной нагрузки: Поскольку выходной сигнал схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитический конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, рекомендуется использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.

Работа цепи преобразователя постоянного тока 12 В в переменный 220 В

  • Когда это устройство питается от батареи 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
  • Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
  • При этом транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
  • Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора через переменные интервалы. Конденсатор обеспечивает требуемую основную частоту сигнала.
  • Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.

Применение схемы преобразователя 12 В постоянного тока в 220 В переменного тока

  1. Эта схема может использоваться в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
  2. Эта схема может использоваться для управления двигателями переменного тока малой мощности.
  3. Она может использоваться в солнечной энергетической системе.

Ограничения

  1. Поскольку используется таймер 555, выходной сигнал может незначительно изменяться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
  2. Использование транзисторов снижает КПД схемы.
  3. Использование переключающих транзисторов может вызвать перекрестные искажения выходного сигнала. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.

Note

Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.

[Читать: Солнечный инвертор для дома ]

ИСТОЧНИК И ХРАНЕНИЕ ПИТАНИЯ 220–12 В (PDF)

Этот проект предназначен для создания источника питания от 220 до 12 В постоянного тока, который также может сохранять мощность в течение длительного времени. время. Используемая схема является эффективной и внесла множество улучшений в существующие источники питания постоянного тока, такие как регулировка напряжения и устранение пульсаций на выходе. Напряжение 220 АС сначала преобразуется в 12 В переменного тока понижающим трансформатором, затем двухполупериодный выпрямительный мост (на основе моста пшеничного камня) используется для преобразования А.C в D.C. Затем этот вывод дважды фильтруется двумя механизмами.

> Для устранения ряби в форме волны мостовой схемы.

> Создайте регулируемый и эффективный источник питания.

NPN-транзистор с базой, подключенной к стабилитрону, также используется в качестве коммутирующей схемы. Затем на выходе получается 12 В. Схемы и формы сигналов создаются с помощью PSpice. Благодаря регулировке напряжения и устранению пульсаций на выходе этот источник питания также можно использовать в качестве «разрядника батареи», который обеспечивает постоянный и эффективный выход на нагрузку без необходимости в батарее.

В области электротехники всегда есть потребность в источниках питания постоянного тока. Основными преимуществами этих источников питания постоянного тока являются портативность и экономичность по сравнению с источниками питания переменного тока, но иногда дешевизна этих источников питания постоянного тока приводит к недостаточной эффективности их выхода. То есть выход большинства имеющихся на рынке источников питания постоянного тока имеет пульсации и не является чистым постоянным током.Кроме того, выходное напряжение неточно из-за потерь в цепи.Чтобы устранить эти недостатки в источниках питания постоянного тока, мы создали эффективную схему, которая не только устраняет пульсации выходного напряжения, чтобы получить чистый сигнал постоянного тока, но также регулирует напряжение до постоянного и желаемого значения. Это достигается за счет использования схемы фильтра и транзистора, который используется в качестве переключателя. Мы использовали мостовой выпрямитель вместо двухдиодного выпрямителя (который также производит двухполупериодное выпрямление), потому что мостовой выпрямитель не требует высокого «пикового обратного напряжения», поскольку он использует большую часть обмоток трансформатора.Мы также использовали простой трансформатор вместо центрального ответвителя, потому что он дешевле и обеспечивает компактную и дешевую передачу энергии. Использование схемы RL в качестве фильтра повысило эффективность схемы за счет устранения пульсаций в постоянном токе, которые устраняются мостом. Использование транзистора в качестве переключателя привело к еще одному усовершенствованию схемы, т.е. он отрегулировал напряжение до постоянного значения, что спасло нашу нагрузку от повреждений, вызванных колебаниями напряжения. Используются перезаряжаемые никель-металлогидридные батареи, которые в наши дни широко используются в бытовой электронике.Они также имеют меньшее время зарядки и очень долговечны. Благодаря эффективному сочетанию значений элементов схемы к выходной цепи можно подключить множество нагрузок, то есть любой элемент схемы, имеющий напряжение 12 В и сопротивление более 10 Ом.

ПРИМЕНЕНИЕ

> Схема может использоваться в качестве «разрядника батареи», поскольку она обеспечивает постоянное регулируемое напряжение и отсутствие пульсаций на выходе. Его можно использовать для вывода сначала напрямую на нагрузку, а не на батарею.Это снижает стоимость аккумулятора.

> Может использоваться как зарядное устройство. Его можно отсоединить от схемы и затем использовать для подачи питания на различные электронные устройства.

> Его можно использовать в качестве регулятора напряжения постоянного тока, который может обеспечивать напряжение без пульсаций.

> Для подзарядки аккумуляторной батареи электромобиля.

> Для подзарядки стартерной батареи топливного транспортного средства, где используется модульное зарядное устройство.

Сопутствующие

Преобразователи переменного тока в постоянный, преобразование настенного питания переменного тока 110/220 В в 12 В постоянного тока — Преобразователи напряжения

Купите преобразователь переменного тока в постоянный, чтобы заменить дорогой автомобильный аккумулятор на 12 В постоянного тока. Эти преобразователи напряжения переменного / постоянного тока получают питание переменного тока 110 В или 220 В от сетевой розетки и преобразуют его в мощность 12 В постоянного тока, что исключает необходимость использования батарей для оборудования с батарейным питанием.

Эти универсальные преобразователи напряжения могут преобразовывать как 110 В, так и 220 В в напряжение 12 В постоянного тока.Также известен как источник питания класса 2 или преобразователи напряжения переменного / постоянного тока. Многие модели предназначены для преобразования напряжения 12 В постоянного тока, 24 В, 3 В, 6 В, 9 В, 12 В, 15 или 18 В постоянного тока в напряжение переменного тока 110–240 В дома, в офисе или в дороге.

Пожалуйста, прочтите наше Руководство по покупке трансформатора , прежде чем делать выбор.

Быстрая доставка через FedEx в любую точку США.

  • DF-1763 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, макс. 10 А
    Подробнее…

    59,99 долл. США
    79,99 долл. США

  • DF-1765 Универсальный преобразователь переменного тока в постоянный с выходом 12 В — 13,8 В постоянного тока, 20 А
    Подробнее …

    82,99 $
    $ 109.95

  • DF-1766 Универсальный преобразователь 110 В 220 В переменного тока в постоянный с выходом 12 В постоянного тока, 25 А
    Подробнее…

    92,99 доллара США
    $ 112.95

  • DF-1767 Универсальный преобразователь 110/220 В переменного тока в 12 В-13,8 В постоянного тока, макс., 30 А
    Подробнее …

    119,99 долл. США

  • DF-1768 Универсальный 110/220 В переменного тока до 12 В — 13.Преобразователь постоянного тока на 8 В, 40 А
    Подробнее …

    139,99 долл. США
    $ 179,99

  • DF-1769 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, 50 А
    Подробнее …

    169 долларов.99

  • DF-1745 Универсальный преобразователь переменного тока в постоянный 3В, 6В, 9В, 12В, 15В Выход постоянного тока Макс. 8 Ампер
    Подробнее …

    139,99 долл. США

  • DF-1730 Универсальный преобразователь переменного тока в постоянный ток 110-240 В переменного тока в 0-30 В постоянного тока, 5 А
    Подробнее…

    109,99 долл. США

  • DF-1736 Универсальный преобразователь переменного тока в постоянный — Вход: 110-240 В Выход: 0-40 В постоянного тока, макс. 6 А
    Подробнее …

    129,99 долл. США

  • DF-1730SL Универсальный преобразователь переменного тока в постоянный Вход: 110/240 В Выход: 0–30 В, макс. 20 А
    Подробнее…

    229,99 долл. США

Преобразователи мощности 220 В — 110 220 В

  • Продажа

    • Этот сверхмощный инвертор 220 В / 50 Гц подключается непосредственно к 12-вольтовой батарее постоянного тока для питания ЕВРОПЕЙСКИХ микроволновых печей 220 В / 50 Гц, электроинструментов и электроники в вашем автомобиле!
    • Power Bright ERP2300-12 Инвертор с модифицированной синусоидальной волной, 2300 Вт, выход переменного тока 220 В, 50 Гц, штекер прикуривателя 12 В; Встроенный охлаждающий вентилятор, индикатор перегрузки, выход переменного тока 220 В, 50 Гц, обеспечивает 19.2 ампера, индикатор перегрузки, выключатель питания, 11,5 x 7,5 x 2,75 (ERP230012 ERP-230012 ERP2300 ERP-2300 PBI2300E-12 PBI2300E12

    Узнать больше

    • Продолженная мощность 3500 Вт
    • Пиковая мощность нагрузки
    • Вход Диапазон напряжения постоянного тока 10-15,5 В
    • Потребляемый ток без нагрузки
    • Диапазон выходной частоты 50 +/- 3 Гц
    • Диапазон выходного напряжения 220 +/- 10% при 50 Гц
    • Макс.эффективность мощности> 90%
    • Макс.наружная температура
    • Сигнализация низкого напряжения, уровень 11 +/- 0.5V
    • Уровень отключения высокого напряжения 15,5 +/- 1 В
    • Защита от короткого замыкания Да
    • Уровень отключения низкого напряжения 10 +/- 0,5 В
    • Размеры (ДxШxВ) в 19,92 x 8,9 x 6,1
    • Защита от перегрузки Да

    Узнать больше

    ERP3500-12-220Volts

    В корзину

    • Power Bright 220V 50Hz 900 Watt Inverter. 900 Вт непрерывная мощность 1800 Вт пиковая мощность 220 Вольт 50 Гц Выход переменного тока Анодированный алюминиевый корпус обеспечивает максимальное рассеивание тепла 3 фута 8 проводов для манометра AGW в комплекте Встроенный охлаждающий вентилятор Индикатор перегрузки Отключение при перегрузке Отключение при коротком замыкании Тепловое отключение Выключатель питания
    • 900 непрерывная мощность
    • Пиковая мощность 1800 Вт
    • Обеспечивает 4.1 А
    • Корпус из анодированного алюминия обеспечивает долговечность
    • Встроенный вентилятор охлаждения
    • Внешний, заменяемый 30

    Узнать больше

    • Непрерывная мощность 400 Вт
    • Пиковая мощность 800 Вт
    • Обеспечивает 1,8 А
    • Корпус из анодированного алюминия обеспечивает долговечность
    • Встроенный вентилятор охлаждения
    • Внешний сменный предохранитель лопатчатого типа на 30 А
    • Штепсельная вилка 12 В
    • Розетка переменного тока 220 В 50 Гц (ЕВРОПЕЙСКАЯ РОЗЕТКА)
    • Индикатор перегрузки
    • Выключатель питания
    • Штекер прикуривателя
    • Выключатель питания
    • Форма выходной волны измененная синусоида
    • Потребление холостого хода
    • КПД до 90%
    • Диапазон входного напряжения 10-15 В постоянного тока
    • Более

    Узнать больше

  • Продажа

    • Продолженная мощность 3500 Вт
    • Пиковая мощность нагрузки
    • Диапазон входного постоянного напряжения 10-15.5 В
    • Потребляемый ток без нагрузки
    • Диапазон выходной частоты 60 +/- 3 Гц
    • Диапазон выходного напряжения 220 +/- 10% при 60 Гц
    • Макс.эффективность мощности> 90%
    • Макс.наружная температура
    • Уровень аварийного сигнала низкого напряжения 11 +/- 0,5 В
    • Уровень отключения по высокому напряжению 15,5 +/- 1 В
    • Защита от короткого замыкания Да
    • Уровень отключения по низкому напряжению 10 +/- 0,5 В
    • Размеры (Д x Ш x В) в 19,92 x 8,9 x 6,1
    • Перегрузка Protect Yes

    Узнать больше

    PR5000-12-220volts

    В корзину

  • Sale

    13.Макс.нагрузка 8 В Ампер 23 А Переключаемый Регулируемый Подробнее

Как легко сделать источник питания 12 В дома

Как легко сделать блок питания на 12 в в домашних условиях

В этом проекте мы узнаем, как сделать блок питания 12 В простым в домашних условиях или как преобразовать 230 В в 12 В постоянного тока, используя несколько простых шагов с принципиальной схемой. для создания этого проекта нам понадобятся некоторые компоненты.

Компоненты, необходимые для изготовления адаптера 12 В:

  • LM7812 Регулятор напряжения
  • Радиатор
  • 50 В 1000 мкФ (конденсатор)
  • светодиод
  • Резистор 1 кОм
  • 1N4007 (4 диода)
  • 12-0-12 (трансформатор 12 В / 1 А)
  • Печатная плата
  • Паяльник
  • Проволока для пайки

В этом проекте мы используем регулятор напряжения LM7812.Основная функция регулятора напряжения — это выход ровно 12 В.

Мы используем диодный мост, потому что он преобразует переменное напряжение в постоянное.

Схема блока питания 12 В

Схема источника питания 12 В:

  • Возьмите 4 диода и сделайте перемычку, как на схеме.
  • Соединить выход трансформатора с диодом, как на схеме.
  • Теперь подключите положительный провод конденсатора 1000 мкФ к положительному проводу, а отрицательную сторону — к заземляющему проводу.
  • и теперь подключите резистор 1 кОм и светодиод с положительным и отрицательным проводом.
  • Теперь 1-й контакт регулятора напряжения соединяется с плюсовым проводом, 2-й контакт соединяется с проводом заземления, а 3-й контакт используется для вывода.
  • 2-й (-12 В) и 3-й (+12) контакты регулятора напряжения используются для выходного питания.
  • Наконец, подсоедините радиатор к регулятору напряжения.
LM7812 Регулятор напряжения

Вывод стабилизатора напряжения LM7812:

Регулятор напряжения LM7812 имеет 3 контакта.

  • 1-й вход
  • 2-й участок
  • 3-й выход

Основная функция регулятора напряжения — это выход ровно 12 В.

например, если на входе 20 В, а на выходе я хочу ровно 12 В, то я использую LM7812.

Узнайте больше, посмотрев видео

Видео о том, как сделать адаптер питания на 12 В:

Некоторые основные вопросы и ответы:

Зачем использовать диодный мост?

Поскольку мы производим источник питания постоянного тока, а трансформатор обеспечивает питание переменного тока, мы используем диодный мост для преобразователя переменного тока в постоянный.мы также можем использовать выпрямитель напряжения. обе работы одинаковы. если вы не можете найти выпрямитель напряжения, вы можете использовать диодный мост.

Зачем использовать трансформатор?

потому что наше требование — входное напряжение 220 вольт и выходное напряжение 12 В. и трансформатор преобразует мощность 220 вольт в 12 В. Основное назначение трансформатора — понижение мощности с 220В до 12В.

в чем смысл трансформатора 12-0-12?

12-0-12 трансформатор средний 12в два выхода . Средний провод — нейтральный провод или отрицательный провод.1-й и 3-й провод — положительный. оба имеют выход 12 В. если мы оставим средний провод и будем использовать только 1-й и 3-й провод, то он предоставит нам выход 24 В.

Зачем использовать регулятор напряжения LM7812?

потому что нам нужен стабильный выход 12 В. и регулятор напряжения LM7812 обеспечивают стабильный выход 12 В. например, если мы используем вход 24 В, тогда регулятор напряжения преобразует его в идеальный выход 12 В.

Зачем использовать конденсатор?

когда мы преобразуем переменный ток в постоянный с помощью диода, его отрицательный контур падает, и напряжение распадается.поэтому мы используем конденсатор. его напряжение хранения в течение нескольких секунд и обеспечение выхода в состоянии и в одном направлении.

Сколько используют входное напряжение?

Обычно вы можете использовать входное напряжение от 220 до 250 В. Если ваш трансформатор поддерживает 150 вольт, вы также можете использовать входную мощность 150 В.

Можно ли использовать трансформатор для питания постоянного тока?

Да, трансформатор — это основная часть источника питания. мы также используем трансформатор. и дополнительные компоненты мы используем диодный мост для преобразователя переменного тока в постоянный. Только трансформатор не может обеспечить нас постоянным током.мы должны использовать другие компоненты для преобразования его в постоянный ток.

Как переменный ток преобразуется в постоянный?

Используя выпрямитель напряжения или диодный мост, мы можем преобразовать переменный ток в постоянный. нормальный переменный ток проходит по 2 петлям. верхний и нижний. (это называется переменным током), когда мы используем выпрямитель напряжения или диод, его нижний контур падает, а пропускаются только верхние контуры. тогда мы получаем питание постоянного тока.

Возможен ли трансформатор постоянного тока?

Нет, потому что трансформатор работает от переменного тока, он не может пропускать постоянный ток. например, мы хотим вводить 230 В и 12 В постоянного тока, используя только трансформатор.так что это невозможно. трансформатор только преобразует 230 В переменного тока в 12 В переменного тока. если вы хотите преобразовать его в DC, вам нужно присоединить больше компонентов.

Что это за значения переменного и постоянного тока?

AC означает или AC означает альтернативный ток . и DC означает постоянный ток .

Ссылки на другие проекты электроснабжения:

Ватт Дешевле на 110 или 220 Вольт?

Ватт Дешевле на 110 или 220 Вольт?

Сколько я сэкономлю на счете за электроэнергию, если включу свет в 220 вольт?

Быстрый ответ: Наверное, ничего.

Это распространенное заблуждение о том, как работает электричество и как
компании взимают с вас плату. Часто упоминаемый аргумент в пользу экономии денег
в том, что сила тока вдвое меньше, когда на ходу горит 220 вольт.
110 вольт. Это правда, но коммунальная компания не взимает плату за силу тока,
они берут с вас плату за мощность. Они выставляют вам счет в киловатт-часах. Киловатт-час
составляет 1000 ватт использования в течение одного часа или примерно соответствует 1000 ватт света при работе
на один час.Для этого есть хорошая формула: мощность / напряжение = сила тока. Если
мы подставляем цифры для натриевой лампы для выращивания на 1000 ватт, вы можете видеть, что, хотя
напряжение и сила тока могут изменяться, мощность всегда остается неизменной.

1000 Sodium Grow Light
На 110 В: 1100 Вт / 110 В = 10 А — На 220 В: 1100 Вт / 220 В = 5 А
Обратите внимание, что натриевый балласт мощностью 1000 Вт потребляет 1100 Вт.

Прямо сейчас, когда я получаю вопрос «а почему они заставляют вещи работать
на 220 вольт? »Обычно большие машины и приборы, потребляющие много энергии
работать от 220 вольт (или больше) в основном из-за размера провода, который вам понадобится
запустить их на 110 вольт было бы очень большим.Калибр и длина провода будут
определите максимальную силу тока, с которой он справится, прежде чем он расплавится! По цепи 220 вольт,
нагрузка разделена между двумя проводами на 110 вольт. Это позволяет использовать провод меньшего размера.
Это подводит нас к «вероятно» части ответа. Есть еще один фактор, это
падение напряжения или потеря напряжения, когда мощность проходит по проводу. Нижний
сопротивление на проводе, тем меньше падение напряжения. Если вы используете один или
два фонаря в типичном доме с автоматическим выключателем на небольшом расстоянии, эффективность
потери из-за падения напряжения могут быть недостаточно значительными, чтобы оправдать замену проводки.
комната для выращивания на 220 вольт.

Дополнительная информация:

Рассчитайте стоимость электроэнергии для эксплуатации
растут свет.

Как построить четырехколесный светильник для выращивания растений
Контроллер менее чем за 80 долларов

Этот предмет слишком тяжелый, слишком большой, опасный или слишком хрупкий для отправки с помощью UPS или USPS, и его необходимо отправить на поддоне. Такой товар выгоднее заказывать крупным заказом.

Закрыть

Объяснение батарей 220 А · ч

Что нужно знать об аккумуляторах глубокого разряда и ампер-часах

Добавление аккумуляторов к солнечной установке — отличный способ в полной мере воспользоваться преимуществами возобновляемых источников энергии для повышения качества жизни.Однако когда дело доходит до навигации по миру ампер, вольт и ампер-часов, это определенно может сбивать с толку. Какая самая большая батарея в ампер-часах? Сколько панелей мне нужно для зарядки аккумулятора на 220 ампер-час? Достаточно ли заряда 100 ампер-часов для питания бытовой техники в моем доме?

Что такое батареи глубокого разряда?

Аккумуляторы глубокого разряда могут выглядеть похожими на аккумуляторы, используемые в вашем автомобиле, но на самом деле они сильно отличаются. Батареи глубокого разряда предназначены для обеспечения стабильной энергии в течение более длительного периода времени.Их можно разряжать до 80%, но большинство производителей рекомендуют не разряжать ниже 45%. Регулярное превышение этого значения сокращает срок службы батареи.

Как заряжать аккумуляторы с помощью солнечных батарей?

Солнечные батареи накапливают энергию, полученную от ваших солнечных панелей. Чтобы использовать батареи как часть вашей солнечной установки, вам понадобятся солнечные панели, контроллер заряда и инвертор.

При добавлении батарейного блока в вашу систему ваши солнечные панели сначала необходимо подключить к контроллеру заряда, который поможет отслеживать, сколько энергии хранится в батареях, чтобы предотвратить перезарядку.Контроллеры заряда также отключат систему, если батареи станут слишком разряженными. Перед включением ваших приборов ваши батареи необходимо подключить к инвертору, чтобы преобразовать энергию постоянного тока, собираемую солнечными панелями, в энергию переменного тока.

Что такое вольт и ампер-часы?

Батареи глубокого разряда имеют определенное напряжение и номинальное значение в ампер-часах. Ампер-часы относятся к величине тока, который подается от батареи в течение определенного периода времени. Если у вас есть батарея на 200 Ач, она может обеспечить непрерывную подачу 20 ампер в течение 10 часов или 10 ампер в течение более 20 часов.

Термин «напряжение в батарее» относится к разнице электрических потенциалов между положительной и отрицательной клеммами батареи. Чем больше разница потенциалов, тем выше напряжение. Когда дело доходит до проектирования солнечных систем, вы должны убедиться, что напряжение на разных компонентах одинаковое. Поэтому, если у вас 12-вольтная батарея, у вас также должен быть инвертор на 12 вольт и панели на 12 вольт в вашей системе.

Какая самая большая батарея в ампер-часах?

Батареи глубокого разряда емкостью от 50 до 200 ампер-часов от Renogy .Вы можете найти на рынке другие батареи глубокого разряда емкостью более 400 ампер.

Лучше ли батарея с большей емкостью в ампер-часах?

Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки. Эта функция важна, если питание часто отключается или отключается на длительное время. Вы также должны иметь в виду, что время зарядки для более высокой батареи Ач будет больше, чем для более низкой батареи.

На сколько хватит заряда батареи на 100 ампер-час?

На базовом уровне батарея емкостью 100 Ач должна дать вам 10 ампер в течение 10 часов.Батареи глубокого цикла будут иметь меньшую емкость по мере старения, поэтому емкость батареи 100 Ач будет уменьшена на 20–50% в зависимости от того, как она использовалась и заряжалась через два или три года.

По мере того, как батарея разряжается, пусковой ток вызывает падение напряжения ниже минимального уровня, требуемого инвертором. Если ваш инвертор потребляет 2 ампера, а ваша батарея новая, вы можете рассчитывать на работу около 40 часов. Если ваш инвертор более старый и вы постоянно потребляете 20 ампер, ваш инвертор, скорее всего, отключится через 2 или 3 часа.

Сколько панелей мне нужно для зарядки аккумулятора 220 Ач?

Если у вас аккумулятор на 220 Ач, из-за ограничений по разрядке можно использовать только 80% от него, так что на самом деле у вас есть только 176 ампер-часов для потребления. Если вы узнаете, что обычно вы можете прожить два дня с энергией от этой батареи, это означает, что вы потребляете 88 ампер-часов в день.

Панель на 100 Вт будет производить в среднем около 30 ампер-часов в день (исходя из среднего солнечного дня). Это означает, что вам понадобятся три 100-ваттные солнечные панели или одна 300-ваттная панель для полной зарядки аккумулятора в среднем за день.

Как долго мой телевизор будет заряжать аккумулятор на 220 ампер-час?

Если эта батарея 220 Ач представляет собой свинцово-кислотную батарею на 12 В, то вы должны разрядить ее только до 50%, что дает вам 1320 Втч. Если ваш телевизор 100 Вт, вы можете питать его в течение 13,2 часа от этой батареи. Если ваш телевизор мощностью 200 Вт, а другие устройства в вашем доме потребляют еще 200 Вт, то заряда батареи хватит на 3,3 часа.

Могу ли я заменить батарею с меньшим значением ампер-часов на батарею с более высоким значением ампер-часов?

Если заменяемая батарея имеет такое же напряжение, вы можете использовать батарею большей емкости, чем исходная.Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки.

Сколько ампер-часов у 6-вольтовой батареи глубокого разряда?

Как и 12-вольтовые батареи, 6-вольтовые батареи могут иметь разную силу тока. Большим преимуществом использования батарей на 6 В является возможность их параллельного подключения и увеличения номинального тока.
Параллельное подключение батарей увеличит ваш номинальный ток, но напряжение останется прежним.

В чем разница между батареями на 6 и 12 вольт?

Помимо очевидной разницы в напряжении между 6- и 12-вольтовыми батареями, есть еще несколько вещей, которые их отличают.Когда вес и стоимость не являются важными факторами и требуется более высокая мощность, вам следует использовать 12-вольтовые батареи вместо 6-вольтного варианта.

Батареи глубокого разряда на 6 В могут использоваться в различных приложениях и могут быть подключены последовательно для питания систем на 12, 24 и 48 В. Основное преимущество использования 6-вольтовых батарей глубокого разряда вместо 12-вольтных батарей заключается в увеличении ампер-часов для питания вашего дома на колесах, фургона или кемпинга. Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки.

Как хранить батарейки?

При хранении батарей важно, чтобы их корпус и клеммы были чистыми от грязи и коррозии. Если вы собираетесь хранить аккумулятор в доме на колесах в зимние месяцы, убедитесь, что он полностью заряжен. Если аккумулятор хранится в гараже или где у вас есть доступ к электричеству, вам следует подключить аккумулятор к зарядному устройству. Таким образом, хранящийся аккумулятор должен быть полностью заряжен перед хранением, а затем заряд должен поддерживаться в течение периода хранения с помощью этого постоянного зарядного устройства.Рекомендуемая температура хранения для большинства батарей составляет 15 ° C (59 ° F), а диапазон допустимых температур часто составляет от –40 ° C до 50 ° C (от –40 ° C до 122 ° F). Хранение аккумуляторов в надлежащих условиях гарантирует, что у вас будет эффективный аккумулятор на долгие годы.

Как определить размер аккумуляторной батареи и почему это важно?

Очень важно правильно выбрать размер аккумуляторной батареи глубокого разряда. Необходимый объем аккумуляторной батареи зависит от вашего энергопотребления. Чтобы выбрать размер системы, который наилучшим образом соответствует вашим потребностям, мы рекомендуем составить список всех устройств, которые вы планируете использовать.Получите информацию о мощности или токах и вольтах продукта и укажите среднее время работы для каждого устройства. Калькулятор солнечных батарей Renogy — отличный инструмент, который позволяет быстро и легко определить ваши конкретные потребности.

Заключение

Опять же, использование батареи глубокого разряда с более высоким номинальным током улучшит время работы устройства от одной зарядки, что важно, если вы долгое время не собираете энергию солнца.Однако, если вы живете в районе, где много солнечного света, батарея с большей силой тока не обязательна. Также важно учитывать правильный размер вашей системы, выбор правильных батарей, а также правильное обслуживание и хранение ваших батарей. Благодаря этому у вас будет эффективный аккумулятор на долгие годы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *